1
|
Fabian C, Mahajan S, Schmidt MHH. EGFL7: An emerging biomarker with great therapeutic potential. Pharmacol Ther 2025; 266:108764. [PMID: 39631508 DOI: 10.1016/j.pharmthera.2024.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
EGFL7 is a factor involved in the regulation of various essential biological mechanisms. Endothelial cells and neurons secrete the EGFL7 protein into the extracellular matrix, where it interacts with other matrix proteins, thereby regulating several important signaling pathways. To date, extensive in vitro and in vivo studies have illuminated the central role of EGFL7 in governing major biological processes involving blood vessels and the central nervous system. Notably, EGFL7 has also emerged as a key factor in a spectrum of diseases including cancer, stroke, multiple sclerosis and preeclampsia. Its influence on various diseases and multiple regulatory pathways highlights EGFL7 as an emerging biomarker and therapeutic target. Thus, the multifaceted regulatory functions of EGFL7 will be discussed in the physiological context before delving into its involvement in the progression of different diseases. Finally, the review will provide an insight into the broad therapeutic potential of EGFL7 by describing its role as a powerful biomarker and discussing potential strategies to therapeutically target EGFL7 function in a plethora of human diseases.
Collapse
Affiliation(s)
- Carina Fabian
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sukrit Mahajan
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
2
|
Kulkarni R, Goda C, Rudich A, Karunasiri M, Urs AP, Bustos Y, Balcioglu O, Li W, Chidester S, Rodgers KA, Garfinkle EA, Patel A, Miller KE, Popovich PG, Elf S, Garzon R, Dorrance AM. Regulation of hematopoietic stem cell (HSC) proliferation by Epithelial Growth Factor Like-7 (EGFL7). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634107. [PMID: 39896615 PMCID: PMC11785128 DOI: 10.1101/2025.01.21.634107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Understanding the pathways regulating normal and malignant hematopoietic stem cell (HSC) biology is important for improving outcomes for patients with hematologic disorders. Epithelial Growth Factor Like-7 (EGFL7 ) is ∼30 kDa secreted protein that is highly expressed in adult HSCs. Using Egfl7 genetic knock-out ( Egfl7 KO) mice and recombinant EGFL7 (rEGFL7) protein, we examined the role of Egfl7 in regulating normal hematopoiesis. We found that Egfl7 KO mice had decreases in overall BM cellularity resulting in significant reduction in the number of hematopoietic stem and progenitor cells (HSPCs), which was due to dysregulation of normal cell-cycle progression along with a corresponding increase in quiescence. rEGFL7 treatment rescued our observed hematopoietic defects of Egfl7 KO mice and enhanced HSC expansion after genotoxic stress such as 5-FU and irradiation. Furthermore, treatment of WT mice with recombinant EGFL7 (rEGFL7) protein expands functional HSCs evidenced by an increase in transplantation potential. Overall, our data demonstrates a role for EGFL7 in HSC expansion and survival and represents a potential strategy for improving transplant engraftment or recovering bone marrow function after stress.
Collapse
|
3
|
McDonald B, Schmidt MHH. Structure, function, and recombinant production of EGFL7. Biol Chem 2024; 405:691-700. [PMID: 38805373 DOI: 10.1515/hsz-2023-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
The secreted factor Epidermal growth factor-like protein 7 (EGFL7) is involved in angiogenesis, vasculogenesis, as well as neurogenesis. Importantly, EGFL7 is also implicated in various pathological conditions, including tumor angiogenesis in human cancers. Thus, understanding the mechanisms through which EGFL7 regulates and promotes blood vessel formation is of clear practical importance. One principle means by which EGFL7's function is investigated is via the expression and purification of the recombinant protein. This mini-review describes three methods used to produce recombinant EGFL7 protein. First, a brief overview of EGFL7's genetics, structure, and function is provided. This is followed by an examination of the advantages and disadvantages of three common expression systems used in the production of recombinant EGFL7; (i) Escherichia coli (E. coli), (ii) human embryonic kidney (HEK) 293 cells or other mammalian cells, and (iii) a baculovirus-based Sf9 insect cell expression system. Based on the available evidence, we conclude that the baculovirus-based Sf9 insect cell expression currently has the advantages of producing active recombinant EGFL7 in the native conformation with the presence of acceptable posttranslational modifications, while providing sufficient yield and stability for experimental purposes.
Collapse
Affiliation(s)
- Brennan McDonald
- 9169 Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Mirko H H Schmidt
- 9169 Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, D-01307 Dresden, Germany
| |
Collapse
|
4
|
Pietan L, Phillippi E, Melo M, El-Shanti H, Smith BJ, Darbro B, Braun T, Casavant T. Genome-wide Machine Learning Analysis of Anosmia and Ageusia with COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318493. [PMID: 39677430 PMCID: PMC11643161 DOI: 10.1101/2024.12.04.24318493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The COVID-19 pandemic has caused substantial worldwide disruptions in health, economy, and society, manifesting symptoms such as loss of smell (anosmia) and loss of taste (ageusia), that can result in prolonged sensory impairment. Establishing the host genetic etiology of anosmia and ageusia in COVID-19 will aid in the overall understanding of the sensorineural aspect of the disease and contribute to possible treatments or cures. By using human genome sequencing data from the University of Iowa (UI) COVID-19 cohort (N=187) and the National Institute of Health All of Us (AoU) Research Program COVID-19 cohort (N=947), we investigated the genetics of anosmia and/or ageusia by employing feature selection techniques to construct a novel variant and gene prioritization pipeline, utilizing machine learning methods for the classification of patients. Models were assessed using a permutation-based variable importance (PVI) strategy for final prioritization of candidate variants and genes. The highest held-out test set area under the receiver operating characteristic (AUROC) curve for models and datasets from the UI cohort was 0.735 and 0.798 for the variant and gene analysis respectively and for the AoU cohort was 0.687 for the variant analysis. Our analysis prioritized several novel and known candidate host genetic factors involved in immune response, neuronal signaling, and calcium signaling supporting previously proposed hypotheses for anosmia/ageusia in COVID-19.
