1
|
Zhang C, Zhang S, Wang G, Huang X, Xu S, Wang D, Guo C, Wang Y. Genomics and transcriptomics identify quantitative trait loci affecting growth-related traits in silver pomfret (Pampus argenteus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101414. [PMID: 39813916 DOI: 10.1016/j.cbd.2025.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Pampus argenteus, a species distributed throughout the Indo-West Pacific, plays a significant role in the yield of aquaculture species. However, cultured P. argenteus has always been characterised by unbalanced growth synchronisation among individuals, slow growth rate, and lack of excellent germplasm resources. Therefore, we conducted mass selection for fast-growing strain P. argenteus for several consecutive years. Various genetic improvement programs have modified its genome sequence through selective pressure, leaving nucleotide signals that can be detected at the genomic level. In the present study, we combined bulked segregant analysis and transcriptome sequencing to identify candidate single nucleotide polymorphisms (SNPs) and key genes for growth-related traits in P. argenteus. A total of 7,280,936 SNPs and 2,212,379 insertions/deletions were identified in the extreme phenotypes of the fast-growing and slow-growing groups. Based on the examination of SNP frequency differences and sliding-window analysis, 42 SNPs were identified as candidate markers. Moreover, 14 of the 42 SNPs linked to growth-related traits were confirmed to be credible SNPs, and eight growth-related genes were screened, namely myb-binding protein 1 A, insulin A/B chains, α-1B adrenoceptor, engulfment and cell motility protein 3, myosin light chain kinase family member 4, insulin receptor located, unconventional myosin-9b, and matrilin-1. An optimal three-factor model (SNP4&SNP12&SNP14) was constructed using the generalized multifactor dimensionality reduction method, and its accuracy was verified as 67.72 %. These results may benefit genetic studies and accelerate genetic improvement of fast-growing strains of P. argenteus.
Collapse
Affiliation(s)
- Cheng Zhang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shun Zhang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Guanlin Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Xiang Huang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shanliang Xu
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Danli Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Chunyang Guo
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China.
| | - Yajun Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China.
| |
Collapse
|
2
|
Prusek A, Sikora B, Skubis-Sikora A, Czekaj P. Assessment of the toxic effect of benzalkonium chloride on human limbal stem cells. Sci Rep 2025; 15:12295. [PMID: 40210649 PMCID: PMC11986071 DOI: 10.1038/s41598-025-96919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Benzalkonium chloride (BAC) is the most commonly used preservative in eye drops. Unfortunately, it is potentially toxic and considered a leading cause of iatrogenic dry eye disease (DED) associated with local damage to the corneal epithelium. Corneal epithelium can be reconstituted thanks to the ability of limbal epithelial stem cells (LESCs) to self-renew, migrate, and differentiate, and can potentially be damaged by BAC. The aim of this study was to characterize the phenotype of human limbal stem cells (LSCs) isolated from the whole corneoscleral rims, and treated with BAC in vitro. The BAC dose was determined based on LSC viability assessment (MTT assay). The 48-h incubation period of LSCs with BAC was chosen to simulate long-term exposure of cells to preservative-containing eye drops. The cells were characterized by specific marker immunofluorescence staining; expression of genes related to proliferation, apoptosis, and inflammation (RT-qPCR); colony-forming ability and wound healing (scratch assay). Cell cycle stages were identified by flow cytometry. A BAC concentration of 0.0002% in the culture medium was chosen as an effective dose to inhibit LSC proliferation and migration and stimulate the expression of genes related to cell cycle, apoptosis, and inflammation. LSCs lose their clonogenic potential under the influence of BAC. It was concluded that benzalkonium chloride can develop toxic activity against limbal stem cells, limiting their regenerative potential.
Collapse
Affiliation(s)
- Agnieszka Prusek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Bartosz Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksandra Skubis-Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
3
|
He W, Loganathan N, Belsham DD. IGF1 Signaling Regulates Neuropeptide Expression in Hypothalamic Neurons Under Physiological and Pathological Conditions. Endocrinology 2025; 166:bqaf051. [PMID: 40105689 PMCID: PMC11949690 DOI: 10.1210/endocr/bqaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
Insulin-like growth factor 1 (IGF1) plays a critical role in metabolism and aging, but its role in the brain remains unclear. This study examined whether hypothalamic neurons respond to IGF1 and how its actions are modulated. RT-qPCR and single-cell RNA sequencing indicated that Igf1r mRNA is expressed in neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons but has higher expression in pro-opiomelanocortin (POMC) neurons. IGF1 binding proteins Igfbp3 and Igfbp5 were significantly expressed, whereby Igfbp5 levels were modulated by fasting, nutrient availability, and circadian rhythms, implying that IGF1 signaling can be controlled by multiple mechanisms. In mouse and human models, IGF1 regulated Agrp, Npy, Pomc, Cartpt, Spx, Gal, and Fam237b expression, producing an overall anorexigenic profile. Hyperinsulinemia induced IGF1 resistance, accompanied by reduced IGF1R protein, as well as Igf1r and Irs2 mRNA expression via over-activation of phosphoinositide 3-kinase/forkhead box O1 (PI3K-FOXO1) signaling. Thus, hypothalamic neurons respond to IGF1 under physiological conditions, and hyperinsulinemia is a novel mechanism that drives cellular IGF1 resistance.
Collapse
Affiliation(s)
- Wenyuan He
- Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8
- Department of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
4
|
Caturano A, Erul E, Nilo R, Nilo D, Russo V, Rinaldi L, Acierno C, Gemelli M, Ricotta R, Sasso FC, Giordano A, Conte C, Ürün Y. Insulin resistance and cancer: molecular links and clinical perspectives. Mol Cell Biochem 2025:10.1007/s11010-025-05245-8. [PMID: 40089612 DOI: 10.1007/s11010-025-05245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/23/2025] [Indexed: 03/17/2025]
Abstract
The association between insulin resistance (IR), type 2 diabetes mellitus (T2DM), and cancer is increasingly recognized and poses an escalating global health challenge, as the incidence of these conditions continues to rise. Studies indicate that individuals with T2DM have a 10-20% increased risk of developing various solid tumors, including colorectal, breast, pancreatic, and liver cancers. The relative risk (RR) varies depending on cancer type, with pancreatic and liver cancers showing a particularly strong association (RR 2.0-2.5), while colorectal and breast cancers demonstrate a moderate increase (RR 1.2-1.5). Understanding these epidemiological trends is crucial for developing integrated management strategies. Given the global rise in T2DM and cancer cases, exploring the complex relationship between these conditions is critical. IR contributes to hyperglycemia, chronic inflammation, and altered lipid metabolism. Together, these factors create a pro-tumorigenic environment conducive to cancer development and progression. In individuals with IR, hyperinsulinemia triggers the insulin-insulin-like growth factor (IGF1R) signaling pathway, activating cancer-associated pathways such as mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PIK3CA), which promote cell proliferation and survival, thereby supporting tumor growth. Both IR and T2DM are linked to increased morbidity and mortality in patients with cancer. By providing an in-depth analysis of the molecular links between insulin resistance and cancer, this review offers valuable insights into the role of metabolic dysfunction in tumor progression. Addressing insulin resistance as a co-morbidity may open new avenues for risk assessment, early intervention, and the development of integrated treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Enes Erul
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, 06620, Turkey
| | - Roberto Nilo
- Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Carlo Acierno
- Azienda Ospedaliera Regionale San Carlo, 85100, Potenza, Italy
| | - Maria Gemelli
- Medical Oncology Unit, IRCCS MultiMedica, Milan, Italy
| | | | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, 19122, USA
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099, Milan, Italy
| | - Yüksel Ürün
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, 06620, Turkey.
| |
Collapse
|
5
|
Guang L, Ma S, Yao Z, Song D, Chen Y, Liu S, Wang P, Su J, Wang Y, Luo L, Shyh-Chang N. An obesogenic FTO allele causes accelerated development, growth and insulin resistance in human skeletal muscle cells. Nat Commun 2025; 16:1645. [PMID: 40055326 PMCID: PMC11889117 DOI: 10.1038/s41467-024-53820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/21/2024] [Indexed: 05/13/2025] Open
Abstract
Human GWAS have shown that obesogenic FTO polymorphisms correlate with lean mass, but the mechanisms have remained unclear. It is counterintuitive because lean mass is inversely correlated with obesity and metabolic diseases. Here, we use CRISPR to knock-in FTOrs9939609-A into hESC-derived tissue models, to elucidate potentially hidden roles of FTO during development. We find that among human tissues, FTOrs9939609-A most robustly affect human muscle progenitors' proliferation, differentiation, senescence, thereby accelerating muscle developmental and metabolic aging. An edited FTOrs9939609-A allele over-stimulates insulin/IGF signaling via increased muscle-specific enhancer H3K27ac, FTO expression and m6A demethylation of H19 lncRNA and IGF2 mRNA, with excessive insulin/IGF signaling leading to insulin resistance upon replicative aging or exposure to high fat diet. This FTO-m6A-H19/IGF2 circuit may explain paradoxical GWAS findings linking FTOrs9939609-A to both leanness and obesity. Our results provide a proof-of-principle that CRISPR-hESC-tissue platforms can be harnessed to resolve puzzles in human metabolism.
Collapse
Affiliation(s)
- Lu Guang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shilin Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyue Yao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yu Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqing Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Su
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuefan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lanfang Luo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
6
|
Kosheleva L, Koshelev D, Lagunas-Rangel FA, Levit S, Rabinovitch A, Schiöth HB. Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments. Pharmacol Rev 2025; 77:100044. [PMID: 40014914 PMCID: PMC11964952 DOI: 10.1016/j.pharmr.2025.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.
Collapse
Affiliation(s)
- Liudmila Kosheleva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniil Koshelev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Shmuel Levit
- Diabetes and Metabolism Institute, Assuta Medical Centers, Tel Aviv, Israel
| | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
7
|
Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V. Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration. Mol Biol Cell 2025; 36:ar33. [PMID: 39878654 PMCID: PMC11974963 DOI: 10.1091/mbc.e24-11-0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 knockout (KO) cells revealed simultaneous up-regulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a prosurvival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of Atp7aflx/Y :: Vil1Cre/+ mice identified up-regulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in Drosophila demonstrated that copper deficiency dendritic phenotypes in class IV neurons are improved or rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency.
