1
|
Piras IM, Nevarez JG, Stevenson L, Bell F, Ilia G, Peters S, Slawski D, Kelly PA. The pathogenesis of West Nile virus-associated lymphohistiocytic proliferative cutaneous lesions of American alligators (Alligator mississippiensis). Vet Pathol 2025; 62:343-354. [PMID: 39968780 PMCID: PMC12014949 DOI: 10.1177/03009858251317481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
"Pix" is one of the most common skin defects that reduce the quality of crocodilian leather. The name is derived from their resemblance to pit marks made by an ice pick. Histologically, each "pix" is associated with a focal dermal accumulation of immune cells, specifically lymphocytes and histiocytes. Consequently, these defects have been termed lymphohistiocytic proliferative cutaneous lesions (LPCLs). In farmed American alligators (Alligator mississippiensis), LPCLs have been associated with seropositivity against West Nile virus (WNV) and the presence of viral genome in the skin. Despite this association, the nature and pathogenesis of LPCLs remain unclear. Using immunohistochemistry and in situ hybridization, we unravel the microanatomy of LPCLs of alligators and localize WNV genome within the lesions. Our results show that LPCL lesions consist of de novo follicular aggregates of lymphocytes segregated into B- and T-cell zones, like tertiary lymphatic follicles of mammals and birds. Furthermore, the presence of WNV genome was highlighted by in situ hybridization in the macrophages of LPCLs, gut-associated lymphoid tissues, and the spleen. Our results suggest that LPCLs may form in American alligators' skin as part of a generalized lymphofollicular proliferation, likely as an immune response against WNV infection.
Collapse
|
2
|
Pan YR, Wu CS, Zhong YQ, Zhang YA, Zhang XJ. An Atlas of Grass Carp IgM+ B Cells in Homeostasis and Bacterial Infection Helps to Reveal the Unique Heterogeneity of B Cells in Early Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:964-980. [PMID: 37578390 DOI: 10.4049/jimmunol.2300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Teleost B cells are primitive lymphocytes with both innate and adaptive immune functions. However, the heterogeneity and differentiation trajectory of teleost B cells remain largely unknown. In this study, the landscape of grass carp IgM+ (gcIgM+) B cells was revealed by single-cell RNA sequencing. The results showed that gcIgM+ B cells mainly comprise six populations: (im)mature B cells, innate B cells, proliferating B cells, plasma cells, CD22+ cells, and CD34+ cells, among which innate B cells and proliferating B cells were uncommon B cell subsets with, to our knowledge, new characteristics. Remarkably, three functional IgMs were discovered in grass carp, and a significant percentage of gcIgM+ B cells, especially plasma cells, expressed multiple Igμ genes (Igμ1, Igμ2, and/or Igμ3). More importantly, through single-cell sorting combined with Sanger sequencing, we found that distinct VHDJH recombination patterns of Igμ genes were present in single IgM+ B cells, indicating that individual teleost B cells might produce multiple Abs by coexpressing rearranged IgM subclass genes. Moreover, the percentage of IgM1highIgM2highIgM3high plasma cells increased significantly after bacterial infection, suggesting that individual plasma cells might tend to produce multiple IgMs to resist the infection in teleost fish. In summary, to our knowledge, this study not only helps to uncover the unique heterogeneity of B cells in early vertebrates but also provided significant new evidence supporting the recently proposed "one cell-multiple Abs" paradigm, challenging the classical rule of "one cell-one Ab."
Collapse
Affiliation(s)
- Yi-Ru Pan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Qin Zhong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| |
Collapse
|
3
|
Li X, Fu L, Zhang S, Wang Y, Gao L. How Alligator Immune Peptides Kill Gram-Negative Bacteria: A Lipid-Scrambling, Squeezing, and Extracting Mechanism Revealed by Theoretical Simulations. Int J Mol Sci 2023; 24:10962. [PMID: 37446138 DOI: 10.3390/ijms241310962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Alligator sinensis cathelicidins (As-CATHs) are antimicrobial peptides extracted from alligators that enable alligators to cope with diseases caused by bacterial infections. This study assessed the damaging effects of sequence-truncated and residue-substituted variants of As-CATH4, AS4-1, AS4-5, and AS4-9 (with decreasing charges but increasing hydrophobicity) on the membranes of Gram-negative bacteria at the molecular level by using coarse-grained molecular dynamics simulations. The simulations predicted that all the variants disrupt the structures of the inner membrane of Gram-negative bacteria, with AS4-9 having the highest antibacterial activity that is able to squeeze the membrane and extract lipids from the membrane. However, none of them can disrupt the structure of asymmetric outer membrane of Gram-negative bacteria, which is composed of lipopolysaccharides in the outer leaflet and phospholipids in the inner leaflet. Nonetheless, the adsorption of AS4-9 induces lipid scrambling in the membrane by lowering the free energy of a phospholipid flipping from the inner leaflet up to the outer leaflet. Upon binding onto the lipid-scrambled outer membrane, AS4-9s are predicted to squeeze and extract phospholipids from the membrane, AS4-5s have a weak pull-out effect, and AS4-1s mainly stay free in water without any lipid-extracting function. These findings provide inspiration for the development of potent therapeutic agents targeting bacteria.