Collapse
Affiliation(s)
- Lucas Pietan
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth Phillippi
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Marcelo Melo
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Hatem El-Shanti
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Brian J Smith
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Terry Braun
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas Casavant
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Hao Z, Huo Z, Aixin-Jueluo Q, Wu T, Chen Y. Overexpression of EGFL7 promotes angiogenesis and nerve regeneration in peripheral nerve injury. Cell Biol Int 2024; 48:1698-1713. [PMID: 39080995 DOI: 10.1002/cbin.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 10/16/2024]
Abstract
Peripheral nerve injury (PNI) often leads to significant functional impairment. Here, we investigated the impact of epidermal growth factor-like domain-containing protein 7 (EGFL7) on angiogenesis and nerve regeneration following PNI. Using a sciatic nerve injury model, we assessed nerve function using the sciatic nerve function index. We analyzed the expression levels of EGFL7, forkhead box proteins A1 (FOXA1), nerve growth factor (NGF), brain-derived neurotrophic factors (BDNF), Neurofilament 200 (NF200), myelin protein zero (P0), cell adhesion molecule 1 (CD31), vascular endothelial growth factor (VEGF), and NOTCH-related proteins in tissues and cells. Cell proliferation, migration, and angiogenesis were evaluated through cell counting kit assays, 5-ethynyl-2'deoxyuridine staining, and Transwell assays. We investigated the binding of FOXA1 to the EGFL7 promoter using dual-luciferase assays and chromatin immunoprecipitation. We observed decreased EGFL7 expression and increased FOXA1 expression in PNI, and EGFL7 overexpression alleviated gastrocnemius muscle atrophy, increased muscle weight, and improved motor function. Additionally, EGFL7 overexpression enhanced Schwann cell and endothelial cell proliferation and migration, promoted tube formation, and upregulated NGF, BDNF, NF200, P0, CD31, and VEGF expression. FOXA1 was found to bind to the EGFL7 promoter region, inhibiting EGFL7 expression and activating the NOTCH signaling pathway. Notably, FOXA1 overexpression counteracted the effects of EGFL7 on Schwann cells and endothelial cells. In conclusion, EGFL7 holds promise as a therapeutic molecule for treating sciatic nerve injury.
Collapse
Affiliation(s)
- Zengtao Hao
- Area A, Hand-Foot Microsurgery Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhiqi Huo
- Area A, Hand-Foot Microsurgery Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Qicheng Aixin-Jueluo
- Area A, Hand-Foot Microsurgery Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Tao Wu
- Area A, Hand-Foot Microsurgery Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yihong Chen
- Area A, Hand-Foot Microsurgery Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
6
|
Wang K, Liu XY, Liu SF, Wang XX, Wei YH, Zhu JR, Liu J, Xu XQ, Wen L. Rbm24/Notch1 signaling regulates adult neurogenesis in the subventricular zone and mediates Parkinson-associated olfactory dysfunction. Theranostics 2024; 14:4499-4518. [PMID: 39113792 PMCID: PMC11303084 DOI: 10.7150/thno.96045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: Adult neurogenesis in the subventricular zone (SVZ) is essential for maintaining neural homeostasis, and its dysregulation contributes to anosmia and delayed tissue healing in neurological disorders, such as Parkinson's disease (PD). Despite intricate regulatory networks identified in SVZ neurogenesis, the molecular mechanisms dynamically maintaining neural stem/progenitor cells (NSPCs) in response to physiological and pathological stimuli remain incompletely elucidated. Methods: We generated an RNA binding motif protein 24 (Rbm24) knockout model to investigate its impact on adult neurogenesis in the SVZ, employing immunofluorescence, immunoblot, electrophysiology, RNA-sequencing, and in vitro experiments. Further investigations utilized a PD mouse model, along with genetic and pharmacological manipulations, to elucidate Rbm24 involvement in PD pathology. Results: Rbm24, a multifaceted post-transcriptional regulator of cellular homeostasis, exhibited broad expression in the SVZ from development to aging. Deletion of Rbm24 significantly impaired NSPC proliferation in the adult SVZ, ultimately resulting in collapsed neurogenesis in the olfactory bulb. Notably, Rbm24 played a specific role in maintaining Notch1 mRNA stability in adult NSPCs. The Rbm24/Notch1 signaling axis was significantly downregulated in the SVZ of PD mice. Remarkably, overexpression of Rbm24 rescued disruption of adult neurogenesis and olfactory dysfunction in PD mice, and these effects were hindered by DAPT, a potent inhibitor of Notch1. Conclusions: Our findings highlight the critical role of the Rbm24/Notch1 signaling axis in regulating adult SVZ neurogenesis under physiological and pathological circumstances. This provides valuable insights into the dynamic regulation of NSPC homeostasis and offers a potential targeted intervention for PD and related neurological disorders.
