1
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
The Role of G Protein-Coupled Receptor Kinase 6 Regulation in Inflammation and Pain. Int J Mol Sci 2022; 23:ijms232415880. [PMID: 36555521 PMCID: PMC9784940 DOI: 10.3390/ijms232415880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
The G protein-coupled receptor kinase 6 is associated with inflammation and pathological pain. Impairment of GRK6 expression was described in chronic inflammatory diseases such as rheumatoid arthritis and this was shown to be accompanied by an imbalance of downstream signaling pathways. Here, we discuss novel aspects of GRK6 interaction and its impact upon hyperalgesia and inflammatory processes. In this review, we compile important findings concerning GRK6 regulation for a better pathophysiological understanding of the intracellular interaction in the context of inflammation and show clinical implications-for example, the identification of possible therapy goals in the treatment of chronic inflammatory hyperalgesia.
Collapse
|
3
|
Zhang Y, Zhang J, Wang J, Chen H, Ouyang L, Wang Y. Targeting GRK2 and GRK5 for treating chronic degenerative diseases: Advances and future perspectives. Eur J Med Chem 2022; 243:114668. [DOI: 10.1016/j.ejmech.2022.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
|
4
|
Fukasawa T, Yoshizaki-Ogawa A, Enomoto A, Miyagawa K, Sato S, Yoshizaki A. Pharmacotherapy of Itch-Antihistamines and Histamine Receptors as G Protein-Coupled Receptors. Int J Mol Sci 2022; 23:6579. [PMID: 35743023 PMCID: PMC9223628 DOI: 10.3390/ijms23126579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
Itching can decrease quality of life and exacerbate skin symptoms due to scratching. Itching not only contributes to disease progression but also triggers complications such as skin infections and eye symptoms. Therefore, controlling itching is very important in therapeutic management. In addition to the well-known histamine, IL-31, IL-4 and IL-13 have recently been reported as factors that induce itching. Itching may also be caused by factors other than these histamines. However, we do not know the extent to which these factors are involved in each disease. In addition, the degree of involvement is likely to vary among individuals. To date, antihistamines have been widely used to treat itching and are often effective, suggesting that histamine is more or less involved in itchy diseases. This review discusses the ligand-receptor perspective and describes the dynamics of G protein-coupled receptors, their role as biased agonists, their role as inverse agonists, proactive antihistamine therapy, and drug selection with consideration of impaired performance and anti-PAF effects.
Collapse
Affiliation(s)
- Takemichi Fukasawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| | - Atsushi Enomoto
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (A.E.); (K.M.)
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (A.E.); (K.M.)
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| |
Collapse
|
5
|
Physiological Roles of Apoptotic Cell Clearance: Beyond Immune Functions. Life (Basel) 2021; 11:life11111141. [PMID: 34833017 PMCID: PMC8621940 DOI: 10.3390/life11111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The clearance of apoptotic cells is known to be a critical step in maintaining tissue and organism homeostasis. This process is rapidly/promptly mediated by recruited or resident phagocytes. Phagocytes that engulf apoptotic cells have been closely linked to the release of anti-inflammatory cytokines to eliminate inflammatory responses. Defective clearance of apoptotic cells can cause severe inflammation and autoimmune responses due to secondary necrosis of apoptotic cells. Recently accumulated evidence indicates that apoptotic cells and their clearance have important physiological roles in addition to immune-related functions. Herein, we review the current understanding of the mechanisms and fundamental roles of apoptotic cell clearance and the beneficial roles of apoptotic cells in physiological processes such as differentiation and development.
Collapse
|
6
|
Lebo DPV, Chirn A, Taylor JD, Levan A, Doerre Torres V, Agreda E, Serizier SB, Lord AK, Jenkins VK, McCall K. An RNAi screen of the kinome in epithelial follicle cells of the Drosophila melanogaster ovary reveals genes required for proper germline death and clearance. G3-GENES GENOMES GENETICS 2021; 11:6080751. [PMID: 33693600 PMCID: PMC8022946 DOI: 10.1093/g3journal/jkaa066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Programmed cell death and cell corpse clearance are an essential part of organismal health and development. Cell corpses are often cleared away by professional phagocytes such as macrophages. However, in certain tissues, neighboring cells known as nonprofessional phagocytes can also carry out clearance functions. Here, we use the Drosophila melanogaster ovary to identify novel genes required for clearance by nonprofessional phagocytes. In the Drosophila ovary, germline cells can die at multiple time points. As death proceeds, the epithelial follicle cells act as phagocytes to facilitate the clearance of these cells. We performed an unbiased kinase screen to identify novel proteins and pathways involved in cell clearance during two death events. Of 224 genes examined, 18 demonstrated severe phenotypes during developmental death and clearance while 12 demonstrated severe phenotypes during starvation-induced cell death and clearance, representing a number of pathways not previously implicated in phagocytosis. Interestingly, it was found that several genes not only affected the clearance process in the phagocytes, but also non-autonomously affected the process by which germline cells died. This kinase screen has revealed new avenues for further exploration and investigation.
Collapse
Affiliation(s)
- Diane P V Lebo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Alice Chirn
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jeffrey D Taylor
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Andre Levan
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | - Emily Agreda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sandy B Serizier
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Allison K Lord
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
7
|
GRK6 regulates the hemostatic response to injury through its rate-limiting effects on GPCR signaling in platelets. Blood Adv 2021; 4:76-86. [PMID: 31899801 DOI: 10.1182/bloodadvances.2019000467] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate the majority of platelet activation in response to agonists. However, questions remain regarding the mechanisms that provide negative feedback toward activated GPCRs to limit platelet activation and thrombus formation. Here we provide the first evidence that GPCR kinase 6 (GRK6) serves this role in platelets, using GRK6-/- mice generated by CRISPR-Cas9 genome editing to examine the consequences of GRK6 knockout on GPCR-dependent signaling. Hemostatic thrombi formed in GRK6-/- mice are larger than in wild-type (WT) controls during the early stages of thrombus formation, with a rapid increase in platelet accumulation at the site of injury. GRK6-/- platelets have increased platelet activation, but in an agonist-selective manner. Responses to PAR4 agonist or adenosine 5'-diphosphate stimulation in GRK6-/- platelets are increased compared with WT littermates, whereas the response to thromboxane A2 (TxA2) is normal. Underlying these changes in GRK6-/- platelets is an increase in Ca2+ mobilization, Akt activation, and granule secretion. Furthermore, deletion of GRK6 in human MEG-01 cells causes an increase in Ca2+ response and PAR1 surface expression in response to thrombin. Finally, we show that human platelet activation in response to thrombin causes an increase in binding of GRK6 to PAR1, as well as an increase in the phosphorylation of PAR1. Deletion of GRK6 in MEG-01 cells causes a decrease in PAR1 phosphorylation. Taken together, these data show that GRK6 regulates the hemostatic response to injury through PAR- and P2Y12-mediated effects, helping to limit the rate of platelet activation during thrombus growth and prevent inappropriate platelet activation.
