1
|
Zhou P, Jia Y, Zhang T, Abudukeremu A, He X, Zhang X, Liu C, Li W, Li Z, Sun L, Guang S, Zhou Z, Yuan Z, Lu X, Yu Y. Red Light-Activated Reversible Inhibition of Protein Functions by Assembled Trap. ACS Synth Biol 2025; 14:1437-1450. [PMID: 40304578 DOI: 10.1021/acssynbio.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Red light, characterized by superior tissue penetration and minimal phototoxicity, represents an ideal wavelength for optogenetic applications. However, the existing tools for reversible protein inhibition by red light remain limited. Here, we introduce R-LARIAT (red light-activated reversible inhibition by assembled trap), a novel optogenetic system enabling precise spatiotemporal control of protein function via 660 nm red-light-induced protein clustering. Our system harnesses the rapid and reversible binding of engineered light-dependent binders (LDBs) to the bacterial phytochrome DrBphP, which utilizes the endogenous mammalian biliverdin chromophore for red light absorption. By fusing LDBs with single-domain antibodies targeting epitope-tagged proteins (e.g., GFP), R-LARIAT enables the rapid sequestration of diverse proteins into light-responsive clusters. This approach demonstrates high light sensitivity, clustering efficiency, and sustained stability. As a proof of concept, R-LARIAT-mediated sequestration of tubulin inhibits cell cycle progression in HeLa cells. This system expands the optogenetic toolbox for studying dynamic biological processes with high spatial and temporal resolution and holds the potential for applications in living tissues.
Collapse
Affiliation(s)
- Peng Zhou
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongkang Jia
- School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Tianyu Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Abasi Abudukeremu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuan He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaozhong Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zengpeng Li
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen 361005, China
| | - Ling Sun
- Center for Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Shouhong Guang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhiheng Yuan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Lu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Valencia-Expósito A, Khalilgharibi N, Martínez-Abarca Millán A, Mao Y, Martín-Bermudo MD. Local weakening of cell-extracellular matrix adhesion triggers basal epithelial tissue folding. EMBO J 2025; 44:2002-2024. [PMID: 39962267 PMCID: PMC11961693 DOI: 10.1038/s44318-025-00384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 04/03/2025] Open
Abstract
During development, epithelial sheets sculpt organs by folding, either apically or basally, into complex 3D structures. Given the presence of actomyosin networks and cell adhesion sites on both sides of cells, a common machinery mediating apical and basal epithelial tissue folding has been proposed. However, unlike for apical folding, little is known about the mechanisms that regulate epithelial folding towards the basal side. Here, using the Drosophila wing imaginal disc and combining genetic perturbations and computational modeling, we demonstrate opposing roles for cell-cell and cell-extracellular matrix (ECM) adhesion systems during epithelial folding. While cadherin-mediated adhesion, linked to actomyosin network, regulates apical folding, a localized reduction on integrin-dependent adhesion, followed by changes in cell shape and reorganization of the basal actomyosin cytoskeleton and E-Cadherin (E-Cad) levels, is necessary and sufficient to trigger basal folding. These results suggest that modulation of the cell mechanical landscape through the crosstalk between integrins and cadherins is essential for correct epithelial folding.
Collapse
Affiliation(s)
| | - Nargess Khalilgharibi
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, Gower Street, London, WC1E 6BT, UK
| | - María D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla, 41013, Spain.
| |
Collapse
|
3
|
Zhou S, Liu B, Liu J, Yi B, Wang X. Spatiotemporal dissection of collective cell migration and tissue morphogenesis during development by optogenetics. Semin Cell Dev Biol 2025; 166:36-51. [PMID: 39729778 DOI: 10.1016/j.semcdb.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
Collective cell migration and tissue morphogenesis play a variety of important roles in the development of many species. Tissue morphogenesis often generates mechanical forces that alter cell shapes and arrangements, resembling collective cell migration-like behaviors. Genetic methods have been widely used to study collective cell migration and its like behavior, advancing our understanding of these processes during development. However, a growing body of research shows that collective cell migration during development is not a simple behavior but is often combined with other cellular and tissue processes. In addition, different surrounding environments can also influence migrating cells, further complicating collective cell migration during development. Due to the complexity of developmental processes and tissues, traditional genetic approaches often encounter challenges and limitations. Thus, some methods with spatiotemporal control become urgent in dissecting collective cell migration and tissue morphogenesis during development. Optogenetics is a method that combines optics and genetics, providing a perfect strategy for spatiotemporally controlling corresponding protein activity in subcellular, cellular or tissue levels. In this review, we introduce the basic mechanisms underlying different optogenetic tools. Then, we demonstrate how optogenetic methods have been applied in vivo to dissect collective cell migration and tissue morphogenesis during development. Additionally, we describe some promising optogenetic approaches for advancing this field. Together, this review will guide and facilitate future studies of collective cell migration in vivo and tissue morphogenesis by optogenetics.
Collapse
Affiliation(s)
- Sijia Zhou
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China; Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Bing Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Gonçalves M, Lopes C, Alégot H, Osswald M, Bosveld F, Ramos C, Richard G, Bellaiche Y, Mirouse V, Morais-de-Sá E. The Dystrophin-Dystroglycan complex ensures cytokinesis efficiency in Drosophila epithelia. EMBO Rep 2025; 26:307-328. [PMID: 39548266 PMCID: PMC11772804 DOI: 10.1038/s44319-024-00319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Cytokinesis physically separates daughter cells at the end of cell division. This step is particularly challenging for epithelial cells, which are connected to their neighbors and to the extracellular matrix by transmembrane protein complexes. To systematically evaluate the impact of the cell adhesion machinery on epithelial cytokinesis efficiency, we performed an RNAi-based modifier screen in the Drosophila follicular epithelium. Strikingly, this unveiled adhesion molecules and transmembrane receptors that facilitate cytokinesis completion. Among these is Dystroglycan, which connects the extracellular matrix to the cytoskeleton via Dystrophin. Live imaging revealed that Dystrophin and Dystroglycan become enriched in the ingressing membrane, below the cytokinetic ring, during and after ring constriction. Using multiple alleles, including Dystrophin isoform-specific mutants, we show that Dystrophin/Dystroglycan localization is linked with unanticipated roles in regulating cytokinetic ring contraction and in preventing membrane regression during the abscission period. Altogether, we provide evidence that, rather than opposing cytokinesis completion, the machinery involved in cell-cell and cell-matrix interactions has also evolved functions to ensure cytokinesis efficiency in epithelial tissues.
Collapse
Affiliation(s)
- Margarida Gonçalves
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina Lopes
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Hervé Alégot
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Floris Bosveld
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005, Paris, France
| | - Carolina Ramos
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Graziella Richard
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005, Paris, France
| | - Vincent Mirouse
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
5
|
Cho SE, Li W, Beard AM, Jackson JA, Kiernan R, Hoshino K, Martin AC, Sun J. Actomyosin contraction in the follicular epithelium provides the major mechanical force for follicle rupture during Drosophila ovulation. Proc Natl Acad Sci U S A 2024; 121:e2407083121. [PMID: 39292751 PMCID: PMC11441566 DOI: 10.1073/pnas.2407083121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024] Open
Abstract
Ovulation is critical for sexual reproduction and consists of the process of liberating fertilizable oocytes from their somatic follicle capsules, also known as follicle rupture. The mechanical force for oocyte expulsion is largely unknown in many species. Our previous work demonstrated that Drosophila ovulation, as in mammals, requires the proteolytic degradation of the posterior follicle wall and follicle rupture to release the mature oocyte from a layer of somatic follicle cells. Here, we identified actomyosin contraction in somatic follicle cells as the major mechanical force for follicle rupture. Filamentous actin (F-actin) and nonmuscle myosin II (NMII) are highly enriched in the cortex of follicle cells upon stimulation with octopamine (OA), a monoamine critical for Drosophila ovulation. Pharmacological disruption of F-actin polymerization prevented follicle rupture without interfering with the follicle wall breakdown. In addition, we demonstrated that OA induces Rho1 guanosine triphosphate (GTP)ase activation in the follicle cell cortex, which activates Ras homolog (Rho) kinase to promote actomyosin contraction and follicle rupture. All these results led us to conclude that OA signaling induces actomyosin cortex enrichment and contractility, which generates the mechanical force for follicle rupture during Drosophila ovulation. Due to the conserved nature of actomyosin contraction, this work could shed light on the mechanical force required for follicle rupture in other species including humans.