Collapse
Affiliation(s)
- Ke Wang
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xing-Yang Liu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Sui-Feng Liu
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiao-Xia Wang
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Yi-Hua Wei
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Jun-Rong Zhu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Jing Liu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiu Qin Xu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Lei Wen
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| |
Collapse
|
7
|
Bálentová S, Hnilicová P, Kalenská D, Baranovičová E, Muríň P, Hajtmanová E. Radiation-induced bystander effect on the brain after fractionated spinal cord irradiation of aging rats. Neurochem Int 2024; 176:105726. [PMID: 38556052 DOI: 10.1016/j.neuint.2024.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
We investigated the influence of the so-called bystander effect on metabolic and histopathological changes in the rat brain after fractionated spinal cord irradiation. The study was initiated with adult Wistar male rats (n = 20) at the age of 9 months. The group designated to irradiation (n = 10) and the age-matched control animals (n = 10) were subjected to an initial measurement using in vivo proton magnetic resonance spectroscopy (1H MRS) and magnetic resonance imaging (MRI). After allowing the animals to survive until 12 months, they received fractionated spinal cord irradiation with a total dose of 24 Gy administered in 3 fractions (8 Gy per fraction) once a week on the same day for 3 consecutive weeks. 1H MRS and MRI of brain metabolites were performed in the hippocampus, corpus striatum, and olfactory bulb (OB) before irradiation (9-month-old rats) and subsequently 48 h (12-month-old) and 2 months (14-month-old) after the completion of irradiation. After the animals were sacrificed at the age of 14 months, brain tissue changes were investigated in two neurogenic regions: the hippocampal dentate gyrus (DG) and the rostral migratory stream (RMS). By comparing the group of 9-month-old rats and individuals measured 48 h (at the age of 12 months) after irradiation, we found a significant decrease in the ratio of total N-acetyl aspartate to total creatine (tNAA/tCr) and gamma-aminobutyric acid to tCr (GABA/tCr) in OB and hippocampus. A significant increase in myoinositol to tCr (mIns/tCr) in the OB persisted up to 14 months of age. Proton nuclear magnetic resonance (1H NMR)-based plasma metabolomics showed a significant increase in keto acids and decreased tyrosine and tricarboxylic cycle enzymes. Morphometric analysis of neurogenic regions of 14-month-old rats showed well-preserved stem cells, neuroblasts, and increased neurodegeneration. The radiation-induced bystander effect more significantly affected metabolite concentration than the distribution of selected cell types.
Collapse
Affiliation(s)
- Soňa Bálentová
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic.
| | - Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4D, 036 01, Martin, Slovak Republic
| | - Dagmar Kalenská
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4D, 036 01, Martin, Slovak Republic
| | - Peter Muríň
- Department of Radiotherapy and Oncology, Martin University Hospital, Kollárova 2, 036 59, Martin, Slovak Republic
| | - Eva Hajtmanová
- Department of Radiotherapy and Oncology, Martin University Hospital, Kollárova 2, 036 59, Martin, Slovak Republic
| |
Collapse
|
8
|
Van der Auwera S, Ameling S, Wittfeld K, Frenzel S, Bülow R, Nauck M, Völzke H, Völker U, Grabe HJ. Circulating microRNA miR-425-5p Associated with Brain White Matter Lesions and Inflammatory Processes. Int J Mol Sci 2024; 25:887. [PMID: 38255959 PMCID: PMC10815886 DOI: 10.3390/ijms25020887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
White matter lesions (WML) emerge as a consequence of vascular injuries in the brain. While they are commonly observed in aging, associations have been established with neurodegenerative and neurological disorders such as dementia or stroke. Despite substantial research efforts, biological mechanisms are incomplete and biomarkers indicating WMLs are lacking. Utilizing data from the population-based Study of Health in Pomerania (SHIP), our objective was to identify plasma-circulating micro-RNAs (miRNAs) associated with WMLs, thus providing a foundation for a comprehensive biological model and further research. In linear regression models, direct association and moderating factors were analyzed. In 648 individuals, we identified hsa-miR-425-5p as directly associated with WMLs. In subsequent analyses, hsa-miR-425-5p was found to regulate various genes associated with WMLs with particular emphasis on the SH3PXD2A gene. Furthermore, miR-425-5p was found to be involved in immunological processes. In addition, noteworthy miRNAs associated with WMLs were identified, primarily moderated by the factors of sex or smoking status. All identified miRNAs exhibited a strong over-representation in neurodegenerative and neurological diseases. We introduced hsa-miR-425-5p as a promising candidate in WML research probably involved in immunological processes. Mir-425-5p holds the potential as a biomarker of WMLs, shedding light on potential mechanisms and pathways in vascular dementia.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
9
|
Chen Y, Ren P, He X, Yan F, Gu R, Bai J, Zhang X. Olfactory bulb neurogenesis depending on signaling in the subventricular zone. Cereb Cortex 2023; 33:11102-11111. [PMID: 37746807 DOI: 10.1093/cercor/bhad349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Olfaction is a crucial sense that is essential for the well-being and survival of individuals. Olfactory bulb (OB) is the first olfactory relay station, and its function depends on newly generated neurons from the subventricular zone (SVZ). These newly born neurons constantly migrate through the rostral migratory stream to integrate into existing neural networks within the OB, thereby contributing to olfactory information processing. However, the mechanisms underlying the contribution of SVZ adult neurogenesis to OB neurogenesis remain largely elusive. Adult neurogenesis is a finely regulated multistep process involving the proliferation of adult neural stem cells (aNSCs) and neural precursor cells, as well as the migration and differentiation of neuroblasts, and integration of newly generated neurons into preexisting neuronal circuitries. Recently, extensive studies have explored the mechanism of SVZ and OB neurogenesis. This review focused on elucidating various molecules and signaling pathways associated with OB neurogenesis dependent on the SVZ function. A better understanding of the mechanisms underlying the OB neurogenesis on the adult brain is an attractive prospect to induce aNSCs in SVZ to generate new neurons to ameliorate olfactory dysfunction that is involved in various diseases. It will also contribute to developing new strategies for the human aNSCs-based therapies.