Collapse
|
8
|
Chaudhary PK, Kim S. The GRKs Reactome: Role in Cell Biology and Pathology. Int J Mol Sci 2021; 22:ijms22073375. [PMID: 33806057 PMCID: PMC8036551 DOI: 10.3390/ijms22073375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) are protein kinases that function in concert with arrestins in the regulation of a diverse class of G protein-coupled receptors (GPCRs) signaling. Although GRKs and arrestins are key participants in the regulation of GPCR cascades, the complex regulatory mechanisms of GRK expression, its alternation, and their function are not thoroughly understood. Several studies together with the work from our lab in recent years have revealed the critical role of these kinases in various physiological and pathophysiological processes, including cardiovascular biology, inflammation and immunity, neurodegeneration, thrombosis, and hemostasis. A comprehensive understanding of the mechanisms underlying functional interactions with multiple receptor proteins and how these interactions take part in the development of various pathobiological processes may give rise to novel diagnostic and therapeutic strategies. In this review, we summarize the current research linking the role of GRKs to various aspects of cell biology, pathology, and therapeutics, with a particular focus on thrombosis and hemostasis.
Collapse
|
9
|
Hayashi M, Guida E, Inokawa Y, Goldberg R, Reis LO, Ooki A, Pilli M, Sadhukhan P, Woo J, Choi W, Izumchenko E, Gonzalez LM, Marchionni L, Zhavoronkov A, Brait M, Bivalacqua T, Baras A, Netto GJ, Koch W, Singh A, Hoque MO. GULP1 regulates the NRF2-KEAP1 signaling axis in urothelial carcinoma. Sci Signal 2020; 13:eaba0443. [PMID: 32817372 DOI: 10.1126/scisignal.aba0443] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Disruption of the KEAP1-NRF2 pathway results in the transactivation of NRF2 target genes, consequently inducing cell proliferation and other phenotypic changes in cancer cells. Here, we demonstrated that GULP1 was a KEAP1-binding protein that maintained actin cytoskeleton architecture and helped KEAP1 to sequester NRF2 in the cytoplasm. In urothelial carcinoma of the bladder (UCB), silencing of GULP1 facilitated the nuclear accumulation of NRF2, led to constitutive activation of NRF2 signaling, and conferred resistance to the platinum drug cisplatin. Knockdown of GULP1 in UCB cells promoted tumor cell proliferation in vitro and enhanced tumor growth in vivo. In primary UCB, GULP1 silencing was more prevalent in muscle-invasive UCB compared to nonmuscle-invasive UCB. GULP1 knockdown cells showed resistance to cisplatin treatment. In parallel with decreased GULP1 expression, we observed increased expression of NRF2, HMOX1, and other candidate antioxidant genes in cisplatin-resistant cells. Furthermore, low or no expression of GULP1 was observed in most cisplatin nonresponder cases. Silencing of GULP1 was associated with GULP1 promoter hypermethylation in cell lines and primary tumors, and a high frequency of GULP1 promoter methylation was observed in multiple sets of primary clinical UCB samples. Together, our findings demonstrate that GULP1 is a KEAP1-binding protein that regulates KEAP1-NRF2 signaling in UCB and that promoter hypermethylation of GULP1 is a potential mechanism of GULP1 silencing.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Kelch-Like ECH-Associated Protein 1/genetics
- Kelch-Like ECH-Associated Protein 1/metabolism
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Signal Transduction/genetics
- Transplantation, Heterologous
- Tumor Burden/genetics
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Masamichi Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Elisa Guida
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yoshikuni Inokawa
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Rachel Goldberg
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Leonardo O Reis
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Akira Ooki
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Manohar Pilli
- Department of Environmental Health Sciences, School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pritam Sadhukhan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Juhyung Woo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Leonel Maldonado Gonzalez
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Gynecology and Obstetrics-Gynecologic Specialties, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alex Zhavoronkov
- Insilico Medicine Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, MD 21218, USA
| | - Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Trinity Bivalacqua
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander Baras
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - George J Netto
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wayne Koch
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Anju Singh
- Department of Environmental Health Sciences, School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mohammad O Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Agarwal S, Sharma A, Bouzeyen R, Deep A, Sharma H, Mangalaparthi KK, Datta KK, Kidwai S, Gowda H, Varadarajan R, Sharma RD, Thakur KG, Singh R. VapBC22 toxin-antitoxin system from Mycobacterium tuberculosis is required for pathogenesis and modulation of host immune response. SCIENCE ADVANCES 2020; 6:eaba6944. [PMID: 32537511 PMCID: PMC7269643 DOI: 10.1126/sciadv.aba6944] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/02/2020] [Indexed: 05/16/2023]
Abstract
Virulence-associated protein B and C toxin-antitoxin (TA) systems are widespread in prokaryotes, but their precise role in physiology is poorly understood. We have functionally characterized the VapBC22 TA system from Mycobacterium tuberculosis. Transcriptome analysis revealed that overexpression of VapC22 toxin in M. tuberculosis results in reduced levels of metabolic enzymes and increased levels of ribosomal proteins. Proteomics studies showed reduced expression of virulence-associated proteins and increased levels of cognate antitoxin, VapB22 in the ΔvapC22 mutant strain. Furthermore, both the ΔvapC22 mutant and VapB22 overexpression strains of M. tuberculosis were susceptible to killing upon exposure to oxidative stress and showed attenuated growth in guinea pigs and mice. Host transcriptome analysis suggests upregulation of the transcripts involved in innate immune responses and tissue remodeling in mice infected with the ΔvapC22 mutant strain. Together, we demonstrate that the VapBC22 TA system belongs to a key regulatory network and is essential for M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Sakshi Agarwal
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Harya na-121001, India
| | - Arun Sharma
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Harya na-121001, India
| | - Rania Bouzeyen
- Institut Pasteur de Tunis, LTCII, LR11IPT02, Tunis 1002, Tunisia
| | - Amar Deep
- Structural Biology Laboratory, Council of Scientific and Industrial Research–Institute of Microbial Technology, Chandigarh 160036, India
| | - Harsh Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurugr am-122413, India
| | | | | | - Saqib Kidwai
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Harya na-121001, India
| | - Harsha Gowda
- Institute of Bioinformatics, Bangalore 560066, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurugr am-122413, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research–Institute of Microbial Technology, Chandigarh 160036, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Harya na-121001, India
- Corresponding author.
| |
Collapse
|
11
|
Jiang L, Poon IKH. Methods for monitoring the progression of cell death, cell disassembly and cell clearance. Apoptosis 2020; 24:208-220. [PMID: 30684146 DOI: 10.1007/s10495-018-01511-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell death through apoptosis, necrosis, necroptosis and pyroptosis, as well as the clearance of dead cells are crucial biological processes in the human body. Likewise, disassembly of dying cells during apoptosis to generate cell fragments known as apoptotic bodies may also play important roles in regulating cell clearance and intercellular communication. Recent advances in the field have led to the development of new experimental systems to identify cells at different stages of cell death, measure the levels of apoptotic cell disassembly, and monitor the cell clearance process using a range of in vitro, ex vivo and in vivo models. In this article, we will provide a comprehensive review of the methods for monitoring the progression of cell death, cell disassembly and cell clearance.