Collapse
Affiliation(s)
- Stella E. Cho
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
| | - Wei Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
| | - Andrew M. Beard
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
| | - Jonathan A. Jackson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Graduate Program in Biophysics, Harvard University, Boston, MA02115
| | - Risa Kiernan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT06269
| | - Adam C. Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT06269
| |
Collapse
|
6
|
Xu Y, Wang B, Bush I, Saunders HAJ, Wildonger J, Han C. In vivo optogenetic manipulations of endogenous proteins reveal spatiotemporal roles of microtubule and kinesin in dendrite patterning. SCIENCE ADVANCES 2024; 10:eadp0138. [PMID: 39213355 PMCID: PMC11364106 DOI: 10.1126/sciadv.adp0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
During animal development, the spatiotemporal properties of molecular events largely determine the biological outcomes. Conventional gene analysis methods lack the spatiotemporal resolution for precise dissection of developmental mechanisms. Although optogenetic tools exist for manipulating designer proteins in cultured cells, few have been successfully applied to endogenous proteins in live animals. Here, we report OptoTrap, a light-inducible clustering system for manipulating endogenous proteins of diverse sizes, subcellular locations, and functions in Drosophila. This system turns on fast, is reversible in minutes or hours, and contains variants optimized for neurons and epithelial cells. By using OptoTrap to disrupt microtubules and inhibit kinesin-1 in neurons, we show that microtubules support the growth of highly dynamic dendrites and that kinesin-1 is required for patterning of low- and high-order dendritic branches in differential spatiotemporal domains. OptoTrap allows for precise manipulation of endogenous proteins in a spatiotemporal manner and thus holds promise for studying developmental mechanisms in a wide range of cell types and developmental stages.
Collapse
Affiliation(s)
- Yineng Xu
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Inle Bush
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Harriet AJ Saunders
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI 53706, USA
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI 53706, USA
- Pediatrics Department and Biological Sciences Division, Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Li S, Liu ZY, Li H, Zhou S, Liu J, Sun N, Yang KF, Dougados V, Mangeat T, Belguise K, Feng XQ, Liu Y, Wang X. Basal actomyosin pulses expand epithelium coordinating cell flattening and tissue elongation. Nat Commun 2024; 15:3000. [PMID: 38589403 PMCID: PMC11001887 DOI: 10.1038/s41467-024-47236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.
Collapse
Affiliation(s)
- Shun Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Zong-Yuan Liu
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Hao Li
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sijia Zhou
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Ningwei Sun
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Kai-Fu Yang
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Vanessa Dougados
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Thomas Mangeat
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Karine Belguise
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Xi-Qiao Feng
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China.
| | - Yiyao Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, 610072, Chengdu, Sichuan, P.R. China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Díaz-de-la-Loza MDC, Stramer BM. The extracellular matrix in tissue morphogenesis: No longer a backseat driver. Cells Dev 2024; 177:203883. [PMID: 37935283 DOI: 10.1016/j.cdev.2023.203883] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
The forces driving tissue morphogenesis are thought to originate from cellular activities. While it is appreciated that extracellular matrix (ECM) may also be involved, ECM function is assumed to be simply instructive in modulating the cellular behaviors that drive changes to tissue shape. However, there is increasing evidence that the ECM may not be the passive player portrayed in developmental biology textbooks. In this review we highlight examples of embryonic ECM dynamics that suggest cell-independent activity, along with developmental processes during which localized ECM alterations and ECM-autonomous forces are directing changes to tissue shape. Additionally, we discuss experimental approaches to unveil active ECM roles during tissue morphogenesis. We propose that it may be time to rethink our general definition of morphogenesis as a cellular-driven phenomenon and incorporate an underappreciated, and surprisingly dynamic ECM.
Collapse
Affiliation(s)
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
9
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
10
|
Qin X, He Y, Zhang Y, Li S, Li T, You F, Liu Y. Myosin regulates intracellular force and guides collective cancer cell migration via the FAK-Rho/ROCK feedback loop. Genes Dis 2023; 10:2199-2201. [PMID: 37554204 PMCID: PMC10405004 DOI: 10.1016/j.gendis.2023.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 03/31/2023] Open
Affiliation(s)
- Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Yuchen He
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Yixi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| |
Collapse
|
11
|
Goldner AN, Fessehaye SM, Rodriguez N, Mapes KA, Osterfield M, Doubrovinski K. Evidence that tissue recoil in the early Drosophila embryo is a passive not active process. Mol Biol Cell 2023; 34:br16. [PMID: 37405768 PMCID: PMC10551697 DOI: 10.1091/mbc.e22-09-0409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
Understanding tissue morphogenesis is impossible without knowing the mechanical properties of the tissue being shaped. Although techniques for measuring tissue material properties are continually being developed, methods for determining how individual proteins contribute to mechanical properties are very limited. Here, we developed two complementary techniques for the acute inactivation of spaghetti squash (the Drosophila myosin regulatory light chain), one based on the recently introduced (auxin-inducible degron 2 (AID2) system, and the other based on a novel method for conditional protein aggregation that results in nearly instantaneous protein inactivation. Combining these techniques with rheological measurements, we show that passive material properties of the cellularization-stage Drosophila embryo are essentially unaffected by myosin activity. These results suggest that this tissue is elastic, not predominantly viscous, on the developmentally relevant timescale.
Collapse
Affiliation(s)
- Amanda Nicole Goldner
- Department of Biophysics and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Salena M. Fessehaye
- Department of Biophysics and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nataly Rodriguez
- Department of Biophysics and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kelly Ann Mapes
- Department of Biophysics and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Miriam Osterfield
- Department of Biophysics and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Konstantin Doubrovinski
- Department of Biophysics and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
12
|
Walter C, Mathur J, Pathak A. Reciprocal intra- and extra-cellular polarity enables deep mechanosensing through layered matrices. Cell Rep 2023; 42:112362. [PMID: 37027304 PMCID: PMC11246724 DOI: 10.1016/j.celrep.2023.112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/11/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Adherent cells migrate on layered tissue interfaces to drive morphogenesis, wound healing, and tumor invasion. Although stiffer surfaces are known to enhance cell migration, it remains unclear whether cells sense basal stiff environments buried under softer, fibrous matrix. Using layered collagen-polyacrylamide gel systems, we unveil a migration phenotype driven by cell-matrix polarity. Here, cancer (but not normal) cells with stiff base matrix generate stable protrusions, faster migration, and greater collagen deformation because of "depth mechanosensing" through the top collagen layer. Cancer cell protrusions with front-rear polarity produce polarized collagen stiffening and deformations. Disruption of either extracellular or intracellular polarity via collagen crosslinking, laser ablation, or Arp2/3 inhibition independently abrogates depth-mechanosensitive migration of cancer cells. Our experimental findings, validated by lattice-based energy minimization modeling, present a cell migration mechanism whereby polarized cellular protrusions and contractility are reciprocated by mechanical extracellular polarity, culminating in a cell-type-dependent ability to mechanosense through matrix layers.
Collapse
Affiliation(s)
- Christopher Walter
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
13
|
di Pietro F, Osswald M, De Las Heras JM, Cristo I, López-Gay J, Wang Z, Pelletier S, Gaugué I, Leroy A, Martin C, Morais-de-Sá E, Bellaïche Y. Systematic analysis of RhoGEF/GAP localizations uncovers regulators of mechanosensing and junction formation during epithelial cell division. Curr Biol 2023; 33:858-874.e7. [PMID: 36917931 PMCID: PMC10017266 DOI: 10.1016/j.cub.2023.01.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023]
Abstract
Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José M De Las Heras
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Inês Cristo
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Jesús López-Gay
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Zhimin Wang
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Isabelle Gaugué
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Adrien Leroy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Charlotte Martin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
14
|
Crellin HA, Buckley CE. Using Optogenetics to Investigate the Shared Mechanisms of Apical-Basal Polarity and Mitosis. Cells Tissues Organs 2023; 213:161-180. [PMID: 36599311 DOI: 10.1159/000528796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking, and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation, and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as AB polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and AB polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.