Collapse
Affiliation(s)
- Xiangyuan Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Cui Z, Zhao H, Chen X. Molecular and functional characterization of two IgM subclasses in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108581. [PMID: 36754157 DOI: 10.1016/j.fsi.2023.108581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
As the predominant immunoglobulin (Ig) isotype, IgM plays a crucial role in the acquired immunity of vertebrates. There is only one Igμ gene in mammals, except cattle, while the number of Igμ gene varies among teleost fish. In the current study, we found two functional Igμ genes (Igμ1 and Igμ2) and a pseudo Cμ gene (ψIgμ) in large yellow croaker (Larimichthys crocea). Both Igμ1 and Igμ2 genes possessed two transcript variants, which encoded the heavy chains of secreted (sIgM1 and sIgM2) and membrane-bound IgM1 and IgM2 (mIgM1 and mIgM2), respectively. Both the heavy chains of sIgM1 and sIgM2 consisted of a variable Ig domain, four constant Ig domains (CH1, CH2, CH3 and CH4) and a secretory tail, while those of mIgM1 and mIgM2 consisted of a variable Ig domain, three constant Ig domains (CH1, CH2 and CH3), a transmembrane domain and a short cytoplasmic tail. Cysteine residues that are necessary for the formation of intrachain and interchain disulfide bonds and tryptophan residues that are important for the folding of the Ig superfamily domain were well conserved in large yellow croaker IgM1 and IgM2. Interestingly, large yellow croaker IgM2 had an extra cysteine (C94) in the CH1 domain compared with IgM1, which may cause the structural difference between IgM1 and IgM2. A liquid chromatography-tandem mass spectrometry analysis revealed that both IgM1 and IgM2 were present at the protein level in large yellow croaker serum. Both the Igμ1 and Igμ2 genes were mainly expressed in systemic immune tissues, such as head kidney and spleen, but the expression level of Igμ2 was much lower than that of Igμ1. After Pseudomonas plecoglossicida infection, the expression levels of Igμ1 and Igμ2 in both the spleen and head kidney were significantly upregulated, with a higher upregulation of Igμ2 than that of Igμ1. These results suggested that Igμ1 and Igμ2 may play a differential role in the immune response of large yellow croaker against bacterial infection.
Collapse
Affiliation(s)
- Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Han Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| |
Collapse
|
5
|
Wu M, Zhao H, Tang X, Zhao W, Yi X, Li Q, Sun X. Organization and Complexity of the Yak (Bos Grunniens) Immunoglobulin Loci. Front Immunol 2022; 13:876509. [PMID: 35615368 PMCID: PMC9124968 DOI: 10.3389/fimmu.2022.876509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
As important livestock in Qinghai-Tibet Plateau, yak provides meat and other necessities for Tibetans living. Plateau yak has resistance to diseases and stress, yet is nearly unknown in the structure and expression mechanism of yak immunoglobulin loci. Based on the published immunoglobulin genes of bovids (cattle, sheep and goat), the genomic organization of the yak immunoglobulin heavy chain (IgH) and immunoglobulin light chain (IgL) were described. The assemblage diversity of IgH, Igλ and Igκ in yak was similar to that in bovids, and contributes little to the antibody lineage compared with that in humans and mice. Somatic hypermutation (SHM) had a greater effect on immunoglobulin diversity in yak than in goat and sheep, and in addition to the complementarity-determining region (CDR), some loci in the framework region (FR) also showed high frequency mutations. CDR3 diversity showed that immunological lineages in yak were overwhelmingly generated through linkage diversity in IgH rearrangements. The emergence of new high-throughput sequencing technologies and the yak whole genome (2019) publication have greatly improved our understanding of the immune response in yaks. We had a more comprehensive analysis of yak immunoglobulin expression diversity by PE300, which avoided the disadvantage of missing low-frequency recombination in traditional Sanger sequencing. In summary, we described the schematic structure of the genomic organization of yak IgH loci and IgL loci. The analysis of immunoglobulin expression diversity showed that yak made up for the deficiency of V(D)J recombinant diversity by junctional diversity and CDR3 diversity. In addition, yak, like cattle, also had the same ultra-long IgH CDR3 (CDR3H), which provided more contribution to the diverse expression of yak immunoglobulin. These findings might provide a theoretical basis for disease resistance breeding and vaccine development in yak.
Collapse
Affiliation(s)
- Mingli Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wanxia Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- *Correspondence: Xiuzhu Sun,
| |
Collapse
|
6
|
Wan Z, Zhao Y, Sun Y. Immunoglobulin D and its encoding genes: An updated review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104198. [PMID: 34237381 DOI: 10.1016/j.dci.2021.104198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Since the identification of a functional Cδ gene in ostriches, immunoglobulin (Ig) D has been considered to be an extremely evolutionarily conserved Ig isotype besides the IgM found in all classes of jawed vertebrates. However, in contrast to IgM (which remains stable over evolutionary time), IgD shows considerable structural plasticity among vertebrate species and, moreover, its functions are far from elucidated even in humans and mice. Recently, several studies have shown that high expression of the IgD-B-cell receptor (IgD-BCR) may help physiologically autoreactive B cells survive in peripheral lymphoid tissues thanks to unresponsiveness to self-antigens and help their entry into germinal centers to "redeem" autoreactivity via somatic hypermutation. Other studies have demonstrated that secreted IgD may enhance mucosal homeostasis and immunity by linking B cells with basophils to optimize T-helper-2 cell-mediated responses and to constrain IgE-mediated basophil degranulation. Herein, we review the new discoveries on IgD-encoding genes in jawed vertebrates in the past decade. We also highlight advances in the functions of the IgD-BCR and secreted IgD in humans and mice.
Collapse
Affiliation(s)
- Zihui Wan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Olivieri DN, Mirete-Bachiller S, Gambón-Deza F. Insights into the evolution of IG genes in Amphibians and reptiles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103868. [PMID: 32949685 DOI: 10.1016/j.dci.2020.103868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Immunoglobulins are essential proteins of the immune system to neutralize pathogens. Gene encoding B cell receptors and antibodies (Ig genes) first appeared with the emergence of early vertebrates having a jaw, and are now present in all extant jawed vertebrates, or Gnathostomata. The genes have undergone evolutionary changes. In particular, genomic structural changes corresponding to genes of the adaptive immune system were coincident or in parallel with the adaptation of vertebrates from the sea to land. In cartilaginous fish exist IgM, IgD/W, and IgNAR and in bony fish IgM, IgT, IgD. Amphibians and reptiles witnessed significant modifications both in the structure and orientation of IG genes. In particular, for these amphibians and Amniota that adapted to land, IgM and IgD genes were retained, but other isotypes arose, including genes for IgA(X)1, IgA(X)2, and IgY. Recent progress in high throughput genome sequencing is helping to uncover the IG gene structure of all jawed vertebrates. In this work, we review the work and present knowledge of immunoglobulin genes in genomes of amphibians and reptiles.