Collapse
Affiliation(s)
- Lanzhou Jiang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
12
|
Selheim F, Aasebø E, Ribas C, Aragay AM. An Overview on G Protein-coupled Receptor-induced Signal Transduction in Acute Myeloid Leukemia. Curr Med Chem 2019; 26:5293-5316. [PMID: 31032748 DOI: 10.2174/0929867326666190429153247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) is a genetically heterogeneous disease characterized by uncontrolled proliferation of precursor myeloid-lineage cells in the bone marrow. AML is also characterized by patients with poor long-term survival outcomes due to relapse. Many efforts have been made to understand the biological heterogeneity of AML and the challenges to develop new therapies are therefore enormous. G Protein-coupled Receptors (GPCRs) are a large attractive drug-targeted family of transmembrane proteins, and aberrant GPCR expression and GPCR-mediated signaling have been implicated in leukemogenesis of AML. This review aims to identify the molecular players of GPCR signaling, focusing on the hematopoietic system, which are involved in AML to help developing novel drug targets and therapeutic strategies. METHODS We undertook an exhaustive and structured search of bibliographic databases for research focusing on GPCR, GPCR signaling and expression in AML. RESULTS AND CONCLUSION Many scientific reports were found with compelling evidence for the involvement of aberrant GPCR expression and perturbed GPCR-mediated signaling in the development of AML. The comprehensive analysis of GPCR in AML provides potential clinical biomarkers for prognostication, disease monitoring and therapeutic guidance. It will also help to provide marker panels for monitoring in AML. We conclude that GPCR-mediated signaling is contributing to leukemogenesis of AML, and postulate that mass spectrometrybased protein profiling of primary AML cells will accelerate the discovery of potential GPCR related biomarkers for AML.
Collapse
Affiliation(s)
- Frode Selheim
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Elise Aasebø
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.,Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029 Madrid, Spain
| | - Anna M Aragay
- Departamento de Biologia Celular. Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Spanish National Research Council (CSIC), Baldiri i Reixac, 15, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Tanna CE, Goss LB, Ludwig CG, Chen PW. Arf GAPs as Regulators of the Actin Cytoskeleton-An Update. Int J Mol Sci 2019; 20:ijms20020442. [PMID: 30669557 PMCID: PMC6358971 DOI: 10.3390/ijms20020442] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Arf GTPase-activating proteins (Arf GAPs) control the activity of ADP-ribosylation factors (Arfs) by inducing GTP hydrolysis and participate in a diverse array of cellular functions both through mechanisms that are dependent on and independent of their Arf GAP activity. A number of these functions hinge on the remodeling of actin filaments. Accordingly, some of the effects exerted by Arf GAPs involve proteins known to engage in regulation of the actin dynamics and architecture, such as Rho family proteins and nonmuscle myosin 2. Circular dorsal ruffles (CDRs), podosomes, invadopodia, lamellipodia, stress fibers and focal adhesions are among the actin-based structures regulated by Arf GAPs. Arf GAPs are thus important actors in broad functions like adhesion and motility, as well as the specialized functions of bone resorption, neurite outgrowth, and pathogen internalization by immune cells. Arf GAPs, with their multiple protein-protein interactions, membrane-binding domains and sites for post-translational modification, are good candidates for linking the changes in actin to the membrane. The findings discussed depict a family of proteins with a critical role in regulating actin dynamics to enable proper cell function.
Collapse
Affiliation(s)
- Christine E Tanna
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Louisa B Goss
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Calvin G Ludwig
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| |
Collapse
|
14
|
Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:57-61. [DOI: 10.1016/j.bbapap.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
|
15
|
Serafin DS, Allyn B, Sassano MF, Timoshchenko RG, Mattox D, Brozowski JM, Siderovski DP, Truong YK, Esserman D, Tarrant TK, Billard MJ. Chemerin-activated functions of CMKLR1 are regulated by G protein-coupled receptor kinase 6 (GRK6) and β-arrestin 2 in inflammatory macrophages. Mol Immunol 2018; 106:12-21. [PMID: 30576947 DOI: 10.1016/j.molimm.2018.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023]
Abstract
Chemerin receptor (CMKLR1) is a G protein-coupled receptor (GPCR) implicated in macrophage-mediated inflammation and in several forms of human arthritis. Analogous to other GPCR, CMKLR1 is likely regulated by G protein-coupled receptor kinase (GRK) phosphorylation of intracellular domains in an activation-dependent manner, which leads to recruitment and termination of intracellular signaling via desensitization and internalization of the receptor. The ubiquitously expressed GRK family members include GRK2, GRK3, GRK5, and GRK6, but it is unknown which GRK regulates CMKLR1 cellular and signaling functions. Our data show that activation of CMKLR1 by chemerin in primary macrophages leads to signaling and functional outcomes that are regulated by GRK6 and β-arrestin 2. We show that arrestin recruitment to CMKLR1 following chemerin stimulation is enhanced with co-expression of GRK6. Further, internalization of endogenous CMKLR1, following the addition of chemerin, is decreased in inflammatory macrophages from GRK6- and β-arrestin 2-deficient mice. These GRK6- and β-arrestin 2-deficient macrophages display increased migration toward chemerin and altered AKT and Extracellular-signal Related Kinase (ERK) signaling. Our findings show that chemerin-activated CMKLR1 regulation in inflammatory macrophages is largely GRK6 and β-arrestin mediated, which may impact innate immunity and have therapeutic implications in rheumatic disease.