Collapse
Affiliation(s)
- Helena A Crellin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Clare E Buckley
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Keramidioti A, Golegou E, Psarra E, Paschalidis N, Kalodimou K, Yamamoto S, Delidakis C, Vakaloglou KM, Zervas CG. Epithelial morphogenesis in the Drosophila egg chamber requires Parvin and ILK. Front Cell Dev Biol 2022; 10:951082. [PMID: 36531940 PMCID: PMC9752845 DOI: 10.3389/fcell.2022.951082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/21/2022] [Indexed: 03/11/2024] Open
Abstract
Integrins are the major family of transmembrane proteins that mediate cell-matrix adhesion and have a critical role in epithelial morphogenesis. Integrin function largely depends on the indirect connection of the integrin cytoplasmic tail to the actin cytoskeleton through an intracellular protein network, the integrin adhesome. What is currently unknown is the role of individual integrin adhesome components in epithelia dynamic reorganization. Drosophila egg chamber consists of the oocyte encircled by a monolayer of somatic follicle epithelial cells that undergo specific cell shape changes. Egg chamber morphogenesis depends on a developmental array of cell-cell and cell-matrix signalling events. Recent elegant work on the role of integrins in the Drosophila egg chamber has indicated their essential role in the early stages of oogenesis when the pre-follicle cells assemble into the follicle epithelium. Here, we have focused on the functional requirement of two key integrin adhesome components, Parvin and Integrin-Linked Kinase (ILK). Both proteins are expressed in the developing ovary from pupae to the adult stage and display enriched expression in terminal filament and stalk cells, while their genetic removal from early germaria results in severe disruption of the subsequent oogenesis, leading to female sterility. Combining genetic mosaic analysis of available null alleles for both Parvin and Ilk with conditional rescue utilizing the UAS/Gal4 system, we found that Parvin and ILK are required in pre-follicle cells for germline cyst encapsulation and stalk cell morphogenesis. Collectively, we have uncovered novel developmental functions for both Parvin and ILK, which closely synergize with integrins in epithelia.
Collapse
Affiliation(s)
- Athina Keramidioti
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Evgenia Golegou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Eleni Psarra
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikolaos Paschalidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Konstantina Kalodimou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Department of Neuroscience (BCM), The Development Disease Models and Therapeutics Graduate Program, Baylor College of Medicine (BCM), Texas Children’s Hospital (TCH), Program in Developmental Biology (BCM), Jan and Dan Duncan Neurological Research Institute, Houston, TX, United States
| | - Christos Delidakis
- Department of Biology, University of Crete, Iraklio, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Iraklio, Greece
| | - Katerina M. Vakaloglou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Christos G. Zervas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
16
|
Bischoff MC, Peifer M. Cell biology: Keeping the epithelium together when your neighbor divides. Curr Biol 2022; 32:R1025-R1027. [PMID: 36283349 DOI: 10.1016/j.cub.2022.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The dramatic cell-shape changes involved in mitosis and cell division challenge the integrity of epithelial tissues. A new study reveals a surprising role for atypical protein kinase C in keeping apical contractility in balance and thus preventing epithelial disruption.
Collapse
Affiliation(s)
- Maik C Bischoff
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
17
|
Osswald M, Barros-Carvalho A, Carmo AM, Loyer N, Gracio PC, Sunkel CE, Homem CCF, Januschke J, Morais-de-Sá E. aPKC regulates apical constriction to prevent tissue rupture in the Drosophila follicular epithelium. Curr Biol 2022; 32:4411-4427.e8. [PMID: 36113470 PMCID: PMC9632327 DOI: 10.1016/j.cub.2022.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 01/02/2023]
Abstract
Apical-basal polarity is an essential epithelial trait controlled by the evolutionarily conserved PAR-aPKC polarity network. Dysregulation of polarity proteins disrupts tissue organization during development and in disease, but the underlying mechanisms are unclear due to the broad implications of polarity loss. Here, we uncover how Drosophila aPKC maintains epithelial architecture by directly observing tissue disorganization after fast optogenetic inactivation in living adult flies and ovaries cultured ex vivo. We show that fast aPKC perturbation in the proliferative follicular epithelium produces large epithelial gaps that result from increased apical constriction, rather than loss of apical-basal polarity. Accordingly, we can modulate the incidence of epithelial gaps by increasing and decreasing actomyosin-driven contractility. We traced the origin of these large epithelial gaps to tissue rupture next to dividing cells. Live imaging shows that aPKC perturbation induces apical constriction in non-mitotic cells within minutes, producing pulling forces that ultimately detach dividing and neighboring cells. We further demonstrate that epithelial rupture requires a global increase of apical constriction, as it is prevented by the presence of non-constricting cells. Conversely, a global induction of apical tension through light-induced recruitment of RhoGEF2 to the apical side is sufficient to produce tissue rupture. Hence, our work reveals that the roles of aPKC in polarity and actomyosin regulation are separable and provides the first in vivo evidence that excessive tissue stress can break the epithelial barrier during proliferation.
Collapse
Affiliation(s)
- Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - André Barros-Carvalho
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana M Carmo
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Nicolas Loyer
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Patricia C Gracio
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
| | - Claudio E Sunkel
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
| | - Jens Januschke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
18
|
Villars A, Matamoro-Vidal A, Levillayer F, Levayer R. Microtubule disassembly by caspases is an important rate-limiting step of cell extrusion. Nat Commun 2022; 13:3632. [PMID: 35752632 PMCID: PMC9233712 DOI: 10.1038/s41467-022-31266-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The expulsion of dying epithelial cells requires well-orchestrated remodelling steps to maintain tissue sealing. This process, named cell extrusion, has been mostly analysed through the study of actomyosin regulation. Yet, the mechanistic relationship between caspase activation and cell extrusion is still poorly understood. Using the Drosophila pupal notum, a single layer epithelium where extrusions are caspase-dependent, we showed that the initiation of cell extrusion and apical constriction are surprisingly not associated with the modulation of actomyosin concentration and dynamics. Instead, cell apical constriction is initiated by the disassembly of a medio-apical mesh of microtubules which is driven by effector caspases. Importantly, the depletion of microtubules is sufficient to bypass the requirement of caspases for cell extrusion, while microtubule stabilisation strongly impairs cell extrusion. This study shows that microtubules disassembly by caspases is a key rate-limiting step of extrusion, and outlines a more general function of microtubules in epithelial cell shape stabilisation. Using the Drosophila pupal notum, the authors demonstrate that the disassembly of microtubules by effector caspases initiate cell extrusion independently of actomyosin regulation, thus providing insights into how caspases orchestrate dying epithelial cell expulsion.
Collapse
Affiliation(s)
- Alexis Villars
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015, Paris, France.,Sorbonne Université, Collège Doctoral, F75005, Paris, France
| | - Alexis Matamoro-Vidal
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015, Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015, Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
19
|
Hernández-Del-Valle M, Valencia-Expósito A, López-Izquierdo A, Casanova-Ferrer P, Tarazona P, Martín-Bermudo MD, Míguez DG. A coarse-grained approach to model the dynamics of the actomyosin cortex. BMC Biol 2022; 20:90. [PMID: 35459165 PMCID: PMC9034637 DOI: 10.1186/s12915-022-01279-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
Background The dynamics of the actomyosin machinery is at the core of many important biological processes. Several relevant cellular responses such as the rhythmic compression of the cell cortex are governed, at a mesoscopic level, by the nonlinear interaction between actin monomers, actin crosslinkers, and myosin motors. Coarse-grained models are an optimal tool to study actomyosin systems, since they can include processes that occur at long time and space scales, while maintaining the most relevant features of the molecular interactions. Results Here, we present a coarse-grained model of a two-dimensional actomyosin cortex, adjacent to a three-dimensional cytoplasm. Our simplified model incorporates only well-characterized interactions between actin monomers, actin crosslinkers and myosin, and it is able to reproduce many of the most important aspects of actin filament and actomyosin network formation, such as dynamics of polymerization and depolymerization, treadmilling, network formation, and the autonomous oscillatory dynamics of actomyosin. Conclusions We believe that the present model can be used to study the in vivo response of actomyosin networks to changes in key parameters of the system, such as alterations in the attachment of actin filaments to the cell cortex. Supplementary Information The online version contains supplementary material available at (10.1186/s12915-022-01279-2).