Collapse
Affiliation(s)
- Yali Chen
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Ren
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiongjie He
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Rou Gu
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xianwen Zhang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
10
|
Liu D, Shi Y, Chen H, Nisar MA, Jabara N, Langwinski N, Mattson S, Nagaoka K, Bai X, Lu S, Huang CK. Molecular profiling reveals potential targets in cholangiocarcinoma. World J Gastroenterol 2023; 29:4053-4071. [PMID: 37476584 PMCID: PMC10354586 DOI: 10.3748/wjg.v29.i25.4053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a devastating malignancy and has a very poor prognosis if tumors spread outside the liver. Understanding the molecular mechanisms underlying the CCA progression will likely yield therapeutic approaches toward treating this deadly disease. AIM To determine the molecular pathogenesis in CCA progression. METHODS In silico analysis, in vitro cell culture, CCA transgenic animals, histological, and molecular assays were adopted to determine the molecular pathogenesis. RESULTS The transcriptomic data of human CCA samples were retrieved from The Cancer Genome Atlas (TGCA, CHOL), European Bioinformatics Institute (EBI, GAD00001001076), and Gene Expression Omnibus (GEO, GSE107943) databases. Using Gene set enrichment analysis, the cell cycle and Notch related pathways were demonstrated to be significantly activated in CCA in TCGA and GEO datasets. We, through differentially expressed genes, found several cell cycle and notch associated genes were significantly up-regulated in cancer tissues when compared with the non-cancerous control samples. The associated genes, via quantitative real-time PCR and western blotting assays, were further examined in normal human cholangiocytes, CCA cell lines, mouse normal bile ducts, and mouse CCA tumors established by specifically depleting P53 and expressing KrasG12D mutation in the liver. Consistently, we validated that the cell cycle and Notch pathways are up-regulated in CCA cell lines and mouse CCA tumors. Interestingly, targeting cell cycle and notch pathways using small molecules also exhibited significant beneficial effects in controlling tumor malignancy. More importantly, we demonstrated that several cell cycle and Notch associated genes are significantly associated with poor overall survival and disease-free survival using the Log-Rank test. CONCLUSION In summary, our study comprehensively analyzed the gene expression pattern of CCA samples using publicly available datasets and identified the cell cycle and Notch pathways are potential therapeutic targets in this deadly disease.
Collapse
Affiliation(s)
- Dan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yang Shi
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hongze Chen
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Muhammad Azhar Nisar
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Nicholas Jabara
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Noah Langwinski
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sophia Mattson
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Katsuya Nagaoka
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Xuewei Bai
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Shaolei Lu
- Department of Pathology, Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Chiung-Kuei Huang
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
11
|
Genet N, Genet G, Chavkin NW, Paila U, Fang JS, Vasavada HH, Goldberg JS, Acharya BR, Bhatt NS, Baker K, McDonnell SP, Huba M, Sankaranarayanan D, Ma GZM, Eichmann A, Thomas JL, Ffrench-Constant C, Hirschi KK. Connexin 43-mediated neurovascular interactions regulate neurogenesis in the adult brain subventricular zone. Cell Rep 2023; 42:112371. [PMID: 37043357 PMCID: PMC10564973 DOI: 10.1016/j.celrep.2023.112371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
The subventricular zone (SVZ) is the largest neural stem cell (NSC) niche in the adult brain; herein, the blood-brain barrier is leaky, allowing direct interactions between NSCs and endothelial cells (ECs). Mechanisms by which direct NSC-EC interactions in the adult SVZ control NSC behavior are unclear. We found that Cx43 is highly expressed by SVZ NSCs and ECs, and its deletion in either leads to increased NSC proliferation and neuroblast generation, suggesting that Cx43-mediated NSC-EC interactions maintain NSC quiescence. This is further supported by single-cell RNA sequencing and in vitro studies showing that ECs control NSC proliferation by regulating expression of genes associated with NSC quiescence and/or activation in a Cx43-dependent manner. Cx43 mediates these effects in a channel-independent manner involving its cytoplasmic tail and ERK activation. Such insights inform adult NSC regulation and maintenance aimed at stem cell therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Gael Genet
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Nicholas W Chavkin
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Umadevi Paila
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jennifer S Fang
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hema H Vasavada
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joshua S Goldberg
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Bipul R Acharya
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Neha S Bhatt
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kasey Baker
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA; Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Stephanie P McDonnell
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mahalia Huba
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Danya Sankaranarayanan
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Gerry Z M Ma
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jean-Leon Thomas
- Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Karen K Hirschi
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
12
|
Barth K, Vasić V, McDonald B, Heinig N, Wagner MC, Schumann U, Röhlecke C, Bicker F, Schumann L, Radyushkin K, Baumgart J, Tenzer S, Zipp F, Meinhardt M, Alitalo K, Tegeder I, Schmidt MHH. EGFL7 loss correlates with increased VEGF-D expression, upregulating hippocampal adult neurogenesis and improving spatial learning and memory. Cell Mol Life Sci 2023; 80:54. [PMID: 36715759 PMCID: PMC9886625 DOI: 10.1007/s00018-023-04685-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023]
Abstract
Neural stem cells reside in the subgranular zone, a specialized neurogenic niche of the hippocampus. Throughout adulthood, these cells give rise to neurons in the dentate gyrus, playing an important role in learning and memory. Given that these core cognitive processes are disrupted in numerous disease states, understanding the underlying mechanisms of neural stem cell proliferation in the subgranular zone is of direct practical interest. Here, we report that mature neurons, neural stem cells and neural precursor cells each secrete the neurovascular protein epidermal growth factor-like protein 7 (EGFL7) to shape this hippocampal niche. We further demonstrate that EGFL7 knock-out in a Nestin-CreERT2-based mouse model produces a pronounced upregulation of neurogenesis within the subgranular zone. RNA sequencing identified that the increased expression of the cytokine VEGF-D correlates significantly with the ablation of EGFL7. We substantiate this finding with intraventricular infusion of VEGF-D upregulating neurogenesis in vivo and further show that VEGF-D knock-out produces a downregulation of neurogenesis. Finally, behavioral studies in EGFL7 knock-out mice demonstrate greater maintenance of spatial memory and improved memory consolidation in the hippocampus by modulation of pattern separation. Taken together, our findings demonstrate that both EGFL7 and VEGF-D affect neurogenesis in the adult hippocampus, with the ablation of EGFL7 upregulating neurogenesis, increasing spatial learning and memory, and correlating with increased VEGF-D expression.
