1
|
Zhang M, Yuan L, Yang X, Zhao X, Xie J, Liu X, Wang F. TRAF1 promotes the progression of Helicobacter pylori-associated gastric cancer through EGFR/STAT/OAS signalling. Life Sci 2025; 373:123656. [PMID: 40287055 DOI: 10.1016/j.lfs.2025.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
AIMS Helicobacter pylori (H. pylori) is associated with various gastric diseases and is one of the pathogenic factors of gastric cancer (GC). We found that H. pylori induce the expression of TRAF1, but its mechanism of action is still unclear. Therefore, we wanted to determine whether TRAF1 is involved in the mechanism of H. pylori-related GC progression. MATERIALS AND METHODS In this study, we analysed TRAF1 expression and its prognostic significance using clinical specimens, performed functional studies involving TRAF1 overexpression or knockdown in cellular models, identified downstream signalling pathways regulated via RNA-seq, validated these mechanisms through pathway blockade and rescue experiments, and further confirmed the findings in an H. pylori-infected gastritis mouse model. KEY FINDINGS TRAF1 expression was significantly elevated in GC tissues and served as a poor prognostic biomarker. TRAF1 promoted GC cell proliferation, migration and invasion. RNA-seq analysis revealed that TRAF1 activated the EGFR/STAT/OAS signalling axis, upregulated STAT3 expression and increased the transcription of the OAS gene family. Pharmacological inhibition with ruxolitinib and AG490 effectively blocked EGFR/STAT/OAS signalling. In H. pylori-treated cell models, H. pylori infection activated the EGFR/STAT/OAS signalling axis. In vivo, we established an H. pylori-induced gastritis mouse model to validate the activation of this signalling pathway during the gastritis-carcinoma transition. SIGNIFICANCE TRAF1 may promote the proliferation, migration and invasion of H. pylori-associated GC by activating the EGFR/STAT/OAS signalling axis, suggesting that TRAF1 is a promising novel prognostic biomarker and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Lingzhi Yuan
- Department of Digestive Nutrition, Hunan Children's Hospital, Central South University Affiliated Children's Hospital, Changsha, China
| | - Xueer Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Xuelin Zhao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Jie Xie
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| |
Collapse
|
2
|
Xiao S, Shen Y, Zhang M, Liu X, Cai T, Wang F. VacA promotes pyroptosis via TNFAIP3/TRAF1 signaling to induce onset of atrophic gastritis. Microbiol Res 2025; 296:128142. [PMID: 40138873 DOI: 10.1016/j.micres.2025.128142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Atrophic gastritis (AG) is a chronic inflammation where gastric glandular cells are replaced by intestinal-type epithelium. Gastric epithelial cell loss is often linked to multiple cell death signaling pathways. While Helicobacter pylori (H. pylori) infection is the main cause of AG, its role in inducing cell death goes beyond apoptosis and autophagy. Pyroptosis could promote development of inflammation related cancers, but its involvement in H. pylori-induced malignant transformation remains unclear. METHODS The enrichment of pyroptosis signaling across pathological stages was assessed using immunohistochemistry and bioinformatic analysis. Gastric epithelial cells were co-cultured with VacA recombinant protein or VacA+H. pylori to investigate the role of VacA in pyroptosis, and its downstream targets. TNFAIP3 or TRAF1 was silenced/overexpressed in gastric epithelial cells to explore their impact on pyroptosis. Finally, the interaction between TNFAIP3 and TRAF1 was examined using Western Blot, immunofluorescence, co-immunoprecipitation and ubiquitin assays. RESULTS Expression of pyroptosis components and pyroptosis enrichment score were upregulated in AG and gastric cancer tissues compared to normal or non-atrophic gastritis tissues. Upon incubation with VacA recombinant protein or VacA+H. pylori, pyroptosis and TNFAIP3/TRAF1 were elevated in gastric epithelial cells. TRAF1 promoted expression of downstream pyroptosis components and release of IL-1β/IL18. TRAF1 ablation could reverse pyroptosis activation caused by VacA. Finally, we proved TNFAIP3 as deubiquitinating enzyme to increase TRAF1 stability, further inducing pyroptosis. CONCLUSIONS The VacA/TNFAIP3/TRAF1 signaling cascade facilitates pyroptosis in H. pylori- infected tissue. Overactivation of Pyroptosis caused the atrophy-like morphological changes of gastric epithelium, further inducing sustainable malignant transformation.
Collapse
Affiliation(s)
- Shilang Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, China
| | - Yicun Shen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, China
| | - Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, China.
| | - Ting Cai
- Department of gastroenterology, Hunan provincial people's hospital, the first affiliated hospital of Hunan Normal University, 61 Jiefang Road, Changsha, Hunan 410005, China.