Collapse
Affiliation(s)
- Alicia R. Lane
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Noah E. Scher
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Shatabdi Bhattacharjee
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Stephanie A. Zlatic
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Anne M. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Kaela S. Singleton
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Duc M. Duong
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Mike McKenna
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109
| | - William L. Liu
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Alina Baiju
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Felix G. Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Tommy Tran
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Lauren B. Clayton
- Department of Biochemistry & Biophysics and Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331
| | - Michael J. Petris
- Departments of Biochemistry, Molecular Microbiology and Immunology, Ophthalmology, and Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO, 65211
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Anupam Patgiri
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Alysia D. Vrailas-Mortimer
- Department of Biochemistry & Biophysics and Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| |
Collapse
|
8
|
Meng X, Zhang H, Zhao Z, Li S, Zhang X, Guo R, Liu H, Yuan Y, Li W, Song Q, Liu J. Type 3 diabetes and metabolic reprogramming of brain neurons: causes and therapeutic strategies. Mol Med 2025; 31:61. [PMID: 39966707 PMCID: PMC11834690 DOI: 10.1186/s10020-025-01101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Abnormal glucose metabolism inevitably disrupts normal neuronal function, a phenomenon widely observed in Alzheimer's disease (AD). Investigating the mechanisms of metabolic adaptation during disease progression has become a central focus of research. Considering that impaired glucose metabolism is closely related to decreased insulin signaling and insulin resistance, a new concept "type 3 diabetes mellitus (T3DM)" has been coined. T3DM specifically refers to the brain's neurons becoming unresponsive to insulin, underscoring the strong link between diabetes and AD. Recent studies reveal that during brain insulin resistance, neurons exhibit mitochondrial dysfunction, reduced glucose metabolism, and elevated lactate levels. These findings suggest that impaired insulin signaling caused by T3DM may lead to a compensatory metabolic shift in neurons toward glycolysis. Consequently, this review aims to explore the underlying causes of T3DM and elucidate how insulin resistance drives metabolic reprogramming in neurons during AD progression. Additionally, it highlights therapeutic strategies targeting insulin sensitivity and mitochondrial function as promising avenues for the successful development of AD treatments.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130021, China
| | - Zhenhu Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Siyao Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ruihan Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Huimin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yiling Yuan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wanrui Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qi Song
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
9
|
Myers CG, Viswambharan H, Haywood NJ, Bridge K, Turvey S, Armstrong T, Lunn L, Meakin PJ, Porter KE, Clavane EM, Beech DJ, Cubbon RM, Wheatcroft SB, McPhillie MJ, Issad T, Fishwick CW, Kearney MT, Simmons KJ. Small molecule modulation of insulin receptor-insulin like growth factor-1 receptor heterodimers in human endothelial cells. Mol Cell Endocrinol 2024; 594:112387. [PMID: 39419341 DOI: 10.1016/j.mce.2024.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES The insulin receptor (IR) and insulin like growth factor-1 receptor (IGF-1R) are heterodimers consisting of two extracellular α-subunits and two transmembrane β -subunits. Insulin αβ and insulin like growth factor-1 αβ hemi-receptors can heterodimerize to form hybrids composed of one IR αβ and one IGF-1R αβ. The function of hybrids in the endothelium is unclear. We sought insight by developing a small molecule capable of reducing hybrid formation in endothelial cells. METHODS We performed a high-throughput small molecule screening, based on a homology model of the apo hybrid structure. Endothelial cells were studied using western blotting and qPCR to determine the effects of small molecules that reduced hybrid formation. RESULTS Our studies unveil a first-in-class quinoline-containing heterocyclic small molecule that reduces hybrids by >50% in human umbilical vein endothelial cells (HUVECs) with no effects on IR or IGF-1R. This small molecule reduced expression of the negative regulatory p85α subunit of phosphatidylinositol 3-kinase, increased basal phosphorylation of the downstream target Akt and enhanced insulin/insulin-like growth factor-1 and shear stress-induced serine phosphorylation of Akt. In primary saphenous vein endothelial cells (SVEC) from patients with type 2 diabetes mellitus undergoing coronary artery bypass (CABG) surgery, hybrid receptor expression was greater than in patients without type 2 diabetes mellitus. The small molecule significantly reduced hybrid expression in SVEC from patients with type 2 diabetes mellitus. CONCLUSIONS We identified a small molecule that decreases the formation of IR: IGF-1R hybrid receptors in human endothelial cells, without significant impact on the overall expression of IR or IGF-1R. In HUVECs, reduction of IR: IGF-1R hybrid receptors leads to an increase in insulin-induced serine phosphorylation of the critical downstream signalling kinase, Akt. The underpinning mechanism appears, at least in part to involve the attenuation of the inhibitory effect of IR: IGF-1R hybrid receptors on PI3-kinase signalling.
Collapse
Affiliation(s)
- Chloe G Myers
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Hema Viswambharan
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Bridge
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Samuel Turvey
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Armstrong
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Lydia Lunn
- Department of Chemistry University of Leeds, Leeds, United Kingdom
| | - Paul J Meakin
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Karen E Porter
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eva M Clavane
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - Richard M Cubbon
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Tarik Issad
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | | | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom.
| | - Katie J Simmons
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, United Kingdom
| |
Collapse
|
10
|
Jørgensen SH, Emdal KB, Pedersen AK, Axelsen LN, Kildegaard HF, Demozay D, Pedersen TÅ, Grønborg M, Slaaby R, Nielsen PK, Olsen JV. Multi-layered proteomics identifies insulin-induced upregulation of the EphA2 receptor via the ERK pathway which is dependent on low IGF1R level. Sci Rep 2024; 14:28856. [PMID: 39572596 PMCID: PMC11582730 DOI: 10.1038/s41598-024-77817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
Insulin resistance impairs the cellular insulin response, and often precedes metabolic disorders, like type 2 diabetes, impacting an increasing number of people globally. Understanding the molecular mechanisms in hepatic insulin resistance is essential for early preventive treatments. To elucidate changes in insulin signal transduction associated with hepatocellular resistance, we employed a multi-layered mass spectrometry-based proteomics approach focused on insulin receptor (IR) signaling at the interactome, phosphoproteome, and proteome levels in a long-term hyperinsulinemia-induced insulin-resistant HepG2 cell line with a knockout of the insulin-like growth factor 1 receptor (IGF1R KO). The analysis revealed insulin-stimulated recruitment of the PI3K complex in both insulin-sensitive and -resistant cells. Phosphoproteomics showed attenuated signaling via the metabolic PI3K-AKT pathway but sustained extracellular signal-regulated kinase (ERK) activity in insulin-resistant cells. At the proteome level, the ephrin type-A receptor 2 (EphA2) showed an insulin-induced increase in expression, which occurred through the ERK signaling pathway and was concordantly independent of insulin resistance. Induction of EphA2 by insulin was confirmed in additional cell lines and observed uniquely in cells with high IR-to-IGF1R ratio. The multi-layered proteomics dataset provided insights into insulin signaling, serving as a resource to generate and test hypotheses, leading to an improved understanding of insulin resistance.
Collapse
Affiliation(s)
- Sarah Hyllekvist Jørgensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Global Research Technologies, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Kristina Bennet Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | | | - Damien Demozay
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Mads Grønborg
- Global Translation, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Rita Slaaby
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Jesper Velgaard Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
11
|
Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V. Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612106. [PMID: 39314281 PMCID: PMC11419079 DOI: 10.1101/2024.09.09.612106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that was associated with a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 KO cells revealed simultaneous upregulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a pro-survival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of Atp7a flx/Y :: Vil1 Cre/+ mice identified upregulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in Drosophila demonstrated that copper deficiency dendritic phenotypes in class IV neurons are partially rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency.
Collapse
Affiliation(s)
- Alicia R. Lane
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Noah E. Scher
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | | | | | - Anne M. Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, Atlanta, Georgia, USA, 30322
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Kaela S. Singleton
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Duc M. Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
| | - Mike McKenna
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109
| | - William L. Liu
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Alina Baiju
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Felix G Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Tommy Tran
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Lauren B. Clayton
- Department of Biochemistry & Biophysics and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Michael J. Petris
- Departments of Biochemistry, Molecular Microbiology and Immunology, Ophthalmology, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anupam Patgiri
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Alysia D. Vrailas-Mortimer
- Department of Biochemistry & Biophysics and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, Atlanta, Georgia, USA, 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| |
Collapse
|
12
|
Alagiakrishnan K, Halverson T. Role of Peripheral and Central Insulin Resistance in Neuropsychiatric Disorders. J Clin Med 2024; 13:6607. [PMID: 39518747 PMCID: PMC11547162 DOI: 10.3390/jcm13216607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Insulin acts on different organs, including the brain, which helps it regulate energy metabolism. Insulin signaling plays an important role in the function of different cell types. In this review, we have summarized the key roles of insulin and insulin receptors in healthy brains and in different brain disorders. Insulin signaling, as well as insulin resistance (IR), is a major contributor in the regulation of mood, behavior, and cognition. Recent evidence showed that both peripheral and central insulin resistance play a role in the pathophysiology, clinical presentation, and management of neuropsychiatric disorders like Cognitive Impairment/Dementia, Depression, and Schizophrenia. Many human studies point out Insulin Resistance/Metabolic Syndrome can increase the risk of dementia especially Alzheimer's dementia (AD). IR has been shown to play a role in AD development but also in its progression. This review article discusses the pathophysiological pathways and mechanisms of insulin resistance in major neuropsychiatric disorders. The extent of insulin resistance can be quantified using IR biomarkers like insulin levels, HOMA-IR index, and Triglyceride glucose-body mass index (TyG-BMI) levels. IR has been shown to precede neurodegeneration. Human trials showed current treatment with certain antidiabetic drugs, as well as life style management, like weight loss and exercise for IR, have shown promise in the management of cognitive/neuropsychiatric disorders. This may pave the pathway to the development of new therapeutic approaches to these challenging disorders of dementia and psychiatric diseases. Recent clinical trials are showing some encouraging evidence for these pharmacological and nonpharmacological approaches for IR in psychiatric and cognitive disorders, even though more research is needed to apply this evidence into clinical practice. Early identification and management of IR may help as a strategy to potentially alter neuropsychiatric disorders onset as well as its progression.
