1
|
Bharambe N, Saharan K, Vasudevan D, Basak S. 2.0 Å cryo-EM structure of the 55 kDa nucleoplasmin domain of AtFKBP53. J Struct Biol 2025; 217:108203. [PMID: 40262726 DOI: 10.1016/j.jsb.2025.108203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
The knowledge of three-dimensional structures of biological macromolecules is crucial for understanding the molecular mechanisms underlying disease pathology and for devising drugs targeting specific molecules. Single particle cryo-electron microscopy (Cryo-EM) has become indispensable for this purpose, particularly for large macromolecules and their complexes. However, its effectiveness has been limited in achieving near-atomic resolution for smaller macromolecules. This study presents the Cryo-EM structure of a 55 kDa pentameric AtFKBP53 nucleoplasmin domain at 2.0 Å nominal resolution. Our approach involves selecting the optimal grid for data collection and precise alignment of small particles to enhance the resolution of the final 3D reconstructed map. In this study, we systematically processed cryo-EM dataset of a small molecule to improve alignment, and this data processing strategy can be used as a guidance to process the cryo-EM data of other small molecules.
Collapse
Affiliation(s)
- Nikhil Bharambe
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Ketul Saharan
- BRIC- Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Dileep Vasudevan
- BRIC- Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India; BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram 695014, India.
| | - Sandip Basak
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
2
|
Kim S, Kim JW, Park JG, Lee SS, Choi SH, Lee JO, Jin MS. Disulfide-stabilized diabodies enable near-atomic cryo-EM imaging of small proteins: A case study of the bacterial Na +/citrate symporter CitS. Structure 2025:S0969-2126(25)00103-0. [PMID: 40169000 DOI: 10.1016/j.str.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Diabodies are engineered antibody fragments with two antigen-binding Fv domains. Previously, we demonstrated that they are often highly flexible but can be rigidified by introducing a disulfide bond at the Fv interface. In this study, we explored the potential of disulfide-bridged, bispecific diabodies for near-atomic cryoelectron microscopy (cryo-EM) imaging of small proteins because they can predictably link target proteins to "structural marker" proteins. As a case study, we used the bacterial citrate transporter CitS as the target protein, and the horseshoe-shaped ectodomain of human Toll-like receptor 3 (TLR3) as the marker. We show that diabodies containing one or two disulfide bonds enabled the 3D reconstruction of CitS at resolutions of 3.3 Å and 3.1 Å, respectively. This resolution surpassed previous crystallographic results and allowed us to visualize the high-resolution structural features of the transporter. Our work expands the application of diabodies in structural biology to address a key limitation in the field.
Collapse
Affiliation(s)
- Subin Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ji Won Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; Institute of Membrane Proteins, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jun Gyou Park
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sang Soo Lee
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seung Hun Choi
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jie-Oh Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; Institute of Membrane Proteins, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Mi Sun Jin
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
3
|
Zhang H, Li X, Liu J, Lan YQ, Han Y. Advancing Single-Particle Analysis in Synthetic Chemical Systems: A Forward-Looking Discussion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406914. [PMID: 39180273 DOI: 10.1002/adma.202406914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Single-particle analysis (SPA) is a fundamental method of cryo-electron microscopy developed to resolve the structures of biological macromolecules. This method has seen significant success in structural biology, yet its potential applications in synthetic chemical systems remain underexplored. In this perspective article, SPA and associated electron microscopy techniques are first briefly introduced. It is then proposed that SPA is well-suited for structural analysis of chemical systems where discrete, identical macromolecules can be readily obtained. Applicable systems include various clusters such as coinage metal clusters, metal-oxo/sulfur clusters, metal-organic clusters, and supramolecular compounds like coordination cages and metallo-supramolecular cages. When high-quality large single crystals are unattainable, SPA provides an alternative method for determining their structures. Beyond these end products, it is suggested that SPA can be instrumental in studying synthetic intermediates of materials with specific building units, such as metal-organic frameworks and zeolites. Given that various intermediates coexist in the reaction system, a purification step is necessary before conducting SPA, which can be facilitated by soft-landing electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Electron Microscopy, South China University of Technology, Guangzhou, 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou, 510640, China
| | - Xiaopeng Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510631, China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510631, China
| | - Yu Han
- Center for Electron Microscopy, South China University of Technology, Guangzhou, 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou, 510640, China
| |
Collapse
|
4
|
Catalano C, Lucier KW, To D, Senko S, Tran NL, Farwell AC, Silva SM, Dip PV, Poweleit N, Scapin G. The CryoEM structure of human serum albumin in complex with ligands. J Struct Biol 2024; 216:108105. [PMID: 38852682 DOI: 10.1016/j.jsb.2024.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Human serum albumin (HSA) is the most prevalent plasma protein in the human body, accounting for 60 % of the total plasma protein. HSA plays a major pharmacokinetic function, serving as a facilitator in the distribution of endobiotics and xenobiotics within the organism. In this paper we report the cryoEM structures of HSA in the apo form and in complex with two ligands (salicylic acid and teniposide) at a resolution of 3.5, 3.7 and 3.4 Å, respectively. We expand upon previously published work and further demonstrate that sub-4 Å maps of ∼60 kDa proteins can be routinely obtained using a 200 kV microscope, employing standard workflows. Most importantly, these maps allowed for the identification of small molecule ligands, emphasizing the practical applicability of this methodology and providing a starting point for subsequent computational modeling and in silico optimization.
Collapse
Affiliation(s)
- Claudio Catalano
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA.
| | - Kyle W Lucier
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Dennis To
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Skerdi Senko
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Nhi L Tran
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Ashlyn C Farwell
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Sabrina M Silva
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Phat V Dip
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Nicole Poweleit
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Giovanna Scapin
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| |
Collapse
|
5
|
Greber BJ. High-resolution cryo-EM of a small protein complex: The structure of the human CDK-activating kinase. Structure 2024:S0969-2126(24)00085-6. [PMID: 38565138 DOI: 10.1016/j.str.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The human CDK-activating kinase (CAK) is a multifunctional protein complex and key regulator of cell growth and division. Because of its critical functions in regulating the cell cycle and transcription initiation, it is a key target for multiple cancer drug discovery programs. However, the structure of the active human CAK, insights into its regulation, and its interactions with cellular substrates and inhibitors remained elusive until recently due to the lack of high-resolution structures of the intact complex. This review covers the progress in structure determination of the human CAK by cryogenic electron microscopy (cryo-EM), from early efforts to recent near-atomic resolution maps routinely resolved at 2Å or better. These results were enabled by the latest cryo-EM technologies introduced after the initial phase of the "resolution revolution" and allowed the application of high-resolution methods to new classes of molecular targets, including small protein complexes that were intractable using earlier technology.
Collapse
Affiliation(s)
- Basil J Greber
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
6
|
Castón JR, Luque D. Conventional Electron Microscopy, Cryogenic Electron Microscopy, and Cryogenic Electron Tomography of Viruses. Subcell Biochem 2024; 105:81-134. [PMID: 39738945 DOI: 10.1007/978-3-031-65187-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryogenic electron microscopy (cryo-EM) preserves the native hydrated state. Combined with image processing and three-dimensional reconstruction techniques, cryo-EM provides three-dimensional maps of these macromolecular complexes from projection images, at atomic or near-atomic resolutions. Cryo-EM is also a major technique in structural biology for dynamic studies of functional complexes, which are often unstable, flexible, scarce, or transient in their native environments. State-of-the-art techniques in structural virology now extend beyond purified symmetric capsids and focus on the asymmetric elements such as the packaged genome and minor structural proteins that were previously missed. As a tool, cryo-EM also complements high-resolution techniques such as X-ray diffraction and NMR spectroscopy; these synergistic hybrid approaches provide important new information. Three-dimensional cryogenic electron tomography (cryo-ET), a variation of cryo-EM, goes further, and allows the study of pleomorphic and complex viruses not only in their physiological state but also in their natural environment in the cell, thereby bridging structural studies at the molecular and cellular levels. Cryo-EM and cryo-ET have been applied successfully in basic research, shedding light on fundamental aspects of virus biology and providing insights into threatening viruses, including SARS-CoV-2, responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
- José R Castón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Madrid, Spain.
| | - Daniel Luque
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Deniaud A, Kabasakal BV, Bufton JC, Schaffitzel C. Sample Preparation for Electron Cryo-Microscopy of Macromolecular Machines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:173-190. [PMID: 38507207 DOI: 10.1007/978-3-031-52193-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
High-resolution structure determination by electron cryo-microscopy underwent a step change in recent years. This now allows study of challenging samples which previously were inaccessible for structure determination, including membrane proteins. These developments shift the focus in the field to the next bottlenecks which are high-quality sample preparations. While the amounts of sample required for cryo-EM are relatively small, sample quality is the key challenge. Sample quality is influenced by the stability of complexes which depends on buffer composition, inherent flexibility of the sample, and the method of solubilization from the membrane for membrane proteins. It further depends on the choice of sample support, grid pre-treatment and cryo-grid freezing protocol. Here, we discuss various widely applicable approaches to improve sample quality for structural analysis by cryo-EM.
