1
|
Bao Y, Pan Q, Xu P, Liu Z, Zhang Z, Liu Y, Xu Y, Yu Y, Zhou Z, Wei W. Unbiased interrogation of functional lysine residues in human proteome. Mol Cell 2023; 83:4614-4632.e6. [PMID: 37995688 DOI: 10.1016/j.molcel.2023.10.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
CRISPR screens have empowered the high-throughput dissection of gene functions; however, more explicit genetic elements, such as codons of amino acids, require thorough interrogation. Here, we establish a CRISPR strategy for unbiasedly probing functional amino acid residues at the genome scale. By coupling adenine base editors and barcoded sgRNAs, we target 215,689 out of 611,267 (35%) lysine codons, involving 85% of the total protein-coding genes. We identify 1,572 lysine codons whose mutations perturb human cell fitness, with many of them implicated in cancer. These codons are then mirrored to gene knockout screen data to provide functional insights into the role of lysine residues in cellular fitness. Mining these data, we uncover a CUL3-centric regulatory network in which lysine residues of CUL3 CRL complex proteins control cell fitness by specifying protein-protein interactions. Our study offers a general strategy for interrogating genetic elements and provides functional insights into the human proteome.
Collapse
Affiliation(s)
- Ying Bao
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Qian Pan
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yiyuan Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
2
|
Larivera S, Neumeier J, Meister G. Post-transcriptional gene silencing in a dynamic RNP world. Biol Chem 2023; 404:1051-1067. [PMID: 37739934 DOI: 10.1515/hsz-2023-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
MicroRNA (miRNA)-guided gene silencing is a key regulatory process in various organisms and linked to many human diseases. MiRNAs are processed from precursor molecules and associate with Argonaute proteins to repress the expression of complementary target mRNAs. Excellent work by numerous labs has contributed to a detailed understanding of the mechanisms of miRNA function. However, miRNA effects have mostly been analyzed and viewed as isolated events and their natural environment as part of complex RNA-protein particles (RNPs) is often neglected. RNA binding proteins (RBPs) regulate key enzymes of the miRNA processing machinery and furthermore RBPs or readers of RNA modifications may modulate miRNA activity on mRNAs. Such proteins may function similarly to miRNAs and add their own contributions to the overall expression level of a particular gene. Therefore, post-transcriptional gene regulation might be more the sum of individual regulatory events and should be viewed as part of a dynamic and complex RNP world.
Collapse
Affiliation(s)
- Simone Larivera
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Julia Neumeier
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
3
|
Gutierrez-Angulo M, Ayala-Madrigal MDLL, Moreno-Ortiz JM, Peregrina-Sandoval J, Garcia-Ayala FD. Microbiota composition and its impact on DNA methylation in colorectal cancer. Front Genet 2023; 14:1037406. [PMID: 37614819 PMCID: PMC10442805 DOI: 10.3389/fgene.2023.1037406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer is a complex disease resulting from the interaction of genetics, epigenetics, and environmental factors. DNA methylation is frequently found in tumor suppressor genes to promote cancer development. Several factors are associated with changes in the DNA methylation pattern, and recently, the gastrointestinal microbiota could be associated with this epigenetic change. The predominant phyla in gut microbiota are Firmicutes and Bacteroidetes; however, an enrichment of Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus bovis, among others, has been reported in colorectal cancer, although the composition could be influenced by several factors, including diet, age, sex, and cancer stage. Fusobacterium nucleatum, a gram-negative anaerobic bacillus, is mainly associated with colorectal cancer patients positive for the CpG island methylator phenotype, although hypermethylation in genes such as MLH1, CDKN2A, MTSS1, RBM38, PKD1, PTPRT, and EYA4 has also been described. Moreover, Hungatella hathewayi, a gram-positive, rod-shaped bacterium, is related to hypermethylation in SOX11, THBD, SFRP2, GATA5, ESR1, EYA4, CDX2, and APC genes. The underlying epigenetic mechanism is unclear, although it could be implicated in the regulation of DNA methyltransferases, enzymes that catalyze the transfer of a methyl group on cytosine of CpG sites. Since DNA methylation is a reversible event, changes in gut microbiota could modulate the gene expression through DNA methylation and improve the colorectal cancer prognosis.
Collapse
Affiliation(s)
- Melva Gutierrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Maria de la Luz Ayala-Madrigal
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jose Miguel Moreno-Ortiz
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jorge Peregrina-Sandoval
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Fernando Daniel Garcia-Ayala
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Nag S, Goswami B, Das Mandal S, Ray PS. Cooperation and competition by RNA-binding proteins in cancer. Semin Cancer Biol 2022; 86:286-297. [PMID: 35248729 DOI: 10.1016/j.semcancer.2022.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Post-transcriptional regulation of gene expression plays a major role in determining the cellular proteome in health and disease. Post-transcriptional control mechanisms are disrupted in many cancers, contributing to multiple processes of tumorigenesis. RNA-binding proteins (RBPs), the main post-transcriptional regulators, often show altered expression and activity in cancer cells. Dysregulation of RBPs contributes to many cancer phenotypes, functioning in complex regulatory networks with other cellular players such as non-coding RNAs, signaling mediators and transcription factors to alter the expression of oncogenes and tumor suppressor genes. RBPs often function combinatorially, based on their binding to target sequences/structures on shared mRNA targets, to regulate the expression of cancer-related genes. This gives rise to cooperativity and competition between RBPs in mRNA binding and resultant functional outcomes in post-transcriptional processes such as mRNA splicing, stability, export and translation. Cooperation and competition is also observed in the case of interaction of RBPs and microRNAs with mRNA targets. RNA structural change is a common mechanism mediating the cooperative/competitive interplay between RBPs and between RBPs and microRNAs. RNA modifications, leading to changes in RNA structure, add a new dimension to cooperative/competitive binding of RBPs to mRNAs, further expanding the RBP regulatory landscape. Therefore, cooperative/competitive interplay between RBPs is a major determinant of the RBP interactome and post-transcriptional regulation of gene expression in cancer cells.
Collapse
Affiliation(s)
- Sharanya Nag
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Binita Goswami
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sukhen Das Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
5
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
6
|
AGO-RBP crosstalk on target mRNAs: Implications in miRNA-guided gene silencing and cancer. Transl Oncol 2022; 21:101434. [PMID: 35477066 PMCID: PMC9136600 DOI: 10.1016/j.tranon.2022.101434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) are important regulators of mRNA translation and stability in eukaryotes. While miRNAs can only bind their target mRNAs in association with Argonaute proteins (AGOs), RBPs directly bind their targets either as single entities or in complex with other RBPs to control mRNA metabolism. miRNA binding in 3' untranslated regions (3' UTRs) of mRNAs facilitates an intricate network of interactions between miRNA-AGO and RBPs, thus determining the fate of overlapping targets. Here, we review the current knowledge on the interplay between miRNA-AGO and multiple RBPs in different cellular contexts, the rules underlying their synergism and antagonism on target mRNAs, as well as highlight the implications of these regulatory modules in cancer initiation and progression.
Collapse
|
7
|
Large-scale genomic study reveals robust activation of the immune system following advanced Inner Engineering meditation retreat. Proc Natl Acad Sci U S A 2021; 118:2110455118. [PMID: 34907015 DOI: 10.1073/pnas.2110455118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The positive impact of meditation on human well-being is well documented, yet its molecular mechanisms are incompletely understood. We applied a comprehensive systems biology approach starting with whole-blood gene expression profiling combined with multilevel bioinformatic analyses to characterize the coexpression, transcriptional, and protein-protein interaction networks to identify a meditation-specific core network after an advanced 8-d Inner Engineering retreat program. We found the response to oxidative stress, detoxification, and cell cycle regulation pathways were down-regulated after meditation. Strikingly, 220 genes directly associated with immune response, including 68 genes related to interferon signaling, were up-regulated, with no significant expression changes in the inflammatory genes. This robust meditation-specific immune response network is significantly dysregulated in multiple sclerosis and severe COVID-19 patients. The work provides a foundation for understanding the effect of meditation and suggests that meditation as a behavioral intervention can voluntarily and nonpharmacologically improve the immune response for treating various conditions associated with excessive or persistent inflammation with a dampened immune system profile.
Collapse
|
8
|
Iwakawa HO, Tomari Y. Life of RISC: Formation, action, and degradation of RNA-induced silencing complex. Mol Cell 2021; 82:30-43. [PMID: 34942118 DOI: 10.1016/j.molcel.2021.11.026] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023]
Abstract
Small RNAs regulate a wide variety of biological processes by repressing the expression of target genes at the transcriptional and post-transcriptional levels. To achieve these functions, small RNAs form RNA-induced silencing complex (RISC) together with a member of the Argonaute (AGO) protein family. RISC is directed by its bound small RNA to target complementary RNAs and represses their expression through mRNA cleavage, degradation, and/or translational repression. Many different factors fine-tune RISC activity and stability-from guide-target RNA complementarity to the recruitment of other protein partners to post-translational modifications of RISC itself. Here, we review recent progress in understanding RISC formation, action, and degradation, and discuss new, intriguing questions in the field.
Collapse
Affiliation(s)
- Hiro-Oki Iwakawa
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
9
|
Li Y, Shi Y, He Y, Li X, Yang J. RNA binding Motif protein-38 regulates myocardial hypertrophy in LXR-α-dependent lipogenesis pathway. Bioengineered 2021; 12:9655-9667. [PMID: 34854353 PMCID: PMC8809983 DOI: 10.1080/21655979.2021.1977552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myocardial hypertrophy is a pathological thickening of the myocardium, leading to various ailments, such as myocardial infarction and heart failure. RBM38 is critical in modulating mRNA translation for multiple protective activities such as p53 tumor repressor and p21 kinase cell cycle inhibitors. Liver X receptors (LXR-α) agonists reduce cellular hypertrophy initiated by various hypertrophic stimuli as lipopolysaccharides and Ang II. This research investigates the possible cooperation between RBM38 and LXR-α and mechanisms in modulating myocardial hypertrophy. H9C2 cells were treated with PE, TNF-α, and AngII to induce myocardial hypertrophy. RBM38 and LXR- α were overexpressed or silenced in H9C2 cells, and hypertrophy markers (ANF and Myh7) were determined with Western blot and RT-qPCR. Binding assays were done through RNA immunoprecipitation. H&E and Rhodamine-labeled phalloidin staining assays were used to assess the relative cell surface change. The results demonstrated RBM38 downregulation in in vitro models of myocardial hypertrophy. Modulation of RBM38 expression also exerted inverse effects on myocardial hypertrophy markers. Further observations also showed that LXR-α expression regulates the myocardial hypertrophy markers in H9C2 cells and RBM38 binds with LXR-α mRNA, consequently inhibiting LXR-α expression. Finally, overexpression of RBM38 rescues Angiotensin II-induced myocardial hypertrophy by regulating LXR-α dependent lipogenesis pathway. In conclusion, RBM38 Overexpression rescues Angiotensin II-induced myocardial hypertrophy by regulating LXR-α dependent lipogenesis pathway.