Collapse
Affiliation(s)
- Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Verica Vasić
- Institute of Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany ,Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Nora Heinig
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Marc-Christoph Wagner
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany ,Institute of Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Ulrike Schumann
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Cora Röhlecke
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Frank Bicker
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lana Schumann
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt Am Main, Frankfurt, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Mouse Behavior Outcome Unit, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center (TARC), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Focus Program Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Focus Program Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Department of Neurology, Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Meinhardt
- Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kari Alitalo
- Translational Cancer Medicine Program and iCAN Digital Precision Cancer Medicine Flagship, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt Am Main, Frankfurt, Germany
| | - Mirko H. H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| |
Collapse
|
13
|
Quaresima S, Istiaq A, Jono H, Cacci E, Ohta K, Lupo G. Assessing the Role of Ependymal and Vascular Cells as Sources of Extracellular Cues Regulating the Mouse Ventricular-Subventricular Zone Neurogenic Niche. Front Cell Dev Biol 2022; 10:845567. [PMID: 35450289 PMCID: PMC9016221 DOI: 10.3389/fcell.2022.845567] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neurogenesis persists in selected regions of the adult mouse brain; among them, the ventricular-subventricular zone (V-SVZ) of the lateral ventricles represents a major experimental paradigm due to its conspicuous neurogenic output. Postnatal V-SVZ neurogenesis is maintained by a resident population of neural stem cells (NSCs). Although V-SVZ NSCs are largely quiescent, they can be activated to enter the cell cycle, self-renew and generate progeny that gives rise to olfactory bulb interneurons. These adult-born neurons integrate into existing circuits to modify cognitive functions in response to external stimuli, but cells shed by V-SVZ NSCs can also reach injured brain regions, suggesting a latent regenerative potential. The V-SVZ is endowed with a specialized microenvironment, which is essential to maintain the proliferative and neurogenic potential of NSCs, and to preserve the NSC pool from exhaustion by finely tuning their quiescent and active states. Intercellular communication is paramount to the stem cell niche properties of the V-SVZ, and several extracellular signals acting in the niche milieu have been identified. An important part of these signals comes from non-neural cell types, such as local vascular cells, ependymal and glial cells. Understanding the crosstalk between NSCs and other niche components may aid therapeutic approaches for neuropathological conditions, since neurodevelopmental disorders, age-related cognitive decline and neurodegenerative diseases have been associated with dysfunctional neurogenic niches. Here, we review recent advances in the study of the complex interactions between V-SVZ NSCs and their cellular niche. We focus on the extracellular cues produced by ependymal and vascular cells that regulate NSC behavior in the mouse postnatal V-SVZ, and discuss the potential implication of these molecular signals in pathological conditions.
Collapse
Affiliation(s)
- Sabrina Quaresima
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Emanuele Cacci
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
- *Correspondence: Kunimasa Ohta, ; Giuseppe Lupo,
| | - Giuseppe Lupo
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- *Correspondence: Kunimasa Ohta, ; Giuseppe Lupo,
| |
Collapse
|
14
|
Liang Y, Wang L. Inflamma-MicroRNAs in Alzheimer's Disease: From Disease Pathogenesis to Therapeutic Potentials. Front Cell Neurosci 2021; 15:785433. [PMID: 34776873 PMCID: PMC8581643 DOI: 10.3389/fncel.2021.785433] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/16/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of senile dementia. Although AD research has made important breakthroughs, the pathogenesis of this disease remains unclear, and specific AD diagnostic biomarkers and therapeutic strategies are still lacking. Recent studies have demonstrated that neuroinflammation is involved in AD pathogenesis and is closely related to other health effects. MicroRNAs (miRNAs) are a class of endogenous short sequence non-coding RNAs that indirectly inhibit translation or directly degrade messenger RNA (mRNA) by specifically binding to its 3′ untranslated region (UTR). Several broadly expressed miRNAs including miR-21, miR-146a, and miR-155, have now been shown to regulate microglia/astrocytes activation. Other miRNAs, including miR-126 and miR-132, show a progressive link to the neuroinflammatory signaling. Therefore, further studies on these inflamma-miRNAs may shed light on the pathological mechanisms of AD. The differential expression of inflamma-miRNAs (such as miR-29a, miR-125b, and miR-126-5p) in the peripheral circulation may respond to AD progression, similar to inflammation, and therefore may become potential diagnostic biomarkers for AD. Moreover, inflamma-miRNAs could also be promising therapeutic targets for AD treatment. This review provides insights into the role of inflamma-miRNAs in AD, as well as an overview of general inflamma-miRNA biology, their implications in pathophysiology, and their potential roles as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Liang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 2021; 20:862-879. [PMID: 34103713 DOI: 10.1038/s41573-021-00217-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Exercise mimetics are a proposed class of therapeutics that specifically mimic or enhance the therapeutic effects of exercise. Increased physical activity has demonstrated positive effects in preventing and ameliorating a wide range of diseases, including brain disorders such as Alzheimer disease and dementia, cancer, diabetes and cardiovascular disease. This article discusses the molecular mechanisms and signalling pathways associated with the beneficial effects of physical activity, focusing on effects on brain function and cognitive enhancement. Emerging therapeutic targets and strategies for the development of exercise mimetics, particularly in the field of central nervous system disorders, as well as the associated opportunities and challenges, are discussed.