Collapse
Affiliation(s)
- D Stephen Serafin
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Brittney Allyn
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States; Duke University, Department of Medicine, Division of Rheumatology and Immunology, Durham, NC 27710, United States
| | - Maria F Sassano
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Roman G Timoshchenko
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Daniel Mattox
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Jaime M Brozowski
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States; Duke University, Department of Medicine, Division of Rheumatology and Immunology, Durham, NC 27710, United States
| | - David P Siderovski
- Department of Physiology & Pharmacology, West Virginia University, Morgantown, WV, 26506, United States
| | - Young K Truong
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Denise Esserman
- Yale School of Public Health, New Haven, CT 06510, United States
| | - Teresa K Tarrant
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States; Duke University, Department of Medicine, Division of Rheumatology and Immunology, Durham, NC 27710, United States
| | - Matthew J Billard
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
16
|
Zhang Z, Li Z, Chen W. Down-regulated G protein-coupled receptor kinase 6 leads to apoptosis in multiple myeloma MM1R cells. Exp Ther Med 2018; 16:4253-4259. [PMID: 30402162 DOI: 10.3892/etm.2018.6722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptor kinase 6 (GRK6) is highly expressed in multiple myeloma (MM) cell lines, but absent or only weakly expressed in most primary human somatic cells. In the present study, GRK6 expression was assessed in MM patients and healthy individuals by quantitative polymerase chain reaction. Flow cytometry were performed to measure the apoptosis of lentivial-transfected MM1R cells. Western blot analysis was performed to assess the apoptosis and signal transducer and activator of transcription 3 pathway-related factors. The results demonstrated that GRK6 was differentially expressed in individuals who suffered from MM and healthy individuals. Previous studies have shown that downregulating GRK6 has anti-cancer effects in the MM cell line, MM1R. The present study demonstrated that RNA interference-mediated GRK6 knockdown promoted apoptosis in the MM1R cell line. Therefore, we hypothesized that GRK6 plays a significant role in determining the course of MM.
Collapse
Affiliation(s)
- Zhiyao Zhang
- Department of Hematology, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Wenming Chen
- Department of Hematology, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
17
|
Abstract
Proinflammatory reaction by the body occurs acutely in response to injury that is considered primarily beneficial. However, sustained proinflammatory cytokines observed with chronic pathologies such as metabolic syndrome, cancer, and arthritis are detrimental and in many cases is a major cardiovascular risk factor. Proinflammatory cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α (TNFα) have long been implicated in cardiovascular risk and considered to be a major underlying cause for heart failure (HF). The failure of the anti-TNFα therapy for HF indicates our elusive understanding on the dichotomous role of proinflammatory cytokines on acutely beneficial effects versus long-term deleterious effects. Despite these well-described observations, less is known about the mechanistic underpinnings of proinflammatory cytokines especially TNFα in pathogenesis of HF. Increasing evidence suggests the existence of an active cross-talk between the TNFα receptor signaling and G-protein-coupled receptors such as β-adrenergic receptor (βAR). Given that βARs are the key regulators of cardiac function, the review will discuss the current state of understanding on the role of proinflammatory cytokine TNFα in regulating βAR function.
Collapse
Affiliation(s)
- Maradumane L Mohan
- *Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and †Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH
| | | | | |
Collapse
|
18
|
Lee T, Packiriswamy N, Lee E, Lucas PC, McCabe LR, Parameswaran N. Role of G protein-coupled receptor kinase-6 in Escherichia coli lung infection model in mice. Physiol Genomics 2017; 49:682-689. [PMID: 28939643 PMCID: PMC5792138 DOI: 10.1152/physiolgenomics.00066.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/24/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptor kinase-6 (GRK6) is a serine/threonine kinase that is important in inflammatory processes. In this study, we examined the role of GRK6 in Escherichia coli-induced lung infection and inflammation using GRK6 knockout (KO) and wild-type (WT) mice. Intratracheal instillation of E. coli significantly enhanced bacterial load in the bronchoalveolar lavage (BAL) of KO compared with WT mice. Reduced bacterial clearance in the KO mice was not due to an intrinsic defect in neutrophil phagocytosis or killing but as a result of reduced neutrophil numbers in the KO BAL. Interestingly, neutrophil numbers in the lung were increased in the KO compared with WT mice, suggesting a potential dysfunction in transepithelial migration of neutrophils from the lungs to the bronchoalveolar space. This effect was selective for lung tissue because peritoneal neutrophil numbers were similar between the two genotypes following peritoneal infection. Although neutrophil expression of CXCR2/CXCR3 was similar between WT and KO, IL-17A expression was higher in the KO compared with WT mice. These results suggest that enhanced neutrophil count in the KO lungs but reduced numbers in BAL are likely due to transepithelial migration defect and/or altered chemokines/cytokines. Together, our studies suggest a previously unrecognized and novel role for GRK6 in neutrophil migration specific to pulmonary tissue during bacterial infection.
Collapse
Affiliation(s)
- Taehyung Lee
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | | | - Eunhee Lee
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | | |
Collapse
|
19
|
Abstract
Given the dual and intrinsically contradictory roles of myeloid cells in both protective and yet also damaging effects of inflammatory and immunological processes, we suggest that it is important to consider the mechanisms and circumstances by which these cells are removed, either in the normal unchallenged state or during inflammation or disease. In this essay we address these subjects from a conceptual perspective, focusing as examples on four main myeloid cell types (neutrophils, monocytes, macrophages, and myeloid dendritic cells) and their clearance from the circulation or from naive and inflamed tissues. While the primary clearance process appears to involve endocytic uptake into macrophages, various tissue cell types can also recognize and remove dying cells, though their overall quantitative contribution is unclear. In fact, surprisingly, given the wealth of study in this area over the last 30 years, our conclusion is that we are still challenged with a substantial lack of mechanistic and regulatory understanding of when, how, and by what mechanisms migratory myeloid cells come to die and are recognized as needing to be removed, and indeed the precise processes of uptake of either the intact or fragmented cells. This reflects the extreme complexity and inherent redundancy of the clearance processes and argues for substantial investigative effort in this arena. In addition, it leads us to a sense that approaches to significant therapeutic modulation of selective myeloid clearance are still a long way off.
Collapse
|
20
|
Abstract
As the largest receptor gene family in the human genome, with >800 members, the signal-transducing G protein-coupled receptors (GPCRs) play critical roles in nearly all conceivable physiological processes, ranging from the sensing of photons and odorants to metabolic homeostasis and migration of leukocytes. Unfortunately, an exhaustive review of the several hundred GPCRs expressed by myeloid cells/macrophages (P.J. Groot-Kormelink, L .Fawcett, P.D. Wright, M. Gosling, and T.C. Kent, BMC Immunol 12:57, 2012, doi:10.1186/1471-2172-13-57) is beyond the scope of this chapter; however, we will endeavor to cover the GPCRs that contribute to the major facets of macrophage biology, i.e., those whose expression is restricted to macrophages and the GPCRs involved in macrophage differentiation/polarization, microbial elimination, inflammation and resolution, and macrophage-mediated pathology. The chemokine receptors, a major group of myeloid GPCRs, will not be extensively covered as they are comprehensively reviewed elsewhere.