Collapse
Affiliation(s)
- Yao Li
- Department of Cardiovascular Medicine, Baoji People's Hospital, Baoji City, Shaanxi Province, China
| | - Yanhu Shi
- Department of Cardiology, Baoji Chinese Medicine Hospital, Baoji City, Shaanxi Province, China
| | - Yaoli He
- Department of Geriatric Cardio-cerebrovascular Diseases, Baoji Central Hospital, Baoji City, Shaanxi Province, China
| | - Xiaoming Li
- Department of Cardiovascular Medicine, Baoji Central Hospital, Baoji City, Shaanxi Province, China
| | - Junlu Yang
- Department of Cardiovascular Medicine, Baoji Chinese Medicine Hospital, Baoji City, Shaanxi Province, China
| |
Collapse
|
10
|
Gao J, Shi H, Juhlin CC, Larsson C, Lui WO. Merkel cell polyomavirus T-antigens regulate DICER1 mRNA stability and translation through HSC70. iScience 2021; 24:103264. [PMID: 34761184 PMCID: PMC8567380 DOI: 10.1016/j.isci.2021.103264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/13/2021] [Accepted: 10/09/2021] [Indexed: 01/07/2023] Open
Abstract
Merkel cell carcinoma is an aggressive skin malignancy, mostly caused by Merkel cell polyomavirus (MCPyV). MCPyV T-antigens can induce mature microRNA expressions through the DnaJ domain, but its underlying mechanism is still unknown. Here, we report that the T-antigens induce protein expression and mRNA stability of DICER1, a key factor in microRNA biogenesis, through heat shock cognate 70 (HSC70). HSC70 directly interacts with the AU-rich elements (ARE) of DICER1 mRNA in both coding and 3′ untranslated region in the presence of MCPyV T-antigen. The T-antigen/HSC70 interaction could induce luciferase activity of synthetic ARE-containing reporter, as well as the stability of ARE-containing mRNAs, suggesting a broader role of MCPyV T-antigens in regulating multiple mRNAs via HSC70. These findings highlight a new role for the interaction of HSC70 and MCPyV T-antigens in mRNA regulation and an undescribed regulatory mechanism of DICER1 mRNA stability and translation through its direct interaction with HSC70. MCPyV T-antigen and HSC70 interaction regulates DICER1 expression HSC70 directly binds to ARE in the 3′UTR of DICER1 for expression regulation An unknown motif in DICER1 CDS is also required for its expression regulation by LT The LT-HSC70 interaction can regulate other ARE-containing mRNAs
Collapse
Affiliation(s)
- Jiwei Gao
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Hao Shi
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden.,Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| |
Collapse
|
11
|
The regulatory impact of RNA-binding proteins on microRNA targeting. Nat Commun 2021; 12:5057. [PMID: 34417449 PMCID: PMC8379221 DOI: 10.1038/s41467-021-25078-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Argonaute is the primary mediator of metazoan miRNA targeting (MT). Among the currently identified >1,500 human RNA-binding proteins (RBPs), there are only a handful of RBPs known to enhance MT and several others reported to suppress MT, leaving the global impact of RBPs on MT elusive. In this study, we have systematically analyzed transcriptome-wide binding sites for 150 human RBPs and evaluated the quantitative effect of individual RBPs on MT efficacy. In contrast to previous studies, we show that most RBPs significantly affect MT and that all of those MT-regulating RBPs function as MT enhancers rather than suppressors, by making the local secondary structure of the target site accessible to Argonaute. Our findings illuminate the unappreciated regulatory impact of human RBPs on MT, and as these RBPs may play key roles in the gene regulatory network governed by metazoan miRNAs, MT should be understood in the context of co-regulating RBPs. miRNAs are loaded into Argonaute protein and repress complementary mRNA targets. Here the authors show the unappreciated role of RNA binding proteins for efficient miRNA targeting and expand the current understanding of miRNA targeting.
Collapse
|
12
|
Lucchesi CA, Zhang J, Ma B, Nussinov R, Chen X. Survivin Expression Is Differentially Regulated by a Selective Cross-talk between RBM38 and miRNAs let-7b or miR-203a. Cancer Res 2021; 81:1827-1839. [PMID: 33472892 PMCID: PMC8137528 DOI: 10.1158/0008-5472.can-20-3157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
RNA-binding motif 38 (RBM38) is a member of a protein family with a highly conserved RNA-binding motif and has been shown to regulate mRNA processing, stability, and translation. Survivin is an essential modulator of apoptotic and nonapoptotic cell death as well as a stress responder. Survivin mRNA is the fourth most frequently overexpressed transcript in the human cancer transcriptome, and its aberrant expression is associated with chemo-/radioresistance and poor prognosis. In this study, we examined whether survivin expression is regulated by RBM38. RBM38 bound to survivin 3'-untranslated region and suppressed miRNA let-7b from binding to and degrading survivin mRNA, leading to increased survivin expression. RBM38 interacted with argonaute-2 (AGO2) and facilitated miR-203a-mediated degradation of survivin mRNA, leading to decreased survivin expression. Due to the abundance of let-7b over miR-203a, RBM38 ultimately increased survivin expression in HCT116 and MCF7 cells. In addition, Ser-195 in RBM38 interacted with Glu-73/-76 in AGO2, and Pep8, an eight-amino acid peptide spanning the region of Ser-195 in RBM38, blocked the RBM38-AGO2 interaction and inhibited miR-203a-mediated mRNA degradation, leading to enhanced survivin expression. Furthermore, Pep8 cooperated with YM155, an inhibitor of survivin, to suppress tumor spheroid growth and viability. Pep8 sensitized tumor cells to YM155-induced DNA damage in an RBM38-dependent manner. Together, our data indicate that RBM38 is a dual regulator of survivin and that Pep8/YM155 may be therapeutically explored for tumor suppression. SIGNIFICANCE: These findings show that RBM38 exerts opposing effects on survivin expression via two miRNAs, and disruption of the RBM38-AGO2 complex by an eight-amino acid peptide sensitizes tumor spheroids to survivin inhibitor YM155.
Collapse
Affiliation(s)
- Christopher A Lucchesi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California.
| |
Collapse
|
13
|
Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeffrey H S Man
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Respirology, University Health Network, Latner Thoracic Research Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Philip A Marsden
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Forouzanfar M, Lachinani L, Dormiani K, Nasr-Esfahani MH, Ghaedi K. Increased expression of MUSASHI1 in epithelial breast cancer cells is due to down regulation of miR-125b. BMC Mol Cell Biol 2021; 22:10. [PMID: 33541259 PMCID: PMC7863248 DOI: 10.1186/s12860-021-00348-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
Background Musashi1 (MSI1) is an oncogenic protein with a crucial role in the proliferation and characteristics of the epithelial cells in breast cancer. The change in expression of MSI1 has a role in solid tumor progression. There are different factors that regulate MSI1 expression in various cancer tissues including microRNAs which are considered as one of the most important of these factors. The aim of our study is identification of the molecular cause of maximal expression of MSI1 in epithelial breast cancer cell lines. Results Among predicted microRNAs, miR-125b, miR-637 and miR-802 were able to significantly reduce the luciferase activity. In addition, the relative expression of these three miRNAs were measured in the cancerous cell lines that results showed a significant reduction in expression of all microRNAs. On the other hand, only the overexpression of miR-125b caused a change in the expression pattern of MSI1 in breast epithelial cancer cell lines. Accordingly, our results demonstrated that the exogenous expression of miR-125b decreased not only the MSI1 protein but also expression of epithelial markers in breast cancer cells. Conclusions The results of luciferase reporter assay showed that MSI1 is a direct target for miR-125b in epithelial breast cancer cells. Moreover, higher amount of MSI1 in those cell lines seems due to the reduced amount of miR-125b, which is responsible for epithelial features of those kinds of cancer cells. Therefore, the modulation of miR-125b may be a potential approach to help to combat against epithelial breast tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00348-8.
Collapse
Affiliation(s)
- Mahboobeh Forouzanfar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran
| | - Liana Lachinani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran.
| |
Collapse
|
15
|
Zou C, Wan Y, He L, Zheng JH, Mei Y, Shi J, Zhang M, Dong Z, Zhang D. RBM38 in cancer: role and mechanism. Cell Mol Life Sci 2021; 78:117-128. [PMID: 32642788 PMCID: PMC11072576 DOI: 10.1007/s00018-020-03593-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
Abstract
Cancer is the second leading cause of death globally. Abnormity in gene expression regulation characterizes the trajectory of tumor development and progression. RNA-binding proteins (RBPs) are widely dysregulated, and thus implicated, in numerous human cancers. RBPs mainly regulate gene expression post-transcriptionally, but emerging studies suggest that many RBPs can impact transcription by acting on chromatin as transcription factors (TFs) or cofactors. Here, we review the evidence that RBM38, an intensively studied RBP, frequently plays a tumor-suppressive role in multiple human cancer types. Genetic studies in mice deficient in RBM38 on different p53 status also establish RBM38 as a tumor suppressor (TS). By uncovering a spectrum of transcripts bound by RBM38, we discuss the diversity in its mechanisms of action in distinct biological contexts. Examination of the genomic features and expression pattern of RBM38 in human tissues reveals that it is generally lost but rarely mutated, in cancers. By assessing future trends in the study of RBM38 in cancer, we signify the possibility of targeting RBM38 and its related pathways as therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Cheng Zou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ying Wan
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingjing He
- College of Biology, Hunan University, Changsha, 410082, China
| | - Jin Hai Zheng
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yang Mei
- College of Biology, Hunan University, Changsha, 410082, China
| | - Junfeng Shi
- College of Biology, Hunan University, Changsha, 410082, China
| | - Min Zhang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiqiang Dong
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dingxiao Zhang
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
16
|
She X, Lin Y, Liang R, Liu Z, Gao X, Ye J. RNA-Binding Motif Protein 38 as a Potential Biomarker and Therapeutic Target in Cancer. Onco Targets Ther 2020; 13:13225-13236. [PMID: 33380811 PMCID: PMC7769143 DOI: 10.2147/ott.s278755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) act as a key factor in gene regulation by governing RNA metabolism. They contribute to the expression and functions of most RNAs by binding to them and forming complexes. RNA-binding motif protein 38 (RBM38), a member of the RBP family, alters the stability and translation of targeted mRNAs to affect various biological processes, such as cell proliferation, cell cycle arrest, and myogenic differentiation. RBM38 contains a highly conserved RNA recognition motif (RRM) consisting of two subunits, RNP1 and RNP2, which specifically bind to RNAs. Recent studies have revealed that RBM38 regulates the mRNA stability of several tumor-related genes, such as p53, mdm2, p63, p73, p21, and c-Myc, by binding to their 3′ untranslated regions (3′ UTRs); thus, RBM38 modulates targeted gene expression and affects the biological processes of tumors. In addition, abnormal RBM38 expression in some malignant tumors and its correlation with prognosis have been documented in many studies, indicating its value for potential clinical applications. In this review, we present an overview of RBM38, specifically highlighting its relationship with tumor manifestation and development. A brief overview of the potential use of RBM38 in cancer therapy is also included to provide ideas for further research on RBM38.