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
3
|
Tao SH, Lei YQ, Tan YM, Yang YB, Xie WN. Chinese herbal formula in the treatment of metabolic dysfunction-associated steatotic liver disease: current evidence and practice. Front Med (Lausanne) 2024; 11:1476419. [PMID: 39440040 PMCID: PMC11493624 DOI: 10.3389/fmed.2024.1476419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, continues to rise with rapid economic development and poses significant challenges to human health. No effective drugs are clinically approved. MASLD is regarded as a multifaceted pathological process encompassing aberrant lipid metabolism, insulin resistance, inflammation, gut microbiota imbalance, apoptosis, fibrosis, and cirrhosis. In recent decades, herbal medicines have gained increasing attention as potential therapeutic agents for the prevention and treatment of MASLD, due to their good tolerance, high efficacy, and low toxicity. In this review, we summarize the pathological mechanisms of MASLD; emphasis is placed on the anti-MASLD mechanisms of Chinese herbal formula (CHF), especially their effects on improving lipid metabolism, inflammation, intestinal flora, and fibrosis. Our goal is to better understand the pharmacological mechanisms of CHF to inform research on the development of new drugs for the treatment of MASLD.
Collapse
Affiliation(s)
- Shao-Hong Tao
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Qing Lei
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yi-Mei Tan
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Bo Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei-Ning Xie
- Department of Scientific Research, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, Guangdong, China
| |
Collapse
|
4
|
Zhao B, Li M, Li B, Li Y, Shen Q, Hou J, Wu Y, Gu L, Gao W. The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice. Neural Regen Res 2024; 19:2019-2026. [PMID: 38227531 DOI: 10.4103/1673-5374.390951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/29/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00034/figure1/v/2024-01-16T170235Z/r/image-tiff Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bingyu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yanan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Toczyska K, Haq N, Lyu Z, Bewick G, Zhao M, Rosa H, Starikova J, Liu B, Persaud SJ. The selective serotonin reuptake inhibitors, sertraline and paroxetine, improve islet beta-cell mass and function in vitro. Diabetes Obes Metab 2024; 26:3606-3617. [PMID: 38888050 PMCID: PMC11639051 DOI: 10.1111/dom.15701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
AIMS To investigate the effects of the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine at therapeutically relevant concentrations on beta-cell mass and function. METHODS Viability was quantified in mouse insulinoma (MIN6) beta cells and mouse islets after 48-h exposure to sertraline (1-10 μM) or paroxetine (0.01-1 μM) using the Trypan blue exclusion test. The effects of therapeutic concentrations of these SSRIs on insulin secretion were determined by static incubation and perifusion experiments, while islet apoptosis was investigated by Caspase-Glo 3/7 assay, TUNEL staining and quantitative PCR analysis. Finally, proliferation of MIN6 and mouse islet beta cells was assessed by bromodeoxyuridine (BrdU) enzyme-linked immunosorbent assay and immunofluorescence. RESULTS Sertraline (0.1-1 μM) and paroxetine (0.01-0.1 μM) were well tolerated by MIN6 beta cells and islets, whereas 10 μM sertraline and 1 μM paroxetine were cytotoxic. Exposure to 1 μM sertraline and 0.1 μM paroxetine significantly potentiated glucose-stimulated insulin secretion from mouse and human islets. Moreover, they showed protective effects against cytokine- and palmitate-induced apoptosis of islets, they downregulated cytokine-induced Stat1 and Traf1 mRNA expression, and they significantly increased proliferation of mouse beta cells. CONCLUSIONS Our data demonstrate that sertraline and paroxetine act directly on beta cells to enhance glucose-stimulated insulin secretion and stimulate beta-cell mass expansion by increasing proliferation and decreasing apoptosis. These drugs are therefore likely to be appropriate for treating depression in people with type 2 diabetes.
Collapse
Affiliation(s)
- Klaudia Toczyska
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Naila Haq
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Zekun Lyu
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Gavin Bewick
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Min Zhao
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Hannah Rosa
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Jessica Starikova
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Bo Liu
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Shanta Jean Persaud
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| |
Collapse
|
6
|
Li Z, Gao T, Wang J, Zhang X, Zhang Y, Zhang L, Yang P, Liu J. Ferroptosis mediated by TNFSF9 interferes in acute ischaemic stroke reperfusion injury with the progression of acute ischaemic stroke. J Neurochem 2024; 168:1030-1044. [PMID: 38344886 DOI: 10.1111/jnc.16058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 05/31/2024]
Abstract
In this study, we investigated the potential involvement of TNFSF9 in reperfusion injury associated with ferroptosis in acute ischaemic stroke patients, mouse models and BV2 microglia. We first examined TNFSF9 changes in peripheral blood from stroke patients with successful reperfusion, and constructed oxygen-glucose deprivation-reperfusion (OGD-R) on BV2 microglia, oxygen-glucose deprivation for 6 h followed by reoxygenation and re-glucose for 24 h, and appropriate over-expression or knockdown of TNFSF9 manipulation on BV2 cells and found that in the case of BV2 cells encountering OGD-R over-expression of TNFSF9 resulted in increased BV2 apoptosis. Still, the knockdown of TNFSF9 ameliorated apoptosis and ferroptosis. In an in vivo experiment, we constructed TNFSF9 over-expression or knockout mice by intracerebral injection of TNFSF9-OE or sh-TNFSF9 adenovirus. We performed the middle cerebral artery occlusion (MCAO) model on day four, 24 h after ligation of the proximal artery, for half an hour to recanalize. As luck would have it, over-expression of TNFSF9 resulted in increased brain infarct volumes, neurological function scores and abnormalities in TNFSF9-related TRAF1 and ferroptosis-related pathways, but knockdown of TNFSF9 improved brain infarcts in mice as well as reversing TNFSF9-related signalling pathways. In conclusion, our data provide the first evidence that TNFSF9 triggers microglia activation by activating the ferroptosis signalling pathway following ischaemic stroke, leading to brain injury and neurological deficits.