Collapse
Affiliation(s)
- Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG - Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Burak V Kabasakal
- School of Biochemistry, University of Bristol, Bristol, UK
- Turkish Accelerator and Radiation Laboratory, Gölbaşı, Ankara, Türkiye
| | | | | |
Collapse
|
8
|
Fouillen A, Bous J, Granier S, Mouillac B, Sounier R. Bringing GPCR Structural Biology to Medical Applications: Insights from Both V2 Vasopressin and Mu-Opioid Receptors. MEMBRANES 2023; 13:606. [PMID: 37367810 PMCID: PMC10303988 DOI: 10.3390/membranes13060606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
G-protein coupled receptors (GPCRs) are versatile signaling proteins that regulate key physiological processes in response to a wide variety of extracellular stimuli. The last decade has seen a revolution in the structural biology of clinically important GPCRs. Indeed, the improvement in molecular and biochemical methods to study GPCRs and their transducer complexes, together with advances in cryo-electron microscopy, NMR development, and progress in molecular dynamic simulations, have led to a better understanding of their regulation by ligands of different efficacy and bias. This has also renewed a great interest in GPCR drug discovery, such as finding biased ligands that can either promote or not promote specific regulations. In this review, we focus on two therapeutically relevant GPCR targets, the V2 vasopressin receptor (V2R) and the mu-opioid receptor (µOR), to shed light on the recent structural biology studies and show the impact of this integrative approach on the determination of new potential clinical effective compounds.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
- Centre de Biochimie Structurale (CBS), Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Julien Bous
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| | - Remy Sounier
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| |
Collapse
|
9
|
Ho MR, Wu YM, Lu YC, Ko TP, Wu KP. Cryo-EM reveals the structure and dynamics of a 723-residue malate synthase G. J Struct Biol 2023; 215:107958. [PMID: 36997036 DOI: 10.1016/j.jsb.2023.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Determination of sub-100 kilodalton (kDa) structures by cryo-electron microscopy (EM) is a longstanding but not straightforward goal. Here, we present a 2.9-Å cryo-EM structure of a 723-amino acid apo-form malate synthase G (MSG) from Escherichia coli. The cryo-EM structure of the 82-kDa MSG exhibits the same global folding as structures resolved by crystallography and nuclear magnetic resonance (NMR) spectroscopy, and the crystal and cryo-EM structures are indistinguishable. Analyses of MSG dynamics reveal consistent conformational flexibilities among the three experimental approaches, most notably that the α/β domain exhibits structural heterogeneity. We observed that sidechains of F453, L454, M629, and E630 residues involved in hosting the cofactor acetyl-CoA and substrate rotate differently between the cryo-EM apo-form and complex crystal structures. Our work demonstrates that the cryo-EM technique can be used to determine structures and conformational heterogeneity of sub-100 kDa biomolecules to a quality as high as that obtained from X-ray crystallography and NMR spectroscopy.
Collapse
|
10
|
Bendory T, Boumal N, Leeb W, Levin E, Singer A. Toward Single Particle Reconstruction without Particle Picking: Breaking the Detection Limit. SIAM JOURNAL ON IMAGING SCIENCES 2023; 16:886-910. [PMID: 39144526 PMCID: PMC11324246 DOI: 10.1137/22m1503828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) has recently joined X-ray crystallography and NMR spectroscopy as a high-resolution structural method to resolve biological macromolecules. In a cryo-EM experiment, the microscope produces images called micrographs. Projections of the molecule of interest are embedded in the micrographs at unknown locations, and under unknown viewing directions. Standard imaging techniques first locate these projections (detection) and then reconstruct the 3-D structure from them. Unfortunately, high noise levels hinder detection. When reliable detection is rendered impossible, the standard techniques fail. This is a problem, especially for small molecules. In this paper, we pursue a radically different approach: we contend that the structure could, in principle, be reconstructed directly from the micrographs, without intermediate detection. The aim is to bring small molecules within reach for cryo-EM. To this end, we design an autocorrelation analysis technique that allows one to go directly from the micrographs to the sought structures. This involves only one pass over the micrographs, allowing online, streaming processing for large experiments. We show numerical results and discuss challenges that lay ahead to turn this proof-of-concept into a complementary approach to state-of-the-art algorithms.
Collapse
Affiliation(s)
- Tamir Bendory
- The School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nicolas Boumal
- Institute of Mathematics, Ecole Polytechnique Fédérale DE Lausanne EPFL, 1015 Lausanne, Switzerland
| | - William Leeb
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455 USA
| | - Eitan Levin
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125 USA
| | - Amit Singer
- The Program in Applied and Computational Mathematics and Department of Mathematics, Princeton University, Princeton, NJ 08544 USA
| |
Collapse
|
11
|
Zheng L, Liu N, Gao X, Zhu W, Liu K, Wu C, Yan R, Zhang J, Gao X, Yao Y, Deng B, Xu J, Lu Y, Liu Z, Li M, Wei X, Wang HW, Peng H. Uniform thin ice on ultraflat graphene for high-resolution cryo-EM. Nat Methods 2023; 20:123-130. [PMID: 36522503 PMCID: PMC9834055 DOI: 10.1038/s41592-022-01693-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/20/2022] [Indexed: 12/23/2022]
Abstract
Cryo-electron microscopy (cryo-EM) visualizes the atomic structure of macromolecules that are embedded in vitrified thin ice at their close-to-native state. However, the homogeneity of ice thickness, a key factor to ensure high image quality, is poorly controlled during specimen preparation and has become one of the main challenges for high-resolution cryo-EM. Here we found that the uniformity of thin ice relies on the surface flatness of the supporting film, and developed a method to use ultraflat graphene (UFG) as the support for cryo-EM specimen preparation to achieve better control of vitreous ice thickness. We show that the uniform thin ice on UFG improves the image quality of vitrified specimens. Using such a method we successfully determined the three-dimensional structures of hemoglobin (64 kDa), α-fetoprotein (67 kDa) with no symmetry, and streptavidin (52 kDa) at a resolution of 3.5 Å, 2.6 Å and 2.2 Å, respectively. Furthermore, our results demonstrate the potential of UFG for the fields of cryo-electron tomography and structure-based drug discovery.
Collapse
Affiliation(s)
- Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Xiaoyin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wenqing Zhu
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Cang Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Rui Yan
- Beijing Graphene Institute (BGI), Beijing, China
| | - Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yating Yao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bing Deng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ye Lu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhongmin Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, China.
- Peking University Nanchang Innovation Institute, Nanchang, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute (BGI), Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
12
|
Dietary Heme-Containing Proteins: Structures, Applications, and Challenges. Foods 2022; 11:foods11223594. [PMID: 36429186 PMCID: PMC9689966 DOI: 10.3390/foods11223594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Heme-containing proteins, commonly abundant in red meat and blood, are considered promising dietary sources for iron supplementation and fortification with higher bioavailability and less side effects. As the precise structures and accurate bioactivity mechanism of various heme-containing proteins (hemoglobin, myoglobin, cytochrome, etc.) are determined, many methods have been explored for iron fortification. Based on their physicochemical and biological functions, heme-containing proteins and the hydrolyzed peptides have been also widely utilized as food ingredients and antibacterial agents in recent years. In this review, we summarized the structural characterization of hemoglobin, myoglobin, and other heme proteins in detail, and highlighted recent advances in applications of naturally occurring heme-containing proteins as dietary iron sources in the field of food science and nutrition. The regulation of absorption rate, auto-oxidation process, and dietary consumption of heme-containing proteins are then discussed. Future outlooks are also highlighted with the aim to suggest a research line to follow for further studies.