Collapse
Affiliation(s)
- Xiaomin She
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Yan Lin
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Rong Liang
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Ziyu Liu
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xing Gao
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Jiazhou Ye
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| |
Collapse
|
17
|
Das Mandal S, Ray PS. Transcriptome-wide analysis reveals spatial correlation between N6-methyladenosine and binding sites of microRNAs and RNA-binding proteins. Genomics 2020; 113:205-216. [PMID: 33340693 DOI: 10.1016/j.ygeno.2020.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
N6-methyladenosine (m6A), the most prevalent epitranscriptomic modification in eukaryotes, is enriched in 3'-untranslated regions (3'UTRs) of mRNAs. As 3'UTRs are major binding sites of RNA-binding proteins (RBPs) and microRNAs (miRNAs), m6A-dependent local RNA structure change may alter the accessibility of RBPs and miRNAs to their target sites and regulate mRNA function. Using a human transcriptome-wide computational analysis to investigate the relation between m6A, RBPs and miRNAs, we find a strong positive correlation between number of m6A sites, miRNAs and RBPs binding to mRNAs, suggesting m6A-modified mRNAs are more targeted by miRNAs and RBPs. Moreover, m6A sites are located proximally to miRNA target sites and binding sites of multiple RBPs. Further, miRNA target sites and RBP-binding sites located close to each other are also located proximally to m6A. This study indicates three-way interplay between m6A, microRNA and RBP binding, suggesting the influence of mRNA modifications on the miRNA and RBP interactomes.
Collapse
Affiliation(s)
- Sukhen Das Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| |
Collapse
|
18
|
Muraoka S, Fukumura K, Hayashi M, Kataoka N, Mayeda A, Kaida D. Rbm38 Reduces the Transcription Elongation Defect of the SMEK2 Gene Caused by Splicing Deficiency. Int J Mol Sci 2020; 21:ijms21228799. [PMID: 33233740 PMCID: PMC7699959 DOI: 10.3390/ijms21228799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022] Open
Abstract
Pre-mRNA splicing is an essential mechanism for ensuring integrity of the transcriptome in eukaryotes. Therefore, splicing deficiency might cause a decrease in functional proteins and the production of nonfunctional, aberrant proteins. To prevent the production of such aberrant proteins, eukaryotic cells have several mRNA quality control mechanisms. In addition to the known mechanisms, we previously found that transcription elongation is attenuated to prevent the accumulation of pre-mRNA under splicing-deficient conditions. However, the detailed molecular mechanism behind the defect in transcription elongation remains unknown. Here, we showed that the RNA binding protein Rbm38 reduced the transcription elongation defect of the SMEK2 gene caused by splicing deficiency. This reduction was shown to require the N- and C-terminal regions of Rbm38, along with an important role being played by the RNA-recognition motif of Rbm38. These findings advance our understanding of the molecular mechanism of the transcription elongation defect caused by splicing deficiency.
Collapse
Affiliation(s)
- Shintaro Muraoka
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.M.); (M.H.)
| | - Kazuhiro Fukumura
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; (K.F.); (A.M.)
| | - Megumi Hayashi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.M.); (M.H.)
| | - Naoyuki Kataoka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; (K.F.); (A.M.)
| | - Daisuke Kaida
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.M.); (M.H.)
- Correspondence:
| |
Collapse
|
19
|
Pokornowska M, Milewski MC, Ciechanowska K, Szczepańska A, Wojnicka M, Radogostowicz Z, Figlerowicz M, Kurzynska-Kokorniak A. The RNA-RNA base pairing potential of human Dicer and Ago2 proteins. Cell Mol Life Sci 2020; 77:3231-3244. [PMID: 31655860 PMCID: PMC7391396 DOI: 10.1007/s00018-019-03344-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022]
Abstract
The ribonuclease Dicer produces microRNAs (miRNAs) and small interfering RNAs that are handed over to Ago proteins to control gene expression by targeting complementary sequences within transcripts. Interestingly, a growing number of reports have demonstrated that the activity of Dicer may extend beyond the biogenesis of small regulatory RNAs. Among them, a report from our latest studies revealed that human Dicer facilitates base pairing of complementary sequences present in two nucleic acids, thus acting as a nucleic acid annealer. Accordingly, in this manuscript, we address how RNA structure influences the annealing activity of human Dicer. We show that Dicer supports hybridization between a small RNA and a complementary sequence of a longer RNA in vitro, even when both complementary sequences are trapped within secondary structures. Moreover, we show that under applied conditions, human Ago2, a core component of RNA-induced silencing complex, displays very limited annealing activity. Based on the available data from new-generation sequencing experiments regarding the RNA pool bound to Dicer in vivo, we show that multiple Dicer-binding sites within mRNAs also contain miRNA targets. Subsequently, we demonstrate in vitro that Dicer but not Ago2 can anneal miRNA to its target present within mRNA. We hypothesize that not all miRNA duplexes are handed over to Ago proteins. Instead, miRNA-Dicer complexes could target specific sequences within transcripts and either compete or cooperate for binding sites with miRNA-Ago complexes. Thus, not only Ago but also Dicer might be directly involved in the posttranscriptional control of gene expression.
Collapse
Affiliation(s)
- Maria Pokornowska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marek C Milewski
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Kinga Ciechanowska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Agnieszka Szczepańska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marta Wojnicka
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Ziemowit Radogostowicz
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marek Figlerowicz
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965, Poznan, Poland
| | - Anna Kurzynska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| |
Collapse
|
20
|
Sonnenschein K, Fiedler J, Pfanne A, Just A, Mitzka S, Geffers R, Pich A, Bauersachs J, Thum T. Therapeutic modulation of RNA-binding protein Rbm38 facilitates re-endothelialization after arterial injury. Cardiovasc Res 2020; 115:1804-1810. [PMID: 30843048 PMCID: PMC6755352 DOI: 10.1093/cvr/cvz063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/13/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Aims Delayed re-endothelialization after balloon angioplasty in patients with coronary or peripheral artery disease impairs vascular healing and leads to neointimal proliferation. In the present study, we examined the effect of RNA-binding motif protein 38 (Rbm38) during re-endothelialization in a murine model of experimental vascular injury. Methods and results Left common carotid arteries of C57BL/6 mice were electrically denudated and endothelial regeneration was evaluated. Profiling of RNA-binding proteins revealed dysregulated expression of Rbm38 in the denudated and regenerated areas. We next tested the importance of Rbm38 in human umbilical vein endothelial cells (HUVECS) and analysed its effects on cellular proliferation, migration and apoptosis. Rbm38 silencing in vitro demonstrated important beneficial functional effects on migratory capacity and proliferation of endothelial cells. In vivo, local silencing of Rbm38 also improved re-endothelialization of denuded carotid arteries. Luciferase reporter assay identified miR-98 and let-7f to regulate Rbm38 and the positive proliferative properties of Rbm38 silencing in vitro and in vivo were mimicked by therapeutic overexpression of these miRNAs. Conclusion The present data identified Rbm38 as an important factor of the regulation of various endothelial cell functions. Local inhibition of Rbm38 as well as overexpression of the upstream regulators miR-98 and let-7f improved endothelial regeneration in vivo and thus may be a novel therapeutic entry point to avoid endothelial damage after balloon angioplasty.
Collapse
Affiliation(s)
- Kristina Sonnenschein
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Saskia Mitzka
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany.,Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
21
|
miR129-1 regulates protein phosphatase 1D protein expression under hypoxic conditions in non-small cell lung cancer cells harboring a TP53 mutation. Oncol Lett 2020; 20:2239-2247. [PMID: 32782541 PMCID: PMC7399878 DOI: 10.3892/ol.2020.11783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Protein phosphatase 1D (PPM1D), which functions as an oncogene, is a known target of the tumor suppressor p53 and is involved in p53-regulated genomic surveillance mechanisms. PPM1D dephosphorylates both p53 and its ubiquitin ligase mouse double minute 2 homolog, as well as the RNA-binding protein (RBM)38, which turns RBM38 from an inducer to inhibitor of TP53 translation. In addition, RBM38 induces PPM1D translation. Hence, the PPM1D-RBM38-p53 axis is important in maintaining genomic integrity and is often altered during tumorigenesis. TP53, which encodes p53, is deleted or mutated in >50% of cancer types, including lung cancer. Mutant p53 has been revealed to complex with hypoxia-inducible factor 1α (HIF1α) and upregulate transcription of pro-metastatic genes. However, the mechanism underlying the action of the PPM1D-RBM38-p53 axis in the context of mutant p53 under normoxic and hypoxic conditions is yet to be elucidated. In the present study, using non-small cell lung cancer (NSCLC) cell lines harboring wild-type (A549 cells) or hot-spot mutant (NCI-H1770 and R249WΔ-TP53-A549 cells) TP53, it was demonstrated that in cells harboring mutant p53, RBM38 was not the primary regulator of PPM1D translation under hypoxic conditions. Knockdown of RBM38 in TP53 mutant cells did not affect the PPM1D protein expression under hypoxic conditions. Instead, in NCI-H1770 cells maintained under normoxic conditions, PPM1D was revealed as a target of micro RNA (miR)-129-1-3p, a known tumor suppressor in lung cancer. Hypoxia resulted in the downregulation of miR-129-1-3p expression, and thus, in the downregulation of PPM1D messenger RNA (mRNA) translation. In NCI-H1770 cells grown under hypoxic conditions, the transient transfection of miR-129-1-3p mimic, and not control mimic, repressed the expression of a reporter containing wild-type, but not miR-129-1-3p binding mutant, of the PPM1D 3'-untranslated region (UTR). Analysis of NSCLC cell lines from the Broad Institute Cancer Cell Encyclopedia and patients with NSCLC from The Cancer Genome Atlas dataset revealed significant co-occurrence of PPM1D/RBM38 and PPM1D/HIF1A mutations. However, there was no significant difference in the overall survival of patients with NSCLC with or without genomic alterations in TP53, RBM38, PPM1D and HIF1A. In summary, the current study demonstrated hypoxia-dependent miR-129-1-3p-mediated regulation of PPM1D protein expression in NSCLC cell line harboring mutant TP53.