Collapse
Affiliation(s)
- David N Olivieri
- Centro de Intelixencia Artificial, Ourense, Spain; ESEI, Dept. Informatics, Universidade de Vigo. As Lagoas S/n, Ourense, Spain.
| | | | | |
Collapse
|
8
|
Zimmerman LM. The reptilian perspective on vertebrate immunity: 10 years of progress. J Exp Biol 2020; 223:223/21/jeb214171. [DOI: 10.1242/jeb.214171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Ten years ago, ‘Understanding the vertebrate immune system: insights from the reptilian perspective’ was published. At the time, our understanding of the reptilian immune system lagged behind that of birds, mammals, fish and amphibians. Since then, great progress has been made in elucidating the mechanisms of reptilian immunity. Here, I review recent discoveries associated with the recognition of pathogens, effector mechanisms and memory responses in reptiles. Moreover, I put forward key questions to drive the next 10 years of research, including how reptiles are able to balance robust innate mechanisms with avoiding self-damage, how B cells and antibodies are used in immune defense and whether innate mechanisms can display the hallmarks of memory. Finally, I briefly discuss the links between our mechanistic understanding of the reptilian immune system and the field of eco-immunology. Overall, the field of reptile immunology is poised to contribute greatly to our understanding of vertebrate immunity in the next 10 years.
Collapse
|
9
|
Wang X, Huang J, Wang P, Wang R, Wang C, Yu D, Ke C, Huang T, Song Y, Bai J, Li K, Ren L, Miller RD, Han H, Zhou X, Zhao Y. Analysis of the Chinese Alligator TCRα/δ Loci Reveals the Evolutionary Pattern of Atypical TCRδ/TCRμ in Tetrapods. THE JOURNAL OF IMMUNOLOGY 2020; 205:637-647. [PMID: 32591403 DOI: 10.4049/jimmunol.2000257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022]
Abstract
Atypical TCRδ found in sharks, amphibians, birds, and monotremes and TCRμ found in monotremes and marsupials are TCR chains that use Ig or BCR-like variable domains (VHδ/Vμ) rather than conventional TCR V domains. These unconventional TCR are consistent with a scenario in which TCR and BCR, although having diverged from each other more than 400 million years ago, continue to exchange variable gene segments in generating diversity for Ag recognition. However, the process underlying this exchange and leading to the evolution of these atypical TCR receptor genes remains elusive. In this study, we identified two TCRα/δ gene loci in the Chinese alligator (Alligator sinensis). In total, there were 144 V, 154 Jα, nine Jδ, eight Dδ, two Cα, and five Cδ gene segments in the TCRα/δ loci of the Chinese alligator, representing the most complicated TCRα/δ gene system in both genomic structure and gene content in any tetrapod examined so far. A pool of 32 VHδ genes divided into 18 subfamilies was found to be scattered over the two loci. Phylogenetic analyses revealed that these VHδ genes could be related to bird VHδ genes, VHδ/Vμ genes in platypus or opossum, or alligator VH genes. Based on these findings, a model explaining the evolutionary pattern of atypical TCRδ/TCRμ genes in tetrapods is proposed. This study sheds new light on the evolution of TCR and BCR genes, two of the most essential components of adaptive immunity.
Collapse
Affiliation(s)
- Xifeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jinwei Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Renping Wang
- Administration Bureau of Alligator sinensis National Nature Reserve Protection, Anhui 242000, People's Republic of China
| | - Chaolin Wang
- Administration Bureau of Alligator sinensis National Nature Reserve Protection, Anhui 242000, People's Republic of China
| | - Di Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Cuncun Ke
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng 475004, Henan, People's Republic of China; and
| | - Yu Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianhui Bai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kongpan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Robert D Miller
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
10
|
Criscitiello MF, Kraev I, Petersen LH, Lange S. Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle-Specific Signatures Relating to Immunity, Metabolic Function, and Gene Regulation. Front Immunol 2020; 11:651. [PMID: 32411128 PMCID: PMC7198796 DOI: 10.3389/fimmu.2020.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Alligators are crocodilians and among few species that endured the Cretaceous-Paleogene extinction event. With long life spans, low metabolic rates, unusual immunological characteristics, including strong antibacterial and antiviral ability, and cancer resistance, crocodilians may hold information for molecular pathways underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of calcium-activated enzymes that cause posttranslational protein deimination/citrullination in a range of target proteins contributing to protein moonlighting functions in health and disease. PADs are phylogenetically conserved and are also a key regulator of extracellular vesicle (EV) release, a critical part of cellular communication. As little is known about PAD-mediated mechanisms in reptile immunology, this study was aimed at profiling EVs and protein deimination in Alligator mississippiensis. Alligator plasma EVs were found to be polydispersed in a 50-400-nm size range. Key immune, metabolic, and gene regulatory proteins were identified to be posttranslationally deiminated in plasma and plasma EVs, with some overlapping hits, while some were unique to either plasma or plasma EVs. In whole plasma, 112 target proteins were identified to be deiminated, while 77 proteins were found as deiminated protein hits in plasma EVs, whereof 31 were specific for EVs only, including proteins specific for gene regulatory functions (e.g., histones). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed KEGG pathways specific to deiminated proteins in whole plasma related to adipocytokine signaling, while KEGG pathways of deiminated proteins specific to EVs included ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis pathways as well as core histones. This highlights roles for EV-mediated export of deiminated protein cargo with roles in metabolism and gene regulation, also related to cancer. The identification of posttranslational deimination and EV-mediated communication in alligator plasma revealed here contributes to current understanding of protein moonlighting functions and EV-mediated communication in these ancient reptiles, providing novel insight into their unusual immune systems and physiological traits. In addition, our findings may shed light on pathways underlying cancer resistance, antibacterial and antiviral resistance, with translatable value to human pathologies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, United Kingdom
| | - Lene H. Petersen
- Department of Marine Biology, Texas A&M University at Galvestone, Galveston, TX, United States
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
11
|
Sun Y, Huang T, Hammarström L, Zhao Y. The Immunoglobulins: New Insights, Implications, and Applications. Annu Rev Anim Biosci 2019; 8:145-169. [PMID: 31846352 DOI: 10.1146/annurev-animal-021419-083720] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulins (Igs), as one of the hallmarks of adaptive immunity, first arose approximately 500 million years ago with the emergence of jawed vertebrates. Two events stand out in the evolutionary history of Igs from cartilaginous fish to mammals: (a) the diversification of Ig heavy chain (IgH) genes, resulting in Ig isotypes or subclasses associated with novel functions, and (b) the diversification of genetic and structural strategies, leading to the creation of the antibody repertoire we know today. This review first gives an overview of the IgH isotypes identified in jawed vertebrates to date and then highlights the implications or applications of five new recent discoveries arising from comparative studies of Igs derived from different vertebrate species.