Collapse
Affiliation(s)
- Miguel Hernández-Del-Valle
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Andrea Valencia-Expósito
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera km 1, Seville, 41013, Spain
| | - Antonio López-Izquierdo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pau Casanova-Ferrer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pedro Tarazona
- IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica Teórica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Maria D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera km 1, Seville, 41013, Spain
| | - David G Míguez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| |
Collapse
|
20
|
Kroll JR, Remmelzwaal S, Boxem M. CeLINC, a fluorescence-based protein-protein interaction assay in Caenorhabditis elegans. Genetics 2021; 219:6380436. [PMID: 34849800 PMCID: PMC8664570 DOI: 10.1093/genetics/iyab163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Interactions among proteins are fundamental for life and determining whether two particular proteins physically interact can be essential for fully understanding a protein’s function. We present Caenorhabditis elegans light-induced coclustering (CeLINC), an optical binary protein–protein interaction assay to determine whether two proteins interact in vivo. Based on CRY2/CIB1 light-dependent oligomerization, CeLINC can rapidly and unambiguously identify protein–protein interactions between pairs of fluorescently tagged proteins. A fluorescently tagged bait protein is captured using a nanobody directed against the fluorescent protein (GFP or mCherry) and brought into artificial clusters within the cell. Colocalization of a fluorescently tagged prey protein in the cluster indicates a protein interaction. We tested the system with an array of positive and negative reference protein pairs. Assay performance was extremely robust with no false positives detected in the negative reference pairs. We then used the system to test for interactions among apical and basolateral polarity regulators. We confirmed interactions seen between PAR-6, PKC-3, and PAR-3, but observed no physical interactions among the basolateral Scribble module proteins LET-413, DLG-1, and LGL-1. We have generated a plasmid toolkit that allows use of custom promoters or CRY2 variants to promote flexibility of the system. The CeLINC assay is a powerful and rapid technique that can be widely applied in C. elegans due to the universal plasmids that can be used with existing fluorescently tagged strains without need for additional cloning or genetic modification of the genome.
Collapse
Affiliation(s)
- Jason R Kroll
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Sanne Remmelzwaal
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
21
|
Barrera-Velázquez M, Ríos-Barrera LD. Crosstalk between basal extracellular matrix adhesion and building of apical architecture during morphogenesis. Biol Open 2021; 10:bio058760. [PMID: 34842274 PMCID: PMC8649640 DOI: 10.1242/bio.058760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissues build complex structures like lumens and microvilli to carry out their functions. Most of the mechanisms used to build these structures rely on cells remodelling their apical plasma membranes, which ultimately constitute the specialised compartments. In addition to apical remodelling, these shape changes also depend on the proper attachment of the basal plasma membrane to the extracellular matrix (ECM). The ECM provides cues to establish apicobasal polarity, and it also transduces forces that allow apical remodelling. However, physical crosstalk mechanisms between basal ECM attachment and the apical plasma membrane remain understudied, and the ones described so far are very diverse, which highlights the importance of identifying the general principles. Here, we review apicobasal crosstalk of two well-established models of membrane remodelling taking place during Drosophila melanogaster embryogenesis: amnioserosa cell shape oscillations during dorsal closure and subcellular tube formation in tracheal cells. We discuss how anchoring to the basal ECM affects apical architecture and the mechanisms that mediate these interactions. We analyse this knowledge under the scope of other morphogenetic processes and discuss what aspects of apicobasal crosstalk may represent widespread phenomena and which ones are used to build subsets of specialised compartments.
Collapse
Affiliation(s)
- Mariana Barrera-Velázquez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
- Undergraduate Program on Genomic Sciences, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Luis Daniel Ríos-Barrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
22
|
Farahani PE, Reed EH, Underhill EJ, Aoki K, Toettcher JE. Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems. Annu Rev Biomed Eng 2021; 23:61-87. [PMID: 33722063 PMCID: PMC10436267 DOI: 10.1146/annurev-bioeng-083120-111648] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Ellen H Reed
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Evan J Underhill
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Kazuhiro Aoki
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| |
Collapse
|
23
|
Lim WK, Kaur P, Huang H, Jo RS, Ramamoorthy A, Ng LF, Suresh J, Maisha FI, Mathuru AS, Tolwinski NS. Optogenetic approaches for understanding homeostatic and degenerative processes in Drosophila. Cell Mol Life Sci 2021; 78:5865-5880. [PMID: 34232330 PMCID: PMC8260576 DOI: 10.1007/s00018-021-03836-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022]
Abstract
Many organs and tissues have an intrinsic ability to regenerate from a dedicated, tissue-specific stem cell pool. As organisms age, the process of self-regulation or homeostasis begins to slow down with fewer stem cells available for tissue repair. Tissues become more fragile and organs less efficient. This slowdown of homeostatic processes leads to the development of cellular and neurodegenerative diseases. In this review, we highlight the recent use and future potential of optogenetic approaches to study homeostasis. Optogenetics uses photosensitive molecules and genetic engineering to modulate cellular activity in vivo, allowing precise experiments with spatiotemporal control. We look at applications of this technology for understanding the mechanisms governing homeostasis and degeneration as applied to widely used model organisms, such as Drosophila melanogaster, where other common tools are less effective or unavailable.
Collapse
Affiliation(s)
- Wen Kin Lim
- Science Division, Yale-NUS College, Singapore, Singapore
| | - Prameet Kaur
- Science Division, Yale-NUS College, Singapore, Singapore
| | - Huanyan Huang
- Science Division, Yale-NUS College, Singapore, Singapore
| | | | | | - Li Fang Ng
- Science Division, Yale-NUS College, Singapore, Singapore
| | - Jahnavi Suresh
- Science Division, Yale-NUS College, Singapore, Singapore
| | | | - Ajay S Mathuru
- Science Division, Yale-NUS College, Singapore, Singapore
| | | |
Collapse
|
24
|
Zhang S, Saunders T. Mechanical processes underlying precise and robust cell matching. Semin Cell Dev Biol 2021; 120:75-84. [PMID: 34130903 DOI: 10.1016/j.semcdb.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
During the development of complicated multicellular organisms, the robust formation of specific cell-cell connections (cell matching) is required for the generation of precise tissue structures. Mismatches or misconnections can lead to various diseases. Diverse mechanical cues, including differential adhesion and temporally varying cell contractility, are involved in regulating the process of cell-cell recognition and contact formation. Cells often start the process of cell matching through contact via filopodia protrusions, mediated by specific adhesion interactions at the cell surface. These adhesion interactions give rise to differential mechanical signals that can be further perceived by the cells. In conjunction with contractions generated by the actomyosin networks within the cells, this differentially coded adhesion information can be translated to reposition and sort cells. Here, we review the role of these different cell matching components and suggest how these mechanical factors cooperate with each other to facilitate specificity in cell-cell contact formation.
Collapse
Affiliation(s)
- Shaobo Zhang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Timothy Saunders
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore; Warwick Medical School, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
25
|
Mangeat T, Labouesse S, Allain M, Negash A, Martin E, Guénolé A, Poincloux R, Estibal C, Bouissou A, Cantaloube S, Vega E, Li T, Rouvière C, Allart S, Keller D, Debarnot V, Wang XB, Michaux G, Pinot M, Le Borgne R, Tournier S, Suzanne M, Idier J, Sentenac A. Super-resolved live-cell imaging using random illumination microscopy. CELL REPORTS METHODS 2021; 1:100009. [PMID: 35474693 PMCID: PMC9017237 DOI: 10.1016/j.crmeth.2021.100009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Current super-resolution microscopy (SRM) methods suffer from an intrinsic complexity that might curtail their routine use in cell biology. We describe here random illumination microscopy (RIM) for live-cell imaging at super-resolutions matching that of 3D structured illumination microscopy, in a robust fashion. Based on speckled illumination and statistical image reconstruction, easy to implement and user-friendly, RIM is unaffected by optical aberrations on the excitation side, linear to brightness, and compatible with multicolor live-cell imaging over extended periods of time. We illustrate the potential of RIM on diverse biological applications, from the mobility of proliferating cell nuclear antigen (PCNA) in U2OS cells and kinetochore dynamics in mitotic S. pombe cells to the 3D motion of myosin minifilaments deep inside Drosophila tissues. RIM's inherent simplicity and extended biological applicability, particularly for imaging at increased depths, could help make SRM accessible to biology laboratories.