Collapse
Affiliation(s)
- Zifu Li
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Tianxiang Gao
- University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Jing Wang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Xiaoxi Zhang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Yongxin Zhang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Lei Zhang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Pengfei Yang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Jianmin Liu
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| |
Collapse
|
7
|
Li Z, Zhang M, Yang L, Fan D, Zhang P, Zhang L, Zhang J, Lu Z. Sophoricoside ameliorates cerebral ischemia-reperfusion injury dependent on activating AMPK. Eur J Pharmacol 2024; 971:176439. [PMID: 38401605 DOI: 10.1016/j.ejphar.2024.176439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
AIMS Ischemic stroke accounts for 87% of all strokes, and its death and disability bring a huge burden to society. Brain injury caused by ischemia-reperfusion (I/R) is also a major difficulty in clinical treatment and prognosis. Sophoricoside (SOP) is an isoflavone glycoside isolated from the seed of medical herb Sophora japonica L. Previously, SOP was found to be effective in anti-inflammation and glucose-lipid metabolism-related diseases. In order to investigate whether SOP has a regulatory effect on cerebral I/R injury, we conducted this study. METHODS Here, by application of SOP into MCAO (transient middle cerebral artery occlusion)-induced mice and OGD/R (oxygen glucose deprivation/reperfusion)-induced primary neurons, the regulation effects of SOP was analyzed by detecting neurological score of post-stroke mice, phenotypes of brains and brain sections, cell viabilities, and apoptosis- and inflammation-regulation. RNA sequencing and molecular biology experiments were performed to explore the mechanism of SOP regulating cerebral I/R injury. RESULTS SOP administration decreased the infarct size, neurological deficit score, neuronal cell injury, inflammation and apoptosis. Mechanistically, SOP exerted its protective effect by activating the AMP-activated protein kinase (AMPK) signaling pathway. CONCLUSION SOP inhibits cerebral I/R injury by promoting the phosphorylation of AMPK.
Collapse
Affiliation(s)
- Zhaoshuo Li
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China
| | - Mi Zhang
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China
| | - Lixia Yang
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China
| | - Ding Fan
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China
| | - Peng Zhang
- School of Basic Medical Science, Wuhan University, Wuhan, Hubei, 430071, China
| | - Li Zhang
- Institute of Model Animal of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jianqing Zhang
- Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 445000, China
| | - Zhigang Lu
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, 445000, China.
| |
Collapse
|
8
|
Jang H, Kim S, Kim DY, Han JH, Park HH. TRAF1 from a Structural Perspective. Biomolecules 2024; 14:510. [PMID: 38785916 PMCID: PMC11117997 DOI: 10.3390/biom14050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins play pivotal roles in a multitude of cellular signaling pathways, encompassing immune response, cell fate determination, development, and thrombosis. Their involvement in these processes hinges largely on their ability to interact directly with diverse receptors via the TRAF domain. Given the limited binding interface, understanding how specific TRAF domains engage with various receptors and how structurally similar binding interfaces of TRAF family members adapt their distinct binding partners has been the subject of extensive structural investigations over several decades. This review presents an in-depth exploration of the current insights into the structural and molecular diversity exhibited by the TRAF domain and TRAF-binding motifs across a range of receptors, with a specific focus on TRAF1.
Collapse
Affiliation(s)
| | | | | | | | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; (H.J.); (S.K.); (D.Y.K.); (J.H.H.)
| |
Collapse
|
9
|
Kim DW, Lim JH, Cho S, Kim SH. Effects of Banhabaekchulcheonma-Tang on Brain Injury and Cognitive Function Impairment Caused by Bilateral Common Carotid Artery Stenosis in a Mouse Model. Int J Med Sci 2024; 21:644-655. [PMID: 38464836 PMCID: PMC10920841 DOI: 10.7150/ijms.90167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024] Open
Abstract
Vascular dementia (VD) is the second most prevalent dementia type, with no drugs approved for its treatment. Here, the effects of Banhabaekchulcheonma-Tang (BBCT) on ischemic brain injury and cognitive function impairment were investigated in a bilateral carotid artery stenosis (BCAS) mouse model. Mice were divided into sham-operated, BCAS control, L-BBCT (40 ml/kg), and H-BBCT (80 ml/kg) groups. BBCT's effects were characterized using the Y-maze test, novel object recognition test (NORT), immunofluorescence staining, RNA sequencing, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses. The NORT revealed cognitive function improvement in the H-BBCT group, while the Y-maze test revealed no significant difference among the four groups. The CD68+ microglia and GFAP+ astrocyte numbers were reduced in the H-BBCT group. Furthermore, H-BBCT treatment restored the dysregulation of gene expression caused by BCAS. The major BBCT targets were predicted to be cell division cycle protein 20 (CDC20), Epidermal growth factor (EGF), and tumor necrosis factor receptor-associated factor 1 (TRAF1). BBCT regulates the neuroactive ligand-receptor interaction and neuropeptide signaling pathways, as predicted by KEGG and GO analyses, respectively. BBCT significantly improved cognitive impairment in a BCAS mouse model by inhibiting microglial and astrocyte activation and regulating the expression of CDC20, EGF, TRAF1, and key proteins in the neuroactive ligand-receptor interaction and neuropeptide signaling pathways.