Collapse
Affiliation(s)
| | - Tyler Halverson
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada;
| |
Collapse
|
13
|
Sakaguchi M. The role of insulin signaling with FOXO and FOXK transcription factors. Endocr J 2024; 71:939-944. [PMID: 38987195 PMCID: PMC11778369 DOI: 10.1507/endocrj.ej24-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Insulin is an essential hormone for animal activity and survival, and it controls the metabolic functions of the entire body. Throughout the evolution of metazoan animals and the development of their brains, a sustainable energy supply has been essential to overcoming the competition for survival under various environmental stresses. Managing energy for metabolism, preservation, and consumption inevitably involves high oxidative stress, causing tissue damage in various organs. In both mice and humans, excessive dietary intake can lead to insulin resistance in various organs, ultimately displaying metabolic syndrome and type 2 diabetes. Insulin signals require thorough regulation to maintain metabolism across diverse environments. Recent studies demonstrated that two types of forkhead-box family transcription factors, FOXOs and FOXKs, are related to the switching of insulin signals during fasting and feeding states. Insulin signaling plays a role in supporting higher activity during periods of sufficient food supply and in promoting survival during times of insufficient food supply. The insulin receptor depends on the tyrosine phosphatase feedback of insulin signaling to maintain adipocyte insulin responsiveness. α4, a regulatory subunit of protein phosphatase 2A (PP2A), has been shown to play a crucial role in modulating insulin signaling pathways by regulating the phosphorylation status of key proteins involved in these pathways. This short review summarizes the current understanding of the molecular mechanism related to the regulation of insulin signals.
Collapse
Affiliation(s)
- Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
14
|
Hayashi SY, Craddock BP, Miller WT. Effects of heterologous kinase domains on growth factor receptor specificity. Cell Signal 2024; 122:111307. [PMID: 39048037 PMCID: PMC11707674 DOI: 10.1016/j.cellsig.2024.111307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The kinase domains of receptor tyrosine kinases (RTKs) are highly conserved, yet they are able to discriminate among potential substrates to selectively activate downstream signaling pathways. In this study, we tested the importance of catalytic domain specificity by creating two series of chimeric RTKs. In one set, the kinase domain of insulin-like growth factor I receptor (IGF1R) was replaced by the kinase domains from insulin receptor (IR), macrophage stimulating protein 1 receptor/Ron (Ron) or Src. In the other set of chimeras, the kinase domain of epidermal growth factor receptor (EGFR) was similarly replaced by the kinase domains of IR, Ron, or Src. We expressed the wild-type and chimeric forms of the receptors in mammalian cells. For some signaling events, such as recognition of IRS1, the identity of the tyrosine kinase catalytic domain did not appear to be crucial. In contrast, recognition of some sites, such as the C-terminal autophosphorylation sites on EGFR, did depend on the identity of the kinase domain. Our data also showed that ligand dependence was lost when the native kinase domains were replaced by Src, suggesting that the identity of the kinase domains could be important for proper receptor regulation. Overall, the results are consistent with the idea that the fidelity of RTK signaling depends on co-localization and targeting with substrates, as well as on the intrinsic specificity of the kinase domain.
Collapse
Affiliation(s)
- Samantha Y Hayashi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA 11794
| | - Barbara P Craddock
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA 11794
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA 11794; Department of Veterans Affairs Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
15
|
Zhao M, Chen YL, Yang LH. Advancements in the study of glucose metabolism in relation to tumor progression and treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:11-18. [PMID: 39111717 DOI: 10.1016/j.pbiomolbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Sugar serves as the primary energy source for mammals, with glucose metabolism facilitating energy acquisition in human cells. The proper functioning of intracellular glucose metabolism is essential for the maintenance of orderly and healthy physiological activities. Tumor cells, characterized by uncontrolled growth, exhibit dysregulated proliferation and apoptosis processes, leading to abnormal alterations in glucose metabolism. Specifically, tumor cells exhibit a shift towards aerobic glycolysis, resulting in the production of lactic acid that can be utilized as a metabolic intermediate for sustained tumor cell growth. This article provides a comprehensive overview of the enzymes involved in glucose metabolism and the alterations in gene expression that occur during tumor progression. It also examines the current research on targeting abnormal glucose metabolism processes for tumor treatment and discusses potential future directions for utilizing glucose metabolism as a therapeutic target.
Collapse
Affiliation(s)
- Meng Zhao
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Department of Pathophysiology, College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Lian-He Yang
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
16
|
Wang X, Cao L, Liu S, Zhou Y, Zhou J, Zhao W, Gao S, Liu R, Shi Y, Shao C, Fang J. The critical roles of IGFs in immune modulation and inflammation. Cytokine 2024; 183:156750. [PMID: 39243567 DOI: 10.1016/j.cyto.2024.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Insulin-like growth factors (IGFs) are crucial for embryonic and postnatal growth and development, influencing cell survival, metabolism, myogenesis, and cancer progression. Many studies have demonstrated that IGFs also play prominent roles in the modulation of both innate and adaptive immune systems during inflammation. Strikingly, IGFs dictate the phenotype and functional properties of macrophages and T cells. Furthermore, the interplay between IGFs and inflammatory cytokines may generate tissue-protective properties during inflammation. Herein, we review the recent advances on the dialogue between immune cells and IGFs, especially zooming in on the significance of immunomodulatory properties in inflammatory conditions, cancer and autoimmune diseases. The investigation of IGFs may have broad clinical implications.
Collapse
Affiliation(s)
- Xin Wang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lijuan Cao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiarui Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenxuan Zhao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengqi Gao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changshun Shao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jiankai Fang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Affuso F, Micillo F, Fazio S. Insulin Resistance, a Risk Factor for Alzheimer's Disease: Pathological Mechanisms and a New Proposal for a Preventive Therapeutic Approach. Biomedicines 2024; 12:1888. [PMID: 39200352 PMCID: PMC11351221 DOI: 10.3390/biomedicines12081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Peripheral insulin resistance (IR) is a well-documented, independent risk factor for the development of type 2 diabetes, cardiovascular disease, cancer and cellular senescence. Recently, the brain has also been identified as an insulin-responsive region, where insulin acts as regulator of the brain metabolism. Despite the clear link between IR and the brain, the exact mechanisms underlying this relationship remain unclear. Therapeutic intervention in patients showing symptoms of neurodegenerative diseases has produced little or no results. It has been demonstrated that insulin resistance plays a significant role in the pathogenesis of neurodegenerative diseases, particularly cognitive decline. Peripheral and brain IR may represent a modifiable state that could be used to prevent major brain disorders. In this review, we will analyse the scientific literature supporting IR as a risk factor for Alzheimer's disease and suggest some therapeutic strategies to provide a new proposal for the prevention of brain IR and its consequences.
Collapse
Affiliation(s)
- Flora Affuso
- Independent Researcher, Viale Raffaello, 74, 80129 Napoli, Italy
| | - Filomena Micillo
- UOC of Geriatric Medicine AORN S.G. Moscati, 83100 Avellino, Italy
| | - Serafino Fazio
- Department of Internal Medicine, School of Medicine, Federico II University of Naples, 80138 Naples, Italy;
| |
Collapse
|
18
|
Turvey S, Muench SP, Issad T, Fishwick CWG, Kearney MT, Simmons KJ. Using site-directed mutagenesis to further the understanding of insulin receptor-insulin like growth factor-1 receptor heterodimer structure. Growth Horm IGF Res 2024; 77:101607. [PMID: 39033666 DOI: 10.1016/j.ghir.2024.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Type 2 diabetes is characterised by the disruption of insulin and insulin-like growth factor (IGF) signalling. The key hubs of these signalling cascades - the Insulin receptor (IR) and Insulin-like growth factor 1 receptor (IGF1R) - are known to form functional IR-IGF1R hybrid receptors which are insulin resistant. However, the mechanisms underpinning IR-IGF1R hybrid formation are not fully understood, hindering the ability to modulate this for future therapies targeting this receptor. To pinpoint suitable sites for intervention, computational hotspot prediction was utilised to identify promising epitopes for targeting with point mutagenesis. Specific IGF1R point mutations F450A, R391A and D555A show reduced affinity of the hybrid receptor in a BRET based donor-saturation assay, confirming hybrid formation could be modulated at this interface. These data provide the basis for rational design of more effective hybrid receptor modulators, supporting the prospect of identifying a small molecule that specifically interacts with this target.
Collapse
Affiliation(s)
- Samuel Turvey
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, UK
| | - Tarik Issad
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | | | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Katie J Simmons
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, UK.
| |
Collapse
|
19
|
Kalampounias G, Varemmenou A, Aronis C, Mamali I, Shaukat AN, Chartoumpekis DV, Katsoris P, Michalaki M. Recombinant Human TSH Fails to Induce the Proliferation and Migration of Papillary Thyroid Carcinoma Cell Lines. Cancers (Basel) 2024; 16:2604. [PMID: 39061242 PMCID: PMC11275150 DOI: 10.3390/cancers16142604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Thyrotropin (TSH) suppression is required in the management of patients with papillary thyroid carcinoma (PTC) to improve their outcomes, inevitably causing iatrogenic thyrotoxicosis. Nevertheless, the evidence supporting this practice remains limited and weak, and in vitro studies examining the mitogenic effects of TSH in cancerous cells used supraphysiological doses of bovine TSH, which produced conflicting results. Our study explores, for the first time, the impact of human recombinant thyrotropin (rh-TSH) on human PTC cell lines (K1 and TPC-1) that were transformed to overexpress the thyrotropin receptor (TSHR). The cells were treated with escalating doses of rh-TSH under various conditions, such as the presence or absence of insulin. The expression levels of TSHR and thyroglobulin (Tg) were determined, and subsequently, the proliferation and migration of both transformed and non-transformed cells were assessed. Under the conditions employed, rh-TSH was not adequate to induce either the proliferation or the migration rate of the cells, while Tg expression was increased. Our experiments indicate that clinically relevant concentrations of rh-TSH cannot induce proliferation and migration in PTC cell lines, even after the overexpression of TSHR. Further research is warranted to dissect the underlying molecular mechanisms, and these results could translate into better management of treatment for PTC patients.