Collapse
|
21
|
Steury MD, McCabe LR, Parameswaran N. G Protein-Coupled Receptor Kinases in the Inflammatory Response and Signaling. Adv Immunol 2017; 136:227-277. [PMID: 28950947 DOI: 10.1016/bs.ai.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases that regulate a large and diverse class of G protein-coupled receptors (GPCRs). Through GRK phosphorylation and β-arrestin recruitment, GPCRs are desensitized and their signal terminated. Recent work on these kinases has expanded their role from canonical GPCR regulation to include noncanonical regulation of non-GPCR and nonreceptor substrates through phosphorylation as well as via scaffolding functions. Owing to these and other regulatory roles, GRKs have been shown to play a critical role in the outcome of a variety of physiological and pathophysiological processes including chemotaxis, signaling, migration, inflammatory gene expression, etc. This diverse set of functions for these proteins makes them popular targets for therapeutics. Role for these kinases in inflammation and inflammatory disease is an evolving area of research currently pursued in many laboratories. In this review, we describe the current state of knowledge on various GRKs pertaining to their role in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
| | - Laura R McCabe
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
22
|
Zeferino CP, Wells KD, Moura ASAM, Rottinghaus GE, Ledoux DR. Changes in renal gene expression associated with induced ochratoxicosis in chickens: activation and deactivation of transcripts after varying durations of exposure. Poult Sci 2017; 96:1855-1865. [DOI: 10.3382/ps/pew419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
|
23
|
Xu LQ, Tan SB, Huang S, Ding HY, Li WG, Zhang Y, Li SQ, Wang T. G protein-coupled receptor kinase 6 is overexpressed in glioma and promotes glioma cell proliferation. Oncotarget 2017; 8:54227-54235. [PMID: 28903336 PMCID: PMC5589575 DOI: 10.18632/oncotarget.17203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 01/21/2023] Open
Abstract
The expression and potential biological functions of G protein-coupled receptor kinase 6 (GRK6) in human glioma are tested in this study. We show that protein and mRNA expression of GRK6 in human glioma tissues was significantly higher than that in the normal brain tissues. Further immunohistochemistry assay analyzing total 118 human glioma tissues showed that GRK6 over-expression was correlated with glioma pathologic grade and patients’ Karnofsky performance status (KPS) score. At the molecular level, in the GRK6-low H4 glioma cells, forced over-expression of GRK6 promoted cell proliferation. Reversely, siRNA-mediated knockdown of GRK6 in the U251MG (GRK6-high) cells led to proliferation inhibition and cell cycle arrest. Intriguingly, GRK6 could also be an important temozolomide resistance factor. Temozolomide-induced cytotoxicity was prominent only in GRK6-low H4 glioma cells. On the other hand, knockdown of GRK6 by targeted siRNA sensitized U251MG cells (GRK6-high) to temozolomide. Thus, GRK6 over-expression in glioma is important for cell proliferation and temozolomide resistance.
Collapse
Affiliation(s)
- Li-Quan Xu
- Department of Neurosurgery, Shanghai 5th People's Hospital, Shanghai Medical College, Fudan University, Shanghai, 200240, China
| | - Shu-Bin Tan
- Department of Neurosurgery, Shanghai 5th People's Hospital, Shanghai Medical College, Fudan University, Shanghai, 200240, China
| | - Shan Huang
- Department of Neurosurgery, Shanghai 5th People's Hospital, Shanghai Medical College, Fudan University, Shanghai, 200240, China
| | - He-Yuan Ding
- Department of Endocrinology, Shanghai 5th People's Hospital, Shanghai Medical College, Fudan University, Shanghai, 200240, China
| | - Wen-Gang Li
- Department of Neurosurgery, Shanghai 5th People's Hospital, Shanghai Medical College, Fudan University, Shanghai, 200240, China
| | - Yi Zhang
- Department of Neurosurgery, HuaShan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Shi-Qi Li
- Department of Neurosurgery, HuaShan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Tao Wang
- Department of Neurosurgery, Shanghai 5th People's Hospital, Shanghai Medical College, Fudan University, Shanghai, 200240, China
| |
Collapse
|
24
|
Secreted miR-27a Induced by Cyclic Stretch Modulates the Proliferation of Endothelial Cells in Hypertension via GRK6. Sci Rep 2017; 7:41058. [PMID: 28106155 PMCID: PMC5247685 DOI: 10.1038/srep41058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/15/2016] [Indexed: 11/08/2022] Open
Abstract
Abnormal proliferation of endothelial cells (ECs) is important in vascular remodeling during hypertension, but the mechanisms are still unclear. In hypertensive rats caused by abdominal aortic coarctation, the expression of G-protein-coupled receptor kinase 6 (GRK6) in ECs at common carotid artery was repressed in vivo, and EC proliferation was increased. 15% cyclic stretch in vitro, which mimics the pathologically increased stretch in hypertension, repressed EC GRK6 expression via paracrine control by vascular smooth muscle cells (VSMCs). Furthermore, VSMC-derived microparticles (VSMC-MPs) were detected in the conditioned medium from VSMCs and in artery. VSMC-MPs from cells exposed to 15% cyclic stretch decreased GRK6 expression and increased EC proliferation. miR-27a was detected in VSMC-MPs and was upregulated by 15% cyclic stretch. miR-27a was transferred from VSMCs to ECs via VSMC-MPs and directly targeted on GRK6. Finally, a multi-point injection of antagomiR-27a around carotid artery decreased miR-27a expression in vivo, induced GRK6 expression, and reversed the abnormal EC proliferation. Pathologically elevated cyclic stretch increased the secretion of miR-27a, which was transferred from VSMCs to ECs via the VSMC-MPs, subsequently targeted GRK6, and induced EC proliferation. Locally decreasing miR-27a could be a novel therapeutic approach to attenuate the abnormal EC proliferation in hypertension.
Collapse
|
25
|
Kosako H, Motani K. Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE. Methods Mol Biol 2017; 1487:137-149. [PMID: 27924564 DOI: 10.1007/978-1-4939-6424-6_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extracellular signal-regulated kinase (ERK) regulates various cellular functions through phosphorylation of numerous downstream substrates, which have not yet been fully characterized. To date, several phosphoproteomic approaches have been employed to identify novel substrates for ERK. In this chapter, we describe a method to globally identify ERK substrates by combining immobilized metal affinity chromatography (IMAC) and two-dimensional difference gel electrophoresis (2D-DIGE) followed by mass spectrometry. Phosphoprotein enrichment by IMAC enables the subsequent detection of many protein spots with different fluorescence intensities between ERK-inhibited and -activated cells in 2D-DIGE analysis. Furthermore, the advanced sensitivity and resolution of liquid chromatography coupled with tandem mass spectrometry allow for a direct identification of proteins obtained from silver-stained 2D-DIGE gels. Validation experiments such as Phos-tag Western blotting are important steps to further elucidate the functional roles of ERK-mediated phosphorylation of these newly identified substrates.