Collapse
Affiliation(s)
- Da-Woon Kim
- Department of Neuropsychiatry of Korean Medicine, Pohang Korean Medicine Hospital, Daegu Haany University, 411 Saecheonnyeon-daero, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
| | - Jung-Hwa Lim
- Department of Neuropsychiatry, School of Korean Medicine, Pusan National University, 49, Busandaehak-ro, Yangsan-si 50612, Republic of Korea
- Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Yangsan-si 50612, Republic of Korea
| | - Suin Cho
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan, Republic of Korea
| | - Sang-Ho Kim
- Department of Neuropsychiatry of Korean Medicine, Pohang Korean Medicine Hospital, Daegu Haany University, 411 Saecheonnyeon-daero, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
10
|
Meng S, Cao H, Huang Y, Shi Z, Li J, Wang Y, Zhang Y, Chen S, Shi H, Gao Y. ASK1-K716R reduces neuroinflammation and white matter injury via preserving blood-brain barrier integrity after traumatic brain injury. J Neuroinflammation 2023; 20:244. [PMID: 37875988 PMCID: PMC10594934 DOI: 10.1186/s12974-023-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant worldwide public health concern that necessitates attention. Apoptosis signal-regulating kinase 1 (ASK1), a key player in various central nervous system (CNS) diseases, has garnered interest for its potential neuroprotective effects against ischemic stroke and epilepsy when deleted. Nonetheless, the specific impact of ASK1 on TBI and its underlying mechanisms remain elusive. Notably, mutation of ATP-binding sites, such as lysine residues, can lead to catalytic inactivation of ASK1. To address these knowledge gaps, we generated transgenic mice harboring a site-specific mutant ASK1 Map3k5-e (K716R), enabling us to assess its effects and elucidate potential underlying mechanisms following TBI. METHODS We employed the CRIPR/Cas9 system to generate a transgenic mouse model carrying the ASK1-K716R mutation, aming to investigate the functional implications of this specific mutant. The controlled cortical impact method was utilized to induce TBI. Expression and distribution of ASK1 were detected through Western blotting and immunofluorescence staining, respectively. The ASK1 kinase activity after TBI was detected by a specific ASK1 kinase activity kit. Cerebral microvessels were isolated by gradient centrifugation using dextran. Immunofluorescence staining was performed to evaluate blood-brain barrier (BBB) damage. BBB ultrastructure was visualized using transmission electron microscopy, while the expression levels of endothelial tight junction proteins and ASK1 signaling pathway proteins was detected by Western blotting. To investigate TBI-induced neuroinflammation, we conducted immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry analyses. Additionally, immunofluorescence staining and electrophysiological compound action potentials were conducted to evaluate gray and white matter injury. Finally, sensorimotor function and cognitive function were assessed by a battery of behavioral tests. RESULTS The activity of ASK1-K716R was significantly decreased following TBI. Western blotting confirmed that ASK1-K716R effectively inhibited the phosphorylation of ASK1, JNKs, and p38 in response to TBI. Additionally, ASK1-K716R demonstrated a protective function in maintaining BBB integrity by suppressing ASK1/JNKs activity in endothelial cells, thereby reducing the degradation of tight junction proteins following TBI. Besides, ASK1-K716R effectively suppressed the infiltration of peripheral immune cells into the brain parenchyma, decreased the number of proinflammatory-like microglia/macrophages, increased the number of anti-inflammatory-like microglia/macrophages, and downregulated expression of several proinflammatory factors. Furthermore, ASK1-K716R attenuated white matter injury and improved the nerve conduction function of both myelinated and unmyelinated fibers after TBI. Finally, our findings demonstrated that ASK1-K716R exhibited favorable long-term functional and histological outcomes in the aftermath of TBI. CONCLUSION ASK1-K716R preserves BBB integrity by inhibiting ASK1/JNKs pathway in endothelial cells, consequently reducing the degradation of tight junction proteins. Additionally, it alleviates early neuroinflammation by inhibiting the infiltration of peripheral immune cells into the brain parenchyma and modulating the polarization of microglia/macrophages. These beneficial effects of ASK1-K716R subsequently result in a reduction in white matter injury and promote the long-term recovery of neurological function following TBI.