Collapse
Affiliation(s)
- Thomas Mangeat
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Simon Labouesse
- Institut Fresnel, Aix Marseille Université, CNRS, Centrale Marseille, Marseille, France
| | - Marc Allain
- Institut Fresnel, Aix Marseille Université, CNRS, Centrale Marseille, Marseille, France
| | - Awoke Negash
- Institut Fresnel, Aix Marseille Université, CNRS, Centrale Marseille, Marseille, France
| | - Emmanuel Martin
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Aude Guénolé
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Estibal
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anaïs Bouissou
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvain Cantaloube
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Elodie Vega
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tong Li
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Christian Rouvière
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Sophie Allart
- INSERM Université de Toulouse, UPS, CNRS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Debora Keller
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Valentin Debarnot
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Xia Bo Wang
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Grégoire Michaux
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) - UMR 6290, 35000 Rennes, France
| | - Mathieu Pinot
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) - UMR 6290, 35000 Rennes, France
| | - Roland Le Borgne
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) - UMR 6290, 35000 Rennes, France
| | - Sylvie Tournier
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Magali Suzanne
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Jérome Idier
- LS2N, CNRS UMR 6004, 1 rue de la Noë, F44321 Nantes Cedex 3, France
| | - Anne Sentenac
- Institut Fresnel, Aix Marseille Université, CNRS, Centrale Marseille, Marseille, France
| |
Collapse
|
26
|
Sherwood DR. Basement membrane remodeling guides cell migration and cell morphogenesis during development. Curr Opin Cell Biol 2021; 72:19-27. [PMID: 34015751 DOI: 10.1016/j.ceb.2021.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/31/2023]
Abstract
Basement membranes (BMs) are thin, dense forms of extracellular matrix that underlie or surround most animal tissues. BMs are enormously complex and harbor numerous proteins that provide essential signaling, mechanical, and barrier support for tissues during their development and normal functioning. As BMs are found throughout animal tissues, cells frequently migrate, change shape, and extend processes along BMs. Although sometimes used only as passive surfaces by cells, studies in developmental contexts are finding that BMs are often actively modified to help guide cell motility and cell morphogenesis. Here, I provide an overview of recent work revealing how BMs are remodeled in remarkably diverse ways to direct cell migration, cell orientation, axon guidance, and dendrite branching events during animal development.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Regeneration Next, Duke University, Durham 27710, USA.
| |
Collapse
|
27
|
Alhadyian H, Shoaib D, Ward RE. Septate junction proteins are required for egg elongation and border cell migration during oogenesis in Drosophila. G3-GENES GENOMES GENETICS 2021; 11:6237887. [PMID: 33871584 PMCID: PMC8495938 DOI: 10.1093/g3journal/jkab127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Protein components of the invertebrate occluding junction—known as the septate junction (SJ)—are required for morphogenetic developmental events during embryogenesis in Drosophila melanogaster. In order to determine whether SJ proteins are similarly required for morphogenesis during other developmental stages, we investigated the localization and requirement of four representative SJ proteins during oogenesis: Contactin, Macroglobulin complement-related, Neurexin IV, and Coracle. A number of morphogenetic processes occur during oogenesis, including egg elongation, formation of dorsal appendages, and border cell (BC) migration. We found that all four SJ proteins are expressed in egg chambers throughout oogenesis, with the highest and the most sustained levels in the follicular epithelium (FE). In the FE, SJ proteins localize along the lateral membrane during early and mid-oogenesis, but become enriched in an apical-lateral domain (the presumptive SJ) by stage 11. SJ protein relocalization requires the expression of other SJ proteins, as well as Rab5 and Rab11 like SJ biogenesis in the embryo. Knocking down the expression of these SJ proteins in follicle cells throughout oogenesis results in egg elongation defects and abnormal dorsal appendages. Similarly, reducing the expression of SJ genes in the BC cluster results in BC migration defects. Together, these results demonstrate an essential requirement for SJ genes in morphogenesis during oogenesis, and suggest that SJ proteins may have conserved functions in epithelial morphogenesis across developmental stages.
Collapse
Affiliation(s)
- Haifa Alhadyian
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Dania Shoaib
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Robert E Ward
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
28
|
Popkova A, Rauzi M, Wang X. Cellular and Supracellular Planar Polarity: A Multiscale Cue to Elongate the Drosophila Egg Chamber. Front Cell Dev Biol 2021; 9:645235. [PMID: 33738289 PMCID: PMC7961075 DOI: 10.3389/fcell.2021.645235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 01/10/2023] Open
Abstract
Tissue elongation is known to be controlled by oriented cell division, elongation, migration and rearrangement. While these cellular processes have been extensively studied, new emerging supracellular mechanisms driving tissue extension have recently been unveiled. Tissue rotation and actomyosin contractions have been shown to be key processes driving Drosophila egg chamber elongation. First, egg chamber rotation facilitates the dorsal-ventral alignment of the extracellular matrix and of the cell basal actin fibers. Both fiber-like structures form supracellular networks constraining the egg growth in a polarized fashion thus working as 'molecular corsets'. Second, the supracellular actin fiber network, powered by myosin periodic oscillation, contracts anisotropically driving tissue extension along the egg anterior-posterior axis. During both processes, cellular and supracellular planar polarity provide a critical cue to control Drosophila egg chamber elongation. Here we review how different planar polarized networks are built, maintained and function at both cellular and supracellular levels in the Drosophila ovarian epithelium.
Collapse
Affiliation(s)
- Anna Popkova
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Nice, France
| | - Matteo Rauzi
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Nice, France
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
29
|
Ventura G, Moreira S, Barros-Carvalho A, Osswald M, Morais-de-Sá E. Lgl cortical dynamics are independent of binding to the Scrib-Dlg complex but require Dlg-dependent restriction of aPKC. Development 2020; 147:dev.186593. [PMID: 32665243 DOI: 10.1242/dev.186593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/02/2020] [Indexed: 01/06/2023]
Abstract
Apical-basal polarity underpins the formation of epithelial barriers that are crucial for metazoan physiology. Although apical-basal polarity is long known to require the basolateral determinants Lethal Giant Larvae (Lgl), Discs Large (Dlg) and Scribble (Scrib), mechanistic understanding of their function is limited. Lgl plays a role as an aPKC inhibitor, but it remains unclear whether Lgl also forms complexes with Dlg or Scrib. Using fluorescence recovery after photobleaching, we show that Lgl does not form immobile complexes at the lateral domain of Drosophila follicle cells. Optogenetic depletion of plasma membrane PIP2 or dlg mutants accelerate Lgl cortical dynamics. However, Dlg and Scrib are required only for Lgl localization and dynamic behavior in the presence of aPKC function. Furthermore, light-induced oligomerization of basolateral proteins indicates that Lgl is not part of the Scrib-Dlg complex in the follicular epithelium. Thus, Scrib and Dlg are necessary to repress aPKC activity in the lateral domain but do not provide cortical binding sites for Lgl. Our work therefore highlights that Lgl does not act in a complex but in parallel with Scrib-Dlg to antagonize apical determinants.
Collapse
Affiliation(s)
- Guilherme Ventura
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Sofia Moreira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - André Barros-Carvalho
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mariana Osswald
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Eurico Morais-de-Sá
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
30
|
Tang VW. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol Biol Cell 2020; 31:1823-1834. [PMID: 32730166 PMCID: PMC7525820 DOI: 10.1091/mbc.e19-12-0709] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The emergence of collagen I in vertebrates resulted in a dramatic increase in the stiffness of the extracellular environment, supporting long-range force propagation and the development of low-compliant tissues necessary for the development of vertebrate traits including pressurized circulation and renal filtration. Vertebrates have also evolved integrins that can bind to collagens, resulting in the generation of higher tension and more efficient force transmission in the extracellular matrix. The stiffer environment provides an opportunity for the vertebrates to create new structures such as the stress fibers, new cell types such as endothelial cells, new developmental processes such as neural crest delamination, and new tissue organizations such as the blood-brain barrier. Molecular players found only in vertebrates allow the modification of conserved mechanisms as well as the design of novel strategies that can better serve the physiological needs of the vertebrates. These innovations collectively contribute to novel morphogenetic behaviors and unprecedented increases in the complexities of tissue mechanics and functions.
Collapse
Affiliation(s)
- Vivian W. Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
31
|
Wang H, Guo X, Wang X, Wang X, Chen J. Supracellular Actomyosin Mediates Cell-Cell Communication and Shapes Collective Migratory Morphology. iScience 2020; 23:101204. [PMID: 32535019 PMCID: PMC7300135 DOI: 10.1016/j.isci.2020.101204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/23/2020] [Accepted: 05/26/2020] [Indexed: 01/27/2023] Open
Abstract
During collective cell migration, front cells tend to extend a predominant leading protrusion, which is rarely present in cells at the side or rear positions. Using Drosophila border cells (BCs) as a model system of collective migration, we revealed the presence of a supracellular actomyosin network at the peripheral surface of BC clusters. We demonstrated that the Myosin II-mediated mechanical tension as exerted by this peripheral supracellular network not only mediated cell-cell communication between leading BC and non-leading BCs but also restrained formation of prominent protrusions at non-leading BCs. Further analysis revealed that a cytoplasmic dendritic actin network that depends on the function of Arp2/3 complex interacted with the actomyosin network. Together, our data suggest that the outward pushing or protrusive force as generated from Arp2/3-dependent actin polymerization and the inward restraining force as produced from the supracellular actomyosin network together determine the collective and polarized morphology of migratory BCs.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing 210061, China.