Collapse
Affiliation(s)
- Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Kou Motani
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
26
|
Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, Nishihara H, Yamaguchi H, Hashimoto A, Nishida M, Nagasaka A, Horii Y, Ono H, Iribe G, Inoue R, Tsuda M, Inoue K, Tanaka A, Kuroda M, Nagata S, Kurose H. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest 2016; 127:383-401. [PMID: 27918308 DOI: 10.1172/jci83822] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/20/2016] [Indexed: 12/29/2022] Open
Abstract
Myocardial infarction (MI) results in the generation of dead cells in the infarcted area. These cells are swiftly removed by phagocytes to minimize inflammation and limit expansion of the damaged area. However, the types of cells and molecules responsible for the engulfment of dead cells in the infarcted area remain largely unknown. In this study, we demonstrated that cardiac myofibroblasts, which execute tissue fibrosis by producing extracellular matrix proteins, efficiently engulf dead cells. Furthermore, we identified a population of cardiac myofibroblasts that appears in the heart after MI in humans and mice. We found that these cardiac myofibroblasts secrete milk fat globule-epidermal growth factor 8 (MFG-E8), which promotes apoptotic engulfment, and determined that serum response factor is important for MFG-E8 production in myofibroblasts. Following MFG-E8-mediated engulfment of apoptotic cells, myofibroblasts acquired antiinflammatory properties. MFG-E8 deficiency in mice led to the accumulation of unengulfed dead cells after MI, resulting in exacerbated inflammatory responses and a substantial decrease in survival. Moreover, MFG-E8 administration into infarcted hearts restored cardiac function and morphology. MFG-E8-producing myofibroblasts mainly originated from resident cardiac fibroblasts and cells that underwent endothelial-mesenchymal transition in the heart. Together, our results reveal previously unrecognized roles of myofibroblasts in regulating apoptotic engulfment and a fundamental importance of these cells in recovery from MI.
Collapse
|
27
|
Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, Zhou Y, Ma L. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis 2016; 7:e2478. [PMID: 27882944 PMCID: PMC5260904 DOI: 10.1038/cddis.2016.377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/15/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptor kinases (GRKs) are critically involved in immune response through regulation of cytokine receptors in mature leukocytes, but their role in hematopoiesis is largely unknown. Here, we demonstrate that GRK6 knockout (GRK6-/-) mice exhibit lymphocytopenia, loss of the hematopoietic stem cell (HSC) and multiple progenitor populations. GRK6 deficiency leads to compromised lymphoid differentiation, largely owing to the impairment of HSC self-renewal. Transcriptome and proteomic analysis suggest that GRK6 is involved in reactive oxygen species signaling. GRK6 could interact with DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and regulate its phosphorylation. Moreover, reactive oxygen species scavenger α-lipoic acid administration could partially rescue the loss of HSC in GRK6-/- mice. Our work demonstrates the importance of GRK6 in regulation of HSC self-renewal and reveals its potential role in participation of stress response.
Collapse
Affiliation(s)
- Qiumin Le
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wenqing Yao
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yuejun Chen
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Biao Yan
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Cao Liu
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Man Yuan
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yuqing Zhou
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Chang JS, Su CY, Yu WH, Lee WJ, Liu YP, Lai TC, Jan YH, Yang YF, Shen CN, Shew JY, Lu J, Yang CJ, Huang MS, Lu PJ, Lin YF, Kuo ML, Hua KT, Hsiao M. GIT1 promotes lung cancer cell metastasis through modulating Rac1/Cdc42 activity and is associated with poor prognosis. Oncotarget 2016; 6:36278-91. [PMID: 26462147 PMCID: PMC4742177 DOI: 10.18632/oncotarget.5531] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023] Open
Abstract
G-protein-coupled receptor kinase interacting protein 1 (GIT1) is participated in cell movement activation, which is a fundamental process during tissue development and cancer progression. GIT1/PIX forming a functional protein complex that contributes to Rac1/Cdc42 activation, resulting in increasing cell mobility. Although the importance of Rac1/Cdc42 activation is well documented in cancer aggressiveness, the clinical importance of GIT1 remains largely unknown. Here, we investigated the clinical significance of GIT1 expression in non-small-cell lung cancer (NSCLC) and also verified the importance of GIT1-Rac1/Cdc42 axis in stimulating NSCLC cell mobility. The result indicated higher GIT1 expression patients had significantly poorer prognoses in disease-free survival (DFS) and overall survival (OS) compared with lower GIT1 expression patients. Higher GIT1 expression was an independent prognostic factor by multivariate analysis and associated with migration/invasion of NSCLC cells in transwell assay. In vivo studies indicated that GIT1 promotes metastasis of NSCLC cells. Finally, GIT1 was found to stimulate migration/invasion by altering the activity of Rac1/Cdc42 in NSCLC cells. Together, the GIT1 expression is associated with poor prognosis in patients with NSCLC. GIT1 is critical for the invasiveness of NSCLC cells through stimulating the activity of Rac1/Cdc42.
Collapse
Affiliation(s)
- Jeng-Shou Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Medical Biology, Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Yi Su
- Medical Biology, Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsuan Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas Houston Health Science Center, Houston, Texas, USA
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Peng Liu
- Institute of Genomic Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Ching Lai
- Medical Biology, Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hua Jan
- Medical Biology, Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Fang Yang
- Medical Biology, Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ning Shen
- Medical Biology, Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jin-Yuh Shew
- Medical Biology, Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jean Lu
- Medical Biology, Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Liang Kuo
- Institute of Biochemical Science, National Taiwan University College of Life Science, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Michael Hsiao
- Medical Biology, Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
29
|
Li YS, Qin LX, Liu J, Xia WL, Li JP, Shen HL, Gao WQ. GIT1 enhances neurite outgrowth by stimulating microtubule assembly. Neural Regen Res 2016; 11:427-34. [PMID: 27127481 PMCID: PMC4829007 DOI: 10.4103/1673-5374.179054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neurobiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a significant reduction in total neurite length per neuron, as well as in the average length of axon-like structures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufficient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assembly in vitro. Collectively, our findings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.
Collapse
Affiliation(s)
- Yi-Sheng Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Xia Qin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Liang Xia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Ping Li
- Department of Neurology, Shanghai Renji Hospital, Shanghai, China
| | - Hai-Lian Shen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; Collarative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
The clearance of dying cells: table for two. Cell Death Differ 2016; 23:915-26. [PMID: 26990661 PMCID: PMC4987729 DOI: 10.1038/cdd.2015.172] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022] Open
Abstract
Phagocytic cells of the immune system must constantly survey for, recognize, and efficiently clear the billions of cellular corpses that arise as a result of development, stress, infection, or normal homeostasis. This process, termed efferocytosis, is critical for the prevention of autoimmune and inflammatory disorders, and persistence of dead cells in tissue is characteristic of many human autoimmune diseases, notably systemic lupus erythematosus. The most notable characteristic of the efferocytosis of apoptotic cells is its ‘immunologically silent' response. Although the mechanisms by which phagocytes facilitate engulfment of dead cells has been a well-studied area, the pathways that coordinate to process the ingested corpse and direct the subsequent immune response is an area of growing interest. The recently described pathway of LC3 (microtubule-associated protein 1A/1B-light chain 3)-associated phagocytosis (LAP) has shed some light on this issue. LAP is triggered when an extracellular particle, such as a dead cell, engages an extracellular receptor during phagocytosis, induces the translocation of autophagy machinery, and ultimately LC3 to the cargo-containing phagosome, termed the LAPosome. In this review, we will examine efferocytosis and the impact of LAP on efferocytosis, allowing us to reimagine the impact of the autophagy machinery on innate host defense mechanisms.