Collapse
|
13
|
Di Cera E, Mohammed BM, Pelc LA, Stojanovski BM. Cryo-EM structures of coagulation factors. Res Pract Thromb Haemost 2022; 6:e12830. [PMID: 36349261 PMCID: PMC9630041 DOI: 10.1002/rth2.12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
A State of the Art lecture titled "Cryo-EM structures of coagulation factors" was presented at the ISTH Congress in 2022. Cryogenic electron microscopy (cryo-EM) is a revolutionary technique capable of solving the structure of high molecular weight proteins and their complexes, unlike nuclear magnetic resonance (NMR), and under conditions not biased by crystal contacts, unlike X-ray crystallography. These features are particularly relevant to the analysis of coagulation factors that are too big for NMR and often recalcitrant to X-ray investigation. Using cryo-EM, we have solved the structures of coagulation factors V and Va, prothrombinase on nanodiscs, and the prothrombin-prothrombinase complex. These structures have advanced basic knowledge in the field of thrombosis and hemostasis, especially on the function of factor V and the molecular mechanism for prothrombin activation, and set the stage for exciting new lines of investigation. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bassem M. Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Leslie A. Pelc
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bosko M. Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
14
|
Inhibition of CYP2C8 by Acyl Glucuronides of Gemfibrozil and Clopidogrel: Pharmacological Significance, Progress and Challenges. Biomolecules 2022; 12:biom12091218. [PMID: 36139056 PMCID: PMC9496539 DOI: 10.3390/biom12091218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
The lipid-regulating drug gemfibrozil is a useful medication for reducing high cholesterol and triglycerides in the blood. In addition to oxidation, it undergoes extensive glucuronidation to produce gemfibrozil acyl glucuronide, which is a known mechanism-based inactivator of cytochrome P450 (CYP) 2C8. Such selective and time-dependent inhibition results in clinically important drug–drug interactions (DDI) with the drugs metabolized by CYP2C8. Similarly, the acyl glucuronide of clopidogrel, a widely used antiplatelet agent, is a potent time-dependent inhibitor of CYP2C8 that demonstrated significant DDI with the substrates of CYP2C8. Current progress in atomic-level understanding mostly involves studying how different drugs bind and undergo oxidation in the active site of CYPs. It is not clear how an acyl glucuronide metabolite of the drug gemfibrozil or clopidogrel interacts in the active site of CYP2C8 and selectively inhibit the enzyme. This mini-review summarizes the current knowledge on some of the important clinical DDI caused by gemfibrozil and clopidogrel due to the inhibition of CYP2C8 by acyl glucuronide metabolites of these drugs. Importantly, it examines recent developments and potential applications of structural biology tools to elucidate the binding and orientation of gemfibrozil acyl glucuronide and clopidogrel acyl glucuronide in the active site near heme that contributes to the inhibition and inactivation of CYP2C8.
Collapse
|
15
|
Three-dimensional electron ptychography of organic-inorganic hybrid nanostructures. Nat Commun 2022; 13:4787. [PMID: 35970924 PMCID: PMC9378626 DOI: 10.1038/s41467-022-32548-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Three dimensional scaffolded DNA origami with inorganic nanoparticles has been used to create tailored multidimensional nanostructures. However, the image contrast of DNA is poorer than those of the heavy nanoparticles in conventional transmission electron microscopy at high defocus so that the biological and non-biological components in 3D scaffolds cannot be simultaneously resolved using tomography of samples in a native state. We demonstrate the use of electron ptychography to recover high contrast phase information from all components in a DNA origami scaffold without staining. We further quantitatively evaluate the enhancement of contrast in comparison with conventional transmission electron microscopy. In addition, We show that for ptychography post-reconstruction focusing simplifies the workflow and reduces electron dose and beam damage. The authors demonstrate electron ptychographic computed tomography by simultaneously recording high contrast data from both the organic- and inorganic components in a 3D DNA-origami framework hybrid nanostructure.
Collapse
|
16
|
Fan H, Sun F. Developing Graphene Grids for Cryoelectron Microscopy. Front Mol Biosci 2022; 9:937253. [PMID: 35911962 PMCID: PMC9326159 DOI: 10.3389/fmolb.2022.937253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cryogenic electron microscopy (cryo-EM) single particle analysis has become one of the major techniques used to study high-resolution 3D structures of biological macromolecules. Specimens are generally prepared in a thin layer of vitrified ice using a holey carbon grid. However, the sample quality using this type of grid is not always ideal for high-resolution imaging even when the specimens in the test tube behave ideally. Various problems occur during a vitrification procedure, including poor/nonuniform distribution of particles, preferred orientation of particles, specimen denaturation/degradation, high background from thick ice, and beam-induced motion, which have become important bottlenecks in high-resolution structural studies using cryo-EM in many projects. In recent years, grids with support films made of graphene and its derivatives have been developed to efficiently solve these problems. Here, the various advantages of graphene grids over conventional holey carbon film grids, functionalization of graphene support films, production methods of graphene grids, and origins of pristine graphene contamination are reviewed and discussed.
Collapse
Affiliation(s)
- Hongcheng Fan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Bioland Laboratory, Guangzhou, China
| |
Collapse
|
17
|
Chuong TT, Ogura T, Hiyoshi N, Takahashi K, Lee S, Hiraga K, Iwase H, Yamaguchi A, Kamagata K, Mano E, Hamakawa S, Nishihara H, Kyotani T, Stucky GD, Itoh T. Giant Carbon Nano-Test Tubes as Versatile Imaging Vessels for High-Resolution and In Situ Observation of Proteins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26507-26516. [PMID: 35548999 DOI: 10.1021/acsami.2c06318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cryogenic electron microscopy is one of the fastest and most robust methods for capturing high-resolution images of proteins, but stringent sample preparation, imaging conditions, and in situ radiation damage inflicted during data acquisition directly affect the resolution and ability to capture dynamic details, thereby limiting its broader utilization and adoption for protein studies. We addressed these drawbacks by introducing synthesized giant carbon nano-test tubes (GCNTTs) as radiation-insulating materials that lessen the irradiation impact on the protein during data acquisition, physical molecular concentrators that localize the proteins within a nanoscale field of view, and vessels that create a microenvironment for solution-phase imaging. High-resolution electron microscopy images of single and aggregated hemoglobin molecules within GCNTTs in both solid and solution states were acquired. Subsequent scanning transmission electron microscopy, small-angle neutron scattering, and fluorescence studies demonstrated that the GCNTT vessel protected the hemoglobin molecules from electron irradiation-, light-, or heat-induced denaturation. To demonstrate the robustness of GCNTT as an imaging platform that could potentially augment the study of proteins, we demonstrated the robustness of the GCNTT technique to image an alternative protein, d-fructose dehydrogenase, after cyclic voltammetry experiments to review encapsulation and binding insights. Given the simplicity of the material synthesis, sample preparation, and imaging technique, GCNTT is a promising imaging companion for high-resolution, single, and dynamic protein studies under electron microscopy.
Collapse
Affiliation(s)
- Tracy T Chuong
- National Institute of Advanced Industrial Science Technology (AIST), Sendai 983-8551, Japan
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Norihito Hiyoshi
- National Institute of Advanced Industrial Science Technology (AIST), Sendai 983-8551, Japan
| | - Kazuma Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Sangho Lee
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Keita Hiraga
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan
| | - Akira Yamaguchi
- Institute of Quantum Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Satoshi Hamakawa
- National Institute of Advanced Industrial Science Technology (AIST), Sendai 983-8551, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Takashi Kyotani
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Galen D Stucky
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Tetsuji Itoh
- National Institute of Advanced Industrial Science Technology (AIST), Sendai 983-8551, Japan
| |
Collapse
|
18
|
Gomez-Blanco J, Kaur S, Strauss M, Vargas J. Hierarchical autoclassification of cryo-EM samples and macromolecular energy landscape determination. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 216:106673. [PMID: 35149430 DOI: 10.1016/j.cmpb.2022.106673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Cryo-electron microscopy using single particle analysis is a powerful technique for obtaining 3D reconstructions of macromolecules in near native conditions. One of its major advances is its capacity to reveal conformations of dynamic molecular complexes. Most popular and successful current approaches to analyzing heterogeneous complexes are founded on Bayesian inference. However, these 3D classification methods require the tuning of specific parameters by the user and the use of complicated 3D re-classification procedures for samples affected by extensive heterogeneity. Thus, the success of these approaches highly depends on the user experience. We introduce a robust approach to identify many different conformations presented in a cryo-EM dataset based on Bayesian inference through Relion classification methods that does not require tuning of parameters and reclassification strategies. METHODS The algorithm allows both 2D and 3D classification and is based on a hierarchical clustering approach that runs automatically without requiring typical inputs, such as the number of conformations present in the dataset or the required classification iterations. This approach is applied to robustly determine the energy landscapes of macromolecules. RESULTS We tested the performance of the methods proposed here using four different datasets, comprising structurally homogeneous and highly heterogeneous cases. In all cases, the approach provided excellent results. The routines are publicly available as part of the CryoMethods plugin included in the Scipion package. CONCLUSIONS Our results show that the proposed method can be used to align and classify homogeneous and heterogeneous datasets without requiring previous alignment information or any prior knowledge about the number of co-existing conformations. The approach can be used for both 2D and 3D autoclassification and only requires an initial volume. In addition, the approach is robust to the "attractor" problem providing many different conformations/views for samples affected by extensive heterogeneity. The obtained 3D classes can render high resolution 3D structures, while the obtained energy landscapes can be used to determine structural trajectories.