Collapse
Affiliation(s)
- Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China;
| | - Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng 475004, Henan, People's Republic of China;
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Hospital Huddinge, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
12
|
Shaik Abdool F, Coetzer THT, Goldring JPD. Isolation of Nile crocodile (Crocodylus niloticus) serum immunoglobulin M and Y (IgM and IgY). J Immunol Methods 2019; 478:112724. [PMID: 31837304 DOI: 10.1016/j.jim.2019.112724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 11/27/2022]
Abstract
Crocodile immunity has not been fully characterised with more studies on crocodile innate immunity than cell-mediated or humoral immunity. Crocodile immunoglobulin genes have been described but immunoglobulin proteins have not been isolated or studied biochemically. Two large proteins proposed to be crocodile IgM and IgY were isolated and purified from Crocodylus niloticus sera using two different protocols. A 50% (w/v) ammonium sulfate and a 15% (w/v) polyethylene glycol precipitation step was followed by Cibacron blue F3GA affinity- and Sephacryl-S300 gel filtration chromatography. An alternate purification protocol, with only two steps, involved thiophilic affinity- and Sephacryl-S300 gel filtration chromatography. The purified crocodile IgM resolved on reducing SDS-PAGE with an apparent mass of 180 kDa. Purified crocodile IgY resolved at 180 kDa alongside chicken IgY on a non-reducing SDS-PAGE gel, and is deduced to consist of two 66 kDa heavy and two 23 kDa light chains under reducing conditions. The thiophilic/gel filtration two-step protocol gave three-fold higher yields of isolated protein than the four-step precipitation/chromatography protocol. Antibodies against the isolated crocodile IgM and IgY were raised in chickens and affinity purified. The chicken antibodies differentiated between crocodile IgM and IgY and have the potential for use in the diagnosis of crocodile infections. The purified crocodile antibodies can be biochemically characterised and compared to mammalian and avian antibodies to give a better understanding of crocodile humoral immunity.
Collapse
Affiliation(s)
- Faiaz Shaik Abdool
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg campus), Private Bag X01, Scottsville 3209, South Africa
| | - Theresa H T Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg campus), Private Bag X01, Scottsville 3209, South Africa
| | - J P Dean Goldring
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg campus), Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
13
|
Wang X, Wang P, Wang R, Wang C, Bai J, Ke C, Yu D, Li K, Ma Y, Han H, Zhao Y, Zhou X, Ren L. Analysis of TCRβ and TCRγ genes in Chinese alligator provides insights into the evolution of TCR genes in jawed vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:31-43. [PMID: 29574022 DOI: 10.1016/j.dci.2018.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
All jawed vertebrates have four T cell receptor (TCR) chains that are expressed by thymus-derived lymphocytes and play a major role in animal immune defence. However, few studies have investigated the TCR chains of crocodilians compared with those of birds and mammals, despite their key evolutionary position linking amphibians, reptiles, birds and mammals. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization, evolution and expression of TRB and TRG loci in Alligator sinensis. According to the sequencing data, the Alligator sinensis TRB locus spans approximately 500 Kb of genomic DNA containing two D-J-C clusters and 43 V gene segments and is organized as Vβ(39)-pJβ1-pCβ1-pDβ1-Dβ2- Jβ2(12)-Cβ2-Vβ(4), whereas the TRG locus spans 115 Kb of DNA genomic sequence consisting of 18 V gene segments, nine J gene segments and one C gene segment and is organized in a classical translocon pattern as Vγ(18)-Jγ(9)-Cγ. Moreover, syntenic analysis of TRB and TRG chain loci suggested a high degree of conserved synteny in the genomic regions across mammals, birds and Alligator sinensis. By analysing the cloned TRB/TRG cDNA, we identified the usage pattern of V families in the expressed TRB and TRG. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed TRB and TRG sequences. Phylogenetic analysis revealed that TRB and TRG loci possess distinct evolutionary patterns. Most Alligator sinensis V subgroups have closely related orthologues in chicken and duck, and a small number of Alligator sinensis V subgroups have orthologues in mammals, which supports the hypothesis that crocodiles are the closest relatives of birds and mammals. Collectively, these data provide insights into TCR gene evolution in vertebrates and improve our understanding of the Alligator sinensis immune system.
Collapse
Affiliation(s)
- Xifeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Renping Wang
- Administration Bureau of Chinese Alligator National Nature Reserve Protection, Anhui, People's Republic of China
| | - Chaolin Wang
- Administration Bureau of Chinese Alligator National Nature Reserve Protection, Anhui, People's Republic of China
| | - Jianhui Bai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Cuncun Ke
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Di Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Kongpan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Yonghe Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, People's Republic of China; College of Plant Protection, China Agricultural University, Beijing, People's Republic of China.
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Huang T, Wang X, Si R, Chi H, Han B, Han H, Cao G, Zhao Y. Identification of a Transcriptionally Forward α Gene and Two υ Genes within the Pigeon ( Columba livia) IgH Gene Locus. THE JOURNAL OF IMMUNOLOGY 2018; 200:3720-3728. [PMID: 29686053 DOI: 10.4049/jimmunol.1701768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/27/2018] [Indexed: 11/19/2022]
Abstract
Compared with mammals, the bird Ig genetic system relies on gene conversion to create an Ab repertoire, with inversion of the IgA-encoding gene and very few cases of Ig subclass diversification. Although gene conversion has been studied intensively, class-switch recombination, a mechanism by which the IgH C region is exchanged, has rarely been investigated in birds. In this study, based on the published genome of pigeon (Columba livia) and high-throughput transcriptome sequencing of immune-related tissues, we identified a transcriptionally forward α gene and found that the pigeon IgH gene locus is arranged as μ-α-υ1-υ2. In this article, we show that both DNA deletion and inversion may result from IgA and IgY class switching, and similar junction patterns were observed for both types of class-switch recombination. We also identified two subclasses of υ genes in pigeon, which share low sequence identity. Phylogenetic analysis suggests that divergence of the two pigeon υ genes occurred during the early stage of bird evolution. The data obtained in this study provide new insight into class-switch recombination and Ig gene evolution in birds.