Collapse
Affiliation(s)
- Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Athina Varemmenou
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Christos Aronis
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Irene Mamali
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| | | | - Dionysios V. Chartoumpekis
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| | - Panagiotis Katsoris
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Marina Michalaki
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| |
Collapse
|
20
|
Mancarella C, Morrione A, Scotlandi K. Extracellular Interactors of the IGF System: Impact on Cancer Hallmarks and Therapeutic Approaches. Int J Mol Sci 2024; 25:5915. [PMID: 38892104 PMCID: PMC11172729 DOI: 10.3390/ijms25115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Dysregulation of the insulin-like growth factor (IGF) system determines the onset of various pathological conditions, including cancer. Accordingly, therapeutic strategies have been developed to block this system in tumor cells, but the results of clinical trials have been disappointing. After decades of research in the field, it is safe to say that one of the major reasons underlying the poor efficacy of anti-IGF-targeting agents is derived from an underestimation of the molecular complexity of this axis. Genetic, transcriptional, post-transcriptional and functional interactors interfere with the activity of canonical components of this axis, supporting the need for combinatorial approaches to effectively block this system. In addition, cancer cells interface with a multiplicity of factors from the extracellular compartment, which strongly affect cell destiny. In this review, we will cover novel extracellular mechanisms contributing to IGF system dysregulation and the implications of such dangerous liaisons for cancer hallmarks and responses to known and new anti-IGF drugs. A deeper understanding of both the intracellular and extracellular microenvironments might provide new impetus to better decipher the complexity of the IGF axis in cancer and provide new clues for designing novel therapeutic approaches.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
21
|
Kim DS, Song L, Gou W, Kim J, Liu B, Wei H, Muise-Helmericks RC, Li Z, Wang H. GRP94 is an IGF-1R chaperone and regulates beta cell death in diabetes. Cell Death Dis 2024; 15:374. [PMID: 38811543 PMCID: PMC11137047 DOI: 10.1038/s41419-024-06754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
High workload-induced cellular stress can cause pancreatic islet β cell death and dysfunction, or β cell failure, a hallmark of type 2 diabetes mellitus. Thus, activation of molecular chaperones and other stress-response genes prevents β cell failure. To this end, we have shown that deletion of the glucose-regulated protein 94 (GRP94) in Pdx1+ pancreatic progenitor cells led to pancreas hypoplasia and reduced β cell mass during pancreas development in mice. Here, we show that GRP94 was involved in β cell adaption and compensation (or failure) in islets from leptin receptor-deficient (db/db) mice in an age-dependent manner. GRP94-deficient cells were more susceptible to cell death induced by various diabetogenic stress conditions. We also identified a new client of GRP94, insulin-like growth factor-1 receptor (IGF-1R), a critical factor for β cell survival and function that may mediate the effect of GRP94 in the pathogenesis of diabetes. This study has identified essential functions of GRP94 in β cell failure related to diabetes.
Collapse
Affiliation(s)
- Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lili Song
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jisun Kim
- Microbiology and Immunology, Medical University of South Carolina, Charleson, SC, 29425, USA
| | - Bei Liu
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-James, Columbus, OH, 43210, USA
| | - Hua Wei
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robin C Muise-Helmericks
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-James, Columbus, OH, 43210, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
22
|
Banjac K, Obradovic M, Zafirovic S, Essack M, Gluvic Z, Sunderic M, Nedic O, Isenovic ER. The involvement of Akt, mTOR, and S6K in the in vivo effect of IGF-1 on the regulation of rat cardiac Na +/K +-ATPase. Mol Biol Rep 2024; 51:517. [PMID: 38622478 DOI: 10.1007/s11033-024-09451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND We previously demonstrated that insulin-like growth factor-1 (IGF-1) regulates sodium/potassium adenosine triphosphatase (Na+/K+-ATPase) in vascular smooth muscle cells (VSMC) via phosphatidylinositol-3 kinase (PI3K). Taking into account that others' work show that IGF-1 activates the PI3K/protein kinase B (Akt) signaling pathway in many different cells, we here further questioned if the Akt/mammalian target of rapamycin (mTOR)/ribosomal protein p70 S6 kinase (S6K) pathway stimulates Na+/K+-ATPase, an essential protein for maintaining normal heart function. METHODS AND RESULTS There were 14 adult male Wistar rats, half of whom received bolus injections of IGF-1 (50 μg/kg) for 24 h. We evaluated cardiac Na+/K+-ATPase expression, activity, and serum IGF-1 levels. Additionally, we examined the phosphorylated forms of the following proteins: insulin receptor substrate (IRS), phosphoinositide-dependent kinase-1 (PDK-1), Akt, mTOR, S6K, and α subunit of Na+/K+-ATPase. Additionally, the mRNA expression of the Na+/K+-ATPase α1 subunit was evaluated. Treatment with IGF-1 increases levels of serum IGF-1 and stimulates Na+/K+-ATPase activity, phosphorylation of α subunit of Na+/K+-ATPase on Ser23, and protein expression of α2 subunit. Furthermore, IGF-1 treatment increased phosphorylation of IRS-1 on Tyr1222, Akt on Ser473, PDK-1 on Ser241, mTOR on Ser2481 and Ser2448, and S6K on Thr421/Ser424. The concentration of IGF-1 in serum positively correlates with Na+/K+-ATPase activity and the phosphorylated form of mTOR (Ser2448), while Na+/K+-ATPase activity positively correlates with the phosphorylated form of IRS-1 (Tyr1222) and mTOR (Ser2448). CONCLUSION These results indicate that the Akt/mTOR/S6K signalling pathway may be involved in the IGF-1 regulating cardiac Na+/K+-ATPase expression and activity.
Collapse
Affiliation(s)
- Katarina Banjac
- Department of Radiobiology and Molecular Genetics, "VINCA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O.Box 522, Belgrade, 11000, Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, "VINCA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O.Box 522, Belgrade, 11000, Serbia.
| | - Sonja Zafirovic
- Department of Radiobiology and Molecular Genetics, "VINCA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O.Box 522, Belgrade, 11000, Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zoran Gluvic
- Clinic of Internal Medicine, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, University of Belgrade, Vukova 9, Belgrade, 11080, Serbia
| | - Milos Sunderic
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, Belgrade, Serbia
| | - Olgica Nedic
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, Belgrade, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, "VINCA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O.Box 522, Belgrade, 11000, Serbia
| |
Collapse
|
23
|
Fazio S, Mercurio V, Fazio V, Ruvolo A, Affuso F. Insulin Resistance/Hyperinsulinemia, Neglected Risk Factor for the Development and Worsening of Heart Failure with Preserved Ejection Fraction. Biomedicines 2024; 12:806. [PMID: 38672161 PMCID: PMC11047865 DOI: 10.3390/biomedicines12040806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Heart failure (HF) has become a subject of continuous interest since it was declared a new pandemic in 1997 because of the exponential increase in hospitalizations for HF in the latest years. HF is the final state to which all heart diseases of different etiologies lead if not adequately treated. It is highly prevalent worldwide, with a progressive increase with age, reaching a prevalence of 10% in subjects over the age of 65 years. During the last two decades, it was possible to see that the prevalence of heart failure with preserved ejection fraction (HFpEF) was increasing while that of heart failure with reduced ejection fraction (HFrEF) was decreasing. HFpEF is typically characterized by concentric remodeling of the left ventricle (LV) with impaired diastolic function and increased filling pressures. Over the years, also the prevalence of insulin resistance (IR)/hyperinsulinemia (Hyperins) in the general adult population has progressively increased, primarily due to lifestyle changes, particularly in developed and developing countries, with a range that globally ranges between 15.5% and 46.5%. Notably, over 50% of patients with HF also have IR/Hyperins, and the percentage is even higher in those with HFpEF. In the scientific literature, it has been well highlighted that the increased circulating levels of insulin, associated with conditions of insulin resistance, are responsible for progressive cardiovascular alterations over the years that could stimulate the development and/or the worsening of HFpEF. The aim of this manuscript was to review the scientific literature that supports a pathophysiologic connection between IR/Hyperins and HFpEF to stimulate the scientific community toward the identification of hyperinsulinemia associated with insulin resistance as an independent cardiovascular risk factor in the development and worsening of HF, believing that its adequate screening in the general population and an appropriate treatment could reduce the prevalence of HFpEF and improve its progression.
Collapse
Affiliation(s)
- Serafino Fazio
- Department of Internal Medicine, School of Medicine, Federico II University, Via Sergio Pansini 5, 80135 Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Via Sergio Pasini 5, 80135 Naples, Italy;
| | - Valeria Fazio
- UOC Medicina Interna, Azienda Ospedaliera di Caserta, 81100 Caserta, Italy;
| | - Antonio Ruvolo
- UOC Cardiologia AORN dei colli PO CTO, Viale Colli Aminei 21, 80100 Naples, Italy;
| | - Flora Affuso
- Independent Researcher, Viale Raffaello 74, 80129 Naples, Italy;
| |
Collapse
|
24
|
Wisessaowapak C, Niyomchan A, Visitnonthachai D, Leelaprachakul N, Watcharasit P, Satayavivad J. Arsenic-induced IGF-1 signaling impairment and neurite shortening: The protective roles of IGF-1 through the PI3K/Akt axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:1119-1128. [PMID: 37853848 DOI: 10.1002/tox.23995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
We recently reported that arsenic caused insulin resistance in differentiated human neuroblastoma SH-SY5Y cells. Herein, we further investigated the effects of sodium arsenite on IGF-1 signaling, which shares downstream signaling with insulin. A time-course experiment revealed that sodium arsenite began to decrease IGF-1-stimulated Akt phosphorylation on Day 3 after treatment, indicating that prolonged sodium arsenite treatment disrupted the neuronal IGF-1 response. Additionally, sodium arsenite decreased IGF-1-stimulated tyrosine phosphorylation of the IGF-1 receptor β (IGF-1Rβ) and its downstream target, insulin receptor substrate 1 (IRS1). These results suggested that sodium arsenite impaired the intrinsic tyrosine kinase activity of IGF-1Rβ, ultimately resulting in a reduction in tyrosine-phosphorylated IRS1. Sodium arsenite also reduced IGF-1 stimulated tyrosine phosphorylation of insulin receptor β (IRβ), indicating the potential inhibition of IGF-1R/IR crosstalk by sodium arsenite. Interestingly, sodium arsenite also induced neurite shortening at the same concentrations that caused IGF-1 signaling impairment. A 24-h IGF-1 treatment partially rescued neurite shortening caused by sodium arsenite. Moreover, the reduction in Akt phosphorylation by sodium arsenite was attenuated by IGF-1. Inhibition of PI3K/Akt by LY294002 diminished the protective effects of IGF-1 against sodium arsenite-induced neurite retraction. Together, our findings suggested that sodium arsenite-impaired IGF-1 signaling, leading to neurite shortening through IGF-1/PI3K/Akt.