Collapse
|
22
|
Sellars E, Gabra M, Salmena L. The Complex Landscape of PTEN mRNA Regulation. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036236. [PMID: 31871240 DOI: 10.1101/cshperspect.a036236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a key tumor suppressor in the development and progression of different tumor types. Emerging data indicate that small reductions in PTEN protein levels can promote cancer. PTEN protein levels are tightly controlled by a plethora of mechanisms beginning with epigenetic and transcriptional regulation and ending with control of protein synthesis and stability. PTEN messenger RNA (mRNA) is also subject to exquisite regulation by microRNAs, coding and long noncoding RNAs, and RNA-binding proteins. Additionally, PTEN mRNA is markedly influenced by alternative splicing and variable polyadenylation. Herein we provide a synoptic description of the current understanding of the complex regulatory landscape of PTEN mRNA regulation including several specific processes that modulate its stability and expression, in the context of PTEN loss-associated cancers.
Collapse
Affiliation(s)
- Erin Sellars
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Martino Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
23
|
Zhang H, Brown RD, Stenmark KR, Hu CJ. RNA-Binding Proteins in Pulmonary Hypertension. Int J Mol Sci 2020; 21:ijms21113757. [PMID: 32466553 PMCID: PMC7312837 DOI: 10.3390/ijms21113757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by significant vascular remodeling and aberrant expression of genes involved in inflammation, apoptosis resistance, proliferation, and metabolism. Effective therapeutic strategies are limited, as mechanisms underlying PH pathophysiology, especially abnormal expression of genes, remain unclear. Most PH studies on gene expression have focused on gene transcription. However, post-transcriptional alterations have been shown to play a critical role in inflammation and metabolic changes in diseases such as cancer and systemic cardiovascular diseases. In these diseases, RNA-binding proteins (RBPs) have been recognized as important regulators of aberrant gene expression via post-transcriptional regulation; however, their role in PH is less clear. Identifying RBPs in PH is of great importance to better understand PH pathophysiology and to identify new targets for PH treatment. In this manuscript, we review the current knowledge on the role of dysregulated RBPs in abnormal mRNA gene expression as well as aberrant non-coding RNA processing and expression (e.g., miRNAs) in PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - R. Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
- Department of Craniofacial Biology School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-4576; Fax: +1-303-724-4580
| |
Collapse
|
24
|
A computational approach to the study of interactions between proteins and miR10-b, miR-335, and miR-21 involved in breast cancer. Contemp Oncol (Pozn) 2020; 23:220-225. [PMID: 31992954 PMCID: PMC6978763 DOI: 10.5114/wo.2019.91544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
MiR-10b, miR-335, and miR-21 are classes of microRNAs (miRNAs) that are overexpressed in breast cancer. Thus, in our study we aimed to test the hypothesis that miRNAs may have direct interactions with proteins and the possibility to inhibit/activate the functional site of proteins and enzymes. For this purpose, we choose three miRNAs involved in breast cancer to study interactions between some proteins and genes, including BRCA1 and PTEN, by processing the docking and matching tools using the Hex8 and HADDOCK server. Mathematically, the hidden Markov models were created by using MATLAB script according to the algorithm in order to study and validate the interactions and bonds between proteins and miRNAs. The main results demonstrate the ability of miR-10b, miR-335, and miR-21 to create direct interactions with 3D protein structures. Furthermore, these results may lead to another pathway of research, i.e. the direct interaction between proteins and their sub-units, to highlight the data obtained previously and demonstrate that proteins may directly interact with ncRNA instead of mRNA. Moreover, our study suggests developing research on different pathways of association proteins-miRNAs as a part of epigenetic extra-nuclear regulation. Taken together, our study provides the first evidence of direct interactions between miRNAs and proteins.
Collapse
|
25
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
26
|
Shao L, Zuo X, Yang Y, Zhang Y, Yang N, Shen B, Wang J, Wang X, Li R, Jin G, Yu D, Chen Y, Sun L, Li Z, Fu Q, Hu Z, Han X, Song X, Shen H, Sun Y. The inherited variations of a p53-responsive enhancer in 13q12.12 confer lung cancer risk by attenuating TNFRSF19 expression. Genome Biol 2019; 20:103. [PMID: 31126313 PMCID: PMC6533720 DOI: 10.1186/s13059-019-1696-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background Inherited factors contribute to lung cancer risk, but the mechanism is not well understood. Defining the biological consequence of GWAS hits in cancers is a promising strategy to elucidate the inherited mechanisms of cancers. The tag-SNP rs753955 (A>G) in 13q12.12 is highly associated with lung cancer risk in the Chinese population. Here, we systematically investigate the biological significance and the underlying mechanism behind 13q12.12 risk locus in vitro and in vivo. Results We characterize a novel p53-responsive enhancer with lung tissue cell specificity in a 49-kb high linkage disequilibrium block of rs753955. This enhancer harbors 3 highly linked common inherited variations (rs17336602, rs4770489, and rs34354770) and six p53 binding sequences either close to or located between the variations. The enhancer effectively protects normal lung cell lines against pulmonary carcinogen NNK-induced DNA damages and malignant transformation by upregulating TNFRSF19 through chromatin looping. These variations significantly weaken the enhancer activity by affecting its p53 response, especially when cells are exposed to NNK. The effect of the mutant enhancer alleles on TNFRSF19 target gene in vivo is supported by expression quantitative trait loci analysis of 117 Chinese NSCLC samples and GTEx data. Differentiated expression of TNFRSF19 and its statistical significant correlation with tumor TNM staging and patient survival indicate a suppressor role of TNFRSF19 in lung cancer. Conclusion This study provides evidence of how the inherited variations in 13q12.12 contribute to lung cancer risk, highlighting the protective roles of the p53-responsive enhancer-mediated TNFRSF19 activation in lung cells under carcinogen stress. Electronic supplementary material The online version of this article (10.1186/s13059-019-1696-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lipei Shao
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Xianglin Zuo
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Yin Yang
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Yu Zhang
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Nan Yang
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211126, China
| | - Jianying Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211126, China
| | - Xuchun Wang
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650000, Yunnan, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211126, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China
| | - Dawei Yu
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Yuan Chen
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Luan Sun
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650000, Yunnan, China
| | - Qiaofen Fu
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650000, Yunnan, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211126, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China
| | - Xiao Han
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China
| | - Xin Song
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650000, Yunnan, China.
| | - Hongbin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211126, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China.
| | - Yujie Sun
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China. .,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China.
| |
Collapse
|
27
|
Lucchesi CA, Zhang J, Ma B, Chen M, Chen X. Disruption of the Rbm38-eIF4E Complex with a Synthetic Peptide Pep8 Increases p53 Expression. Cancer Res 2019; 79:807-818. [PMID: 30591552 PMCID: PMC6377842 DOI: 10.1158/0008-5472.can-18-2209] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/05/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Rbm38 is a p53 target and an RNA-binding protein known to suppress p53 translation by preventing eukaryotic translation initiation factor 4E (eIF4E) from binding to p53 mRNA. In this study, we show that synthetic peptides corresponding to the binding interface between Rbm38 and eIF4E, including an 8 amino acid peptide (Pep8) derived from Rbm38, are effective in relieving Rbm38-mediated repression of p53. Molecular simulations showed that Ser-6 in Pep8 forms a hydrogen bond with Asp-202 in eIF4E. Substitution of Ser-6 with Lys, but not with Asp, enhanced the ability of Pep8 to inhibit the Rbm38-eIF4E complex. Importantly, Pep8 alone or together with a low dose of doxorubicin potently induced p53 expression and suppressed colony and tumor sphere formation and xenograft tumors in Rbm38- and p53-dependent manners. Together, we conclude that modulating the Rbm38-eIF4E complex may be explored as a therapeutic strategy for cancers that carry wild-type p53. SIGNIFICANCE: Disruption of the Rbm38-eIF4E complex via synthetic peptides induces wild-type p53 expression, suppresses tumor growth and progression, and may serve as a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Christopher A Lucchesi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, California
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, California
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland
| | - Mingyi Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, California.
| |
Collapse
|
28
|
Sun G, Ding X, Bi N, Wang Z, Wu L, Zhou W, Zhao Z, Wang J, Zhang W, Fan J, Zhang W, Dong X, Lv N, Song Y, Zhan Q, Wang L. Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma. PLoS Genet 2019; 15:e1007888. [PMID: 30707694 PMCID: PMC6374053 DOI: 10.1371/journal.pgen.1007888] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/13/2019] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Brain metastasis (BM) is a major complication of lung adenocarcinoma (LAD). An investigation of the pathogenic mechanisms of BM, as well as the identification of appropriate molecular markers, is necessary. The aim of this study was to determine the expression patterns of microRNAs (miRNAs) in LAD with BM, and to investigate the biological role of these miRNAs during tumorigenesis. miRNA array profiles were used to identify BM-associated miRNAs. These miRNAs were independently validated in 155 LAD patients. Several in vivo and in vitro assays were performed to verify the effects of miRNAs on BM. We identified six miRNAs differentially expressed in patients with BM as compared to patients with BM. Of these, miR-4270 and miR-423-3p were further investigated. miR-4270 and miR-423-3p directly targeted MMP19 and P21, respectively, to influence cell viability, migration, and colony formation in vitro. miR-4270 downregulation and miR-423-3p upregulation was associated with an increased risk of BM in LAD patients. Thus, our results suggested that miR-4270 and miR-423-3p might play an important role in BM pathogenesis in LAD patients, and that these miRNAs might be useful prognostic and clinical treatment targets.