Collapse
Affiliation(s)
- Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng 475004, People's Republic of China
| | - Xifeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, People's Republic of China; and
| | - Run Si
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng 475004, People's Republic of China
| | - Hao Chi
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng 475004, People's Republic of China
| | - Binyue Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Gengsheng Cao
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng 475004, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
15
|
Stanfield RL, Haakenson J, Deiss TC, Criscitiello MF, Wilson IA, Smider VV. The Unusual Genetics and Biochemistry of Bovine Immunoglobulins. Adv Immunol 2018; 137:135-164. [PMID: 29455846 DOI: 10.1016/bs.ai.2017.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibodies are the key circulating molecules that have evolved to fight infection by the adaptive immune system of vertebrates. Typical antibodies of most species contain six complementarity-determining regions (CDRs), where the third CDR of the heavy chain (CDR H3) has the greatest diversity and often makes the most significant contact with antigen. Generally, the process of V(D)J recombination produces a vast repertoire of antibodies; multiple V, D, and J gene segments recombine with additional junctional diversity at the V-D and D-J joints, and additional combinatorial possibilities occur through heavy- and light-chain pairing. Despite these processes, the overall structure of the resulting antibody is largely conserved, and binding to antigen occurs predominantly through the CDR loops of the immunoglobulin V domains. Bovines have deviated from this general paradigm by having few VH regions and thus little germline combinatorial diversity, but their antibodies contain long CDR H3 regions, with substantial diversity generated through somatic hypermutation. A subset of the repertoire comprises antibodies with ultralong CDR H3s, which can reach over 70 amino acids in length. Structurally, these unusual antibodies form a β-ribbon "stalk" and disulfide-bonded "knob" that protrude far from the antibody surface. These long CDR H3s allow cows to mount a particularly robust immune response when immunized with viral antigens, particularly to broadly neutralizing epitopes on a stabilized HIV gp140 trimer, which has been a challenge for other species. The unusual genetics and structural biology of cows provide for a unique paradigm for creation of immune diversity and could enable generation of antibodies against especially challenging targets and epitopes.
Collapse
Affiliation(s)
| | | | - Thaddeus C Deiss
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Michael F Criscitiello
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Ian A Wilson
- The Scripps Research Institute, La Jolla, CA, United States
| | - Vaughn V Smider
- The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
16
|
Zhang P, Zhao Y, Zhang X. Functional and stability orientation synthesis of materials and structures in aprotic Li–O2batteries. Chem Soc Rev 2018; 47:2921-3004. [DOI: 10.1039/c8cs00009c] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review presents the recent advances made in the functional and stability orientation synthesis of materials/structures for Li–O2batteries.
Collapse
Affiliation(s)
- Peng Zhang
- Key Lab for Special Functional Materials of Ministry of Education
- Collaborative Innovation Center of Nano Functional Materials and Applications
- Henan University
- Kaifeng
- P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education
- Collaborative Innovation Center of Nano Functional Materials and Applications
- Henan University
- Kaifeng
- P. R. China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
17
|
Hellman LT, Akula S, Thorpe M, Fu Z. Tracing the Origins of IgE, Mast Cells, and Allergies by Studies of Wild Animals. Front Immunol 2017; 8:1749. [PMID: 29312297 PMCID: PMC5742104 DOI: 10.3389/fimmu.2017.01749] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
In most industrialized countries, allergies have increased in frequency quite dramatically during the past 50 years. Estimates show that 20–30% of the populations are affected. Allergies have thereby become one of the major medical challenges of the twenty-first century. Despite several theories including the hygiene hypothesis, there are still very few solid clues concerning the causes of this increase. To trace the origins of allergies, we have studied cells and molecules of importance for the development of IgE-mediated allergies, including the repertoire of immunoglobulin genes. These studies have shown that IgE and IgG most likely appeared by a gene duplication of IgY in an early mammal, possibly 220–300 million years ago. Receptors specific for IgE and IgG subsequently appeared in parallel with the increase in Ig isotypes from a subfamily of the recently identified Fc receptor-like molecules. Circulating IgE levels are generally very low in humans and laboratory rodents. However, when dogs and Scandinavian wolfs were analyzed, IgE levels were found to be 100–200 times higher compared to humans, indicating a generally much more active IgE synthesis in free-living animals, most likely connected to intestinal parasite infections. One of the major effector molecules released upon IgE-mediated activation by mast cells are serine proteases. These proteases, which belong to the large family of hematopoietic serine proteases, are extremely abundant and can account for up to 35% of the total cellular protein. Recent studies show that several of these enzymes, including the chymases and tryptases, are old. Ancestors for these enzymes were most likely present in an early mammal more than 200 million years ago before the separation of the three extant mammalian lineages; monotremes, marsupials, and placental mammals. The aim is now to continue these studies of mast cell biology and IgE to obtain additional clues to their evolutionary conserved functions. A focus concerns why the humoral immune response involving IgE and mast cells have become so dysregulated in humans as well as several of our domestic companion animals.