Collapse
Affiliation(s)
- Churaibhon Wisessaowapak
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Apichaya Niyomchan
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Naphada Leelaprachakul
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Piyajit Watcharasit
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| |
Collapse
|
25
|
Kiernan K, Alwarawrah Y, Nichols AG, Danzaki K, MacIver NJ. Insulin and IGF-1 have both overlapping and distinct effects on CD4 + T cell mitochondria, metabolism, and function. Sci Rep 2024; 14:4331. [PMID: 38383709 PMCID: PMC10881490 DOI: 10.1038/s41598-024-54836-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF-1) are metabolic hormones with known effects on CD4+ T cells through insulin receptor (IR) and IGF-1 receptor (IGF-1R) signaling. Here, we describe specific and distinct roles for these hormones and receptors. We have found that IGF-1R, but not IR, expression is increased following CD4+ T cell activation or following differentiation toward Th17 cells. Although both insulin and IGF-1 increase the metabolism of CD4+ T cells, insulin has a more potent effect. However, IGF-1 has a unique role and acts specifically on Th17 cells to increase IL-17 production and Th17 cell metabolism. Furthermore, IGF-1 decreases mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS) in Th17 cells, providing a cytoprotective effect. Interestingly, both IR and IGF-1R are required for this effect of IGF-1 on mitochondria, which suggests that the hybrid IR/IGF-1R may be required for mediating the effect of IGF-1 on mitochondrial membrane potential and mROS production.
Collapse
Affiliation(s)
- Kaitlin Kiernan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Yazan Alwarawrah
- Department of Pediatrics, Division of Pediatric Endocrinology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Amanda G Nichols
- Department of Pediatrics, Division of Pediatric Endocrinology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Keiko Danzaki
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Nancie J MacIver
- Department of Pediatrics, Division of Pediatric Endocrinology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Nutrition, School of Medicine and Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Keshvari S, Masson JJR, Ferrari-Cestari M, Bodea LG, Nooru-Mohamed F, Tse BWC, Sokolowski KA, Batoon L, Patkar OL, Sullivan MA, Ebersbach H, Stutz C, Parton RG, Summers KM, Pettit AR, Hume DA, Irvine KM. Reversible expansion of tissue macrophages in response to macrophage colony-stimulating factor (CSF1) transforms systemic lipid and carbohydrate metabolism. Am J Physiol Endocrinol Metab 2024; 326:E149-E165. [PMID: 38117267 DOI: 10.1152/ajpendo.00347.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/21/2023]
Abstract
Macrophages regulate metabolic homeostasis in health and disease. Macrophage colony-stimulating factor (CSF1)-dependent macrophages contribute to homeostatic control of the size of the liver. This study aimed to determine the systemic metabolic consequences of elevating circulating CSF1. Acute administration of a CSF1-Fc fusion protein to mice led to monocytosis, increased resident tissue macrophages in the liver and all major organs, and liver growth. These effects were associated with increased hepatic glucose uptake and extensive mobilization of body fat. The impacts of CSF1 on macrophage abundance, liver size, and body composition were rapidly reversed to restore homeostasis. The effects of CSF1 on metabolism were independent of several known endocrine regulators and did not impact the physiological fasting response. Analysis using implantable telemetry in metabolic cages revealed progressively reduced body temperature and physical activity with no change in diurnal food intake. These results demonstrate the existence of a dynamic equilibrium between CSF1, the mononuclear phagocyte system, and control of liver-to-body weight ratio, which in turn controls systemic metabolic homeostasis. This novel macrophage regulatory axis has the potential to promote fat mobilization, without changes in appetence, which may have novel implications for managing metabolic syndrome.NEW & NOTEWORTHY CSF1 administration expands tissue macrophages, which transforms systemic metabolism. CSF1 drives fat mobilization and glucose uptake to support liver growth. The effects of CSF1 are independent of normal hormonal metabolic regulation. The effects of CSF1 are rapidly reversible, restoring homeostatic body composition. CSF1-dependent macrophages and liver size are coupled in a dynamic equilibrium.
Collapse
Affiliation(s)
- Sahar Keshvari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jesse J R Masson
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Liviu-Gabriel Bodea
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Fathima Nooru-Mohamed
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Lena Batoon
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mitchell A Sullivan
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hilmar Ebersbach
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Cian Stutz
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Kim M Summers
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Sakaguchi M. Adipose Tissue Plasticity and Insulin Signaling in the Pathogenesis of Type 2 Diabetes. Diabetol Int 2024; 15:28-33. [PMID: 38264220 PMCID: PMC10800324 DOI: 10.1007/s13340-023-00676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 01/25/2024]
Abstract
Obesity is a major cause of various metabolic disorders, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases, in modern times. Fat tissue originally evolved as an organ to prepare for food shortages. However, when individuals consume excessive calories and engage in insufficient physical activity, it can lead to the excessive accumulation of lipids in white adipose tissue, potentially causing problems. In response to this excessive lipid accumulation extending to other tissues, insulin resistance is triggered in the body as a physiological response to prevent harmful effects. Additionally, in mammals, brown adipose tissue has evolved to generate energy and maintain body temperature. These inconspicuous defense mechanisms function coordinately to protect against systemic metabolic abnormalities affecting multiple organs. Understanding the dynamic nature of adipose tissues is now crucial for elucidating the details of the molecular abnormalities in obesity-associated metabolic diseases. This review outlines adipocyte plasticity and function with a focus on the physiological relevance and new pathways of insulin signaling.
Collapse
Affiliation(s)
- Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto 860-8556 Japan
| |
Collapse
|
28
|
Monteiro M, Zhang X, Yee D. Insulin promotes growth in breast cancer cells through the type I IGF receptor in insulin receptor deficient cells. Exp Cell Res 2024; 434:113862. [PMID: 38036052 PMCID: PMC10842809 DOI: 10.1016/j.yexcr.2023.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Breast cancer is the most common cancer in women. The upregulation of insulin-like growth factor (IGF) system observed in certain types of breast cancers was linked to growth, metastasis, and survival resulting in multiple strategies designed to target the type I IGF receptor (IGF-1R) in breast cancer. These attempts failed to prove beneficial and it has been suggested that insulin receptor (IR) could also play an important role in breast cancer biology. To better understand the IR's role in breast cancer cells, the receptor was deleted from MCF-7L cells using CRISPR technology, and fluorescence-assisted cell sorting was used to obtain clone 35 (CL35). It was found that CL35 activated signaling pathways upon insulin stimulation despite the absence of IR expression. We hypothesized that CL35 used a surrogate receptor for sustained growth and development. IGF-1R was able to activate insulin signaling and growth in CL35. Thus, insulin may play a central role in regulating breast cancer growth due to its ability to activate all the receptors of the IGF family. These findings argue that dual targeting of IR and IGF-IR may be required to inhibit breast cancer growth.
Collapse
Affiliation(s)
- Marvis Monteiro
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA; Purdue University, Heine Pharmacy Building, 575 Stadium Mall Drive, West Lafayette, IN, 47907-2091, USA
| | - Xihong Zhang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
29
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
30
|
Fazio S, Mercurio V, Affuso F, Bellavite P. The Negative Impact of Insulin Resistance/Hyperinsulinemia on Chronic Heart Failure and the Potential Benefits of Its Screening and Treatment. Biomedicines 2023; 11:2928. [PMID: 38001929 PMCID: PMC10669553 DOI: 10.3390/biomedicines11112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
This opinion article highlights the potential alterations caused by insulin resistance and hyperinsulinemia on the cardiovascular system and their negative impact on heart failure (HF), and describes the potential benefits of an early screening with consequent prompt treatment. HF is the final event of several different cardiovascular diseases. Its incidence has been increasing over the last decades because of increased survival from ischemic heart disease thanks to improvements in its treatment (including myocardial revascularization interventions) and the increase in life span. In particular, incidence of HF with preserved ejection fraction (HFpEF) is significantly increasing, and patients with HFpEF often are also affected by diabetes mellitus and insulin resistance (IR), with a prevalence > 45%. Concentric left ventricular (LV) remodeling and diastolic dysfunction are the main structural abnormalities that characterize HFpEF. It is well documented in the literature that IR with chronic hyperinsulinemia, besides causing type 2 diabetes mellitus, can cause numerous cardiovascular alterations, including endothelial dysfunction and increased wall thicknesses of the left ventricle with concentric remodeling and diastolic dysfunction. Therefore, it is conceivable that IR might play a major role in the pathophysiology and the progressive worsening of HF. To date, several substances have been shown to reduce IR/hyperinsulinemia and have beneficial clinical effects in patients with HF, including SGLT2 inhibitors, metformin, and berberine. For this reason, an early screening of IR could be advisable in subjects at risk and in patients with heart failure, to promptly intervene with appropriate therapy. Future studies aimed at comparing the efficacy of the substances used both alone and in association are needed.