Collapse
Affiliation(s)
- Guogui Sun
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Hebei, China
| | - Xiao Ding
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiation Oncology, Shandong Provincial Hospital, Shandong, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwu Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Hebei, China
| | - Lihong Wu
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingbo Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weimin Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Fan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - WenJue Zhang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Dong
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Lv
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - LuHua Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Zhang Y, Feng X, Sun W, Zhang J, Chen X. Serine 195 phosphorylation in the RNA-binding protein Rbm38 increases p63 expression by modulating Rbm38's interaction with the Ago2-miR203 complex. J Biol Chem 2018; 294:2449-2459. [PMID: 30567739 DOI: 10.1074/jbc.ra118.005779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
The p63 transcription factor, a p53 family protein, regulates genes involved in various cellular processes, including cell growth and differentiation. We previously showed that RNA-binding motif protein (Rbm38) is a p63 target and, in turn, regulates p63α mRNA stability by binding to the AU/U-rich element in its 3'UTR. Interestingly, Rbm38 can be phosphorylated at serine 195, altering its ability to regulate mRNA translation. However, whether the Ser-195 phosphorylation affects Rbm38's ability to destabilize p63 mRNA remains unclear. Here, using MCF7 and HaCaT cells, we showed that ectopic expression of phosphomimetic Rbm38-S195D increases, whereas WT Rbm38 and nonphosphorylatable Rbm38-S195A decrease p63α protein and transcript levels. We also found that upon activation of glycogen synthase kinase 3β (GSK3β), phosphorylation of Rbm38 at Ser-195 is increased, enhancing p63α expression in an Rbm38-dependent manner. To confirm this, we generated mouse embryo fibroblasts (MEFs) in which Ser-193 in mouse Rbm38 (equivalent to Ser-195 in human Rbm38) was substituted with aspartic acid (Rbm38S193D/S193D ) or alanine (Rbm38S193A/S193A ). We observed that the p63 transcript level was increased in Rbm38S193D/S193D MEFs, but decreased in Rbm38S193A/S193A MEFs. Mechanistically, we found that WT Rbm38, but not Rbm38-S195D, is required for p63 mRNA degradation mediated by microRNA 203 (miR203). Furthermore, we noted that Argonaute 2 (Ago2), a key regulator in microRNA-mediated mRNA decay, associates with WT Rbm38, and this association was reduced by Ser-195 phosphorylation. Together, our results reveal a critical mechanism by which Ser-195 phosphorylation in Rbm38 increases p63 expression by attenuating the association of Rbm38 with the Ago2-miR203 complex.
Collapse
Affiliation(s)
- Yanhong Zhang
- From the Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, California 95616 and
| | - Xiuli Feng
- From the Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, California 95616 and.,the College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenqiang Sun
- From the Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, California 95616 and
| | - Jin Zhang
- From the Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, California 95616 and
| | - Xinbin Chen
- From the Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, California 95616 and
| |
Collapse
|
30
|
Shi H, Li H, Yuan R, Guan W, Zhang X, Zhang S, Zhang W, Tong F, Li L, Song Z, Wang C, Yang S, Wang H. PCBP1 depletion promotes tumorigenesis through attenuation of p27 Kip1 mRNA stability and translation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:187. [PMID: 30086790 PMCID: PMC6081911 DOI: 10.1186/s13046-018-0840-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022]
Abstract
Background Poly C Binding Protein 1 (PCBP1) is an RNA-binding protein that binds and regulates translational activity of subsets of cellular mRNAs. Depletion of PCBP1 is implicated in various carcinomas, but the underlying mechanism in tumorigenesis remains elusive. Methods We performed a transcriptome-wide screen to identify novel bounding mRNA of PCBP1. The bind regions between PCBP1 with target mRNA were investigated by using point mutation and luciferase assay. Cell proliferation, cell cycle, tumorigenesis and cell apoptosis were also evaluated in ovary and colon cancer cell lines. The mechanism that PCBP1 affects p27 was analyzed by mRNA stability and ribosome profiling assays. We analyzed PCBP1 and p27 expression in ovary, colon and renal tumor samples and adjacent non-tumor tissues using RT-PCR, Western Blotting and immunohistochemistry. The prognostic significance of PCBP1 and p27 also analyzed using online databases. Results We identified cell cycle inhibitor p27Kip1 (p27) as a novel PCBP1-bound transcript. We then demonstrated that binding of PCBP1 to p27 3’UTR via its KH1 domain mainly stabilizes p27 mRNA, while enhances its translation to fuel p27 expression, prior to p27 protein degradation. The upregulated p27 consequently inhibits cell proliferation, cell cycle progression and tumorigenesis, whereas promotes cell apoptosis under paclitaxel treatment. Conversely, knockdown of PCBP1 in turn compromises p27 mRNA stability, leading to lower p27 level and tumorigenesis in vivo. Moreover, forced depletion of p27 counteracts the tumor suppressive ability of PCBP1 in the same PCBP1 over-expressing cells. Physiologically, we showed that decreases of both p27 mRNA and its protein expressions are well correlated to PCBP1 depletion in ovary, colon and renal tumor samples, independent of the p27 ubiquitin ligase Skp2 level. Correlation of PCBP1 with p27 is also found in the tamoxifen, doxorubincin and lapatinib resistant breast cancer cells of GEO database. Conclusion Our results thereby indicate that loss of PCBP1 expression firstly attenuates p27 expression at post-transcriptional level, and subsequently promotes carcinogenesis. PCBP1 could be used as a diagnostic marker to cancer patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0840-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongshun Shi
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Hui Li
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Ronghua Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiaomei Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Shaoyang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Wenliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Fang Tong
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Li Li
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Zhihong Song
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Changwei Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shulan Yang
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China. .,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
31
|
Zheng L, Zhang Z, Zhang S, Guo Q, Zhang F, Gao L, Ni H, Guo X, Xiang C, Xi T. RNA Binding Protein RNPC1 Inhibits Breast Cancer Cell Metastasis via Activating STARD13-Correlated ceRNA Network. Mol Pharm 2018; 15:2123-2132. [PMID: 29733656 DOI: 10.1021/acs.molpharmaceut.7b01123] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RNA binding proteins (RBPs) are pivotal post-transcriptional regulators. RNPC1, an RBP, acts as a tumor suppressor through binding and regulating the expression of target genes in cancer cells. This study disclosed that RNPC1 expression was positively correlated with breast cancer patients' relapse-free and overall survival and that RNPC1 suppressed breast cancer cell metastasis. Mechanistically, RNPC1 promotes competing endogenous RNA (ceRNA) network crosstalk among STARD13, CDH5, HOXD10, and HOXD1 (STARD13-correlated ceRNA network), which we previously confirmed in breast cancer cells through stabilizing the transcripts and thus facilitating the expression of these four genes in breast cancer cells. Furthermore, RNPC1 overexpression restrained the promotion of STARD13, CDH5, HOXD10, and HOXD1 knockdown on cell metastasis. Notably, RNPC1 expression was positively correlated with CDH5, HOXD1, and HOXD10 expression in breast cancer tissues and attenuated adriamycin resistance. Taken together, these results identified that RNPC1 could inhibit breast cancer cell metastasis via promoting a STARD13-correlated ceRNA network.
Collapse
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Zhiting Zhang
- School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Shufang Zhang
- School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Qianqian Guo
- School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Feng Zhang
- School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Lanlan Gao
- School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Haiwei Ni
- School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Xinwei Guo
- School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Chenxi Xiang
- School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Tao Xi
- School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| |
Collapse
|
32
|
Zhang J, Xu E, Ren C, Yang HJ, Zhang Y, Sun W, Kong X, Zhang W, Chen M, Huang E, Chen X. Genetic Ablation of Rbm38 Promotes Lymphomagenesis in the Context of Mutant p53 by Downregulating PTEN. Cancer Res 2018; 78:1511-1521. [PMID: 29330147 DOI: 10.1158/0008-5472.can-17-2457] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/16/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
Abstract
Mutant p53 exerts gain-of-function effects that drive metastatic progression and therapeutic resistance, but the basis for these effects remain obscure. The RNA binding protein RBM38 limits translation of mutant p53 and is often altered in tumors harboring it. Here we show how loss of Rbm38 significantly alters cancer susceptibility in mutant p53 knock-in mice by shortening lifespan, altering tumor incidence, and promoting T-cell lymphomagenesis. Loss of Rbm38 enhanced mutant p53 expression and decreased expression of the tumor suppressor Pten, a key regulator of T-cell development. Furthermore, Rbm38 was required for Pten expression via stabilization of Pten mRNA through an AU-rich element in its 3'UTR. Our results suggest that Rbm38 controls T-cell lymphomagenesis by jointly modulating mutant p53 and Pten, with possible therapeutic implications for treating T-cell malignancies.Significance: An RNA-binding protein controls T-cell lymphomagenesis by jointly modulating mutant p53 and PTEN, with possible therapeutic implications for treating T-cell malignancies. Cancer Res; 78(6); 1511-21. ©2018 AACR.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Surgical and Radiological Sciences, Schools of Veterinary Medicine and Medicine, University of California at Davis, California.
| | - Enshun Xu
- College of Agriculture, Nanjing Agriculture University, Nanjing, China
| | - Cong Ren
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hee Jung Yang
- Department of Surgical and Radiological Sciences, Schools of Veterinary Medicine and Medicine, University of California at Davis, California
| | - Yanhong Zhang
- Department of Surgical and Radiological Sciences, Schools of Veterinary Medicine and Medicine, University of California at Davis, California
| | - Wenqiang Sun
- Department of Surgical and Radiological Sciences, Schools of Veterinary Medicine and Medicine, University of California at Davis, California
| | - Xiangmudong Kong
- Department of Surgical and Radiological Sciences, Schools of Veterinary Medicine and Medicine, University of California at Davis, California
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California at Davis, California
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Eric Huang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California at Davis, California
| | - Xinbin Chen
- Department of Surgical and Radiological Sciences, Schools of Veterinary Medicine and Medicine, University of California at Davis, California.