Collapse
Affiliation(s)
- Lars Torkel Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Han B, Li Y, Han H, Zhao Y, Pan Q, Ren L. Three IgH isotypes, IgM, IgA and IgY are expressed in Gentoo penguin and zebra finch. PLoS One 2017; 12:e0173334. [PMID: 28403146 PMCID: PMC5389807 DOI: 10.1371/journal.pone.0173334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/20/2017] [Indexed: 12/05/2022] Open
Abstract
Previous studies on a limited number of birds suggested that the IgD-encoding gene was absent in birds. However, one of our recent studies showed that the gene was definitely expressed in the ostrich and emu. Interestingly, we also identified subclass diversification of IgM and IgY in these two birds. To better understand immunoglobulin genes in birds, in this study, we analyzed the immunoglobulin heavy chain genes in the zebra finch (Taeniopygia guttata) and Gentoo penguin (Pygoscelis papua), belonging respectively to the order Passeriformes, the most successful bird order in terms of species diversity and numbers, and Sphenisciformes, a relatively primitive avian order. Similar to the results obtained in chickens and ducks, only three genes encoding immunoglobulin heavy chain isotypes, IgM, IgA and IgY, were identified in both species. Besides, we detected a transcript encoding a short membrane-bound IgA lacking the last two CH exons in the Gentoo penguin. We did not find any evidence supporting the presence of IgD gene or subclass diversification of IgM/IgY in penguin or zebra finch. The obtained data in our study provide more insights into the immunoglobulin heavy chain genes in birds and may help to better understand the evolution of immunoglobulin genes in tetrapods.
Collapse
Affiliation(s)
- Binyue Han
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Yan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P. R. China
| | - Haitang Han
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Qingjie Pan
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P. R. China
- * E-mail: (LR); (QP)
| | - Liming Ren
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
- * E-mail: (LR); (QP)
| |
Collapse
|
19
|
Huang T, Wu K, Yuan X, Shao S, Wang W, Wei S, Cao G. Molecular analysis of the immunoglobulin genes in goose. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:160-166. [PMID: 26921669 DOI: 10.1016/j.dci.2016.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Immunoglobulins play an important role in adaptive immune system as defense molecules against pathogens. However, our knowledge on avian immunoglobulin genes has been limited to a few species. In this study, we analyzed goose (Anser cygnoides orientalis) immunoglobulin genes. Three IgH classes including IgM, IgA, IgY and λ light chain were identified. The IgM and IgA heavy chain constant regions are characteristically similar to their counterparts described in other vertebrates. In addition to the classic Ig isotypes, we also detected a transcript that encoded a truncated form of IgY (IgY(ΔFc)) in goose. Similar to duck, the IgY(ΔFc) in goose was generated by using different transcriptional termination signal of the same υ gene. Limited variability and only one leader peptide were observed in VH and VL domains, which suggested that gene conversion was the primary mechanism involved in goose antibody diversity. Our study provides more insights into the immunoglobulin genes in goose that had not been fully explored before.
Collapse
Affiliation(s)
- Tian Huang
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - Kun Wu
- Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - Xiaoli Yuan
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - Shuai Shao
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - WenYuan Wang
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - Si Wei
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - Gengsheng Cao
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
20
|
Han B, Yuan H, Wang T, Li B, Ma L, Yu S, Huang T, Li Y, Fang D, Chen X, Wang Y, Qiu S, Guo Y, Fei J, Ren L, Pan-Hammarström Q, Hammarström L, Wang J, Wang J, Hou Y, Pan Q, Xu X, Zhao Y. Multiple IgH Isotypes Including IgD, Subclasses of IgM, and IgY Are Expressed in the Common Ancestors of Modern Birds. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:5138-5147. [PMID: 27183632 DOI: 10.4049/jimmunol.1600307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 12/23/2022]
Abstract
Although evolutionarily just as ancient as IgM, it has been thought for many years that IgD is not present in birds. Based on the recently sequenced genomes of 48 bird species as well as high-throughput transcriptome sequencing of immune-related tissues, we demonstrate in this work that the ostrich (Struthio camelus) possesses a functional δ gene that encodes a membrane-bound IgD H chain with seven CH domains. Furthermore, δ sequences were clearly identified in many other bird species, demonstrating that the δ gene is widely distributed among birds and is only absent in certain bird species. We also show that the ostrich possesses two μ genes (μ1, μ2) and two υ genes (υ1, υ2), in addition to the δ and α genes. Phylogenetic analyses suggest that subclass diversification of both the μ and υ genes occurred during the early stages of bird evolution, after their divergence from nonavian reptiles. Although the positions of the two υ genes are unknown, physical mapping showed that the remaining genes are organized in the order μ1-δ-α-μ2, with the α gene being inverted relative to the others. Together with previous studies, our data suggest that birds and nonavian reptile species most likely shared a common ancestral IgH gene locus containing a δ gene and an inverted α gene. The δ gene was then evolutionarily lost in selected birds, whereas the α gene lost in selected nonavian reptiles. The data obtained in this study provide significant insights into the understanding of IgH gene evolution in tetrapods.