Collapse
|
16
|
Genet N, Hirschi KK. Understanding neural stem cell regulation in vivo and applying the insights to cell therapy for strokes. Regen Med 2021; 16:861-870. [PMID: 34498495 PMCID: PMC8656322 DOI: 10.2217/rme-2021-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The use of neural stem cell (NSC) therapy for the treatment of stroke patients is successfully paving its way into advanced phases of large-scale clinical trials. To understand how to optimize NSC therapeutic approaches, it is fundamental to decipher the crosstalk between NSC and other cells that comprise the NSC microenvironment (niche) and regulate their function, in vivo; namely, the endothelial cells of the microvasculature. In this mini review, we first provide a concise summary of preclinical findings describing the signaling mechanisms between NSC and vascular endothelial cells and vice versa. Second, we describe the progress made in the development of NSC therapy for the treatment of strokes.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
17
|
Giuliani A, Gaetani S, Sorgentoni G, Agarbati S, Laggetta M, Matacchione G, Gobbi M, Rossi T, Galeazzi R, Piccinini G, Pelliccioni G, Bonfigli AR, Procopio AD, Albertini MC, Sabbatinelli J, Olivieri F, Fazioli F. Circulating Inflamma-miRs as Potential Biomarkers of Cognitive Impairment in Patients Affected by Alzheimer's Disease. Front Aging Neurosci 2021; 13:647015. [PMID: 33776746 PMCID: PMC7990771 DOI: 10.3389/fnagi.2021.647015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease in the growing population of elderly people, is still lacking minimally-invasive circulating biomarkers that could facilitate the diagnosis and the monitoring of disease progression. MicroRNAs (miRNAs) are emerging as tissue-specific and/or circulating biomarkers of several age-related diseases, but evidence on AD is still not conclusive. Since a systemic pro-inflammatory status was associated with an increased risk of AD development and progression, we focused our investigation on a subset of miRNAs modulating the inflammatory process, namely inflamma-miRNAs. The expression of inflamma-miR-17-5p, -21-5p, -126-3p, and -146a-5p was analyzed in plasma samples from 116 patients with AD compared with 41 age-matched healthy control (HC) subjects. MiR-17-5p, miR-21-5p, and miR-126-3p plasma levels were significantly increased in AD patients compared to HC. Importantly, a strong inverse relationship was observed between miR-21-5p and miR-126-3p, and the cognitive impairment, assessed by Mini-Mental State Examination (MMSE). Notably, miR-126-3p was able to discriminate between mild and severe cognitive impairment. Overall, our results reinforce the hypothesis that circulating inflamma-miRNAs could be assessed as minimally invasive tools associated with the development and progression of cognitive impairment in AD.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Simona Gaetani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giulia Sorgentoni
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Maristella Laggetta
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Mirko Gobbi
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | | | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | - Gina Piccinini
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | | | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | | | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Francesca Fazioli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
18
|
Winkelman MA, Koppes AN, Koppes RA, Dai G. Bioengineering the neurovascular niche to study the interaction of neural stem cells and endothelial cells. APL Bioeng 2021; 5:011507. [PMID: 33688617 PMCID: PMC7932757 DOI: 10.1063/5.0027211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
The ability of mammalian neural stem cells (NSCs) to self-renew and differentiate throughout adulthood has made them ideal to study neurogenesis and attractive candidates for neurodegenerative disease therapies. In the adult mammalian brain, NSCs are maintained in the neurovascular niche (NVN) where they are found near the specialized blood vessels, suggesting that brain endothelial cells (BECs) are prominent orchestrators of NSC fate. However, most of the current knowledge of the mammalian NVN has been deduced from nonhuman studies. To circumvent the challenges of in vivo studies, in vitro models have been developed to better understand the reciprocal cellular mechanisms of human NSCs and BECs. This review will cover the current understanding of mammalian NVN biology, the effects of endothelial cell-derived signals on NSC fate, and the in vitro models developed to study the interactions between NSCs and BECs.
Collapse
Affiliation(s)
- Max A Winkelman
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Bálentová S, Hnilicová P, Kalenská D, Baranovičová E, Muríň P, Hajtmanová E, Adamkov M. Effect of fractionated whole-brain irradiation on brain and plasma in a rat model: Metabolic, volumetric and histopathological changes. Neurochem Int 2021; 145:104985. [PMID: 33582163 DOI: 10.1016/j.neuint.2021.104985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
In the present study, we investigated the correlation between histopathological, metabolic, and volumetric changes in the brain and plasma under experimental conditions. Adult male Wistar rats received fractionated whole-brain irradiation (fWBI) with a total dose of 32 Gy delivered in 4 fractions (dose 8 Gy per fraction) once a week on the same day for 4 consecutive weeks. Proton magnetic resonance spectroscopy (1H MRS) and imaging were used to detect metabolic and volumetric changes in the brain and plasma. Histopathological changes in the brain were determined by image analysis of immunofluorescent stained sections. Metabolic changes in the brain measured by 1H MRS before, 48 h, and 9 weeks after the end of fWBI showed a significant decrease in the ratio of total N-acetylaspartate to total creatine (tNAA/tCr) in the corpus striatum. We found a significant decrease in glutamine + glutamate/tCr (Glx/tCr) and, conversely, an increase in gamma-aminobutyric acid to tCr (GABA/tCr) in olfactory bulb (OB). The ratio of astrocyte marker myoinositol/tCr (mIns/tCr) significantly increased in almost all evaluated areas. Magnetic resonance imaging (MRI)-based brain volumetry showed a significant increase in volume, and a concomitant increase in the T2 relaxation time of the hippocampus. Proton nuclear magnetic resonance (1H NMR) plasma metabolomics displayed a significant decrease in the level of glucose and glycolytic intermediates and an increase in ketone bodies. The histomorphological analysis showed a decrease to elimination of neuroblasts, increased astrocyte proliferation, and a mild microglia response. The results of the study clearly reflect early subacute changes 9-11 weeks after fWBI with strong manifestations of brain edema, astrogliosis, and ongoing ketosis.