Collapse
Affiliation(s)
- J Gomez-Blanco
- Departamento de Óptica, Universidad Complutense de Madrid, Plaza de Ciencias 1, 28040, Spain
| | - S Kaur
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montréal, QC H3A 0C7, Canada
| | - M Strauss
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montréal, QC H3A 0C7, Canada
| | - J Vargas
- Departamento de Óptica, Universidad Complutense de Madrid, Plaza de Ciencias 1, 28040, Spain.
| |
Collapse
|
19
|
Zhang K, Horikoshi N, Li S, Powers AS, Hameedi MA, Pintilie GD, Chae HD, Khan YA, Suomivuori CM, Dror RO, Sakamoto KM, Chiu W, Wakatsuki S. Cryo-EM, Protein Engineering, and Simulation Enable the Development of Peptide Therapeutics against Acute Myeloid Leukemia. ACS CENTRAL SCIENCE 2022; 8:214-222. [PMID: 35233453 PMCID: PMC8875425 DOI: 10.1021/acscentsci.1c01090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 06/14/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) has emerged as a viable structural tool for molecular therapeutics development against human diseases. However, it remains a challenge to determine structures of proteins that are flexible and smaller than 30 kDa. The 11 kDa KIX domain of CREB-binding protein (CBP), a potential therapeutic target for acute myeloid leukemia and other cancers, is a protein which has defied structure-based inhibitor design. Here, we develop an experimental approach to overcome the size limitation by engineering a protein double-shell to sandwich the KIX domain between apoferritin as the inner shell and maltose-binding protein as the outer shell. To assist homogeneous orientations of the target, disulfide bonds are introduced at the target-apoferritin interface, resulting in a cryo-EM structure at 2.6 Å resolution. We used molecular dynamics simulations to design peptides that block the interaction of the KIX domain of CBP with the intrinsically disordered pKID domain of CREB. The double-shell design allows for fluorescence polarization assays confirming the binding between the KIX domain in the double-shell and these interacting peptides. Further cryo-EM analysis reveals a helix-helix interaction between a single KIX helix and the best peptide, providing a possible strategy for developments of next-generation inhibitors.
Collapse
Affiliation(s)
- Kaiming Zhang
- MOE
Key Laboratory for Cellular Dynamics and Division of Life Sciences
and Medicine, University of Science and
Technology of China, Hefei 230027, China
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Naoki Horikoshi
- Life
Science Center for Survival Dynamics, University
of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Department
of Structural Biology, Stanford University, Stanford, California 94305, United States
| | - Shanshan Li
- MOE
Key Laboratory for Cellular Dynamics and Division of Life Sciences
and Medicine, University of Science and
Technology of China, Hefei 230027, China
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Alexander S. Powers
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
| | - Mikhail A. Hameedi
- Department
of Structural Biology, Stanford University, Stanford, California 94305, United States
- Biosciences
Division, SLAC National Accelerator Laboratory, Stanford University, Menlo
Park, California 94025, United States
| | - Grigore D. Pintilie
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Hee-Don Chae
- Department
of Pediatrics, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Yousuf A. Khan
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Carl-Mikael Suomivuori
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
| | - Ron O. Dror
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
| | - Kathleen M. Sakamoto
- Department
of Pediatrics, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Wah Chiu
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- CryoEM
and Bioimaging Division, Stanford Synchrotron Radiation Lightsource,
SLAC National Accelerator Laboratory, Stanford
University, Menlo
Park, California 94025, United States
| | - Soichi Wakatsuki
- Department
of Structural Biology, Stanford University, Stanford, California 94305, United States
- Biosciences
Division, SLAC National Accelerator Laboratory, Stanford University, Menlo
Park, California 94025, United States
| |
Collapse
|
20
|
Joseph AP, Olek M, Malhotra S, Zhang P, Cowtan K, Burnley T, Winn MD. Atomic model validation using the CCP-EM software suite. Acta Crystallogr D Struct Biol 2022; 78:152-161. [PMID: 35102881 PMCID: PMC8805302 DOI: 10.1107/s205979832101278x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
Recently, there has been a dramatic improvement in the quality and quantity of data derived using cryogenic electron microscopy (cryo-EM). This is also associated with a large increase in the number of atomic models built. Although the best resolutions that are achievable are improving, often the local resolution is variable, and a significant majority of data are still resolved at resolutions worse than 3 Å. Model building and refinement is often challenging at these resolutions, and hence atomic model validation becomes even more crucial to identify less reliable regions of the model. Here, a graphical user interface for atomic model validation, implemented in the CCP-EM software suite, is presented. It is aimed to develop this into a platform where users can access multiple complementary validation metrics that work across a range of resolutions and obtain a summary of evaluations. Based on the validation estimates from atomic models associated with cryo-EM structures from SARS-CoV-2, it was observed that models typically favor adopting the most common conformations over fitting the observations when compared with the model agreement with data. At low resolutions, the stereochemical quality may be favored over data fit, but care should be taken to ensure that the model agrees with the data in terms of resolvable features. It is demonstrated that further re-refinement can lead to improvement of the agreement with data without the loss of geometric quality. This also highlights the need for improved resolution-dependent weight optimization in model refinement and an effective test for overfitting that would help to guide the refinement process.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Scientific Computing Department, Science and Technology Facilities Council, Didcot, United Kingdom
| | - Mateusz Olek
- Department of Chemistry, University of York, York, United Kingdom
- Electron BioImaging Center, Diamond Light Source, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Sony Malhotra
- Scientific Computing Department, Science and Technology Facilities Council, Didcot, United Kingdom
| | - Peijun Zhang
- Electron BioImaging Center, Diamond Light Source, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Kevin Cowtan
- Department of Chemistry, University of York, York, United Kingdom
| | - Tom Burnley
- Scientific Computing Department, Science and Technology Facilities Council, Didcot, United Kingdom
| | - Martyn D. Winn
- Scientific Computing Department, Science and Technology Facilities Council, Didcot, United Kingdom
| |
Collapse
|
21
|
OUP accepted manuscript. Microscopy (Oxf) 2022; 71:i60-i65. [DOI: 10.1093/jmicro/dfab059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/19/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
|
22
|
Burnell SEA, Capitani L, MacLachlan BJ, Mason GH, Gallimore AM, Godkin A. Seven mysteries of LAG-3: a multi-faceted immune receptor of increasing complexity. IMMUNOTHERAPY ADVANCES 2021; 2:ltab025. [PMID: 35265944 PMCID: PMC8895726 DOI: 10.1093/immadv/ltab025] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Despite three decades of research to its name and increasing interest in immunotherapies that target it, LAG-3 remains an elusive co-inhibitory receptor in comparison to the well-established PD-1 and CTLA-4. As such, LAG-3 targeting therapies have yet to achieve the clinical success of therapies targeting other checkpoints. This could, in part, be attributed to the many unanswered questions that remain regarding LAG-3 biology. Of these, we address: (i) the function of the many LAG-3-ligand interactions, (ii) the hurdles that remain to acquire a high-resolution structure of LAG-3, (iii) the under-studied LAG-3 signal transduction mechanism, (iv) the elusive soluble form of LAG-3, (v) the implications of the lack of (significant) phenotype of LAG-3 knockout mice, (vi) the reports of LAG-3 expression on the epithelium, and (vii) the conflicting reports of LAG-3 expression (and potential contributions to pathology) in the brain. These mysteries which surround LAG-3 highlight how the ever-evolving study of its biology continues to reveal ever-increasing complexity in its role as an immune receptor. Importantly, answering the questions which shroud LAG-3 in mystery will allow the maximum therapeutic benefit of LAG-3 targeting immunotherapies in cancer, autoimmunity and beyond.
Collapse
Affiliation(s)
- Stephanie E A Burnell
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Lorenzo Capitani
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Georgina H Mason
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Andrew Godkin
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
- Department of Gastroenterology and Hepatology, University Hospital of Wales, Heath Park, Cardiff, UK
| |
Collapse
|
23
|
Microcrystal electron diffraction in macromolecular and pharmaceutical structure determination. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 37:93-105. [PMID: 34895659 DOI: 10.1016/j.ddtec.2020.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023]
Abstract
Microcrystal electron diffraction (MicroED) has recently shown to be a promising technique for structure determination in structural biology and pharmaceutical chemistry. Here, we discuss the unique properties of electrons and motivate its use for diffraction experiments. We review the latest developments in MicroED, and illustrate its applications in macromolecular crystallography, fragment screening and structure guided drug discovery. We discuss the perspectives of MicroED in synthetic chemistry and pharmaceutical development. We anticipate that the rapid advances MicroED showcased here will promote further development of electron crystallography and open up new opportunities for drug discovery.