Collapse
Affiliation(s)
- Binyue Han
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hui Yuan
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Tao Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Bo Li
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Li Ma
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shuyang Yu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tian Huang
- School of Life Science, Henan University, Kaifeng 475004, People's Republic of China
| | - Yan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; and
| | - Dongming Fang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Xiaoli Chen
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Yongsi Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Si Qiu
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Ying Guo
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing Fei
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Qingjie Pan
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; and
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
21
|
Ma L, Qin T, Chu D, Cheng X, Wang J, Wang X, Wang P, Han H, Ren L, Aitken R, Hammarström L, Li N, Zhao Y. Internal Duplications of DH, JH, and C Region Genes Create an Unusual IgH Gene Locus in Cattle. THE JOURNAL OF IMMUNOLOGY 2016; 196:4358-66. [PMID: 27053761 DOI: 10.4049/jimmunol.1600158] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/09/2016] [Indexed: 02/03/2023]
Abstract
It has been suspected for many years that cattle possess two functional IgH gene loci, located on Bos taurus autosome (BTA) 21 and BTA11, respectively. In this study, based on fluorescence in situ hybridization and additional experiments, we showed that all functional bovine IgH genes were located on BTA21, and only a truncated μCH2 exon was present on BTA11. By sequencing of seven bacterial artificial chromosome clones screened from a Hostein cow bacterial artificial chromosome library, we generated a 678-kb continuous genomic sequence covering the bovine IGHV, IGHD, IGHJ, and IGHC genes, which are organized as IGHVn-IGHDn-IGHJn-IGHM1-(IGHDP-IGHV3-IGHDn)3-IGHJn-IGHM2-IGHD-IGHG3-IGHG1-IGHG2-IGHE-IGHA. Although both of two functional IGHM genes, IGHM1 and IGHM2, can be expressed via independent VDJ recombinations, the IGHM2 can also be expressed through class switch recombination. Likely because more IGHD segments can be involved in the expression of IGHM2, the IGHM2 gene was shown to be dominantly expressed in most tissues throughout different developmental stages. Based on the length and identity of the coding sequence, the 23 IGHD segments identified in the locus could be divided into nine subgroups (termed IGHD1 to IGHD9). Except two members of IGHD9 (14 nt in size), all other functional IGHD segments are longer than 30 nt, with the IGHD8 gene (149 bp) to be the longest. These remarkably long germline IGHD segments play a pivotal role in generating the exceptionally great H chain CDR 3 length variability in cattle.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tong Qin
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Dan Chu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xifeng Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Robert Aitken
- Faculty of Health and Life Sciences, York St John University, York YO31 7EX, United Kingdom; and
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
22
|
Olivieri DN, Garet E, Estevez O, Sánchez-Espinel C, Gambón-Deza F. Genomic structure and expression of immunoglobulins in Squamata. Mol Immunol 2016; 72:81-91. [DOI: 10.1016/j.molimm.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
|
23
|
Wang X, Cheng G, Lu Y, Zhang C, Wu X, Han H, Zhao Y, Ren L. A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species. PLoS One 2016; 11:e0147704. [PMID: 26901135 PMCID: PMC4762898 DOI: 10.1371/journal.pone.0147704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/07/2016] [Indexed: 12/02/2022] Open
Abstract
Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλ)n. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates.
Collapse
Affiliation(s)
- Xifeng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Gang Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Yan Lu
- Beijing Zoo, Beijing 100044, People’s Republic of China
| | | | - Xiaobing Wu
- College of Life Sciences, Anhui Normal University, Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, People’s Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
24
|
Estevez O, Garet E, Olivieri D, Gambón-Deza F. Amphibians have immunoglobulins similar to ancestral IgD and IgA from Amniotes. Mol Immunol 2016; 69:52-61. [DOI: 10.1016/j.molimm.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 01/03/2023]
|
25
|
Dijkmans J, Dusselier M, Gabriëls D, Houthoofd K, Magusin PCMM, Huang S, Pontikes Y, Trekels M, Vantomme A, Giebeler L, Oswald S, Sels BF. Cooperative Catalysis for Multistep Biomass Conversion with Sn/Al Beta Zeolite. ACS Catal 2015. [DOI: 10.1021/cs501388e] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jan Dijkmans
- Center
for Surface Science and Catalysis, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee, Belgium
| | - Michiel Dusselier
- Center
for Surface Science and Catalysis, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee, Belgium
| | - Dries Gabriëls
- Center
for Surface Science and Catalysis, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee, Belgium
| | - Kristof Houthoofd
- Center
for Surface Science and Catalysis, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee, Belgium
| | - Pieter C. M. M. Magusin
- Center
for Surface Science and Catalysis, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee, Belgium
| | - Shuigen Huang
- Department
of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Heverlee, Belgium
| | - Yiannis Pontikes
- Department
of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Heverlee, Belgium
| | - Maarten Trekels
- Nuclear
and Radiation Physics Section, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - André Vantomme
- Nuclear
and Radiation Physics Section, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - Lars Giebeler
- Institute for
Complex Materials, Leibniz-Institute for Solid State and Material
Research, Helmholtzstraβe 20, 01069 Dresden, Germany
| | - Steffen Oswald
- Institute for
Complex Materials, Leibniz-Institute for Solid State and Material
Research, Helmholtzstraβe 20, 01069 Dresden, Germany
| | - Bert F. Sels
- Center
for Surface Science and Catalysis, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee, Belgium
| |
Collapse
|
26
|
|
27
|
Senger K, Hackney J, Payandeh J, Zarrin AA. Antibody Isotype Switching in Vertebrates. Results Probl Cell Differ 2015; 57:295-324. [PMID: 26537387 DOI: 10.1007/978-3-319-20819-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humoral or antibody-mediated immune response in vertebrates has evolved to respond to diverse antigenic challenges in various anatomical locations. Diversification of the immunoglobulin heavy chain (IgH) constant region via isotype switching allows for remarkable plasticity in the immune response, including versatile tissue distribution, Fc receptor binding, and complement fixation. This enables antibody molecules to exert various biological functions while maintaining antigen-binding specificity. Different immunoglobulin (Ig) classes include IgM, IgD, IgG, IgE, and IgA, which exist as surface-bound and secreted forms. High-affinity autoantibodies are associated with various autoimmune diseases such as lupus and arthritis, while defects in components of isotype switching are associated with infections. A major route of infection used by a large number of pathogens is invasion of mucosal surfaces within the respiratory, digestive, or urinary tract. Most infections of this nature are initially limited by effector mechanisms such as secretory IgA antibodies. Mucosal surfaces have been proposed as a major site for the genesis of adaptive immune responses, not just in fighting infections but also in tolerating commensals and constant dietary antigens. We will discuss the evolution of isotype switching in various species and provide an overview of the function of various isotypes with a focus on IgA, which is universally important in gut homeostasis as well as pathogen clearance. Finally, we will discuss the utility of antibodies as therapeutic modalities.
Collapse
Affiliation(s)
- Kate Senger
- Department of Immunology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jason Hackney
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
28
|
|
29
|
Pettinello R, Dooley H. The immunoglobulins of cold-blooded vertebrates. Biomolecules 2014; 4:1045-69. [PMID: 25427250 PMCID: PMC4279169 DOI: 10.3390/biom4041045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022] Open
Abstract
Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species.