Collapse
|
31
|
Tian L, Choi SC, Murakami Y, Allen J, Morse HC, Qi CF, Krzewski K, Coligan JE. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression. Nat Commun 2016; 5:3146. [PMID: 24477292 DOI: 10.1038/ncomms4146] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023] Open
Abstract
Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Linjie Tian
- 1] Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA [2]
| | - Seung-Chul Choi
- 1] Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA [2]
| | - Yousuke Murakami
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Joselyn Allen
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Chen-Feng Qi
- Pathology core, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - John E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| |
Collapse
|
32
|
Nakaya M. [Research on Molecular Mechanisms of Engulfment of Apoptotic Cells]. YAKUGAKU ZASSHI 2015; 135:949-54. [PMID: 26234352 DOI: 10.1248/yakushi.15-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptotic cells generated during development and immune responses in animals are rapidly engulfed by phagocytes, such as macrophages and dendritic cells. When the engulfment process malfunctions, the apoptotic cells undergo secondary necrosis, which results in the release of noxious cellular components into the extracellular space. Thus, the efficient clearance of apoptotic cells is indispensable for the maintenance of tissue homeostasis; however, the molecular mechanisms underlying the engulfment of apoptotic cells remain largely unknown. To identify the molecules that are involved in this process, we developed a functional screening strategy using a retrovirus cDNA library. Using this assay, we isolated cDNA clones encoding RhoG and Rab5 which enhanced the engulfment of apoptotic cells. In addition, we found that Rac1, which is very similar to RhoG, and Rab5 are necessary for engulfment; their activities were successfully visualized by a combination of fluorescence resonance energy transfer technology with time-lapse imaging techniques. We further determined that G protein-coupled receptor kinase 6 (GRK6), originally identified as a kinase responsible for the desensitization and downregulation of G-protein-coupled receptors, activates Rac1 independent of the two known intracellular engulfment pathways in phagocytes. GRK6-deficient macrophages exhibited impaired phagocytosis of apoptotic cells. Consequently, GRK6-deficient mice developed autoimmune phenotypes such as an increase in the amount of anti-dsDNA in serum and the deposition of immune complexes in the kidney. Thus, our findings contributed to the understanding of the molecular mechanisms that regulate apoptotic engulfment in phagocytes.
Collapse
Affiliation(s)
- Michio Nakaya
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
33
|
Abstract
G-protein-coupled receptor kinases (GRKs) are serine/threonine protein kinases originally discovered for their role in G-protein-coupled receptor (GPCR) phosphorylation. Recent studies have demonstrated a much broader function for this kinase family including phosphorylation of cytosolic substrates involved in cell signaling pathways stimulated by GPCRs, as well as by non-GPCRs. In addition, GRKs modulate signaling via phosphorylation-independent functions. Because of these various biochemical functions, GRKs have been shown to affect critical physiological and pathophysiological processes, and thus are considered as drug targets in diseases such as heart failure. Role of GRKs in inflammation and inflammatory diseases is an evolving area of research and several studies including work from our lab in the recent years have demonstrated critical role of GRKs in the immune system. In this review, we discuss the classical and the newly emerging functions of GRKs in the immune system and their role in inflammation and disease processes.
Collapse
|
34
|
GRK6 phosphorylates IκBα at Ser32/Ser36 and enhances TNF-α-induced inflammation. Biochem Biophys Res Commun 2015; 461:307-13. [DOI: 10.1016/j.bbrc.2015.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/04/2015] [Indexed: 01/01/2023]
|
35
|
Sato PY, Chuprun JK, Schwartz M, Koch WJ. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 2015; 95:377-404. [PMID: 25834229 PMCID: PMC4551214 DOI: 10.1152/physrev.00015.2014] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important regulators of various cellular functions via activation of intracellular signaling events. Active GPCR signaling is shut down by GPCR kinases (GRKs) and subsequent β-arrestin-mediated mechanisms including phosphorylation, internalization, and either receptor degradation or resensitization. The seven-member GRK family varies in their structural composition, cellular localization, function, and mechanism of action (see sect. II). Here, we focus our attention on GRKs in particular canonical and novel roles of the GRKs found in the cardiovascular system (see sects. III and IV). Paramount to overall cardiac function is GPCR-mediated signaling provided by the adrenergic system. Overstimulation of the adrenergic system has been highly implicated in various etiologies of cardiovascular disease including hypertension and heart failure. GRKs acting downstream of heightened adrenergic signaling appear to be key players in cardiac homeostasis and disease progression, and herein we review the current data on GRKs related to cardiac disease and discuss their potential in the development of novel therapeutic strategies in cardiac diseases including heart failure.
Collapse
Affiliation(s)
- Priscila Y Sato
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - J Kurt Chuprun
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Mathew Schwartz
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| |
Collapse
|
36
|
Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells. Int J Mol Sci 2015; 16:5635-65. [PMID: 25768345 PMCID: PMC4394497 DOI: 10.3390/ijms16035635] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 01/01/2023] Open
Abstract
Cross-talk between the sympathetic nervous system (SNS) and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE) in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs) in immune cells activates the cAMP-protein kinase A (PKA) intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune-SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP-PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP-PKA to mitogen-activated protein kinase (MAPK) pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for "signal switching" in immune cells.
Collapse
|
37
|
Nakaya M, Kurose H. [Identification of a new molecule that promotes clearance of apoptotic cells - G protein-coupled receptor kinase 6 is involved in engulfment of apoptotic cells]. Nihon Yakurigaku Zasshi 2015; 145:14-20. [PMID: 25743231 DOI: 10.1254/fpj.145.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Munoz LE, Herrmann M, Berens C. Dying autologous cells as instructors of the immune system. Clin Exp Immunol 2015; 179:1-4. [PMID: 25354655 DOI: 10.1111/cei.12478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2014] [Indexed: 12/20/2022] Open
Abstract
In an organism, cell death occurs at many different sites and in many different forms. It is frequently part of normal development or serves to maintain cell homeostasis. In other cases, cell death not only occurs due to injury, disease or infection, but also as a consequence of various therapeutic interventions. However, in all of these scenarios, the immune system has to react to the dying and dead cells and decide whether to mount an immune response, to remain quiet or to initiate healing and repopulation. This is essential for the organism, testified by many diseases that are associated with malfunctioning in the cell death process, the corpse removal, or the ensuing immune responsiveness. Therefore, dying cells generally have to be considered as instructors of the immune system. How this happens and which signals and pathways contribute to modulate or shape the immune response is still elusive in many conditions. The articles presented in this Special Issue address such open questions. They highlight that the context in which cell death occurs will not only influence the cell death process itself, but also affect the surrounding cellular milieu, how the generation and presence of 'eat me' signals can have an impact on cell clearance, and that the exact nature of the residual 'debris' and how it is processed are fundamental to determining the immunological consequences. Hopefully, these articles initiate new approaches and new experiments to complete our understanding of how cell death and the immune system interact with each other.