Collapse
Affiliation(s)
- Shan Meng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Hui Cao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ziyu Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yana Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yue Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuning Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Hong Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Guan X, Wei D, Liang Z, Xie L, Wang Y, Huang Z, Wu J, Pang T. FDCA Attenuates Neuroinflammation and Brain Injury after Cerebral Ischemic Stroke. ACS Chem Neurosci 2023; 14:3839-3854. [PMID: 37768739 DOI: 10.1021/acschemneuro.3c00456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Ischemic stroke is a deleterious cerebrovascular disease with few therapeutic options, and its functional recovery is highly associated with the integrity of the blood-brain barrier and neuroinflammation. The Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor fasudil (F) and the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate (DCA) have been demonstrated to exhibit neuroprotection in a series of neurological disorders. Hence, we synthesized and biologically examined the new salt fasudil dichloroacetate (FDCA) and validated that FDCA was eligible for attenuating ischemic volume and neurological deficits in the rat transient middle cerebral artery occlusion (tMCAO) model. Additionally, FDCA exerted superior effects than fasudil and dichloroacetate alone or in combination in reducing cerebral ischemic injury. Particularly, FDCA could maintain the blood-brain barrier (BBB) integrity by inhibiting matrix metalloproteinase 9 (MMP-9) protein expression and the degradation of zonula occludens (ZO-1) and Occludin protein. Meanwhile, FDCA could mitigate the neuroinflammation induced by microglia. The in vivo and in vitro experiments further demonstrated that FDCA disrupted the phosphorylations of myosin phosphatase target subunit 1 (MYPT1), mitogen-activated protein kinase (MAPK) cascade, including p38 and c-Jun N-terminal kinase (JNK), and pyruvate dehydrogenase (PDH) and limited excessive lactic acid metabolites, resulting in inhibition of BBB disruption and neuroinflammation. In addition, FDCA potently mitigated inflammatory response in human monocytes isolated from ischemic stroke patients, which provides the possibilities of a clinical translation perspective. Overall, these findings provided a therapeutic potential for FDCA as a candidate agent for ischemic stroke and other neurological diseases associated with BBB disruption and neuroinflammation.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dasha Wei
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhuangzhuang Liang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yifang Wang
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P. R. China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
12
|
Li Z, Liu B, Lambertsen KL, Clausen BH, Zhu Z, Du X, Xu Y, Poulsen FR, Halle B, Bonde C, Chen M, Wang X, Schlüter D, Huang J, Waisman A, Song W, Wang X. USP25 Inhibits Neuroinflammatory Responses After Cerebral Ischemic Stroke by Deubiquitinating TAB2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301641. [PMID: 37587766 PMCID: PMC10558664 DOI: 10.1002/advs.202301641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/26/2023] [Indexed: 08/18/2023]
Abstract
Cerebral ischemic stroke is a leading cause of morbidity and mortality globally. However, the mechanisms underlying ischemic stroke injury remain poorly understood. Here, it is found that deficiency of the ubiquitin-specific protease USP25 significantly aggravate ischemic stroke injury in mice. USP25 has no impact on neuronal death under hypoxic conditions, but reduced ischemic stroke-induced neuronal loss and neurological deficits by inhibiting microglia-mediated neuroinflammation. Mechanistically, USP25 restricts the activation of NF-κB and MAPK signaling by regulating TAB2. As a deubiquitinating enzyme, USP25 removeds K63-specific polyubiquitin chains from TAB2. AAV9-mediated TAB2 knockdown ameliorates ischemic stroke injury and abolishes the effect of USP25 deletion. In both mouse and human brains, USP25 is markedly upregulated in microglia in the ischemic penumbra, implying a clinical relevance of USP25 in ischemic stroke. Collectively, USP25 is identified as a critical inhibitor of ischemic stroke injury and this data suggest USP25 may serve as a therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Zhongding Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Baohua Liu
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Kate Lykke Lambertsen
- Department of Neurobiology ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense C5000Denmark
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurologyOdense University HospitalOdense C5000Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense C5000Denmark
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
| | - Zhenhu Zhu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xue Du
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Yanqi Xu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Frantz Rom Poulsen
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurosurgeryOdense University HospitalOdense C5000Denmark
| | - Bo Halle
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurosurgeryOdense University HospitalOdense C5000Denmark
| | - Christian Bonde
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurosurgeryOdense University HospitalOdense C5000Denmark
| | - Meng Chen
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xue Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical School30625HannoverGermany
| | - Jingyong Huang
- Department of Vascular SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325015China
| | - Ari Waisman
- Institute for Molecular MedicineJohannes Gutenberg University Mainz55131MainzGermany
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceInstitute of AgingWenzhou Medical UniversityWenzhou325035China
| | - Xu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceInstitute of AgingWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
13
|
Hong Y, Li J, Zhong Y, Yang S, Pei L, Huang Z, Chen X, Wu H, Zheng G, Zeng C, Wu H, Wang T. Elabela inhibits TRAF1/NF-κB induced oxidative DNA damage to promote diabetic foot ulcer wound healing. iScience 2023; 26:107601. [PMID: 37664606 PMCID: PMC10469767 DOI: 10.1016/j.isci.2023.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a serious complication of diabetes. Elabela (ELA), a ligand of apelin receptor (APJ), was shown to promote angiogenesis and suppress inflammation. This study aimed to illustrate the role of ELA in DFU wound healing. A whole-skin defect model was constructed using db/m and db/db mice to observe the effects of ELA on wound healing. The function of ELA in endothelial cells cultured in high glucose medium was investigated. Administration of ELA in peri-wound area of db/db mice accelerated wound closure and reduced inflammatory infiltration. Indicators of DNA damage, elevated reactive oxygen species (ROS) levels and tail DNA amounts, were downregulated by ELA but compromised after TRAF1 overexpression. ELA-mediated inhibition of NF-κB phosphorylation improved cell migration and angiogenesis, which were blocked by APJ silencing. The findings imply that ELA suppresses TRAF1-mediated NF-κB signal activation, reducing ROS-related oxidative DNA damage and improving protection of endothelial function.