| |
Collapse
|
33
|
Lee HC, Jung SH, Hwang HJ, Kang D, De S, Dudekula DB, Martindale JL, Park B, Park SK, Lee EK, Lee JH, Jeong S, Han K, Park HJ, Ko YG, Gorospe M, Lee JS. WIG1 is crucial for AGO2-mediated ACOT7 mRNA silencing via miRNA-dependent and -independent mechanisms. Nucleic Acids Res 2017; 45:6894-6910. [PMID: 28472401 PMCID: PMC5499809 DOI: 10.1093/nar/gkx307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
RNA-binding proteins (RBPs) are involved in mRNA splicing, maturation, transport, translation, storage and turnover. Here, we identified ACOT7 mRNA as a novel target of human WIG1. ACOT7 mRNA decay was triggered by the microRNA miR-9 in a WIG1-dependent manner via classic recruitment of Argonaute 2 (AGO2). Interestingly, AGO2 was also recruited to ACOT7 mRNA in a WIG1-dependent manner in the absence of miR-9, which indicates an alternative model whereby WIG1 controls AGO2-mediated gene silencing. The WIG1–AGO2 complex attenuated translation initiation via an interaction with translation initiation factor 5B (eIF5B). These results were confirmed using a WIG1 tethering system based on the MS2 bacteriophage coat protein and a reporter construct containing an MS2-binding site, and by immunoprecipitation of WIG1 and detection of WIG1-associated proteins using liquid chromatography-tandem mass spectrometry. We also identified WIG1-binding motifs using photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation analyses. Altogether, our data indicate that WIG1 governs the miRNA-dependent and the miRNA-independent recruitment of AGO2 to lower the stability of and suppress the translation of ACOT7 mRNA.
Collapse
Affiliation(s)
- Hyung Chul Lee
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Seung Hee Jung
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Hyun Jung Hwang
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Donghee Kang
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Supriyo De
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Byungkyu Park
- Department of Computer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Seung Kuk Park
- Department of Molecular Biology, Dankook University, Yongin 16890, Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sunjoo Jeong
- Department of Molecular Biology, Dankook University, Yongin 16890, Korea
| | - Kyungsook Han
- Department of Computer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Heon Joo Park
- Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Department of Microbiology, Inha University College of Medicine, Incheon 22212, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jae-Seon Lee
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| |
Collapse
|
34
|
Wang P, Gu J, Li X, Wang Q, Ding Y. RNA-binding protein RBM38 acts as a tumor suppressor in gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11130-11136. [PMID: 31966462 PMCID: PMC6965830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/24/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the expression of RBM38 protein in gastric cancer patients and to explore its association with clinical pathological characteristics and prognosis. MATERIALS AND METHODS A total of 120 pairs of gastric cancer tissues and non-cancerous gastric mucosa from 120 patients who underwent gastrectomy for gastric cancer were included in the current study. RBM38 protein expression levels were detected in all tissue specimens by immunohistochemistry staining. The positive rate of RBM38 was compared between cancer tissue and normal tissue, and its association with the clinical pathological characteristics and prognosis was elucidated. RESULTS RBM38 protein was predominantly expressed in the cytoplasm of epithelial cells. The percentage of tissues with high RBM38 protein expression level was significantly lower (χ2=28.972, P<0.001) in gastric cancer tissues compared with adjacent non-cancerous gastric mucosal tissues. The expression level of RBM38 protein was associated with tumor size (P=0.028), depth of invasion (P<0.001), lymph node metastasis (P<0.001), TNM stage (P<0.001) and Lauren classification of the tumor (P=0.001), whereas it was not associated with gender (P=0.066) and age (P=0.6) of patients. Moreover, we noticed that the low expression level of RBM38 protein was also associated with poor prognosis in gastric cancer patients (log rank =5.325; P=0.021). CONCLUSION Overall, our findings indicated that RBM38 may play a vital role as a tumor suppressor, which may be a potential marker in the diagnosis and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Peng Wang
- Department of General Surgery, Jiangsu Shengze Hospital Suzhou, Jiangsu, China
| | - Jianchun Gu
- Department of General Surgery, Jiangsu Shengze Hospital Suzhou, Jiangsu, China
| | - Xiaowei Li
- Department of General Surgery, Jiangsu Shengze Hospital Suzhou, Jiangsu, China
| | - Qiang Wang
- Department of General Surgery, Jiangsu Shengze Hospital Suzhou, Jiangsu, China
| | - Yongbin Ding
- Department of General Surgery, Jiangsu Shengze Hospital Suzhou, Jiangsu, China
| |
Collapse
|
35
|
van den Hoogenhof MMG, van der Made I, Beqqali A, de Groot NE, Damanafshan A, van Oort RJ, Pinto YM, Creemers EE. The RNA-binding protein Rbm38 is dispensable during pressure overload-induced cardiac remodeling in mice. PLoS One 2017; 12:e0184093. [PMID: 28850611 PMCID: PMC5574583 DOI: 10.1371/journal.pone.0184093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/17/2017] [Indexed: 11/23/2022] Open
Abstract
The importance of tightly controlled alternative pre-mRNA splicing in the heart is emerging. The RNA binding protein Rbm24 has recently been identified as a pivotal cardiac splice factor, which governs sarcomerogenesis in the heart by controlling the expression of alternative protein isoforms. Rbm38, a homolog of Rbm24, has also been implicated in RNA processes such as RNA splicing, RNA stability and RNA translation, but its function in the heart is currently unknown. Here, we investigated the role of Rbm38 in the healthy and diseased adult mouse heart. In contrast to the heart- and skeletal muscle-enriched protein Rbm24, Rbm38 appears to be more broadly expressed. We generated somatic Rbm38 -/- mice and show that global loss of Rbm38 results in hematopoietic defects. Specifically, Rbm38 -/- mice were anemic and displayed enlarged spleens with extramedullary hematopoiesis, as has been shown earlier. The hearts of Rbm38 -/- mice were mildly hypertrophic, but cardiac function was not affected. Furthermore, Rbm38 deficiency did not affect cardiac remodeling (i.e. hypertrophy, LV dilation and fibrosis) or performance (i.e. fractional shortening) after pressure-overload induced by transverse aorta constriction. To further investigate molecular consequences of Rbm38 deficiency, we examined previously identified RNA stability, splicing, and translational targets of Rbm38. We found that stability targets p21 and HuR, splicing targets Mef2d and Fgfr2, and translation target p53 were not altered, suggesting that these Rbm38 targets are tissue-specific or that Rbm38 deficiency may be counteracted by a redundancy mechanism. In this regard, we found a trend towards increased Rbm24 protein expression in Rbm38 -/- hearts. Overall, we conclude that Rbm38 is critical in hematopoiesis, but does not play a critical role in the healthy and diseased heart.
Collapse
Affiliation(s)
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Abdelaziz Beqqali
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Nina E. de Groot
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Amin Damanafshan
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Ralph J. van Oort
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther E. Creemers
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Ni J, Bucci J, Chang L, Malouf D, Graham P, Li Y. Targeting MicroRNAs in Prostate Cancer Radiotherapy. Theranostics 2017; 7:3243-3259. [PMID: 28900507 PMCID: PMC5595129 DOI: 10.7150/thno.19934] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is one of the most important treatment options for localized early-stage or advanced-stage prostate cancer (CaP). Radioresistance (relapse after radiotherapy) is a major challenge for the current radiotherapy. There is great interest in investigating mechanisms of radioresistance and developing novel treatment strategies to overcome radioresistance. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level, participating in numerous physiological and pathological processes including cancer invasion, progression, metastasis and therapeutic resistance. Emerging evidence indicates that miRNAs play a critical role in the modulation of key cellular pathways that mediate response to radiation, influencing the radiosensitivity of the cancer cells through interplaying with other biological processes such as cell cycle checkpoints, apoptosis, autophagy, epithelial-mesenchymal transition and cancer stem cells. Here, we summarize several important miRNAs in CaP radiation response and then discuss the regulation of the major signalling pathways and biological processes by miRNAs in CaP radiotherapy. Finally, we emphasize on microRNAs as potential predictive biomarkers and/or therapeutic targets to improve CaP radiosensitivity.