Collapse
Affiliation(s)
- L E Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
39
|
Chudziak D, Spohn G, Karpova D, Dauber K, Wiercinska E, Miettinen JA, Papayannopoulou T, Bönig H. Functional consequences of perturbed CXCL12 signal processing: analyses of immature hematopoiesis in GRK6-deficient mice. Stem Cells Dev 2014; 24:737-46. [PMID: 25316534 DOI: 10.1089/scd.2014.0284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) in an environment rich in CXCL12, the ligand for CXCR4, which is constitutively expressed on all immature hematopoietic cells in BM. This ligand-receptor pair critically controls HSPC retention and (relative) quiescence in BM. Interestingly, in a chemokine-abundant environment, CXCR4 surface expression and CXCL12 sensitivity of BM-residing HSPCs are continuously maintained. The mechanisms underlying this peculiar pattern of G-protein signal integration by BM-HSPCs are unknown. G-protein receptor kinases (GRKs) control receptor function by phosphorylating the intracellular domains upon ligand-induced activation, which results in receptor internalization and transient refractoriness. Using, therefore, a GRK6-deficient (GRK6(-/-)) mouse, we sought to address how perturbed ligand-induced CXCR4 (in)activation affects HSPC behavior in vitro and in vivo. In vitro, GRK6(-/-) HSPCs were characterized by hyper-responsiveness to CXCL12, as expected. In vivo, GRK6(-/-) immature hematopoiesis was characterized by a marked expansion of immature hematopoiesis in spleens and a modest repopulation defect in serial competitive transplantation. Enforced mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was normal, as was hematopoietic regeneration after noncompetitive transplantation or pharmacological myelosuppression. These observations illustrate that GRK-mediated restriction of CXCR4 signal input after ligand engagement is largely dispensable for BM-resident HSPCs, which may explain how continuous CXCL12 responsiveness of BM-HSPCs can be maintained.
Collapse
Affiliation(s)
- Doreen Chudziak
- 1 German Red Cross Blood Service Baden-Württemberg-Hesse , Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Watari K, Nakaya M, Kurose H. Multiple functions of G protein-coupled receptor kinases. J Mol Signal 2014; 9:1. [PMID: 24597858 PMCID: PMC3973964 DOI: 10.1186/1750-2187-9-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/25/2014] [Indexed: 02/07/2023] Open
Abstract
Desensitization is a physiological feedback mechanism that blocks detrimental effects of persistent stimulation. G protein-coupled receptor kinase 2 (GRK2) was originally identified as the kinase that mediates G protein-coupled receptor (GPCR) desensitization. Subsequent studies revealed that GRK is a family composed of seven isoforms (GRK1–GRK7). Each GRK shows a differential expression pattern. GRK1, GRK4, and GRK7 are expressed in limited tissues. In contrast, GRK2, GRK3, GRK5, and GRK6 are ubiquitously expressed throughout the body. The roles of GRKs in GPCR desensitization are well established. When GPCRs are activated by their agonists, GRKs phosphorylate serine/threonine residues in the intracellular loops and the carboxyl-termini of GPCRs. Phosphorylation promotes translocation of β-arrestins to the receptors and inhibits further G protein activation by interrupting receptor-G protein coupling. The binding of β-arrestins to the receptors also helps to promote receptor internalization by clathrin-coated pits. Thus, the GRK-catalyzed phosphorylation and subsequent binding of β-arrestin to GPCRs are believed to be the common mechanism of GPCR desensitization and internalization. Recent studies have revealed that GRKs are also involved in the β-arrestin-mediated signaling pathway. The GRK-mediated phosphorylation of the receptors plays opposite roles in conventional G protein- and β-arrestin-mediated signaling. The GRK-catalyzed phosphorylation of the receptors results in decreased G protein-mediated signaling, but it is necessary for β-arrestin-mediated signaling. Agonists that selectively activate GRK/β-arrestin-dependent signaling without affecting G protein signaling are known as β-arrestin-biased agonists. Biased agonists are expected to have potential therapeutic benefits for various diseases due to their selective activation of favorable physiological responses or avoidance of the side effects of drugs. Furthermore, GRKs are recognized as signaling mediators that are independent of either G protein- or β-arrestin-mediated pathways. GRKs can phosphorylate non-GPCR substrates, and this is found to be involved in various physiological responses, such as cell motility, development, and inflammation. In addition to these effects, our group revealed that GRK6 expressed in macrophages mediates the removal of apoptotic cells (engulfment) in a kinase activity-dependent manner. These studies revealed that GRKs block excess stimulus and also induce cellular responses. Here, we summarized the involvement of GRKs in β-arrestin-mediated and G protein-independent signaling pathways.
Collapse
Affiliation(s)
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
41
|
Xiao J, Chen X, Xu L, Zhang Y, Yin Q, Wang F. Regulation of chondrocyte proliferation through GIT1-Rac1-mediated ERK1/2 pathway by PDGF. Cell Biol Int 2014; 38:695-701. [PMID: 24420748 DOI: 10.1002/cbin.10241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/07/2014] [Indexed: 12/28/2022]
Abstract
There are many growth factors contributing to fracture healing after bone fractures. Platelet-derived growth factor (PDGF) released from platelets is a factor promoting cell division and proliferation, and first appears around the sites of fractures. Culture of chondrocytes in vitro are stimulated by PDGF to proliferation, its presence being upregulated in the extracellular matrix of cartilage; the main components include aggrecan and type II collagen. PDGF induces the expression of G the protein-coupled receptor kinase interacting protein 1 (GIT1), promoting Rac1 and ERK1/2 phosphorylation. Both knocking down GIT1 expression by siRNA and blocking phosphorylation of Rac1 inhibit this induced proliferation of chondrocyte. GIT1 and Rac1 control each other, having a synergistic effect on activation of the ERK1/2 pathway. The results suggest that PDGF regulates chondrocyte proliferation through activation of ERK1/2 pathway by upregulation of GIT1 expression and Rac1 phosphorylation.
Collapse
Affiliation(s)
- Jin Xiao
- Department of Orthopedics, Liuhuaqiao Hospital, Guangzhou, 510010, People's Republic of China
| | | | | | | | | | | |
Collapse
|