Collapse
Affiliation(s)
- Yinghui Hong
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Jun Li
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Yinsheng Zhong
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Shujun Yang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Liying Pei
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Zijie Huang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Xuxiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Hao Wu
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Guanghui Zheng
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chaotao Zeng
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Haidong Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Tong Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| |
Collapse
|
14
|
Zhang X, Xu Y, Zhang W, Yang B, Zhang Y, Jia Z, Huang S, Zhang A, Li S. TRAF1 improves cisplatin-induced acute kidney injury via inhibition of inflammation and metabolic disorders. Biochim Biophys Acta Gen Subj 2023; 1867:130423. [PMID: 37419425 DOI: 10.1016/j.bbagen.2023.130423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Cisplatin-induced acute kidney injury (AKI) is a severe clinical complication with no satisfactory therapies in the clinic. Tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1) plays a vital role in both inflammation and metabolism. However, the TRAF1 effect in cisplatin induced AKI needs to be evaluated. METHODS We observed the role of TRAF1 in eight-week-old male mice and mouse proximal tubular cells both treated with cisplatin by examining the indicators associated with kidney injury, apoptosis, inflammation, and metabolism. RESULTS TRAF1 expression was decreased in cisplatin-treated mice and mouse proximal tubular cells (mPTCs), suggesting a potential role of TRAF1 in cisplatin-associated kidney injury. TRAF1 overexpression significantly alleviated cisplatin-triggered AKI and renal tubular injury, as demonstrated by reduced serum creatinine (Scr) and urea nitrogen (BUN) levels, as well as the ameliorated histological damage and inhibited upregulation of NGAL and KIM-1. Moreover, the NF-κB activation and inflammatory cytokine production enhanced by cisplatin were significantly blunted by TRAF1. Meanwhile, the increased number of apoptotic cells and enhanced expression of BAX and cleaved Caspase-3 were markedly decreased by TRAF1 overexpression both in vivo and vitro. Additionally, a significant correction of the metabolic disturbance, including perturbations in energy generation and lipid and amino acid metabolism, was observed in the cisplatin-treated mice kidneys. CONCLUSION TRAF1 overexpression obviously attenuated cisplatin-induced nephrotoxicity, possibly by correcting the impaired metabolism, inhibiting inflammation, and blocking apoptosis in renal tubular cells. GENERAL SIGNIFICANCE These observations emphasize the novel mechanisms associated to metabolism and inflammation of TRAF1 in cisplatin-induced kidney injury.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ying Xu
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Wei Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Bingyu Yang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yue Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhanjun Jia
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Songming Huang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Aihua Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Shuzhen Li
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
15
|
Li L, Yang JH, Li C, Zhou HF, Yu L, Wu XL, Lu YH, He Y, Wan HT. Danhong injection improves neurological function in rats with ischemic stroke by enhancing neurogenesis and activating BDNF/AKT/CREB signaling pathway. Biomed Pharmacother 2023; 163:114887. [PMID: 37207429 DOI: 10.1016/j.biopha.2023.114887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023] Open
Abstract
Danhong injection (DHI) is a traditional Chinese medicine injection that promotes blood circulation and removes blood stasis and has been widely used in the treatment of stroke. Many studies have focused on the mechanism of DHI in acute ischemic stroke (IS); however, few studies have thoroughly explored its role during recovery. In this study, we aimed to determine the effect of DHI on long-term neurological function recovery after cerebral ischemia and explored the related mechanisms. Middle cerebral artery occlusion (MCAO) was used to establish an IS model in rats. The efficacy of DHI was assessed using neurological severity scores, behaviors, cerebral infarction volume and histopathology. Immunofluorescence staining was performed to assess hippocampal neurogenesis. An in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model was constructed and western-blot analyses were performed to verify the underlying mechanisms. Our results showed that DHI treatment greatly reduced the infarct volume, promoted neurological recovery and reversed brain pathological changes. Furthermore, DHI promoted neurogenesis by increasing the migration and proliferation of neural stem cells, and enhancing synaptic plasticity. Moreover, we found that the pro-neurogenic effects of DHI were related to an increase in brain-derived neurotrophic factor (BDNF) expression and the activation of AKT/CREB, which were attenuated by ANA-12 and LY294002, the inhibitors of the BDNF receptor and PI3K. These results suggest that DHI improves neurological function by enhancing neurogenesis and activating the BDNF/AKT/CREB signaling pathways.