Collapse
|
37
|
Li D, He C, Wang J, Wang Y, Bu J, Kong X, Sun D. MicroRNA-138 Inhibits Cell Growth, Invasion, and EMT of Non-Small Cell Lung Cancer via SOX4/p53 Feedback Loop. Oncol Res 2017; 26:385-400. [PMID: 28653608 PMCID: PMC7844796 DOI: 10.3727/096504017x14973124850905] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown that downregulation of miR-138 occurs in a variety of cancers including non-small cell lung cancer (NSCLC). However, the precise mechanisms of miR-138 in NSCLC have not been well clarified. In this study, we investigated the biological functions and molecular mechanisms of miR-138 in NSCLC cell lines, discussing whether it could turn out to be a therapeutic biomarker of NSCLC in the future. In our study, we found that miR-138 is downregulated in NSCLC tissues and cell lines. Moreover, the low level of miR-138 was associated with increased expression of SOX4 in NSCLC tissues and cell lines. Upregulation of miR-138 significantly inhibited proliferation of NSCLC cells. In addition, invasion and EMT of NSCLC cells were suppressed by overexpression of miR-138. However, downregulation of miR-138 promoted cell growth and metastasis of NSCLC cells. Bioinformatics analysis predicted that SOX4 was a potential target gene of miR-138. Next, luciferase reporter assay confirmed that miR-138 could directly target SOX4. Consistent with the effect of miR-138, downregulation of SOX4 by siRNA inhibited proliferation, invasion, and EMT of NSCLC cells. Overexpression of SOX4 in NSCLC cells partially reversed the effect of miR-138 mimic. In addition, decreased SOX4 expression could increase the level of miR-138 via upregulation of p53. Introduction of miR-138 dramatically inhibited growth, invasion, and EMT of NSCLC cells through a SOX4/p53 feedback loop.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pediatrics, Cancer Hospital of the Harbin Medical UniversityHarbinP.R. China
| | - Changjun He
- Department of Thoracic Surgery, Cancer Hospital of the Harbin Medical UniversityHarbinP.R. China
| | - Junfeng Wang
- Department of Thoracic Surgery, Cancer Hospital of the Harbin Medical UniversityHarbinP.R. China
| | - Yanbo Wang
- Department of Thoracic Surgery, Cancer Hospital of the Harbin Medical UniversityHarbinP.R. China
| | - Jianlong Bu
- Department of Thoracic Surgery, Cancer Hospital of the Harbin Medical UniversityHarbinP.R. China
| | - Xianglong Kong
- Department of Thoracic Surgery, Cancer Hospital of the Harbin Medical UniversityHarbinP.R. China
| | - Dawei Sun
- Department of Thoracic Surgery, Cancer Hospital of the Harbin Medical UniversityHarbinP.R. China
| |
Collapse
|
38
|
Yan W, Zhang Y, Chen X. TAp63γ and ΔNp63γ are regulated by RBM38 via mRNA stability and have an opposing function in growth suppression. Oncotarget 2017; 8:78327-78339. [PMID: 29108232 PMCID: PMC5667965 DOI: 10.18632/oncotarget.18463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 11/25/2022] Open
Abstract
The p63 gene is expressed as TAp63 from the P1 promoter and as ΔNp63 from the P2 promoter. Through alternative splicing, five TA and five ΔN isoforms (α-ε) are expressed. Isoforms α-β and δ share an identical 3’ untranslated region (3’UTR) whereas isoform γ has a unique 3’UTR. Recently, we found that RBM38 RNA-binding protein is a target of p63 and RBM38 in turn regulates p63α/β expression via mRNA stability. However, it is uncertain whether p63γ has a unique biological activity and whether p63γ is regulated by RBM38. Here, we found that the levels of ΔNp63γ transcript and protein are induced upon overexpression of RBM38 but decreased by RBM38 knockdown. Conversely, we found that the levels of ΔNp63β transcript and protein are decreased by ectopic expression of RBM38 but increased by RBM38 knockdown, consistent with our previous report. Interestingly, RBM38 increases the half-life of p63γ mRNA by binding to a GU-rich element in p63γ 3’UTR. In contrast, our previous studies showed that RBM38 decreases the half-life of p63α/β mRNAs by binding to AU-/U-rich elements in their 3’UTR. We also found that knockout of p63γ in ME180 and HaCaT cells, in which ΔNp63 isoforms are predominant, inhibits cell proliferation and migration, suggesting that ΔNp63γ has a pro-growth activity. In contrast, we found that knockout of TAp63γ in MIA PaCa-2 cells, in which TAp63 isoforms are predominant, promotes cell proliferation, migration, and inhibits cellular senescence. Taken together, we conclude that ΔNp63γ has an oncogenic potential whereas TAp63γ is a tumor suppressor.
Collapse
Affiliation(s)
- Wensheng Yan
- The Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California, USA
| | - Yanhong Zhang
- The Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California, USA
| | - Xinbin Chen
- The Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California, USA
| |
Collapse
|
39
|
MicroRNAs as Key Effectors in the p53 Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:51-90. [PMID: 28729028 DOI: 10.1016/bs.ircmb.2017.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The guardian of the genome p53 is embedded in a fine-spun network of MicroRNAs. p53 is able to activate or repress directly the transcription of MicroRNAs that are participating in the tumor-suppressive mission of p53. On the other hand, the expression of p53 is under tight control of MicroRNAs that are either targeting directly p53 or factors that are modifying its protein level or activity. Although the most important function of p53 is suggested to be transcriptional regulation, there are several nontranscriptional functions described. One of those regards the modulation of MicroRNA biogenesis. Wild-type p53 is increasing the maturation of selected MicroRNAs from the primary transcript to the precursor MiRNA by interacting with the Microprocessor complex. Furthermore, p53 is modulating the mRNA accessibility for certain MicroRNAs by association with the RISC complex and transcriptional regulation of RNA-binding proteins. In this way p53 is able to remodel the MiRNA-mRNA interaction network. As wild-type p53 is employing MicroRNAs to suppress cancer development, gain-of-function mutant p53 proteins use MicroRNAs to confer oncogenic properties like chemoresistance and the ability to drive metastasis. Like its wild-type counterpart mutant p53 is able to regulate MicroRNAs transcriptionally and posttranscriptionally. Mutant p53 affects the MiRNA processing at two cleavage steps through interfering with the Microprocessor complex and by downregulating Dicer and KSRP, a modulator of MiRNA biogenesis. Thus, MicroRNAs are essential components in the p53 pathway, contributing substantially to combat or enhance tumor development depending on the wild-type or mutant p53 context.
Collapse
|
40
|
McCubrey JA, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Libra M, Cervello M, Montalto G, Yang LV, Abrams SL, Steelman LS. Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Adv Biol Regul 2016; 63:32-48. [PMID: 27776972 DOI: 10.1016/j.jbior.2016.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
TP53 is a critical tumor suppressor gene that regulates cell cycle progression, apoptosis, cellular senescence and many other properties critical for control of normal cellular growth and death. Due to the pleiotropic effects that TP53 has on gene expression and cellular physiology, mutations at this tumor suppressor gene result in diverse physiological effects. T53 mutations are frequently detected in numerous cancers. The expression of TP53 can be induced by various agents used to treat cancer patients such as chemotherapeutic drugs and ionizing radiation. Radiation will induce Ataxia telangiectasia mutated (ATM) and other kinases that results in the phosphorylation and activation of TP53. TP53 is also negatively regulated by other mechanisms, such as ubiquitination by ligases such as MDM2. While TP53 has been documented to control the expression of many "classical" genes (e.g., p21Cip-1, PUMA, Bax) by transcriptional mechanisms for quite some time, more recently TP53 has been shown to regulate microRNA (miR) gene expression. Different miRs can promote oncogenesis (oncomiR) whereas others act to inhibit tumor progression (tumor suppressor miRs). Targeted therapies to stabilize TP53 have been developed by various approaches, MDM2/MDM4 inhibitors have been developed to stabilize TP53 in TP53-wild type (WT) tumors. In addition, small molecules have been isolated that will reactivate certain mutant TP53s. Both of these types of inhibitors are in clinical trials. Understanding the actions of TP53 may yield novel approaches to suppress cancer, aging and other health problems.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Guiseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
41
|
Noncoding RNAs Regulating p53 and c-Myc Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:337-65. [DOI: 10.1007/978-981-10-1498-7_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Kita Y, Yonemori K, Osako Y, Baba K, Mori S, Maemura K, Natsugoe S. Noncoding RNA and colorectal cancer: its epigenetic role. J Hum Genet 2016; 62:41-47. [PMID: 27278790 DOI: 10.1038/jhg.2016.66] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 12/15/2022]
Abstract
The use of novel sequencing and high-throughput techniques has become widespread, and are now readily available to obtain the comprehensive transcription profile of the human genome. Noncoding RNAs (ncRNAs) are transcripts that have no apparent protein-coding capacity, but they have important roles in human physiology. Most research in this area has focused on micro-RNAs. However, the role of long ncRNAs (lncRNAs) as drivers of tumor suppression and oncogenic functions has recently been examined in numerous cancer types. Epigenetic alterations can reportedly deregulate the expression of any type of transcript. However, the exact mechanisms of epigenetic regulation of lncRNA are still unknown. In this review, the authors primarily focus on the epigenetic effects modulating ncRNA in colorectal cancer (CRC). The authors specifically discuss examples of oncogenic ncRNA in CRC pathobiology, as well as its extended diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan
| | - Keiichi Yonemori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan
| | - Yusaku Osako
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan
| | - Kenji Baba
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
43
|
Liu J, Zhang C, Zhao Y, Feng Z. MicroRNA Control of p53. J Cell Biochem 2016; 118:7-14. [PMID: 27216701 DOI: 10.1002/jcb.25609] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 12/16/2022]
Abstract
Tumor suppressor p53 plays a central role in tumor suppression. As a transcription factor, p53 mainly exerts its tumor suppressive function through transcriptional regulation of many target genes. To maintain the proper function of p53, p53 protein level and activity are exquisitely controlled by a group of positive and negative regulators in cells. Thus, p53, its regulators, and regulated genes form a complicated p53 signaling network. microRNAs (miRNAs) are a group of endogenous small non-coding RNA molecules. miRNAs play an important role in regulation of gene expression by blocking translational protein synthesis and/or degrading target mRNAs. Recent studies have demonstrated that p53 and its network are regulated by miRNAs at multiple levels. Some miRNAs regulate the level and function of p53 through directly targeting p53, whereas some other miRNAs target regulators of p53, such as MDM2 and MDM4, to indirectly regulate the activity and function of p53. On the other hand, p53 also regulates the transcriptional expression and the biogenesis of a group of miRNAs, which contributes to the tumor suppressive function of p53. p53 is the most frequently mutated gene in human cancer. Many tumor-associated mutant p53, which have "gain-of-function" activities in tumorigenesis independently of wild type p53, can regulate the expression of different miRNAs and modulate the biogenesis of specific miRNAs to promote tumorigenesis. These findings have demonstrated that miRNAs are important regulators and mediators of p53 and its signaling pathway, which highlights a pivotal role of miRNAs in the p53 network and cancer. J. Cell. Biochem. 118: 7-14, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick 08903, New Jersey
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick 08903, New Jersey
| | - Yuhan Zhao
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick 08903, New Jersey
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick 08903, New Jersey
| |
Collapse
|
44
|
Gurtner A, Falcone E, Garibaldi F, Piaggio G. Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:45. [PMID: 26971015 PMCID: PMC4789259 DOI: 10.1186/s13046-016-0319-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
Abstract
A widespread decrease of mature microRNAs is often observed in human malignancies giving them potential to act as tumor suppressors. Thus, microRNAs may be potential targets for cancer therapy. The global miRNA deregulation is often the result of defects in the miRNA biogenesis pathway, such as genomic mutation or aberrant expression/localization of enzymes and cofactors responsible of miRNA maturation. Alterations in the miRNA biogenesis machinery impact on the establishment and development of cancer programs. Accumulation of pri-microRNAs and corresponding depletion of mature microRNAs occurs in human cancers compared to normal tissues, strongly indicating an impairment of crucial steps in microRNA biogenesis. In agreement, inhibition of microRNA biogenesis, by depletion of Dicer1 and Drosha, tends to enhance tumorigenesis in vivo. The p53 tumor suppressor gene, TP53, is mutated in half of human tumors resulting in an oncogene with Gain-Of-Function activities. In this review we discuss recent studies that have underlined a role of mutant p53 (mutp53) on the global regulation of miRNA biogenesis in cancer. In particular we describe how a new transcriptionally independent function of mutant p53 in miRNA maturation, through a mechanism by which this oncogene is able to interfere with the Drosha processing machinery, generally inhibits miRNA processing in cancer and consequently impacts on carcinogenesis.