Collapse
Affiliation(s)
- Soňa Bálentová
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic.
| | - Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4D, 036 01, Martin, Slovak Republic
| | - Dagmar Kalenská
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4D, 036 01, Martin, Slovak Republic
| | - Peter Muríň
- Department of Radiotherapy and Oncology, Martin University Hospital, Kollárova 2, 036 59, Martin, Slovak Republic
| | - Eva Hajtmanová
- Department of Radiotherapy and Oncology, Martin University Hospital, Kollárova 2, 036 59, Martin, Slovak Republic
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic
| |
Collapse
|
20
|
Prevention of age-associated neuronal hyperexcitability with improved learning and attention upon knockout or antagonism of LPAR2. Cell Mol Life Sci 2020; 78:1029-1050. [PMID: 32468095 PMCID: PMC7897625 DOI: 10.1007/s00018-020-03553-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that synaptic lysophosphatidic acids (LPAs) augment glutamate-dependent cortical excitability and sensory information processing in mice and humans via presynaptic LPAR2 activation. Here, we studied the consequences of LPAR2 deletion or antagonism on various aspects of cognition using a set of behavioral and electrophysiological analyses. Hippocampal neuronal network activity was decreased in middle-aged LPAR2−/− mice, whereas hippocampal long-term potentiation (LTP) was increased suggesting cognitive advantages of LPAR2−/− mice. In line with the lower excitability, RNAseq studies revealed reduced transcription of neuronal activity markers in the dentate gyrus of the hippocampus in naïve LPAR2−/− mice, including ARC, FOS, FOSB, NR4A, NPAS4 and EGR2. LPAR2−/− mice behaved similarly to wild-type controls in maze tests of spatial or social learning and memory but showed faster and accurate responses in a 5-choice serial reaction touchscreen task requiring high attention and fast spatial discrimination. In IntelliCage learning experiments, LPAR2−/− were less active during daytime but normally active at night, and showed higher accuracy and attention to LED cues during active times. Overall, they maintained equal or superior licking success with fewer trials. Pharmacological block of the LPAR2 receptor recapitulated the LPAR2−/− phenotype, which was characterized by economic corner usage, stronger daytime resting behavior and higher proportions of correct trials. We conclude that LPAR2 stabilizes neuronal network excitability upon aging and allows for more efficient use of resting periods, better memory consolidation and better performance in tasks requiring high selective attention. Therapeutic LPAR2 antagonism may alleviate aging-associated cognitive dysfunctions.
Collapse
|
21
|
Poiana G, Gioia R, Sineri S, Cardarelli S, Lupo G, Cacci E. Transcriptional regulation of adult neural stem/progenitor cells: tales from the subventricular zone. Neural Regen Res 2020; 15:1773-1783. [PMID: 32246617 PMCID: PMC7513981 DOI: 10.4103/1673-5374.280301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In rodents, well characterized neurogenic niches of the adult brain, such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus, support the maintenance of neural/stem progenitor cells (NSPCs) and the production of new neurons throughout the lifespan. The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation. At the same time, it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli. A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging, injury or disease. At the core of the molecular mechanisms regulating neurogenesis, several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues. Here, we focus on REST, Egr1 and Dbx2 and their roles in adult neurogenesis, especially in the subventricular zone. We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche. We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain. Finally, we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis.
Collapse
Affiliation(s)
- Giancarlo Poiana
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Serena Sineri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Transl Stroke Res 2019; 11:60-79. [DOI: 10.1007/s12975-019-00717-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|
23
|
Dudvarski Stanković N, Bicker F, Keller S, Jones DT, Harter PN, Kienzle A, Gillmann C, Arnold P, Golebiewska A, Keunen O, Giese A, von Deimling A, Bäuerle T, Niclou SP, Mittelbronn M, Ye W, Pfister SM, Schmidt MH. EGFL7 enhances surface expression of integrin α 5β 1 to promote angiogenesis in malignant brain tumors. EMBO Mol Med 2019; 10:emmm.201708420. [PMID: 30065025 PMCID: PMC6127886 DOI: 10.15252/emmm.201708420] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a typically lethal type of brain tumor with a median survival of 15 months postdiagnosis. This negative prognosis prompted the exploration of alternative treatment options. In particular, the reliance of GBM on angiogenesis triggered the development of anti-VEGF (vascular endothelial growth factor) blocking antibodies such as bevacizumab. Although its application in human GBM only increased progression-free periods but did not improve overall survival, physicians and researchers still utilize this treatment option due to the lack of adequate alternatives. In an attempt to improve the efficacy of anti-VEGF treatment, we explored the role of the egfl7 gene in malignant glioma. We found that the encoded extracellular matrix protein epidermal growth factor-like protein 7 (EGFL7) was secreted by glioma blood vessels but not glioma cells themselves, while no major role could be assigned to the parasitic miRNAs miR-126/126*. EGFL7 expression promoted glioma growth in experimental glioma models in vivo and stimulated tumor vascularization. Mechanistically, this was mediated by an upregulation of integrin α5β1 on the cellular surface of endothelial cells, which enhanced fibronectin-induced angiogenic sprouting. Glioma blood vessels that formed in vivo were more mature as determined by pericyte and smooth muscle cell coverage. Furthermore, these vessels were less leaky as measured by magnetic resonance imaging of extravasating contrast agent. EGFL7-inhibition using a specific blocking antibody reduced the vascularization of experimental gliomas and increased the life span of treated animals, in particular in combination with anti-VEGF and the chemotherapeutic agent temozolomide. Data allow for the conclusion that this combinatorial regimen may serve as a novel treatment option for GBM.