Collapse
Affiliation(s)
- Lan Li
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Jie-Hong Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Hui-Fen Zhou
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Li Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Xiao-Long Wu
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Yi-Hang Lu
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China.
| | - Hai-Tong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China.
| |
Collapse
|
16
|
Zhou J, Lin Y, Kang X, Liu Z, Zou J, Xu F. Hypoxia-mediated promotion of glucose metabolism in non-small cell lung cancer correlates with activation of the EZH2/FBXL7/PFKFB4 axis. Cell Death Dis 2023; 14:326. [PMID: 37179372 PMCID: PMC10182982 DOI: 10.1038/s41419-023-05795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
F-box/LRR-repeat protein 7 (FBXL7) was predicted as a differentially expressed E3 ubiquitin ligase in non-small cell lung cancer (NSCLC), which has been suggested to influence cancer growth and metastasis. In this study, we aimed to decipher the function of FBXL7 in NSCLC and delineate the upstream and downstream mechanisms. FBXL7 expression was verified in NSCLC cell lines and GEPIA-based tissue samples, after which the upstream transcription factor of FBXL7 was bioinformatically identified. The substrate PFKFB4 of the FBXL7 was screened out by tandem affinity purification coupled with mass-spectrometry (TAP/MS). FBXL7 was downregulated in NSCLC cell lines and tissue samples. FBXL7 ubiquitinated and degraded PFKFB4, thus suppressing glucose metabolism and malignant phenotypes of NSCLC cells. Hypoxia-induced HIF-1α upregulation elevated EZH2 and inhibited FBXL7 transcription and reduced its expression, thus promoting PFKFB4 protein stability. By this mechanism, glucose metabolism and the malignant phenotype were enhanced. In addition, knockdown of EZH2 impeded tumor growth through the FBXL7/PFKFB4 axis. In conclusion, our work reveals that the EZH2/FBXL7/PFKFB4 axis plays a regulatory role in glucose metabolism and tumor growth of NSCLC, which is expected to be potential biomarkers for NSCLC.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yang Lin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiuhua Kang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhicheng Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Juntao Zou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Fei Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
17
|
Xiao WC, Zhou G, Wan L, Tu J, Yu YJ, She ZG, Xu CL, Wang L. Carnosol inhibits cerebral ischemia-reperfusion injury by promoting AMPK activation. Brain Res Bull 2023; 195:37-46. [PMID: 36775042 DOI: 10.1016/j.brainresbull.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Carnosol is a phytopolyphenol (diterpene) found and extracted from plants of Mediterranean diet, which has anti-tumor, anti-inflammatory and antioxidant effects. However, its role in ischemic stroke has not been elucidated. METHODS Primary neurons subjected to oxygen-glucose deprivation (OGD) was used to investigate the effect of carnosol in vitro. A mouse MCAO model was used to evaluate the effect of carnosol on ischemic stroke in vivo. The mRNA level of inflammatory and apoptosis-related genes was determined by RT-PCR. The protein level of total and phosphorylated AMPK was determined by WB. H&E and Immunofluorescent assay was used to investigate the necrosis, inflammation and apoptosis in brain tissue. RESULTS Carnosol protected the activity of primary neurons subjected to oxygen-glucose deprivation (OGD) in vitro, as well as inhibited inflammation and apoptosis. Furthermore, carnosol could significantly reduce the infarct and edema volume and protect against neurological deficit in vivo, and had a significant inhibitory effect on brain neuroinflammation and apoptosis. Mechanically, carnosol could activate AMPK, and the effect of carnosol on cerebral ischemia-reperfusion injury cell model could be abolished by AMPK phosphorylation inhibitor. CONCLUSION Carnosol has a protective effect on ischemic stroke, and this effect is achieved through AMPK activation. Our study demonstrates the protective effect of carnosol on cerebral ischemia-reperfusion injury and provides a new perspective for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wen-Chang Xiao
- Department of Cardiovascular Surgery, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Gang Zhou
- Department of Neurology, Huanggang Central Hospital, Huanggang, China.