Collapse
Affiliation(s)
- Aymone Gurtner
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Emmanuela Falcone
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Francesca Garibaldi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
45
|
RNA Binding Proteins in the miRNA Pathway. Int J Mol Sci 2015; 17:ijms17010031. [PMID: 26712751 PMCID: PMC4730277 DOI: 10.3390/ijms17010031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/13/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets.
Collapse
|
46
|
Wampfler J, Federzoni EA, Torbett BE, Fey MF, Tschan MP. The RNA binding proteins RBM38 and DND1 are repressed in AML and have a novel function in APL differentiation. Leuk Res 2015; 41:96-102. [PMID: 26740055 DOI: 10.1016/j.leukres.2015.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022]
Abstract
The RNA binding proteins RBM binding motif protein 38 (RBM38) and DEAD END 1 (DND1) selectively stabilize mRNAs by attenuating RNAse activity or protecting them from micro(mi)RNA-mediated cleavage. Furthermore, both proteins can efficiently stabilize the mRNA of the cell cycle inhibitor p21(CIP1). Since acute myeloid leukemia (AML) differentiation requires cell cycle arrest and RBM38 as well as DND1 have antiproliferative functions, we hypothesized that decreased RBM38 and DND1 expression may contribute to the differentiation block seen in this disease. We first quantified RBM38 and DND1 mRNA expression in clinical AML patient samples and CD34(+) progenitor cells and mature granulocytes from healthy donors. We found significantly lower RBM38 and DND1 mRNA levels in AML blasts and CD34(+) progenitor cells as compared to mature neutrophils from healthy donors. Furthermore, the lowest expression of both RBM38 and DND1 mRNA correlated with t(8;21). In addition, neutrophil differentiation of CD34(+) cells in vitro with G-CSF (granulocyte colony stimulating factor) resulted in a significant increase of RBM38 and DND1 mRNA levels. Similarly, neutrophil differentiation of NB4 acute promyelocytic leukemia (APL) cells was associated with a significant induction of RBM38 and DND1 expression. To address the function of RBM38 and DND1 in neutrophil differentiation, we generated two independent NB4RBM38 as well as DND1 knockdown cell lines. Inhibition of both RBM38 and DND1 mRNA significantly attenuated NB4 differentiation and resulted in decreased p21(CIP1) mRNA expression. Our results clearly indicate that expression of the RNA binding proteins RBM38 and DND1 is repressed in primary AML patients, that neutrophil differentiation is dependent on increased expression of both proteins, and that these proteins have a critical role in regulating p21(CIP1) expression during APL differentiation.
Collapse
Affiliation(s)
- Julian Wampfler
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Elena A Federzoni
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| | - Bruce E Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| | - Martin F Fey
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
47
|
Zhou E, Hui NA, Shu M, Wu B, Zhou J. Systematic analysis of the p53-related microRNAs in breast cancer revealing their essential roles in the cell cycle. Oncol Lett 2015; 10:3488-3494. [PMID: 26788155 PMCID: PMC4665839 DOI: 10.3892/ol.2015.3751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Numerous miRNAs have been found to be involved in the regulation of the p53 signaling pathway. Conversely, p53 regulates the transcription or processing of microRNAs (miRNAs). Given that complexities in the association between p53 and miRNAs exist, and due to the rapidly increasing amount of literature regarding the interactions between p53 and miRNAs, the present study systematically analyzed the associations between miRNAs and p53 in breast cancer using a literature-based discovery approach, natural language processing. A total of 22 miRNAs were found to be associated with p53. Next, three popular online tools (PicTar, miRanda and TargetScan) were used to predict the targets of each miRNA, and certain targets were validated by experiments. Gene Ontology annotation and network analysis demonstrated that the majority of the targets of the p53-related miRNAs were enriched in the cell cycle process. These results suggest that, in addition to regulating the transcription of cell cycle-related genes, p53 also indirectly modulates the cell cycle via miRNAs.
Collapse
Affiliation(s)
- Enxiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - N A Hui
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Min Shu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Baiping Wu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jianlin Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
48
|
Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, Hidalgo-Miranda A. miRNA biogenesis: biological impact in the development of cancer. Cancer Biol Ther 2015; 15:1444-55. [PMID: 25482951 PMCID: PMC4622859 DOI: 10.4161/15384047.2014.955442] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) are non coding RNAs with different biological functions and pathological implications. Given their role as post-transcriptional gene expression regulators, they are involved in several important physiological processes like development, cell differentiation and cell signaling. miRNAs act as modulators of gene expression programs in different diseases, particularly in cancer, where they act through the repression of genes which are critical for carcinogenesis. The expression level of mature miRNAs is the result of a fine mechanism of biogenesis, carried out by different enzymatic complexes that exert their function at transcriptional and post-transcriptional levels. In this review, we will focus our discussion on the alterations in the miRNA biogenesis machinery, and its impact on the establishment and development of cancer programs.
Collapse
Key Words
- Ago2, Argonaute 2 protein
- Ars2, Arsenic Resistance protein 2
- DGCR8, DiGeorge syndrome Critical Region 8 protein
- EMT, epithelial–mesenchymal transition
- KSRP, KH-type splicing regulatory protein
- MK2, MAPK-activated protein kinase 2
- PABP, poly(A)-binding protein
- PACT, kinase R–activating protein
- PRC2, Polycomb repressor complex
- RISC, RNA-induced silencing complex
- TRBP, TAR RNA binding protein
- TUT4, terminal uridine transferase-4
- XPO5, exportin 5
- cancer
- cellular signaling
- circRNA, circular RNA
- hnRNPs, heterogeneous nuclear ribonucleoproteins
- miRNA biogenesis
- miRNAs, microRNAs
Collapse
|
49
|
Kristjánsdóttir K, Fogarty EA, Grimson A. Systematic analysis of the Hmga2 3' UTR identifies many independent regulatory sequences and a novel interaction between distal sites. RNA (NEW YORK, N.Y.) 2015; 21:1346-1360. [PMID: 25999317 PMCID: PMC4478353 DOI: 10.1261/rna.051177.115] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
The 3' untranslated regions (3' UTRs) of mRNAs regulate transcripts by serving as binding sites for regulatory factors, including microRNAs and RNA binding proteins. Binding of such trans-acting factors can control the rates of mRNA translation, decay, and other aspects of mRNA biology. To better understand the role of 3' UTRs in gene regulation, we performed a detailed analysis of a model mammalian 3' UTR, that of Hmga2, with the principal goals of identifying the complete set of regulatory elements within a single 3' UTR, and determining the extent to which elements interact with and affect one another. Hmga2 is an oncogene whose overexpression in cancers often stems from mutations that remove 3'-UTR regulatory sequences. We used reporter assays in cultured cells to generate maps of cis-regulatory information across the Hmga2 3' UTR at different resolutions, ranging from 50 to 400 nt. We found many previously unidentified regulatory sites, a large number of which were up-regulating. Importantly, the overall location and impact of regulatory sites was conserved between different species (mouse, human, and chicken). By systematically comparing the regulatory impact of 3'-UTR segments of different sizes we were able to determine that the majority of regulatory sequences function independently; only a very small number of segments showed evidence of any interactions. However, we discovered a novel interaction whereby terminal 3'-UTR sequences induced internal up-regulating elements to convert to repressive elements. By fully characterizing one 3' UTR, we hope to better understand the principles of 3'-UTR-mediated gene regulation.
Collapse
Affiliation(s)
- Katla Kristjánsdóttir
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
50
|
Ding Z, Yang HW, Xia TS, Wang B, Ding Q. Integrative genomic analyses of the RNA-binding protein, RNPC1, and its potential role in cancer prediction. Int J Mol Med 2015; 36:473-84. [PMID: 26046131 DOI: 10.3892/ijmm.2015.2237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/26/2015] [Indexed: 01/30/2023] Open
Abstract
The RNA binding motif protein 38 (RBM38, also known as RNPC1) plays a pivotal role in regulating a wide range of biological processes, from cell proliferation and cell cycle arrest to cell myogenic differentiation. It was originally recognized as an oncogene, and was frequently found to be amplified in prostate, ovarian and colorectal cancer, chronic lymphocytic leukemia, colon carcinoma, esophageal cancer, dog lymphomas and breast cancer. In the present study, the complete RNPC1 gene was identified in a number of vertebrate genomes, suggesting that RNPC1 exists in all types of vertebrates, including fish, amphibians, birds and mammals. In the different genomes, the gene had a similar 4 exon/3 intron organization, and all the genetic loci were syntenically conserved. The phylogenetic tree demonstrated that the RNPC1 gene from the mammalian, bird, reptile and teleost lineage formed a species-specific cluster. A total of 34 functionally relevant single nucleotide polymorphisms (SNPs), including 14 SNPs causing missense mutations, 8 exonic splicing enhancer SNPs and 12 SNPs causing nonsense mutations, were identified in the human RNPC1 gene. RNPC1 was found to be expressed in bladder, blood, brain, breast, colorectal, eye, head and neck, lung, ovarian, skin and soft tissue cancer. In 14 of the 94 tests, an association between RNPC1 gene expression and cancer prognosis was observed. We found that the association between the expression of RNPC1 and prognosis varied in different types of cancer, and even in the same type of cancer from the different databases used. This suggests that the function of RNPC1 in these tumors may be multidimensional. The sex determining region Y (SRY)-box 5 (Sox5), runt-related transcription factor 3 (RUNX3), CCAAT displacement protein 1 (CUTL1), v-rel avian reticuloendotheliosis viral oncogene homolog (Rel)A, peroxisome proliferator-activated receptor γ isoform 2 (PPARγ2) and activating transcription factor 6 (ATF6) regulatory transcription factor binding sites were identified in the upstream (promoter) region of the RNPC1 gene, and may thus be involved in the effects of RNPC1 in tumors.
Collapse
Affiliation(s)
- Zhiming Ding
- Department of Neurosurgery, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Hai-Wei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tian-Song Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bo Wang
- Department of Medical Oncology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Qiang Ding
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|