| | - Xuan Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing 210061, China
| | - Xianping Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing 210061, China
| | - Xiaobo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Jiong Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing 210061, China.
| |
Collapse
|
32
|
Santa-Cruz Mateos C, Valencia-Expósito A, Palacios IM, Martín-Bermudo MD. Integrins regulate epithelial cell shape by controlling the architecture and mechanical properties of basal actomyosin networks. PLoS Genet 2020; 16:e1008717. [PMID: 32479493 PMCID: PMC7263567 DOI: 10.1371/journal.pgen.1008717] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/16/2020] [Indexed: 01/01/2023] Open
Abstract
Forces generated by the actomyosin cytoskeleton are key contributors to many morphogenetic processes. The actomyosin cytoskeleton organises in different types of networks depending on intracellular signals and on cell-cell and cell-extracellular matrix (ECM) interactions. However, actomyosin networks are not static and transitions between them have been proposed to drive morphogenesis. Still, little is known about the mechanisms that regulate the dynamics of actomyosin networks during morphogenesis. This work uses the Drosophila follicular epithelium, real-time imaging, laser ablation and quantitative analysis to study the role of integrins on the regulation of basal actomyosin networks organisation and dynamics and the potential contribution of this role to cell shape. We find that elimination of integrins from follicle cells impairs F-actin recruitment to basal medial actomyosin stress fibers. The available F-actin redistributes to the so-called whip-like structures, present at tricellular junctions, and into a new type of actin-rich protrusions that emanate from the basal cortex and project towards the medial region. These F-actin protrusions are dynamic and changes in total protrusion area correlate with periodic cycles of basal myosin accumulation and constriction pulses of the cell membrane. Finally, we find that follicle cells lacking integrin function show increased membrane tension and reduced basal surface. Furthermore, the actin-rich protrusions are responsible for these phenotypes as their elimination in integrin mutant follicle cells rescues both tension and basal surface defects. We thus propose that the role of integrins as regulators of stress fibers plays a key role on controlling epithelial cell shape, as integrin disruption promotes reorganisation into other types of actomyosin networks, in a manner that interferes with proper expansion of epithelial basal surfaces. Morphogenesis involves global changes in tissue architecture driven by cell shape changes. Mechanical forces generated by actomyosin networks and force transmission through adhesive complexes power these changes. The actomyosin cytoskeleton organises in different types of networks, which localise to precise regions and perform distinct roles. However, they are rarely independent and, often, reorganisation of a given structure can promote the formation of another, conversions proposed to underlie many morphogenetic processes. Nonetheless, the mechanisms controlling actomyosin network dynamics during morphogenesis remain poorly characterised. Here, using the Drosophila follicular epithelium, we show that cell-ECM interactions mediated by integrins are required for the correct distribution of actin in the different actin networks. Elimination of integrins results in redistribution of actin from stress fibers into a new type of protrusions that dynamically emanate from the cortex and extend into the stress fibers. Changes in area protrusions correlate with bursts of myosin accumulated in stress fibers and constriction pulses of the cell membrane. We also found that integrin mutant cells show increased membrane tension and reduced basal cell surface. As these defects are rescued by eliminating the F-actin protrusions, we believe these structures prevent proper basal surface growth. Thus, we propose that integrin function as regulators of stress fibers assembly and maintenance controls epithelial cell shape, as its disruption promotes reorganisation into other actomyosin networks, conversions that interfere with proper epithelial basal surface expansion.
Collapse
Affiliation(s)
- Carmen Santa-Cruz Mateos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera,Sevilla, Spain
| | - Andrea Valencia-Expósito
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera,Sevilla, Spain
| | - Isabel M. Palacios
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera,Sevilla, Spain
- * E-mail:
| |
Collapse
|
33
|
Chen Y, Kotian N, Aranjuez G, Chen L, Messer CL, Burtscher A, Sawant K, Ramel D, Wang X, McDonald JA. Protein phosphatase 1 activity controls a balance between collective and single cell modes of migration. eLife 2020; 9:52979. [PMID: 32369438 PMCID: PMC7200163 DOI: 10.7554/elife.52979] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Collective cell migration is central to many developmental and pathological processes. However, the mechanisms that keep cell collectives together and coordinate movement of multiple cells are poorly understood. Using the Drosophila border cell migration model, we find that Protein phosphatase 1 (Pp1) activity controls collective cell cohesion and migration. Inhibition of Pp1 causes border cells to round up, dissociate, and move as single cells with altered motility. We present evidence that Pp1 promotes proper levels of cadherin-catenin complex proteins at cell-cell junctions within the cluster to keep border cells together. Pp1 further restricts actomyosin contractility to the cluster periphery rather than at individual internal border cell contacts. We show that the myosin phosphatase Pp1 complex, which inhibits non-muscle myosin-II (Myo-II) activity, coordinates border cell shape and cluster cohesion. Given the high conservation of Pp1 complexes, this study identifies Pp1 as a major regulator of collective versus single cell migration.
Collapse
Affiliation(s)
- Yujun Chen
- Division of Biology, Kansas State University, Manhattan, United States
| | - Nirupama Kotian
- Division of Biology, Kansas State University, Manhattan, United States
| | - George Aranjuez
- Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Lin Chen
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - C Luke Messer
- Division of Biology, Kansas State University, Manhattan, United States
| | - Ashley Burtscher
- Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Ketki Sawant
- Division of Biology, Kansas State University, Manhattan, United States
| | - Damien Ramel
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xiaobo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | |
Collapse
|
34
|
A Cdc42-mediated supracellular network drives polarized forces and Drosophila egg chamber extension. Nat Commun 2020; 11:1921. [PMID: 32317641 PMCID: PMC7174421 DOI: 10.1038/s41467-020-15593-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 03/13/2020] [Indexed: 01/09/2023] Open
Abstract
Actomyosin supracellular networks emerge during development and tissue repair. These cytoskeletal structures are able to generate large scale forces that can extensively remodel epithelia driving tissue buckling, closure and extension. How supracellular networks emerge, are controlled and mechanically work still remain elusive. During Drosophila oogenesis, the egg chamber elongates along the anterior-posterior axis. Here we show that a dorsal-ventral polarized supracellular F-actin network, running around the egg chamber on the basal side of follicle cells, emerges from polarized intercellular filopodia that radiate from basal stress fibers and extend penetrating neighboring cell cortexes. Filopodia can be mechanosensitive and function as cell-cell anchoring sites. The small GTPase Cdc42 governs the formation and distribution of intercellular filopodia and stress fibers in follicle cells. Finally, our study shows that a Cdc42-dependent supracellular cytoskeletal network provides a scaffold integrating local oscillatory actomyosin contractions at the tissue scale to drive global polarized forces and tissue elongation. During development, organs undergo large scale forces driven by the cytoskeleton but the precise molecular regulation of cytoskeletal networks remains unclear. Here, the authors report a Cdc42-dependent supracellular cytoskeletal network integrates local actomyosin contraction at tissue scale and drives global tissue elongation.
Collapse
|
35
|
Cerqueira Campos F, Dennis C, Alégot H, Fritsch C, Isabella A, Pouchin P, Bardot O, Horne-Badovinac S, Mirouse V. Oriented basement membrane fibrils provide a memory for F-actin planar polarization via the Dystrophin-Dystroglycan complex during tissue elongation. Development 2020; 147:dev.186957. [PMID: 32156755 DOI: 10.1242/dev.186957] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022]
Abstract
How extracellular matrix contributes to tissue morphogenesis is still an open question. In the Drosophila ovarian follicle, it has been proposed that after Fat2-dependent planar polarization of the follicle cell basal domain, oriented basement membrane (BM) fibrils and F-actin stress fibers constrain follicle growth, promoting its axial elongation. However, the relationship between BM fibrils and stress fibers and their respective impact on elongation are unclear. We found that Dystroglycan (Dg) and Dystrophin (Dys) are involved in BM fibril deposition. Moreover, they also orient stress fibers, by acting locally and in parallel to Fat2. Importantly, Dg-Dys complex-mediated cell-autonomous control of F-actin fiber orientation relies on the preceding BM fibril deposition, indicating two distinct but interdependent functions. Thus, the Dg-Dys complex works as a crucial organizer of the epithelial basal domain, regulating both F-actin and BM. Furthermore, BM fibrils act as a persistent cue for the orientation of stress fibers that are the main effector of elongation.