Collapse
Affiliation(s)
- Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, 80138 Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | | | | |
Collapse
|
31
|
Yunn NO, Kim J, Ryu SH, Cho Y. A stepwise activation model for the insulin receptor. Exp Mol Med 2023; 55:2147-2161. [PMID: 37779149 PMCID: PMC10618199 DOI: 10.1038/s12276-023-01101-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
The binding of insulin to the insulin receptor (IR) triggers a cascade of receptor conformational changes and autophosphorylation, leading to the activation of metabolic and mitogenic pathways. Recent advances in the structural and functional analyses of IR have revealed the conformations of the extracellular domains of the IR in inactive and fully activated states. However, the early activation mechanisms of this receptor remain poorly understood. The structures of partially activated IR in complex with aptamers provide clues for understanding the initial activation mechanism. In this review, we discuss the structural and functional features of IR complexed with various ligands and propose a model to explain the sequential activation mechanism. Moreover, we discuss the structures of IR complexed with biased agonists that selectively activate metabolic pathways and provide insights into the design of selective agonists and their clinical implications.
Collapse
Affiliation(s)
- Na-Oh Yunn
- Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Junhong Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Biomedical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
32
|
Čović M, Zjalić M, Mihajlović L, Pap M, Wagner J, Mandić D, Debeljak Ž, Heffer M. Sucralose Targets the Insulin Signaling Pathway in the SH-SY5Y Neuroblastoma Cell Line. Metabolites 2023; 13:817. [PMID: 37512524 PMCID: PMC10385368 DOI: 10.3390/metabo13070817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Sucralose is widely used as a non-nutritive sweetener (NNS). However, in order to justify its use as a non-nutritive food additive, sucralose would have to be metabolically neutral. The aim of this study was to examine whether sucralose altered the insulin signaling pathway in an in vitro cell model of Parkinson's disease (PD)-the dopaminergic differentiated cell line SH-SY5Y. Cells were exposed to sucralose alone and in combination with either insulin or levodopa. Activation of the insulin signaling pathway was assessed by quantifying protein kinase B (AKT) and glycogen synthase kinase 3 (GSK3), as well as the phosphorylated forms of insulin-like growth factor 1 receptor (IGF1-R). Metabolic effects were assayed using MALDI-TOF MS analysis. In the cell viability test, 2 mM sucralose had a negative effect, and levodopa in all combinations had a positive effect. Sucralose treatment alone suppressed GSK3 and IGF1-R phosphorylation in a dose-dependent manner. This treatment also altered the metabolism of fatty acids and amino acids, especially when combined with insulin and levodopa. Suppression of the insulin signaling pathway and sucralose-induced changes in the metabolic profile could underlie a diet-acquired insulin resistance, previously associated with neurodegeneration, or may be an altered response to insulin or levodopa medical therapy.
Collapse
Affiliation(s)
- Marina Čović
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lovro Mihajlović
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marianna Pap
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dario Mandić
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, 31000 Osijek, Croatia
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, 31000 Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
33
|
Rajoria B, Zhang X, Yee D. IGF-1 Stimulates Glycolytic ATP Production in MCF-7L Cells. Int J Mol Sci 2023; 24:10209. [PMID: 37373357 PMCID: PMC10299323 DOI: 10.3390/ijms241210209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The Insulin-like Growth Factor (IGF) system in breast cancer progression has been a matter of interest for decades, but targeting this system did not result in a successful clinical strategy. The system's complexity and homology of its two receptors-insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF-1R)-are possible causes. The IGF system maintains cell proliferation and also regulates metabolism, making it a pathway to explore. To understand the metabolic phenotype of breast cancer cells, we quantified their real-time ATP production rate upon acute stimulation with ligands-insulin-like growth factor 1 (1GF-1) and insulin. MCF-7L cells express both IGF-1R and IR, while tamoxifen-resistant MCF-7L (MCF-7L TamR) cells have downregulated IGF-1R with unchanged IR levels. Treating MCF-7L cells with 5 nM IGF-1 increased the glycolytic ATP production rate, while 10 nM insulin did not affect metabolism when compared with the control. Neither treatment altered ATP production in MCF-7L TamR cells. This study provides evidence of the relationship between metabolic dysfunction, cancer, and the IGF axis. In these cells, IGF-1R, and not IR, regulates ATP production.
Collapse
Affiliation(s)
- Bhumika Rajoria
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Xihong Zhang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Douglas Yee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
34
|
Chen W, Huang Q, Lazdon EK, Gomes A, Wong M, Stephens E, Royal TG, Frenkel D, Cai W, Kahn CR. Loss of insulin signaling in astrocytes exacerbates Alzheimer-like phenotypes in a 5xFAD mouse model. Proc Natl Acad Sci U S A 2023; 120:e2220684120. [PMID: 37186836 PMCID: PMC10214134 DOI: 10.1073/pnas.2220684120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Brain insulin signaling controls peripheral energy metabolism and plays a key role in the regulation of mood and cognition. Epidemiological studies have indicated a strong connection between type 2 diabetes (T2D) and neurodegenerative disorders, especially Alzheimer's disease (AD), linked via dysregulation of insulin signaling, i.e., insulin resistance. While most studies have focused on neurons, here, we aim to understand the role of insulin signaling in astrocytes, a glial cell type highly implicated in AD pathology and AD progression. To this end, we created a mouse model by crossing 5xFAD transgenic mice, a well-recognized AD mouse model that expresses five familial AD mutations, with mice carrying a selective, inducible insulin receptor (IR) knockout in astrocytes (iGIRKO). We show that by age 6 mo, iGIRKO/5xFAD mice exhibited greater alterations in nesting, Y-maze performance, and fear response than those of mice with the 5xFAD transgenes alone. This was associated with increased Tau (T231) phosphorylation, increased Aβ plaque size, and increased association of astrocytes with plaques in the cerebral cortex as assessed using tissue CLARITY of the brain in the iGIRKO/5xFAD mice. Mechanistically, in vitro knockout of IR in primary astrocytes resulted in loss of insulin signaling, reduced ATP production and glycolic capacity, and impaired Aβ uptake both in the basal and insulin-stimulated states. Thus, insulin signaling in astrocytes plays an important role in the control of Aβ uptake, thereby contributing to AD pathology, and highlighting the potential importance of targeting insulin signaling in astrocytes as a site for therapeutics for patients with T2D and AD.
Collapse
Affiliation(s)
- Wenqiang Chen
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Qian Huang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - Ekaterina Katie Lazdon
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Antonio Gomes
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Marisa Wong
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - Emily Stephens
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Tabitha Grace Royal
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Dan Frenkel
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - C. Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| |
Collapse
|
35
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Nagao H, Cai W, Brandão BB, Wewer Albrechtsen NJ, Steger M, Gattu AK, Pan H, Dreyfuss JM, Wunderlich FT, Mann M, Kahn CR. Leucine-973 is a crucial residue differentiating insulin and IGF-1 receptor signaling. J Clin Invest 2023; 133:161472. [PMID: 36548088 PMCID: PMC9927934 DOI: 10.1172/jci161472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Insulin and IGF-1 receptors (IR and IGF1R) are highly homologous and share similar signaling systems, but each has a unique physiological role, with IR primarily regulating metabolic homeostasis and IGF1R regulating mitogenic control and growth. Here, we show that replacement of a single amino acid at position 973, just distal to the NPEY motif in the intracellular juxtamembrane region, from leucine, which is highly conserved in IRs, to phenylalanine, the highly conserved homologous residue in IGF1Rs, resulted in decreased IRS-1/PI3K/Akt/mTORC1 signaling and increased Shc/Gab1/MAPK cell cycle signaling. As a result, cells expressing L973F-IR exhibited decreased insulin-induced glucose uptake, increased cell growth, and impaired receptor internalization. Mice with knockin of the L973F-IR showed similar alterations in signaling in vivo, and this led to decreased insulin sensitivity, a modest increase in growth, and decreased weight gain when mice were challenged with a high-fat diet. Thus, leucine-973 in the juxtamembrane region of the IR acts as a crucial residue differentiating IR signaling from IGF1R signaling.
Collapse
Affiliation(s)
- Hirofumi Nagao
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Bruna B Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicolai J Wewer Albrechtsen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences,and.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Martin Steger
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Arijeet K Gattu
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.,Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne, and.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences,and
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Nagao H, Jayavelu AK, Cai W, Pan H, Dreyfuss JM, Batista TM, Brandão BB, Mann M, Kahn CR. Unique ligand and kinase-independent roles of the insulin receptor in regulation of cell cycle, senescence and apoptosis. Nat Commun 2023; 14:57. [PMID: 36599833 PMCID: PMC9812992 DOI: 10.1038/s41467-022-35693-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Insulin acts through the insulin receptor (IR) tyrosine kinase to exert its classical metabolic and mitogenic actions. Here, using receptors with either short or long deletion of the β-subunit or mutation of the kinase active site (K1030R), we have uncovered a second, previously unrecognized IR signaling pathway that is intracellular domain-dependent, but ligand and tyrosine kinase-independent (LYK-I). These LYK-I actions of the IR are linked to changes in phosphorylation of a network of proteins involved in the regulation of extracellular matrix organization, cell cycle, ATM signaling and cellular senescence; and result in upregulation of expression of multiple extracellular matrix-related genes and proteins, down-regulation of immune/interferon-related genes and proteins, and increased sensitivity to apoptosis. Thus, in addition to classical ligand and tyrosine kinase-dependent (LYK-D) signaling, the IR regulates a second, ligand and tyrosine kinase-independent (LYK-I) pathway, which regulates the cellular machinery involved in senescence, matrix interaction and response to extrinsic challenges.