Collapse
|
24
|
Warshamanage R, Yamashita K, Murshudov GN. EMDA: A Python package for Electron Microscopy Data Analysis. J Struct Biol 2021; 214:107826. [PMID: 34915128 PMCID: PMC8935390 DOI: 10.1016/j.jsb.2021.107826] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022]
Abstract
An open-source Python library EMDA for cryo-EM map and model manipulation is presented with a specific focus on validation. The use of several functionalities in the library is presented through several examples. The utility of local correlation as a metric for identifying map-model differences and unmodeled regions in maps, and how it is used as a metric of map-model validation is demonstrated. The mapping of local correlation to individual atoms, and its use to draw insights on local signal variations are discussed. EMDA’s likelihood-based map overlay is demonstrated by carrying out a superposition of two domains in two related structures. The overlay is carried out first to bring both maps into the same coordinate frame and then to estimate the relative movement of domains. Finally, the map magnification refinement in EMDA is presented with an example to highlight the importance of adjusting the map magnification in structural comparison studies.
Collapse
Affiliation(s)
- Rangana Warshamanage
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Keitaro Yamashita
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib N Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
25
|
Dong J, Liu Y, Cui Y. Artificial Metal-Peptide Assemblies: Bioinspired Assembly of Peptides and Metals through Space and across Length Scales. J Am Chem Soc 2021; 143:17316-17336. [PMID: 34618443 DOI: 10.1021/jacs.1c08487] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The exploration of chiral crystalline porous materials, such as metal-organic complexes (MOCs) or metal-organic frameworks (MOFs), has been one of the most exciting recent developments in materials science owing to their widespread applications in enantiospecific processes. However, achieving specific tight-affinity binding and remarkable enantioselectivity toward important biomolecules is still challenging. Perhaps most critically, the lack of adaptability, compatibility, and processability in these materials severely impedes practical applications in chemical engineering and biological technology. In this Perspective, artificial metal-peptide assemblies (MPAs), which are achieved by the assembly of peptides and metals with nanometer-sized cavities or pores, is a new development that could address the current bottlenecks of chiral porous materials. Bioinspired assembly of pore-forming MPAs is not foreign to biological systems and has granted scientists an unprecedented level of control over the chiral recognition sites, conformational flexibility, cavity sizes, and hydrophilic segments through ultrafine-tuning of peptide-derived linkers. We will specifically discuss exemplary MPAs including structurally well-defined metal-peptide complexes and highly crystalline metal-peptide frameworks. With insights from these structures, the peptide assembly and folding by the closer cooperation of metal coordination and noncovalent interactions can create adaptable protein-like nanocavities undergoing a myriad of conformational variations that is reminiscent of enzymatic pockets. We also consider challenges to advancing the field, where the deployment of side-chain groups and manipulation of amino acid sequences are more likely to access the programmable, genetically encodable peptide-mediated porous materials, thus contributing to the enhanced enantioselective recognition as well as enabling key biochemical processes in next-generation versatile biomimetic materials.
Collapse
Affiliation(s)
- Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Abstract
In the recent years, the protein databank has been fueled by the exponential growth of high-resolution electron cryo-microscopy (cryo-EM) structures. This trend will be further accelerated through the continuous software and method developments and the increasing availability of imaging centers, which will open cryo-EM to a wide array of researchers with their diverse scientific goals and questions. Especially for structural biology of membrane proteins, cryo-EM offers significant advantages as it can overcome multiple limitations of classical methods. Most importantly, in cryo-EM, the sample is prepared as a vitrified suspension, which abolishes the need for crystallization, reduces the required sample amount and allows usage of a wide arsenal of hydrophobic environments. Despite recent improvements, high-resolution cryo-EM still poses some significant challenges, and standardized procedures, especially for the characterization of membrane proteins, are missing. While there can be no ultimate recipe toward a high-resolution cryo-EM structure for every membrane protein, certain factors seem to be universally relevant. Here, we share the protocols that have been successfully used in our laboratory. We hope that this may be a useful resource to other researchers in the field and may increase their chances of success.
Collapse
Affiliation(s)
- Dovile Januliene
- Max-Planck Institute of Biophysics, Frankfurt, Germany.,Department of Structural Biology, University of Osnabrück, Osnabrück, Germany
| | - Arne Moeller
- Max-Planck Institute of Biophysics, Frankfurt, Germany. .,Department of Structural Biology, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
27
|
McPherson KS, Korzhnev DM. Targeting protein-protein interactions in the DNA damage response pathways for cancer chemotherapy. RSC Chem Biol 2021; 2:1167-1195. [PMID: 34458830 PMCID: PMC8342002 DOI: 10.1039/d1cb00101a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular DNA damage response (DDR) is an extensive signaling network that orchestrates DNA damage recognition, repair and avoidance, cell cycle progression and cell death. DDR alteration is a hallmark of cancer, with the deficiency in one DDR capability often compensated by a dependency on alternative pathways endowing cancer cells with survival and growth advantage. Targeting these DDR pathways has provided multiple opportunities for the development of cancer therapies. Traditional drug discovery has mainly focused on catalytic inhibitors that block enzyme active sites, which limits the number of potential drug targets within the DDR pathways. This review article describes the emerging approach to the development of cancer therapeutics targeting essential protein-protein interactions (PPIs) in the DDR network. The overall strategy for the structure-based design of small molecule PPI inhibitors is discussed, followed by an overview of the major DNA damage sensing, DNA repair, and DNA damage tolerance pathways with a specific focus on PPI targets for anti-cancer drug design. The existing small molecule inhibitors of DDR PPIs are summarized that selectively kill cancer cells and/or sensitize cancers to front-line genotoxic therapies, and a range of new PPI targets are proposed that may lead to the development of novel chemotherapeutics.
Collapse
Affiliation(s)
- Kerry Silva McPherson
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| |
Collapse
|
28
|
Coscia F, Taler-Verčič A. Cryo-EM: A new dawn in thyroid biology. Mol Cell Endocrinol 2021; 531:111309. [PMID: 33964321 PMCID: PMC8316605 DOI: 10.1016/j.mce.2021.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/09/2022]
Abstract
The thyroid gland accumulates the rare dietary element iodine and incorporates it into iodinated thyroid hormones, utilising several tightly regulated reactions and molecular mechanisms. Thyroid hormones are essential in vertebrates and play a central role in many biological processes, such as development, thermogenesis and growth. The control of these functions is exerted through the binding of hormones to nuclear thyroid hormone receptors that rule the transcription of numerous metabolic genes. Over the last 50 years, thyroid biology has been studied extensively at the cellular and organismal levels, revealing its multiple clinical implications, yet, a complete molecular understanding is still lacking. This includes the atomic structures of crucial pathway components that would be needed to elucidate molecular mechanisms. Here we review the currently known protein structures involved in thyroid hormone synthesis, regulation, transport, and actions. We also highlight targets for future investigations that will significantly benefit from recent advances in macromolecular structure determination by electron cryo-microscopy (cryo-EM). As an example, we demonstrate how cryo-EM was crucial to obtain the structure of the large thyroid hormone precursor protein, thyroglobulin. We discuss modern cryo-EM compared to other structure determination methods and how an integrated structural and cell biological approach will help filling the molecular knowledge gap in our understanding of thyroid hormone metabolism. Together with clinical, cellular and high-throughput 'omics' studies, atomic structures of thyroid components will provide an important framework to map disease mutations and to interpret and predict thyroid phenotypes.
Collapse
Affiliation(s)
- Francesca Coscia
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK; Human Technopole, Via Cristina Belgioioso 171, 20157, Milano, Italy.
| | - Ajda Taler-Verčič
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
29
|
Wang Z, Zhang Q, Mim C. Coming of Age: Cryo-Electron Tomography as a Versatile Tool to Generate High-Resolution Structures at Cellular/Biological Interfaces. Int J Mol Sci 2021; 22:6177. [PMID: 34201105 PMCID: PMC8228724 DOI: 10.3390/ijms22126177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Over the last few years, cryo electron microscopy has become the most important method in structural biology. While 80% of deposited maps are from single particle analysis, electron tomography has grown to become the second most important method. In particular sub-tomogram averaging has matured as a method, delivering structures between 2 and 5 Å from complexes in cells as well as in vitro complexes. While this resolution range is not standard, novel developments point toward a promising future. Here, we provide a guide for the workflow from sample to structure to gain insight into this emerging field.