Collapse
Affiliation(s)
- Fabiana Cerqueira Campos
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Cynthia Dennis
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Hervé Alégot
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Cornelia Fritsch
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Adam Isabella
- Committee on Development, Regeneration and Stem Cell Biology, and Department of Molecular Genetics and Cell Biology - The University of Chicago, 920 East 58th Street, Chicago IL 60653, USA
| | - Pierre Pouchin
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Olivier Bardot
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration and Stem Cell Biology, and Department of Molecular Genetics and Cell Biology - The University of Chicago, 920 East 58th Street, Chicago IL 60653, USA
| | - Vincent Mirouse
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
36
|
Chang YC, Wu JW, Wang CW, Jang ACC. Hippo Signaling-Mediated Mechanotransduction in Cell Movement and Cancer Metastasis. Front Mol Biosci 2020; 6:157. [PMID: 32118029 PMCID: PMC7025494 DOI: 10.3389/fmolb.2019.00157] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
The evolutionarily conserved Hippo kinase signaling cascade governs cell proliferation, tissue differentiation and organ size, and can promote tumor growth and cancer metastasis when dysregulated. Unlike conventional signaling pathways driven by ligand-receptor binding to initiate downstream cascades, core Hippo kinases are activated not only by biochemical cues but also by mechanical ones generated from altered cell shape, cell polarity, cell-cell junctions or cell-extracellular matrix adhesion. In this review, we focus on recent advances showing how mechanical force acts through the actin cytoskeleton to regulate the Hippo pathway during cell movement and cancer invasion. We also discuss how this force affects YAP-dependent tissue growth and cell proliferation, and how disruption of that homeostatic relationship contributes to cancer metastasis.
Collapse
Affiliation(s)
- Yu-Chiuan Chang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jhen-Wei Wu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chueh-Wen Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Anna C-C Jang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
37
|
Kwon E, Heo WD. Optogenetic tools for dissecting complex intracellular signaling pathways. Biochem Biophys Res Commun 2020; 527:331-336. [PMID: 31948753 DOI: 10.1016/j.bbrc.2019.12.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 01/15/2023]
Abstract
Intracellular signaling forms complicated networks that involve dynamic alterations of the protein-protein interactions occurring inside a cell. To dissect these complex networks, light-inducible optogenetic technologies have offered a novel approach for modulating the function of intracellular machineries in space and time. Optogenetic approaches combine genetic and optical methods to initiate and control protein functions within live cells. In this review, we provide an overview of the optical strategies that can be used to manipulate intracellular signaling proteins and secondary messengers at the molecular level. We briefly address how an optogenetic actuator can be engineered to enhance homo- or hetero-interactions, survey various optical tools and targeting strategies for controlling cell-signaling pathways, examine their extension to in vivo systems and discuss the future prospects for the field.
Collapse
Affiliation(s)
- Eury Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea.
| |
Collapse
|
38
|
Qin X, Lv X, Li P, Yang R, Xia Q, Chen Y, Peng Y, Li L, Li S, Li T, Jiang Y, Yang H, Wu C, Zheng C, Zhu J, You F, Wang H, Chen J, Liu Y. Matrix stiffness modulates ILK-mediated YAP activation to control the drug resistance of breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165625. [PMID: 31785406 DOI: 10.1016/j.bbadis.2019.165625] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/07/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of cancer progression is strong drug resistance during clinical treatments. The tumor microenvironment is closely associated with multidrug resistance, the optimization of tumor microenvironments may have a strong therapeutic effect. In this study, we configured polyacrylamide hydrogels of varying stiffness [low (10 kPa), intermediate (38 kPa) and high (57 kPa)] to simulate tissue physical matrix stiffness across different stages of breast cancer. After treatment with doxorubicin, cell survival rates on intermediate stiffness substrate are significantly higher. We find that high expression of ILK and YAP reduces the survival rates of breast cancer patients. Drug resistance is closely associated with the inactivation of the hippo pathway protein Merlin/MST/LATS and the activation of YAP. These results not only highlight the understanding of drug resistance mechanisms but also serve as a new basis for developing breast cancer treatment delivery systems.
Collapse
Affiliation(s)
- Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Xiaoying Lv
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Rui Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Qiong Xia
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Yu Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Yueting Peng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Li Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
| | - Heng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, Jiangsu, PR China
| | - Jiong Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, Jiangsu, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China.
| |
Collapse
|
39
|
Extracellular matrix stiffness cues junctional remodeling for 3D tissue elongation. Nat Commun 2019; 10:3339. [PMID: 31350387 PMCID: PMC6659696 DOI: 10.1038/s41467-019-10874-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 05/25/2019] [Indexed: 12/12/2022] Open
Abstract
Organs are sculpted by extracellular as well as cell-intrinsic forces, but how collective cell dynamics are orchestrated in response to environmental cues is poorly understood. Here we apply advanced image analysis to reveal extracellular matrix-responsive cell behaviors that drive elongation of the Drosophila follicle, a model system in which basement membrane stiffness instructs three-dimensional tissue morphogenesis. Through in toto morphometric analyses of wild type and round egg mutants, we find that neither changes in average cell shape nor oriented cell division are required for appropriate organ shape. Instead, a major element is the reorientation of elongated cells at the follicle anterior. Polarized reorientation is regulated by mechanical cues from the basement membrane, which are transduced by the Src tyrosine kinase to alter junctional E-cadherin trafficking. This mechanosensitive cellular behavior represents a conserved mechanism that can elongate edgeless tubular epithelia in a process distinct from those that elongate bounded, planar epithelia. The extracellular matrix can shape developing organs, but how external forces direct intercellular morphogenesis is unclear. Here, the authors use 3D imaging to show that elongation of the Drosophila egg chamber involves polarized cell reorientation signalled by changes in stiffness of the surrounding extracellular matrix.
Collapse
|
40
|
Dent LG, Manning SA, Kroeger B, Williams AM, Saiful Hilmi AJ, Crea L, Kondo S, Horne-Badovinac S, Harvey KF. The dPix-Git complex is essential to coordinate epithelial morphogenesis and regulate myosin during Drosophila egg chamber development. PLoS Genet 2019; 15:e1008083. [PMID: 31116733 PMCID: PMC6555532 DOI: 10.1371/journal.pgen.1008083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/07/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
How biochemical and mechanical information are integrated during tissue development is a central question in morphogenesis. In many biological systems, the PIX-GIT complex localises to focal adhesions and integrates both physical and chemical information. We used Drosophila melanogaster egg chamber formation to study the function of PIX and GIT orthologues (dPix and Git, respectively), and discovered a central role for this complex in controlling myosin activity and epithelial monolayering. We found that Git's focal adhesion targeting domain mediates basal localisation of this complex to filament structures and the leading edge of migrating cells. In the absence of dpix and git, tissue disruption is driven by contractile forces, as reduction of myosin activators restores egg production and morphology. Further, dpix and git mutant eggs closely phenocopy defects previously reported in pak mutant epithelia. Together, these results indicate that the dPix-Git complex controls egg chamber morphogenesis by controlling myosin contractility and Pak kinase downstream of focal adhesions.
Collapse
Affiliation(s)
- Lucas G. Dent
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (LGD); (KFH)
| | - Samuel A. Manning
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Audrey M. Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States of America
| | | | - Luke Crea
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States of America
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
- * E-mail: (LGD); (KFH)
| |
Collapse
|
41
|
Peng Y, Chen Z, Chen Y, Li S, Jiang Y, Yang H, Wu C, You F, Zheng C, Zhu J, Tan Y, Qin X, Liu Y. ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness. Acta Biomater 2019; 88:86-101. [PMID: 30771534 DOI: 10.1016/j.actbio.2019.02.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
Abstract
Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The importance of ECM stiffness in cancer is well known. However, the biomechanical behavior of tumor cells and the underlying mechanotransduction pathways remain unclear. Here, we used polyacrylamide (PAA) substrates to simulate tissue stiffness at different progress stages of breast cancer in vitro, and we observed that moderate substrate stiffness promoted breast cancer cell motility. The substrate stiffness directly activated integrin β1 and focal adhesion kinase (FAK), which accelerate focal adhesion (FA) maturation and induce the downstream cascades of intracellular signals of the RhoA/ROCK pathway. Interestingly, the differential regulatory mechanism between two ROCK isoforms (ROCK1 and ROCK2) in cell motility and mechanotransduction was clearly identified. ROCK1 phosphorylated the myosin regulatory light chain (MRLC) and facilitated the generation of traction force, while ROCK2 phosphorylated cofilin and regulated the cytoskeletal remodeling by suppressing F-actin depolymerization. The ROCK isoforms differentially regulated the pathways of RhoA/ROCK1/p-MLC and RhoA/ROCK2/p-cofilin in a coordinate fashion to modulate breast cancer cell motility in a substrate stiffness-dependent manner through integrin β1-activated FAK signaling. Our findings provide new insights into the mechanisms of matrix mechanical property-induced cancer cell migration and malignant behaviors. STATEMENT OF SIGNIFICANCE: Here, we examined the relationship between substrate stiffness and tumor cellular motility by using polyacrylamide (PAA) substrates to simulate the stages in vivo of breast cancer. The results elucidated the different regulatory roles between the two ROCK isoforms in cell motility and demonstrated that stiff substrate (38 kPa) mediated RhoA/ROCK1/p-MLC and RhoA/ROCK2/p-cofilin pathways through integrin β1-FAK activation and eventually promoted directional migration. Our discoveries would have significant implications in the understanding of the interaction between cancer cells and tumor microenvironments, and hence, it might provide new insights into the metastasis inhibition, which could be an adjuvant way of cancer therapy.