Collapse
Affiliation(s)
- Hirofumi Nagao
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.,Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Bruna B Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
38
|
Ferris HA. Insulin and neurodegenerative diseases. INSULIN 2023:315-338. [DOI: 10.1016/b978-0-323-91707-0.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer's and Parkinson's disease. Mol Psychiatry 2023; 28:217-229. [PMID: 36258018 PMCID: PMC9812772 DOI: 10.1038/s41380-022-01792-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/20/2023]
Abstract
Despite an ever-growing prevalence and increasing economic burden of Alzheimer's disease (AD) and Parkinson's disease (PD), recent advances in drug development have only resulted in minimally effective treatment. In AD, along with amyloid and tau phosphorylation, there is an associated increase in inflammation/glial activation, a decrease in synaptic function, an increase in astrocyte activation, and a state of insulin resistance. In PD, along with α-synuclein accumulation, there is associated inflammation, synaptic dysfunction, dopaminergic neuronal loss, and some data to suggest insulin resistance. Therapeutic strategies for neurodegenerative disorders have commonly targeted individual pathological processes. An effective treatment might require either utilization of multiple drugs which target the individual pathological processes which underlie the neurodegenerative disease or the use of a single agent which could influence multiple pathological processes. Insulin and incretins are compounds with multiple effects on neurodegenerative processes. Preclinical studies have demonstrated that GLP-1 receptor agonists reduce neuroinflammation, reduce tau phosphorylation, reduce amyloid deposition, increase synaptic function, and improve memory formation. Incretin mimetics may act through the restoration of insulin signaling pathways, inducing further neuroprotective effects. Currently, phase 2 and phase 3 trials are underway in AD and PD populations. Here, we provide a comprehensive review of the therapeutic potential of incretin mimetics and insulin in AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- grid.7445.20000 0001 2113 8111Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- grid.7445.20000 0001 2113 8111Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK. .,School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
40
|
Ma N, Liang Y, Yue L, Liu P, Xu Y, Zhu C. The identities of insulin signaling pathway are affected by overexpression of Tau and its phosphorylation form. Front Aging Neurosci 2022; 14:1057281. [PMID: 36589543 PMCID: PMC9800792 DOI: 10.3389/fnagi.2022.1057281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Hyperphosphorylated Tau formed neurofibrillary tangles was one of the major neuropathological hallmarks of Alzheimer's disease (AD). Dysfunctional insulin signaling in brain is involved in AD. However, the effect of Tau pathology on brain insulin resistance remains unclear. This study explored the effects of overexpressing wild-type Tau (WTau) or Tau with pseudo-phosphorylation at AT8 residues (PTau) on the insulin signaling pathway (ISP). Methods 293T cells or SY5Y cells overexpressing WTau or PTau were treated with or without insulin. The elements in ISP or the regulators of IPS were analyzed by immunoblotting, immunofluorescent staining and co-immunoprecipitation. Akt inhibitor MK2206 was used for evaluating the insulin signaling to downstream of mTOR in Tau overexpressing cells. The effects of anti-aging drug lonafarnib on ISP in WTau or PTau cells were also analyzed with immunoblotting. Considering lonafarnib is an inhibitor of FTase, the states of Rhes, one of FTase substrate in WTau or PTau cells were analyzed by drug affinity responsive target stability (DARTS) assay and the cellular thermal shift assay (CETSA). Results WTau or PTau overexpression in cells upregulated basal activity of elements in ISP in general. However, overexpression of WTau or PTau suppressed the ISP signaling transmission responses induced by insulin simulation, appearing relative higher response of IRS-1 phosphorylation at tyrosine 612 (IRS-1 p612) in upstream IPS, but a lower phosphorylation response of downstream IPS including mTOR, and its targets 4EPB1 and S6. This dysregulation of insulin evoked signaling transmission was more obvious in PTau cells. Suppressing Akt with MK2206 could compromise the levels of p-S6 and p-mTOR in WTau or PTau cells. Moreover, the changes of phosphatases detected in WTau and PTau cells may be related to ISP dysfunction. In addition, the effects of lonafarnib on the ISP in SY5Y cells with WTau and PTau overexpression were tested, which showed that lonafarnib treatment resulted in reducing the active levels of ISP elements in PTau cells but not in WTau cells. The differential effects are probably due to Tau phosphorylation modulating lonafarnib-induced alterations in Rhes, as revealed by DARTS assay. Conclusion and discussion Overexpression of Tau or Tau with pseudo-phosphorylation at AT8 residues could cause an upregulation of the basal/tonic ISP, but a suppression of insulin induced the phasic activation of ISP. This dysfunction of ISP was more obvious in cells overexpressing pseudo-phosphorylated Tau. These results implied that the dysfunction of ISP caused by Tau overexpression might impair the physiological fluctuation of neuronal functions in AD. The different effects of lonafarnib on ISP between WTau and PTau cells, indicating that Tau phosphorylation mediates an additional effect on ISP. This study provided a potential linkage of abnormal expression and phosphorylation of Tau to the ISP dysfunction in AD.
Collapse
|
41
|
Insulin and IGF-1 elicit robust transcriptional regulation to modulate autophagy in astrocytes. Mol Metab 2022; 66:101647. [PMID: 36503893 PMCID: PMC9731889 DOI: 10.1016/j.molmet.2022.101647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Insulin is a principal metabolic hormone. It regulates a plethora of metabolic pathways in peripheral tissues. The highly homologous insulin-like growth factor 1 (IGF-1), on the other hand, is important for development and growth. Recent studies have shown that insulin and IGF-1 signaling plays fundamental roles in the brain. Loss of insulin or IGF-1 receptors in astrocytes leads to altered glucose handling, mitochondrial metabolism, neurovascular coupling, and behavioral abnormalities in mice. Here, we aim to investigate molecular mechanisms by which insulin and IGF-1 signaling regulates astrocyte functions. METHODS IR-flox and IRKO primary astrocytes were treated with 100 nM insulin or IGF-1 for 6 h, and their transcriptomes were analyzed. Astrocytes with either IR deletion, IGF1R deletion or both were used to examine receptor-dependent transcriptional regulations using qPCR. Additional immunoblotting and confocal imaging studies were performed to functionally validate pathways involved in protein homeostasis. RESULTS Using next-generation RNA sequencing, we show that insulin significantly regulates the expression of over 1,200 genes involved in multiple functional processes in primary astrocytes. Insulin-like growth factor 1 (IGF-1) triggers a similar robust transcriptional regulation in astrocytes. Thus, over 50% of the differentially expressed genes are regulated by both ligands. As expected, these commonly regulated genes are highly enriched in pathways involved in lipid and cholesterol biosynthesis. Additionally, insulin and IGF-1 induce the expression of genes involved in ribosomal biogenesis, while suppressing the expression of genes involved in autophagy, indicating a common role of insulin and IGF-1 on protein homeostasis in astrocytes. Insulin-dependent suppression of autophagy genes, including p62, Ulk1/2, and several Atg genes, is blunted only when both IR and IGF1R are deleted. CONCLUSIONS In summary, insulin and IGF-1 potently suppress autophagy in astrocytes through transcriptional regulation. Both IR and IGF1R can elicit ligand-dependent transcriptional suppression of autophagy. These results demonstrate an important role of astrocytic insulin/IGF-1 signaling on proteostasis. Impairment of this regulation in insulin resistance and diabetes may contribute to neurological complications related to diabetes.
Collapse
|
42
|
Dewanjee S, Chakraborty P, Bhattacharya H, Chacko L, Singh B, Chaudhary A, Javvaji K, Pradhan SR, Vallamkondu J, Dey A, Kalra RS, Jha NK, Jha SK, Reddy PH, Kandimalla R. Altered glucose metabolism in Alzheimer's disease: Role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med 2022; 193:134-157. [PMID: 36206930 DOI: 10.1016/j.freeradbiomed.2022.09.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/06/2022]
Abstract
Increasing evidence suggests that abnormal cerebral glucose metabolism is largely present in Alzheimer's disease (AD). The brain utilizes glucose as its main energy source and a decline in its metabolism directly reflects on brain function. Weighing on recent evidence, here we systematically assessed the aberrant glucose metabolism associated with amyloid beta and phosphorylated tau accumulation in AD brain. Interlink between insulin signaling and AD highlighted the involvement of the IRS/PI3K/Akt/AMPK signaling, and GLUTs in the disease progression. While shedding light on the mitochondrial dysfunction in the defective glucose metabolism, we further assessed functional consequences of AGEs (advanced glycation end products) accumulation, polyol activation, and other contributing factors including terminal respiration, ROS (reactive oxygen species), mitochondrial permeability, PINK1/parkin defects, lysosome-mitochondrial crosstalk, and autophagy/mitophagy. Combined with the classic plaque and tangle pathologies, glucose hypometabolism with acquired insulin resistance and mitochondrial dysfunction potentiate these factors to exacerbate AD pathology. To this end, we further reviewed AD and DM (diabetes mellitus) crosstalk in disease progression. Taken together, the present work discusses the emerging role of altered glucose metabolism, contributing impact of insulin signaling, and mitochondrial dysfunction in the defective cerebral glucose utilization in AD.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Regional Station, Palampur, 176061, Himachal Pradesh, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, 132001, Haryana, India
| | - Kalpana Javvaji
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India
| | | | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Rajkumar Singh Kalra
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 9040495, Japan
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology Departments School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India; Department of Biochemistry, Kakatiya Medical College, Warangal, India.
| |
Collapse
|
43
|
Moreau F, Kirk NS, Zhang F, Gelfanov V, List EO, Chrudinová M, Venugopal H, Lawrence MC, Jimenez V, Bosch F, Kopchick JJ, DiMarchi RD, Altindis E, Kahn CR. Interaction of a viral insulin-like peptide with the IGF-1 receptor produces a natural antagonist. Nat Commun 2022; 13:6700. [PMID: 36335114 PMCID: PMC9637144 DOI: 10.1038/s41467-022-34391-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Lymphocystis disease virus-1 (LCDV-1) and several other Iridoviridae encode viral insulin/IGF-1 like peptides (VILPs) with high homology to human insulin and IGFs. Here we show that while single-chain (sc) and double-chain (dc) LCDV1-VILPs have very low affinity for the insulin receptor, scLCDV1-VILP has high affinity for IGF1R where it can antagonize human IGF-1 signaling, without altering insulin signaling. Consequently, scLCDV1-VILP inhibits IGF-1 induced cell proliferation and growth hormone/IGF-1 induced growth of mice in vivo. Cryo-electron microscopy reveals that scLCDV1-VILP engages IGF1R in a unique manner, inducing changes in IGF1R conformation that led to separation, rather than juxtaposition, of the transmembrane segments and hence inactivation of the receptor. Thus, scLCDV1-VILP is a natural peptide with specific antagonist properties on IGF1R signaling and may provide a new tool to guide development of hormonal analogues to treat cancers or metabolic disorders sensitive to IGF-1 without affecting glucose metabolism.