Collapse
Affiliation(s)
| | | | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute (KTH), Hälsovägen 11C, 141 27 Huddinge, Sweden; (Z.W.); (Q.Z.)
| |
Collapse
|
30
|
An overview of the recent advances in cryo-electron microscopy for life sciences. Emerg Top Life Sci 2021; 5:151-168. [PMID: 33760078 DOI: 10.1042/etls20200295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/18/2023]
Abstract
Cryo-electron microscopy (CryoEM) has superseded X-ray crystallography and NMR to emerge as a popular and effective tool for structure determination in recent times. It has become indispensable for the characterization of large macromolecular assemblies, membrane proteins, or samples that are limited, conformationally heterogeneous, and recalcitrant to crystallization. Besides, it is the only tool capable of elucidating high-resolution structures of macromolecules and biological assemblies in situ. A state-of-the-art electron microscope operable at cryo-temperature helps preserve high-resolution details of the biological sample. The structures can be determined, either in isolation via single-particle analysis (SPA) or helical reconstruction, electron diffraction (ED) or within the cellular environment via cryo-electron tomography (cryoET). All the three streams of SPA, ED, and cryoET (along with subtomogram averaging) have undergone significant advancements in recent times. This has resulted in breaking the boundaries with respect to both the size of the macromolecules/assemblies whose structures could be determined along with the visualization of atomic details at resolutions unprecedented for cryoEM. In addition, the collection of larger datasets combined with the ability to sort and process multiple conformational states from the same sample are providing the much-needed link between the protein structures and their functions. In overview, these developments are helping scientists decipher the molecular mechanism of critical cellular processes, solve structures of macromolecules that were challenging targets for structure determination until now, propelling forward the fields of biology and biomedicine. Here, we summarize recent advances and key contributions of the three cryo-electron microscopy streams of SPA, ED, and cryoET.
Collapse
|
31
|
Turnbaugh C, Axelrod JJ, Campbell SL, Dioquino JY, Petrov PN, Remis J, Schwartz O, Yu Z, Cheng Y, Glaeser RM, Mueller H. High-power near-concentric Fabry-Perot cavity for phase contrast electron microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:053005. [PMID: 34243315 PMCID: PMC8159438 DOI: 10.1063/5.0045496] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
Transmission electron microscopy (TEM) of vitrified biological macromolecules (cryo-EM) is limited by the weak phase contrast signal that is available from such samples. Using a phase plate would thus substantially improve the signal-to-noise ratio. We have previously demonstrated the use of a high-power Fabry-Perot cavity as a phase plate for TEM. We now report improvements to our laser cavity that allow us to achieve record continuous wave intensities of over 450 GW/cm2, sufficient to produce the optimal 90° phase shift for 300 keV electrons. In addition, we have performed the first cryo-EM reconstruction using a laser phase plate, demonstrating that the stability of this laser phase plate is sufficient for use during standard cryo-EM data collection.
Collapse
Affiliation(s)
| | | | | | | | - Petar N. Petrov
- Department of Physics, 366 Physics MS 7300, University of California-Berkeley, Berkeley, California 94720, USA
| | - Jonathan Remis
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA
| | - Osip Schwartz
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
32
|
Casasanta MA, Jonaid GM, Kaylor L, Luqiu WY, Solares MJ, Schroen ML, Dearnaley WJ, Wilson J, Dukes MJ, Kelly DF. Microchip-based structure determination of low-molecular weight proteins using cryo-electron microscopy. NANOSCALE 2021; 13:7285-7293. [PMID: 33889923 PMCID: PMC8135184 DOI: 10.1039/d1nr00388g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interest in cryo-Electron Microscopy (EM) imaging has skyrocketed in recent years due to its pristine views of macromolecules and materials. As advances in instrumentation and computing algorithms spurred this progress, there is renewed focus to address specimen-related challenges. Here we contribute a microchip-based toolkit to perform complementary structural and biochemical analysis on low-molecular weight proteins. As a model system, we used the SARS-CoV-2 nucleocapsid (N) protein (48 kDa) due to its stability and important role in therapeutic development. Cryo-EM structures of the N protein monomer revealed a flexible N-terminal "top hat" motif and a helical-rich C-terminal domain. To complement our structural findings, we engineered microchip-based immunoprecipitation assays that led to the discovery of the first antibody binding site on the N protein. The data also facilitated molecular modeling of a variety of pandemic and common cold-related coronavirus proteins. Such insights may guide future pandemic-preparedness protocols through immuno-engineering strategies to mitigate viral outbreaks.
Collapse
Affiliation(s)
- Michael A Casasanta
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chiu YH, Ko KT, Yang TJ, Wu KP, Ho MR, Draczkowski P, Hsu STD. Direct Visualization of a 26 kDa Protein by Cryo-Electron Microscopy Aided by a Small Scaffold Protein. Biochemistry 2021; 60:1075-1079. [PMID: 33719392 DOI: 10.1021/acs.biochem.0c00961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cryo-electron microscopy (cryo-EM)-based structure determination of small proteins is hindered by the technical challenges associated with low signal-to-noise ratios of their particle images in intrinsically noisy micrographs. One solution is to attach the target protein to a large protein scaffold to increase its apparent size and, therefore, image contrast. Here we report a novel scaffold design based on a trimeric helical protein, E. coli ornithine transcarbamylase (OTC), fused to human ubiquitin. As a proof of principle, we demonstrated the ability to resolve a cryo-EM map of a 26 kDa human ubiquitin C-terminal hydrolase (UCHL1) attached to the C-terminus of ubiquitin as part of the trimeric assembly. The results revealed conformational changes in UCHL1 upon binding to ubiquitin, namely, a significant displacement of α-helix 2, which was also observed by X-ray crystallography. Our findings demonstrated the potential of the trimeric OTC scaffold design for studying a large number of ubiquitin interacting proteins by cryo-EM.
Collapse
Affiliation(s)
- Yi-Hsiang Chiu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kuang-Ting Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Piotr Draczkowski
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Faculty of Pharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
34
|
Clabbers MTB, Xu H. Macromolecular crystallography using microcrystal electron diffraction. Acta Crystallogr D Struct Biol 2021; 77:313-324. [PMID: 33645535 PMCID: PMC7919406 DOI: 10.1107/s2059798320016368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/16/2020] [Indexed: 11/10/2022] Open
Abstract
Microcrystal electron diffraction (MicroED) has recently emerged as a promising method for macromolecular structure determination in structural biology. Since the first protein structure was determined in 2013, the method has been evolving rapidly. Several protein structures have been determined and various studies indicate that MicroED is capable of (i) revealing atomic structures with charges, (ii) solving new protein structures by molecular replacement, (iii) visualizing ligand-binding interactions and (iv) determining membrane-protein structures from microcrystals embedded in lipidic mesophases. However, further development and optimization is required to make MicroED experiments more accurate and more accessible to the structural biology community. Here, we provide an overview of the current status of the field, and highlight the ongoing development, to provide an indication of where the field may be going in the coming years. We anticipate that MicroED will become a robust method for macromolecular structure determination, complementing existing methods in structural biology.
Collapse
Affiliation(s)
- Max T. B. Clabbers
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
35
|
Gilbert RJC. Electron microscopy as a critical tool in the determination of pore forming mechanisms in proteins. Methods Enzymol 2021; 649:71-102. [PMID: 33712203 DOI: 10.1016/bs.mie.2021.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electron microscopy has consistently played an important role in the description of pore-forming protein systems. The discovery of pore-forming proteins has depended on visualization of the structural pores formed by their oligomeric protein complexes, and as electron microscopy has advanced technologically so has the degree of insight it has been able to give. This review considers a large number of published studies of pore-forming complexes in prepore and pore states determined using single-particle cryo-electron microscopy. Sample isolation and preparation, imaging and image analysis, structure determination and optimization of results are all discussed alongside challenges which pore-forming proteins particularly present. The review also considers the use made of cryo-electron tomography to study pores within their membrane environment and which will prove an increasingly important approach for the future.
Collapse
Affiliation(s)
- Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
36
|
Wieferig JP, Mills DJ, Kühlbrandt W. Devitrification reduces beam-induced movement in cryo-EM. IUCRJ 2021; 8:186-194. [PMID: 33708396 PMCID: PMC7924229 DOI: 10.1107/s2052252520016243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/15/2020] [Indexed: 05/31/2023]
Abstract
As cryo-EM approaches the physical resolution limits imposed by electron optics and radiation damage, it becomes increasingly urgent to address the issues that impede high-resolution structure determination of biological specimens. One of the persistent problems has been beam-induced movement, which occurs when the specimen is irradiated with high-energy electrons. Beam-induced movement results in image blurring and loss of high-resolution information. It is particularly severe for biological samples in unsupported thin films of vitreous water. By controlled devitrification of conventionally plunge-frozen samples, the suspended film of vitrified water was converted into cubic ice, a polycrystalline, mechanically stable solid. It is shown that compared with vitrified samples, devitrification reduces beam-induced movement in the first 5 e Å-2 of an exposure by a factor of ∼4, substantially enhancing the contribution of the initial, minimally damaged frames to a structure. A 3D apoferritin map reconstructed from the first frames of 20 000 particle images of devitrified samples resolved undamaged side chains. Devitrification of frozen-hydrated specimens helps to overcome beam-induced specimen motion in single-particle cryo-EM, as a further step towards realizing the full potential of cryo-EM for high-resolution structure determination.