Collapse
|
42
|
Qin X, Li J, Sun J, Liu L, Chen D, Liu Y. Low shear stress induces ERK nuclear localization and YAP activation to control the proliferation of breast cancer cells. Biochem Biophys Res Commun 2019; 510:219-223. [DOI: 10.1016/j.bbrc.2019.01.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 01/29/2023]
|
43
|
Osswald M, Santos AF, Morais-de-Sá E. Light-Induced Protein Clustering for Optogenetic Interference and Protein Interaction Analysis in Drosophila S2 Cells. Biomolecules 2019; 9:biom9020061. [PMID: 30759894 PMCID: PMC6406598 DOI: 10.3390/biom9020061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Drosophila Schneider 2 (S2) cells are a simple and powerful system commonly used in cell biology because they are well suited for high resolution microscopy and RNAi-mediated depletion. However, understanding dynamic processes, such as cell division, also requires methodology to interfere with protein function with high spatiotemporal control. In this research study, we report the adaptation of an optogenetic tool to Drosophila S2 cells. Light-activated reversible inhibition by assembled trap (LARIAT) relies on the rapid light-dependent heterodimerization between cryptochrome 2 (CRY2) and cryptochrome-interacting bHLH 1 (CIB1) to form large protein clusters. An anti-green fluorescent protein (GFP) nanobody fused with CRY2 allows this method to quickly trap any GFP-tagged protein in these light-induced protein clusters. We evaluated clustering kinetics in response to light for different LARIAT modules, and showed the ability of GFP-LARIAT to inactivate the mitotic protein Mps1 and to disrupt the membrane localization of the polarity regulator Lethal Giant Larvae (Lgl). Moreover, we validated light-induced co-clustering assays to assess protein-protein interactions in S2 cells. In conclusion, GFP-based LARIAT is a versatile tool to answer different biological questions, since it enables probing of dynamic processes and protein-protein interactions with high spatiotemporal resolution in Drosophila S2 cells.
Collapse
Affiliation(s)
- Mariana Osswald
- Epithelial Polarity and Cell Division, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - A Filipa Santos
- Epithelial Polarity and Cell Division, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Eurico Morais-de-Sá
- Epithelial Polarity and Cell Division, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
44
|
Agarwal P, Zaidel-Bar R. Principles of Actomyosin Regulation In Vivo. Trends Cell Biol 2018; 29:150-163. [PMID: 30385150 DOI: 10.1016/j.tcb.2018.09.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
The actomyosin cytoskeleton is responsible for most force-driven processes in cells and tissues. How it assembles into the necessary structures at the right time and place is an important question. Here, we focus on molecular mechanisms of actomyosin regulation recently elucidated in animal models, and highlight several common principles that emerge. The architecture of the actomyosin network - an important determinant of its function - results from actin polymerization, crosslinking and turnover, localized myosin activation, and contractility-driven self-organization. Spatiotemporal regulation is achieved by tissue-specific expression and subcellular localization of Rho GTPase regulators. Subcellular anchor points of actomyosin structures control the outcome of their contraction, and molecular feedback mechanisms dictate whether they are transient, cyclic, or persistent.
Collapse
Affiliation(s)
- Priti Agarwal
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
45
|
Abstract
Establishing and maintaining cell polarity are dynamic processes that necessitate complicated but highly regulated protein interactions. Phosphorylation is a powerful mechanism for cells to control the function and subcellular localization of a target protein, and multiple kinases have played critical roles in cell polarity. Among them, atypical protein kinase C (aPKC) is likely the most studied kinase in cell polarity and has the largest number of downstream substrates characterized so far. More than half of the polarity proteins that are essential for regulating cell polarity have been identified as aPKC substrates. This review covers mainly studies of aPKC in regulating anterior-posterior polarity in the worm one-cell embryo and apical-basal polarity in epithelial cells and asymmetrically dividing cells (for example,
Drosophila neuroblasts). We will go through aPKC target proteins in cell polarity and discuss various mechanisms by which aPKC phosphorylation controls their subcellular localizations and biological functions. We will also review the recent progress in determining the detailed molecular mechanisms in spatial and temporal control of aPKC subcellular localization and kinase activity during cell polarization.
Collapse
Affiliation(s)
- Yang Hong
- Department of Cell Biology, University of Pittsburgh School of Medicine, S325 BST, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
46
|
Ueda Y, Sato M. Induction of Signal Transduction by Using Non-Channelrhodopsin-Type Optogenetic Tools. Chembiochem 2018; 19:1217-1231. [PMID: 29577530 DOI: 10.1002/cbic.201700635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 12/24/2022]
Abstract
Signal transductions are the basis for all cellular functions. Previous studies investigating signal transductions mainly relied on pharmacological inhibition, RNA interference, and constitutive active/dominant negative protein expression systems. However, such studies do not allow the modulation of protein activity with high spatial and temporal precision in cells, tissues, and organs in animals. Recently, non-channelrhodopsin-type optogenetic tools for regulating signal transduction have emerged. These photoswitches address several disadvantages of previous techniques, and allow us to control a variety of signal transductions such as cell membrane dynamics, calcium signaling, lipid signaling, and apoptosis. In this review we summarize recent advances in the development of such photoswitches and in how these optotools are applied to signaling processes.
Collapse
Affiliation(s)
- Yoshibumi Ueda
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- AMED-PRIME (Japan), Agency for Medical Research and Development, Tokyo, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
47
|
A biochemical network controlling basal myosin oscillation. Nat Commun 2018; 9:1210. [PMID: 29572440 PMCID: PMC5865161 DOI: 10.1038/s41467-018-03574-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/20/2018] [Indexed: 01/23/2023] Open
Abstract
The actomyosin cytoskeleton, a key stress-producing unit in epithelial cells, oscillates spontaneously in a wide variety of systems. Although much of the signal cascade regulating myosin activity has been characterized, the origin of such oscillatory behavior is still unclear. Here, we show that basal myosin II oscillation in Drosophila ovarian epithelium is not controlled by actomyosin cortical tension, but instead relies on a biochemical oscillator involving ROCK and myosin phosphatase. Key to this oscillation is a diffusive ROCK flow, linking junctional Rho1 to medial actomyosin cortex, and dynamically maintained by a self-activation loop reliant on ROCK kinase activity. In response to the resulting myosin II recruitment, myosin phosphatase is locally enriched and shuts off ROCK and myosin II signals. Coupling Drosophila genetics, live imaging, modeling, and optogenetics, we uncover an intrinsic biochemical oscillator at the core of myosin II regulatory network, shedding light on the spatio-temporal dynamics of force generation. The actomyosin cytoskeleton is known to spontaneously oscillate in many systems but the mechanism of this behavior is not clear. Here Qin et al. define a signaling network involving a ROCK-dependent self-activation loop and recruitment of myosin II to the cortex, followed by a local accumulation of myosin phosphatase that shuts off the signal.
Collapse
|
48
|
Abstract
D'Arcy Thompson was a proponent of applying mathematical and physical principles to biological systems, an approach that is becoming increasingly common in developmental biology. Indeed, the recent integration of quantitative experimental data, force measurements and mathematical modeling has changed our understanding of morphogenesis - the shaping of an organism during development. Emerging evidence suggests that the subcellular organization of contractile cytoskeletal networks plays a key role in force generation, while on the tissue level the spatial organization of forces determines the morphogenetic output. Inspired by D'Arcy Thompson's On Growth and Form, we review our current understanding of how biological forms are created and maintained by the generation and organization of contractile forces at the cell and tissue levels. We focus on recent advances in our understanding of how cells actively sculpt tissues and how forces are involved in specific morphogenetic processes.
Collapse
Affiliation(s)
- Natalie C Heer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|