Collapse
Affiliation(s)
- Francois Moreau
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nicholas S Kirk
- WEHI, Parkville, VIC, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Fa Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Vasily Gelfanov
- Novo Nordisk, Indianapolis Research Center, Indianapolis, USA
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | | | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Michael C Lawrence
- WEHI, Parkville, VIC, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Veronica Jimenez
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine and Center of Animal Biotechnology and Gene Therapy, Universitat Autonoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - Fatima Bosch
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine and Center of Animal Biotechnology and Gene Therapy, Universitat Autonoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | | | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, MA, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Phosphatase protector alpha4 (α4) is involved in adipocyte maintenance and mitochondrial homeostasis through regulation of insulin signaling. Nat Commun 2022; 13:6092. [PMID: 36241662 PMCID: PMC9568526 DOI: 10.1038/s41467-022-33842-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023] Open
Abstract
Insulin signaling is mediated via a network of protein phosphorylation. Dysregulation of this network is central to obesity, type 2 diabetes and metabolic syndrome. Here we investigate the role of phosphatase binding protein Alpha4 (α4) that is essential for the serine/threonine protein phosphatase 2A (PP2A) in insulin action/resistance in adipocytes. Unexpectedly, adipocyte-specific inactivation of α4 impairs insulin-induced Akt-mediated serine/threonine phosphorylation despite a decrease in the protein phosphatase 2A (PP2A) levels. Interestingly, loss of α4 also reduces insulin-induced insulin receptor tyrosine phosphorylation. This occurs through decreased association of α4 with Y-box protein 1, resulting in the enhancement of the tyrosine phosphatase protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, adipocyte-specific knockout of α4 in male mice results in impaired adipogenesis and altered mitochondrial oxidation leading to increased inflammation, systemic insulin resistance, hepatosteatosis, islet hyperplasia, and impaired thermogenesis. Thus, the α4 /Y-box protein 1(YBX1)-mediated pathway of insulin receptor signaling is involved in maintaining insulin sensitivity, normal adipose tissue homeostasis and systemic metabolism.
Collapse
|
45
|
Nederlof R, Reidel S, Spychala A, Gödecke S, Heinen A, Lautwein T, Petzsch P, Köhrer K, Gödecke A. Insulin-Like Growth Factor 1 Attenuates the Pro-Inflammatory Phenotype of Neutrophils in Myocardial Infarction. Front Immunol 2022; 13:908023. [PMID: 35911749 PMCID: PMC9334797 DOI: 10.3389/fimmu.2022.908023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myocardial infarction (MI) induces an extensive sterile inflammation, which is dominated in the early phase by invading neutrophils and monocytes/macrophages. The inflammatory response after MI critically affects infarct healing and cardiac remodeling. Therefore, modulation of cardiac inflammation may improve outcome post MI. Insulin-like growth factor 1 (IGF1) treatment reduces infarct size and improves cardiac function after MI via IGF1 receptor mediated signaling in myeloid cells. Our study aimed to investigate the effect of IGF1 on neutrophil phenotype both in vitro and in vivo after MI. We show that IGF1 induces an anti-inflammatory phenotype in bone marrow derived neutrophils. On the molecular and functional level IGF1 treated neutrophils were indistinguishable from those induced by IL4. Surprisingly, insulin, even though it is highly similar to IGF1 did not create anti-inflammatory neutrophils. Notably, the IGF1 effect was independent of the canonical Ras/Raf/ERK or PI3K/AKT pathway, but depended on activation of the JAK2/STAT6 pathway, which was not activated by insulin treatment. Single cell sequencing analysis 3 days after MI also showed that 3 day IGF1 treatment caused a downregulation of pro-inflammatory genes and upstream regulators in most neutrophil and many macrophage cell clusters whereas anti-inflammatory genes and upstream regulators were upregulated. Thus, IGF1 acts like an anti-inflammatory cytokine on myeloid cells in vitro and attenuates the pro-inflammatory phenotype of neutrophils and macrophages in vivo after MI. IGF1 treatment might therefore represent an effective immune modulatory therapy to improve the outcome after MI.
Collapse
Affiliation(s)
- Rianne Nederlof
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sophia Reidel
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - André Spychala
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Stefanie Gödecke
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - André Heinen
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tobias Lautwein
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics and Transcriptomics Labor, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics and Transcriptomics Labor, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics and Transcriptomics Labor, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- *Correspondence: Axel Gödecke,
| |
Collapse
|
46
|
Zhang X, Zhu X, Bi X, Huang J, Zhou L. The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. Int J Mol Sci 2022; 23:7793. [PMID: 35887136 PMCID: PMC9325136 DOI: 10.3390/ijms23147793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
The insulin receptor (IR) is a transmembrane protein that is activated by ligands in insulin signaling pathways. The IR has been considered as a novel therapeutic target for clinical intervention, considering the overexpression of its protein and A-isoform in multiple cancers, Alzheimer's disease, and Type 2 diabetes mellitus in humans. Meanwhile, it may also serve as a potential target in pest management due to its multiple physiological influences in insects. In this review, we provide an overview of the structural and molecular biology of the IR, functions of IRs in humans and insects, physiological and nonpeptide small molecule modulators of the IR, and the regulating mechanisms of the IR. Xenobiotic compounds and the corresponding insecticidal chemicals functioning on the IR are also discussed. This review is expected to provide useful information for a better understanding of human IR-related diseases, as well as to facilitate the development of novel small-molecule activators and inhibitors of the IR for use as medicines or pesticides.
Collapse
Affiliation(s)
| | | | | | - Jiguang Huang
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| | - Lijuan Zhou
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| |
Collapse
|
47
|
Turvey SJ, McPhillie MJ, Kearney MT, Muench SP, Simmons KJ, Fishwick CWG. Recent developments in the structural characterisation of the IR and IGF1R: implications for the design of IR-IGF1R hybrid receptor modulators. RSC Med Chem 2022; 13:360-374. [PMID: 35647546 PMCID: PMC9020618 DOI: 10.1039/d1md00300c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
The insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) are dimeric disulfide-linked receptor tyrosine kinases, whose actions regulate metabolic and mitogenic signalling pathways inside the cell. It is well documented that in tissues co-expressing the IR and IGF1R, their respective monomers can heterodimerise to form IR-IGF1R hybrid receptors. Increased populations of the IR-IGF1R hybrid receptors are associated with several disease states, including type 2 diabetes and cancer. Recently, progress in the structural biology of IR and IGF1R has given insights into their structure-function relationships and mechanism of action. However, challenges in isolating IR-IGF1R hybrid receptors mean that their structural properties remain relatively unexplored. This review discusses the advances in the structural understanding of the IR and IGF1R, and how these discoveries can inform the design of small-molecule modulators of the IR-IGF1R hybrid receptors to understand their role in cell biology.
Collapse
Affiliation(s)
- Samuel J Turvey
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds UK
| | | | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds UK
| | - Katie J Simmons
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds UK
| | | |
Collapse
|
48
|
Renal Cell Cancer and Obesity. Int J Mol Sci 2022; 23:ijms23063404. [PMID: 35328822 PMCID: PMC8951303 DOI: 10.3390/ijms23063404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancers are a frequent cause of morbidity and mortality. There are many risk factors for tumours, including advanced age, personal or family history of cancer, some types of viral infections, exposure to radiation and some chemicals, smoking and alcohol consumption, as well as obesity. Increasing evidence suggest the role of obesity in the initiation and progression of various cancers, including renal cell carcinoma. Since tumours require energy for their uncontrollable growth, it appears plausible that their initiation and development is associated with the dysregulation of cells metabolism. Thus, any state characterised by an intake of excessive energy and nutrients may favour the development of various cancers. There are many factors that promote the development of renal cell carcinoma, including hypoxia, inflammation, insulin resistance, excessive adipose tissue and adipokines and others. There are also many obesity-related alterations in genes expression, including DNA methylation, single nucleotide polymorphisms, histone modification and miRNAs that can promote renal carcinogenesis. This review focuses on the impact of obesity on the risk of renal cancers development, their aggressiveness and patients’ survival.
Collapse
|
49
|
Placental Insulin Receptor Transiently Regulates Glucose Homeostasis in the Adult Mouse Offspring of Multiparous Dams. Biomedicines 2022; 10:biomedicines10030575. [PMID: 35327377 PMCID: PMC8945682 DOI: 10.3390/biomedicines10030575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/04/2023] Open
Abstract
In pregnancies complicated by maternal obesity and gestational diabetes mellitus, there is strong evidence to suggest that the insulin signaling pathway in the placenta may be impaired. This may have potential effects on the programming of the metabolic health in the offspring; however, a direct link between the placental insulin signaling pathway and the offspring health remains unknown. Here, we aimed to understand whether specific placental loss of the insulin receptor (InsR) has a lasting effect on the offspring health in mice. Obesity and glucose homeostasis were assessed in the adult mouse offspring on a normal chow diet (NCD) followed by a high-fat diet (HFD) challenge. Compared to their littermate controls, InsR KOplacenta offspring were born with normal body weight and pancreatic β-cell mass. Adult InsR KOplacenta mice exhibited normal glucose homeostasis on an NCD. Interestingly, under a HFD challenge, adult male InsR KOplacenta offspring demonstrated lower body weight and a mildly improved glucose homeostasis associated with parity. Together, our data show that placenta-specific insulin receptor deletion does not adversely affect offspring glucose homeostasis during adulthood. Rather, there may potentially be a mild and transient protective effect in the mouse offspring of multiparous dams under the condition of a diet-induced obesogenic challenge.
Collapse
|
50
|
Chen W, Cai W, Hoover B, Kahn CR. Insulin action in the brain: cell types, circuits, and diseases. Trends Neurosci 2022; 45:384-400. [PMID: 35361499 PMCID: PMC9035105 DOI: 10.1016/j.tins.2022.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Since its discovery over 100 years ago, insulin has been recognized as a key hormone in control of glucose homeostasis. Deficiencies of insulin signaling are central to diabetes and many other disorders. The brain is among the targets of insulin action, and insulin resistance is a major contributor to many diseases, including brain disorders. Here, we summarize key roles of insulin action in the brain and how this involves different brain cell types. Disordered brain insulin signaling can also contribute to neuropsychiatric diseases, affecting brain circuits involved in mood and cognition. Understanding of insulin signaling in different brain cell types/circuits and how these are altered in disease may lead to the development of new therapeutic approaches to these challenging disorders.
Collapse
|