Collapse
Affiliation(s)
- Jan-Philip Wieferig
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Deryck J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| |
Collapse
|
37
|
Abstract
Cryo-electron microscopy (cryo-EM) has become the technique of choice for structural biology of macromolecular assemblies, after the 'resolution revolution' that has occurred in this field since 2012. With a suitable instrument, an appropriate electron detector and, last but not least, a cooperative sample it is now possible to collect images from which macromolecular structures can be determined to better than 2 Å resolution, where reliable atomic models can be built. By electron tomography and sub-tomogram averaging of cryo-samples, it is also possible to reconstruct subcellular structures to sub-nanometre resolution. This review describes the infrastructure that is needed to achieve this goal. Ideally, a cryo-EM lab will have a dedicated 300 kV electron microscope for data recording and a 200 kV instrument for screening cryo-samples, both with direct electron detectors, and at least one 120 kV EM for negative-stain screening at room temperature. Added to this should be ancillary equipment for specimen preparation, including a light microscope, carbon coater, plasma cleaner, glow discharge unit, a device for fast, robotic sample freezing, liquid nitrogen storage Dewars and a ready supply of clean liquid nitrogen. In practice, of course, the available budget will determine the number and types of microscopes and how elaborate the lab can be. The cryo-EM lab should be designed with adequate space for the electron microscopes and ancillary equipment, and should allow for sufficient storage space. Each electron microscope room should be connected to the image-processing computers by fibre-optic cables for the rapid transfer of large datasets. The cryo-EM lab should be overseen by a facility manager whose responsibilities include the day-to-day tasks to ensure that all microscopes are operating perfectly, organising service and repairs to minimise downtime, and controlling the budget. Large facilities will require additional support staff who help to oversee the operation of the facility and instruct new users.
Collapse
|
38
|
von Loeffelholz O, Klaholz BP. Setup and Troubleshooting of Volta Phase Plate Cryo-EM Data Collection. Methods Mol Biol 2021; 2305:291-299. [PMID: 33950395 DOI: 10.1007/978-1-0716-1406-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cryo electron microscopy (cryo-EM) has become a method of choice in structural biology to analyze isolated complexes and cellular structures. This implies adequate imaging of the specimen and advanced image-processing methods to obtain high-resolution 3D reconstructions. The use of a Volta phase plate in cryo-EM drastically increases the image contrast while being able to record images at high acceleration voltage and close to focus, i.e., at conditions where high-resolution information is best preserved. During image processing, higher contrast images can be aligned and classified better than lower quality ones resulting in increased data quality and the need for less data. Here, we give step-by-step guidelines on how to set up high-quality VPP cryo-EM single particle data collections, as exemplified by human ribosome data acquired during a one-day data collection session. Further, we describe specific technical details in image processing that differ from conventional single particle cryo-EM data analysis.
Collapse
Affiliation(s)
- Ottilie von Loeffelholz
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France. .,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France. .,Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
39
|
Reboul CF, Heo J, Machello C, Kiesewetter S, Kim BH, Kim S, Elmlund D, Ercius P, Park J, Elmlund H. SINGLE: Atomic-resolution structure identification of nanocrystals by graphene liquid cell EM. SCIENCE ADVANCES 2021; 7:7/5/eabe6679. [PMID: 33514557 PMCID: PMC7846166 DOI: 10.1126/sciadv.abe6679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Analysis of the three-dimensional (3D) structures of nanocrystals with solution-phase transmission electron microscopy is beginning to reveal their unique physiochemical properties. We developed a "one-particle Brownian 3D reconstruction method" based on imaging of ensembles of colloidal nanocrystals using graphene liquid cell electron microscopy. Projection images of differently rotated nanocrystals are acquired using a direct electron detector with high temporal (<2.5 ms) resolution and analyzed to obtain an ensemble of 3D reconstructions. Here, we introduce computational methods required for successful atomic-resolution 3D reconstruction: (i) tracking of the individual particles throughout the time series, (ii) subtraction of the interfering background of the graphene liquid cell, (iii) identification and rejection of low-quality images, and (iv) tailored strategies for 2D/3D alignment and averaging that differ from those used in biological cryo-electron microscopy. Our developments are made available through the open-source software package SINGLE.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Junyoung Heo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Simon Kiesewetter
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, South Korea
| | - Sungin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Uchański T, Masiulis S, Fischer B, Kalichuk V, López-Sánchez U, Zarkadas E, Weckener M, Sente A, Ward P, Wohlkönig A, Zögg T, Remaut H, Naismith JH, Nury H, Vranken W, Aricescu AR, Pardon E, Steyaert J. Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Nat Methods 2021; 18:60-68. [PMID: 33408403 PMCID: PMC7611088 DOI: 10.1038/s41592-020-01001-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/22/2020] [Indexed: 01/28/2023]
Abstract
Nanobodies are popular and versatile tools for structural biology. They have a compact single immunoglobulin domain organization, bind target proteins with high affinities while reducing their conformational heterogeneity and stabilize multi-protein complexes. Here we demonstrate that engineered nanobodies can also help overcome two major obstacles that limit the resolution of single-particle cryo-electron microscopy reconstructions: particle size and preferential orientation at the water-air interfaces. We have developed and characterized constructs, termed megabodies, by grafting nanobodies onto selected protein scaffolds to increase their molecular weight while retaining the full antigen-binding specificity and affinity. We show that the megabody design principles are applicable to different scaffold proteins and recognition domains of compatible geometries and are amenable for efficient selection from yeast display libraries. Moreover, we demonstrate that megabodies can be used to obtain three-dimensional reconstructions for membrane proteins that suffer from severe preferential orientation or are otherwise too small to allow accurate particle alignment.
Collapse
Affiliation(s)
- Tomasz Uchański
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Simonas Masiulis
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Baptiste Fischer
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Valentina Kalichuk
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Uriel López-Sánchez
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Eleftherios Zarkadas
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Miriam Weckener
- Rosalind Franklin Institute, Rutherford Appleton Laboratory, Didcot, UK
| | - Andrija Sente
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Philip Ward
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexandre Wohlkönig
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Thomas Zögg
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - James H Naismith
- Rosalind Franklin Institute, Rutherford Appleton Laboratory, Didcot, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hugues Nury
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Wim Vranken
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - A Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium.
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
| |
Collapse
|
41
|
Dyla M, Kjærgaard M, Poulsen H, Nissen P. Structure and Mechanism of P-Type ATPase Ion Pumps. Annu Rev Biochem 2020; 89:583-603. [PMID: 31874046 DOI: 10.1146/annurev-biochem-010611-112801] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P-type ATPases are found in all kingdoms of life and constitute a wide range of cation transporters, primarily for H+, Na+, K+, Ca2+, and transition metal ions such as Cu(I), Zn(II), and Cd(II). They have been studied through a wide range of techniques, and research has gained very significant insight on their transport mechanism and regulation. Here, we review the structure, function, and dynamics of P2-ATPases including Ca2+-ATPases and Na,K-ATPase. We highlight mechanisms of functional transitions that are associated with ion exchange on either side of the membrane and how the functional cycle is regulated by interaction partners, autoregulatory domains, and off-cycle states. Finally, we discuss future perspectives based on emerging techniques and insights.
Collapse
Affiliation(s)
- Mateusz Dyla
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Magnus Kjærgaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| |
Collapse
|
42
|
Caesar J, Reboul CF, Machello C, Kiesewetter S, Tang ML, Deme JC, Johnson S, Elmlund D, Lea SM, Elmlund H. WITHDRAWN: SIMPLE 3.0. Stream single-particle cryo-EM analysis in real time. J Struct Biol 2020; 212:107635. [PMID: 33022362 DOI: 10.1016/j.jsb.2020.107635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Simon Kiesewetter
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Molly L Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK.
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
43
|
Chang JY, Cui Z, Yang K, Huang J, Minary P, Zhang J. Hierarchical natural move Monte Carlo refines flexible RNA structures into cryo-EM densities. RNA (NEW YORK, N.Y.) 2020; 26:1755-1766. [PMID: 32826323 PMCID: PMC7668250 DOI: 10.1261/rna.071100.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Ribonucleic acids (RNAs) play essential roles in living cells. Many of them fold into defined three-dimensional (3D) structures to perform functions. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have enabled structure determinations of RNA to atomic resolutions. However, most RNA molecules are structurally flexible, limiting the resolution of their structures solved by cryo-EM. In modeling these molecules, several computational methods are limited by the requirement of massive computational resources and/or the low efficiency in exploring large-scale structural variations. Here we use hierarchical natural move Monte Carlo (HNMMC), which takes advantage of collective motions for groups of nucleic acid residues, to refine RNA structures into their cryo-EM maps, preserving atomic details in the models. After validating the method on a simulated density map of tRNA, we applied it to objectively obtain the model of the folding intermediate for the specificity domain of ribonuclease P from Bacillus subtilis and refine a flexible ribosomal RNA (rRNA) expansion segment from the Mycobacterium tuberculosis (Mtb) ribosome in different conformational states. Finally, we used HNMMC to model atomic details and flexibility for two distinct conformations of the complete genomic RNA (gRNA) inside MS2, a single-stranded RNA virus, revealing multiple pathways for its capsid assembly.