Collapse
Affiliation(s)
- Nevenka Dudvarski Stanković
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Bicker
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Keller
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Tw Jones
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Arne Kienzle
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarissa Gillmann
- Institute of Radiology, University Medical Center Erlangen, Erlangen, Germany
| | | | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg
| | - Olivier Keunen
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg
| | - Alf Giese
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas von Deimling
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Department of Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Medical Center Erlangen, Erlangen, Germany
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.,KG Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway
| | - Michel Mittelbronn
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Laboratoire National de Santé (LNS), Dudelange, Luxembourg.,Luxembourg Centre of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Weilan Ye
- Vascular Biology Program, Molecular Oncology Division, Genentech, San Francisco, CA, USA
| | - Stefan M Pfister
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mirko H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany .,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
The Role of SVZ Stem Cells in Glioblastoma. Cancers (Basel) 2019; 11:cancers11040448. [PMID: 30934929 PMCID: PMC6521108 DOI: 10.3390/cancers11040448] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022] Open
Abstract
As most common primary brain cancer, glioblastoma is also the most aggressive and malignant form of cancer in the adult central nervous system. Glioblastomas are genetic and transcriptional heterogeneous tumors, which in spite of intensive research are poorly understood. Over the years conventional therapies failed to affect a cure, resulting in low survival rates of affected patients. To improve the clinical outcome, an important approach is to identify the cells of origin. One potential source for these are neural stem cells (NSCs) located in the subventricular zone, which is one of two niches in the adult nervous system where NSCs with the capacity of self-renewal and proliferation reside. These cells normally give rise to neuronal as well as glial progenitor cells. This review summarizes current findings about links between NSCs and cancer stem cells in glioblastoma and discusses current therapeutic approaches, which arise as a result of identifying the cell of origin in glioblastoma.
Collapse
|
25
|
Katsimpardi L, Lledo PM. Regulation of neurogenesis in the adult and aging brain. Curr Opin Neurobiol 2018; 53:131-138. [DOI: 10.1016/j.conb.2018.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
|
26
|
Uphaus T, Zipp F, Larochelle C. EGFL7 - a potential therapeutic target for multiple sclerosis? Expert Opin Ther Targets 2018; 22:899-902. [PMID: 30312112 DOI: 10.1080/14728222.2018.1535595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Timo Uphaus
- a Department of Neurology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Frauke Zipp
- a Department of Neurology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Catherine Larochelle
- b Department of Neurosciences , Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM) , Montréal (Québec) , Canada
| |
Collapse
|
27
|
Crouch EE, Doetsch F. FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat Protoc 2018; 13:738-751. [PMID: 29565899 DOI: 10.1038/nprot.2017.158] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vasculature is emerging as a key contributor to brain function during neurodevelopment and in mature physiological and pathological states. The brain vasculature itself also exhibits regional heterogeneity, highlighting the need to develop approaches for purifying cells from different microregions. Previous approaches for isolation of endothelial cells and pericytes have predominantly required transgenic mice and large amounts of tissue, and have resulted in impure populations. In addition, the prospective purification of brain pericytes has been complicated by the fact that widely used pericyte markers are also expressed by other cell types in the brain. Here, we describe the detailed procedures for simultaneous isolation of pure populations of endothelial cells and pericytes directly from adult mouse brain microregions using fluorescence-activated cell sorting (FACS) with antibodies against CD31 (endothelial cells) and CD13 (pericytes). This protocol is scalable and takes ∼5 h, including microdissection of the region of interest, enzymatic tissue dissociation, immunostaining, and FACS. This protocol allows the isolation of brain vascular cells from any mouse strain under diverse conditions; these cells can be used for multiple downstream applications, including in vitro and in vivo experiments, and transcriptomic, proteomic, metabolomic, epigenomic, and single-cell analysis.
Collapse
Affiliation(s)
- Elizabeth E Crouch
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
28
|
Abstract
Extracellular matrix (ECM) proteins secreted by blood-brain barrier (BBB) endothelial cells (ECs) are implicated in cell trafficking. We discovered that the expression of ECM epidermal growth factor-like protein 7 (EGFL7) is increased in the CNS vasculature of patients with multiple sclerosis (MS), and in mice with experimental autoimmune encephalomyelitis (EAE). Perivascular CD4 T lymphocytes colocalize with ECM-bound EGFL7 in MS lesions. Human and mouse activated T cells upregulate EGFL7 ligand αvβ3 integrin and can adhere to EGFL7 through integrin αvβ3. EGFL7-knockout (KO) mice show earlier onset of EAE and increased brain and spinal cord parenchymal infiltration of T lymphocytes. Importantly, EC-restricted EGFL7-KO is associated with a similar EAE worsening. Finally, treatment with recombinant EGFL7 improves EAE, reduces MCAM expression, and tightens the BBB in mouse. Our data demonstrate that EGFL7 can limit CNS immune infiltration and may represent a novel therapeutic avenue in MS. Endothelial cells release extracellular matrix components that regulate inflammation. Here the authors demonstrate that the extracellular matrix component epidermal growth factor-like protein 7 regulates inflammation in experimental autoimmune encephalomyelitis in the mouse.
Collapse
|
29
|
Gómez-Gaviro MV, Desco M. The Paracrine Neural Stem Cell Niche: New Actors in the Play. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0112-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|