Collapse
Affiliation(s)
- Rita Pettinello
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
30
|
Zhang T, Tacchi L, Wei Z, Zhao Y, Salinas I. Intraclass diversification of immunoglobulin heavy chain genes in the African lungfish. Immunogenetics 2014; 66:335-51. [PMID: 24676685 DOI: 10.1007/s00251-014-0769-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/25/2022]
Abstract
Lungfish (Dipnoi) are the closest living relatives to tetrapods, and they represent the transition from water to land during vertebrate evolution. Lungfish are armed with immunoglobulins (Igs), one of the hallmarks of the adaptive immune system of jawed vertebrates, but only three Ig forms have been characterized in Dipnoi to date. We report here a new diversity of Ig molecules in two African lungfish species (Protopterus dolloi and Protopterus annectens). The African lungfish Igs consist of three IgMs, two IgWs, three IgNs, and an IgQ, where both IgN and IgQ originated evidently from the IgW lineage. Our data also suggest that the IgH genes in the lungfish are organized in a transiting form from clusters (IgH loci in cartilaginous fish) to a translocon configuration (IgH locus in tetrapods). We propose that the intraclass diversification of the two primordial gnathostome Ig classes (IgM and IgW) as well as acquisition of new isotypes (IgN and IgQ) has allowed lungfish to acquire a complex and functionally diverse Ig repertoire to fight a variety of microorganisms. Furthermore, our results support the idea that "tetrapod-specific" Ig classes did not evolve until the vertebrate adaptation to land was completed ~360 million years ago.
Collapse
Affiliation(s)
- Tianyi Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Coevolution of Mucosal Immunoglobulins and the Polymeric Immunoglobulin Receptor: Evidence That the Commensal Microbiota Provided the Driving Force. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/541537] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunoglobulins (Igs) in mucosal secretions contribute to immune homeostasis by limiting access of microbial and environmental antigens to the body proper, maintaining the integrity of the epithelial barrier and shaping the composition of the commensal microbiota. The emergence of IgM in cartilaginous fish represented the primordial mucosal Ig, which is expressed in all higher vertebrates. Expansion and diversification of the mucosal Ig repertoire led to the emergence of IgT in bony fishes, IgX in amphibians, and IgA in reptiles, birds, and mammals. Parallel evolution of cellular receptors for the constant (Fc) regions of Igs provided mechanisms for their transport and immune effector functions. The most ancient of these Fc receptors is the polymeric Ig receptor (pIgR), which first appeared in an ancestor of bony fishes. The pIgR transports polymeric IgM, IgT, IgX, and IgA across epithelial cells into external secretions. Diversification and refinement of the structure of mucosal Igs during tetrapod evolution were paralleled by structural changes in pIgR, culminating in the multifunctional secretory IgA complex in mammals. In this paper, evidence is presented that the mutualistic relationship between the commensal microbiota and the vertebrate host provided the driving force for coevolution of mucosal Igs and pIgR.
Collapse
|
32
|
Zhu L, Yan Z, Feng M, Peng D, Guo Y, Hu X, Ren L, Sun Y. Identification of sturgeon IgD bridges the evolutionary gap between elasmobranchs and teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:138-147. [PMID: 24001581 DOI: 10.1016/j.dci.2013.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
IgD has been found in almost all jawed vertebrates, including cartilaginous and teleost fish. However, IgD is missing in acipenseriformes, a branch that is evolutionarily positioned between elasmobranchs and teleost fish. Here, by analyzing transcriptome data, we identified a transcriptionally active IgD-encoding gene in the Siberian sturgeon (Acipenser baerii). Phylogenetic analysis indicated that it is orthologous to mammalian IgD and closely related to the IgD of other fish. The lengths of sturgeon membrane-bound IgD transcripts ranged from 1.2kb to 6.2kb, encoding 3-19 CH domains. As in teleosts, the first CH domain of the sturgeon IgD transcript is also derived from μCH1 by RNA splicing. However, the variable region of the expressed sturgeon IgD shows limited V(D)J usage. In addition to IgD, three IgM variants were also identified in this species, whereas no IgT/Z-encoding genes were observed. This study bridges the gap in Ig evolution between elasmobranchs and teleosts and provides significant insight into the early evolution of immunoglobulins.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Magor KE, Miranzo Navarro D, Barber MRW, Petkau K, Fleming-Canepa X, Blyth GAD, Blaine AH. Defense genes missing from the flight division. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:377-88. [PMID: 23624185 PMCID: PMC7172724 DOI: 10.1016/j.dci.2013.04.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/16/2013] [Indexed: 05/12/2023]
Abstract
Birds have a smaller repertoire of immune genes than mammals. In our efforts to study antiviral responses to influenza in avian hosts, we have noted key genes that appear to be missing. As a result, we speculate that birds have impaired detection of viruses and intracellular pathogens. Birds are missing TLR8, a detector for single-stranded RNA. Chickens also lack RIG-I, the intracellular detector for single-stranded viral RNA. Riplet, an activator for RIG-I, is also missing in chickens. IRF3, the nuclear activator of interferon-beta in the RIG-I pathway is missing in birds. Downstream of interferon (IFN) signaling, some of the antiviral effectors are missing, including ISG15, and ISG54 and ISG56 (IFITs). Birds have only three antibody isotypes and IgD is missing. Ducks, but not chickens, make an unusual truncated IgY antibody that is missing the Fc fragment. Chickens have an expanded family of LILR leukocyte receptor genes, called CHIR genes, with hundreds of members, including several that encode IgY Fc receptors. Intriguingly, LILR homologues appear to be missing in ducks, including these IgY Fc receptors. The truncated IgY in ducks, and the duplicated IgY receptor genes in chickens may both have resulted from selective pressure by a pathogen on IgY FcR interactions. Birds have a minimal MHC, and the TAP transport and presentation of peptides on MHC class I is constrained, limiting function. Perhaps removing some constraint, ducks appear to lack tapasin, a chaperone involved in loading peptides on MHC class I. Finally, the absence of lymphotoxin-alpha and beta may account for the observed lack of lymph nodes in birds. As illustrated by these examples, the picture that emerges is some impairment of immune response to viruses in birds, either a cause or consequence of the host-pathogen arms race and long evolutionary relationship of birds and RNA viruses.
Collapse
Affiliation(s)
- Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | |
Collapse
|