Collapse
Affiliation(s)
- Jeng-Yih Chang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Center for Phage Technology, College Station, Texas 77843, USA
| | - Zhicheng Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Center for Phage Technology, College Station, Texas 77843, USA
| | - Kailu Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Center for Phage Technology, College Station, Texas 77843, USA
| | - Jianhua Huang
- Department of Statistics, Texas A&M University, College Station, Texas 77843, USA
| | - Peter Minary
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Center for Phage Technology, College Station, Texas 77843, USA
| |
Collapse
|
44
|
Atherton J, Hummel JJA, Olieric N, Locke J, Peña A, Rosenfeld SS, Steinmetz MO, Hoogenraad CC, Moores CA. The mechanism of kinesin inhibition by kinesin-binding protein. eLife 2020; 9:e61481. [PMID: 33252036 PMCID: PMC7746232 DOI: 10.7554/elife.61481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022] Open
Abstract
Subcellular compartmentalisation is necessary for eukaryotic cell function. Spatial and temporal regulation of kinesin activity is essential for building these local environments via control of intracellular cargo distribution. Kinesin-binding protein (KBP) interacts with a subset of kinesins via their motor domains, inhibits their microtubule (MT) attachment, and blocks their cellular function. However, its mechanisms of inhibition and selectivity have been unclear. Here we use cryo-electron microscopy to reveal the structure of KBP and of a KBP-kinesin motor domain complex. KBP is a tetratricopeptide repeat-containing, right-handed α-solenoid that sequesters the kinesin motor domain's tubulin-binding surface, structurally distorting the motor domain and sterically blocking its MT attachment. KBP uses its α-solenoid concave face and edge loops to bind the kinesin motor domain, and selected structure-guided mutations disrupt KBP inhibition of kinesin transport in cells. The KBP-interacting motor domain surface contains motifs exclusively conserved in KBP-interacting kinesins, suggesting a basis for kinesin selectivity.
Collapse
Affiliation(s)
- Joseph Atherton
- Randall Centre for Cell and Molecular Biophysics, King’s CollegeLondonUnited Kingdom
- Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondonUnited Kingdom
| | - Jessica JA Hummel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer InstitutVilligen PSISwitzerland
| | - Julia Locke
- Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondonUnited Kingdom
| | - Alejandro Peña
- Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondonUnited Kingdom
| | | | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer InstitutVilligen PSISwitzerland
- University of Basel, BiozentrumBaselSwitzerland
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondonUnited Kingdom
| |
Collapse
|
45
|
Caesar J, Reboul CF, Machello C, Kiesewetter S, Tang ML, Deme JC, Johnson S, Elmlund D, Lea SM, Elmlund H. SIMPLE 3.0. Stream single-particle cryo-EM analysis in real time. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100040. [PMID: 33294840 PMCID: PMC7695977 DOI: 10.1016/j.yjsbx.2020.100040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We here introduce the third major release of the SIMPLE (Single-particle IMage Processing Linux Engine) open-source software package for analysis of cryogenic transmission electron microscopy (cryo-EM) movies of single-particles (Single-Particle Analysis, SPA). Development of SIMPLE 3.0 has been focused on real-time data processing using minimal CPU computing resources to allow easy and cost-efficient scaling of processing as data rates escalate. Our stream SPA tool implements the steps of anisotropic motion correction and CTF estimation, rapid template-based particle identification and 2D clustering with automatic class rejection. SIMPLE 3.0 additionally features an easy-to-use web-based graphical user interface (GUI) that can be run on any device (workstation, laptop, tablet or phone) and supports a remote multi-user environment over the network. The new project-based execution model automatically records the executed workflow and represents it as a flow diagram in the GUI. This facilitates meta-data handling and greatly simplifies usage. Using SIMPLE 3.0, it is possible to automatically obtain a clean SP data set amenable to high-resolution 3D reconstruction directly upon completion of the data acquisition, without the need for extensive image processing post collection. Only minimal standard CPU computing resources are required to keep up with a rate of ∼300 Gatan K3 direct electron detector movies per hour. SIMPLE 3.0 is available for download from simplecryoem.com.
Collapse
Affiliation(s)
- Joseph Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Simon Kiesewetter
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Molly L Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Analyzing contrast in cryo-transmission electron microscopy: Comparison of electrostatic Zach phase plates and hole-free phase plates. Ultramicroscopy 2020; 218:113086. [DOI: 10.1016/j.ultramic.2020.113086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
|
47
|
Buijsse B, Trompenaars P, Altin V, Danev R, Glaeser RM. Spectral DQE of the Volta phase plate. Ultramicroscopy 2020; 218:113079. [DOI: 10.1016/j.ultramic.2020.113079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
|
48
|
Nygaard R, Kim J, Mancia F. Cryo-electron microscopy analysis of small membrane proteins. Curr Opin Struct Biol 2020; 64:26-33. [PMID: 32603877 PMCID: PMC7665978 DOI: 10.1016/j.sbi.2020.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Recent advances in single-particle cryogenic-electron microscopy have facilitated an exponential growth in the number of membrane protein structures determined to close to atomic resolution. Nevertheless, despite improvements in microscope hardware, cryo-EM software and sample preparation techniques, challenges remain for structural analysis of small-sized membrane proteins (i.e.<150 kilodalton). Here we discuss recent examples of structures of macromolecules from this category determined by cryo-EM. We analyze the underlying difficulties, the enabling technologies such as the use of antibody fragments to gain size and provide fiducials for particle alignment, and the unresolved issues like dislocation of complexes at the air-water interface. Finally, we briefly highlight the biological relevance of some of these success stories, and our predictions for the future.
Collapse
Affiliation(s)
- Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
49
|
Wu M, Lander GC. How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Curr Opin Struct Biol 2020; 64:9-16. [PMID: 32599507 PMCID: PMC7666008 DOI: 10.1016/j.sbi.2020.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
For decades, high-resolution structural studies of biological macromolecules with masses of <200kDa by cryo-EM single-particle analysis were considered infeasible. It was not until several years after the advent of direct detectors that the overlooked potential of cryo-EM for studying small complexes was first realized. Subsequent advances in sample preparation, imaging, and data processing algorithms have improved our ability to visualize small biological targets. In the past two years alone, nearly two hundred high-resolution structures have been determined of small (<200kDa) macromolecules, the smallest being approximately 39kDa in molecular weight. Here we summarize some salient lessons and strategies for cryo-EM studies of small biological complexes, and also consider future prospects for routine structure determination.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
50
|
Hurdiss DL, Drulyte I, Lang Y, Shamorkina TM, Pronker MF, van Kuppeveld FJM, Snijder J, de Groot RJ. Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Nat Commun 2020; 11:4646. [PMID: 32938911 PMCID: PMC7495468 DOI: 10.1038/s41467-020-18440-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/21/2020] [Indexed: 01/23/2023] Open
Abstract
The human betacoronaviruses HKU1 and OC43 (subgenus Embecovirus) arose from separate zoonotic introductions, OC43 relatively recently and HKU1 apparently much longer ago. Embecovirus particles contain two surface projections called spike (S) and haemagglutinin-esterase (HE), with S mediating receptor binding and membrane fusion, and HE acting as a receptor-destroying enzyme. Together, they promote dynamic virion attachment to glycan-based receptors, specifically 9-O-acetylated sialic acid. Here we present the cryo-EM structure of the ~80 kDa, heavily glycosylated HKU1 HE at 3.4 Å resolution. Comparison with existing HE structures reveals a drastically truncated lectin domain, incompatible with sialic acid binding, but with the structure and function of the esterase domain left intact. Cryo-EM and mass spectrometry analysis reveals a putative glycan shield on the now redundant lectin domain. The findings further our insight into the evolution and host adaptation of human embecoviruses, and demonstrate the utility of cryo-EM for studying small, heavily glycosylated proteins.
Collapse
Affiliation(s)
- Daniel L Hurdiss
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CH, Utrecht, The Netherlands. .,Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Ieva Drulyte
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, Eindhoven, 5651 GG, The Netherlands
| | - Yifei Lang
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CH, Utrecht, The Netherlands
| | - Tatiana M Shamorkina
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CH, Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Raoul J de Groot
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|