| | - Lu Wan
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| | - Jun Tu
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Yong-Jie Yu
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Chun-Lin Xu
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| |
Collapse
|
18
|
Bhattarai U, He X, Xu R, Liu X, Pan L, Sun Y, Chen JX, Chen Y. IL-12α deficiency attenuates pressure overload-induced cardiac inflammation, hypertrophy, dysfunction, and heart failure progression. Front Immunol 2023; 14:1105664. [PMID: 36860846 PMCID: PMC9969090 DOI: 10.3389/fimmu.2023.1105664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
IL-12α plays an important role in modulating inflammatory response, fibroblast proliferation and angiogenesis through modulating macrophage polarization or T cell function, but its effect on cardiorespiratory fitness is not clear. Here, we studied the effect of IL-12α on cardiac inflammation, hypertrophy, dysfunction, and lung remodeling in IL-12α gene knockout (KO) mice in response to chronic systolic pressure overload produced by transverse aortic constriction (TAC). Our results showed that IL-12α KO significantly ameliorated TAC-induced left ventricular (LV) failure, as evidenced by a smaller decrease of LV ejection fraction. IL-12α KO also exhibited significantly attenuated TAC-induced increase of LV weight, left atrial weight, lung weight, right ventricular weight, and the ratios of them in comparison to body weight or tibial length. In addition, IL-12α KO showed significantly attenuated TAC-induced LV leukocyte infiltration, fibrosis, cardiomyocyte hypertrophy, and lung inflammation and remodeling (such as lung fibrosis and vessel muscularization). Moreover, IL-12α KO displayed significantly attenuated TAC-induced activation of CD4+ T cells and CD8+ T cells in the lung. Furthermore, IL-12α KO showed significantly suppressed accumulation and activation of pulmonary macrophages and dendritic cells. Taken together, these findings indicate that inhibition of IL-12α is effective in attenuating systolic overload-induced cardiac inflammation, heart failure development, promoting transition from LV failure to lung remodeling and right ventricular hypertrophy.
Collapse
Affiliation(s)
- Umesh Bhattarai
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Xiaochen He
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Rui Xu
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Xiaoguang Liu
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- College of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Lihong Pan
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yingjie Chen
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
19
|
Fan W, Qin Y, Tan J, Li B, Liu Y, Rong J, Shi W, Yu B. RGD1564534 represses NLRP3 inflammasome activity in cerebral injury following ischemia-reperfusion by impairing miR-101a-3p-mediated Dusp1 inhibition. Exp Neurol 2023; 359:114266. [PMID: 36336032 DOI: 10.1016/j.expneurol.2022.114266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mitochondrial autophagy, the elimination of damaged mitochondria through autophagy, contributes to neuron survival in cerebral ischemia. Long non-coding RNAs (lncRNAs)/microRNAs (miRNAs)/mRNAs are important regulatory networks implicated in various biological processes, including cerebral ischemia-reperfusion (I/R) injury. Therefore, this work clarifies a novel RGD1564534-mediated regulatory network on mitochondrial autophagy in cerebral I/R injury. METHODS Differentially expressed lncRNAs in cerebral I/R injury were predicted by bioinformatics analysis. Expression of RGD1564534 was examined in the established middle cerebral artery occlusion (MCAO) rats and oxygen glucose deprivation/reoxygenation (OGD/R)-exposed neurons. We conducted luciferase activity, RNA pull-down and RIP assays to illustrate the interaction among RGD1564534, miR-101a-3p and Dusp1. Gain- or loss-of-function approaches were used to manipulate RGD1564534 and Dusp1 expression. The mechanism of RGD1564534 in cerebral I/R injury was evaluated both in vivo and in vitro. RESULTS RGD1564534 was poorly expressed in the MCAO rats and OGD/R-treated cells, while its high expression attenuated nerve damage, cognitive dysfunction, brain white matter and small vessel damage in MCAO rats. In addition, RGD1564534 promoted mitochondrial autophagy and inhibited NLRP3 inflammasome activity. RGD1564534 competitively bound to miR-101a-3p and attenuated its binding to Dusp1, increasing the expression of Dusp1 in neurons. By this mechanism, RGD1564534 enhanced mitochondrial autophagy, reduced NLRP3 inflammasome activity and suppressed the neuron apoptosis induced by OGD/R. CONCLUSION Altogether, RGD1564534 elevates the expression of Dusp1 by competitively binding to miR-101a-3p, which facilitates mitochondrial autophagy-mediated inactivation of NLRP3 inflammasome and thus retards cerebral I/R injury.
Collapse
Affiliation(s)
- Weijian Fan
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China; Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, PR China
| | - Yuanyuan Qin
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, PR China
| | - Jinyun Tan
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, PR China
| | - Bo Li
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Yizhi Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Jianjie Rong
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, PR China.
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, PR China.
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China; Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, PR China.
| |
Collapse
|
20
|
Cheng T, Wu J, Xu Y, Liu C, Zhang H, Wang M. CD40/TRAF1 decreases synovial cell apoptosis in patients with rheumatoid arthritis through JNK/NF-κB pathway. J Bone Miner Metab 2022; 40:819-828. [PMID: 35960381 DOI: 10.1007/s00774-022-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/03/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION A genome-wide association analysis revealed a rheumatoid arthritis (RA)-risk-associated genetic locus on chromosome 9, which contained the tumor necrosis factor receptor-associated factor 1 (TRAF1). However, the detail mechanism by TRAF1 signaled to fibroblast-like synoviocytes (FLSs) apoptosis remains to be fully understood. MATERIALS AND METHODS Synovial tissue of 10 RA patients and osteoarthritis patients were obtained during joint replacement surgery. We investigated TRAF1 level and FLSs apoptosis percentage in vivo and elucidated the mechanism involved in the regulation of apoptotic process in vitro. RESULTS We proved the significant increase of TRAF1 level in FLSs of RA patients and demonstrated that TRAF1 level correlated positively with DAS28 score and negatively with FLSs apoptosis. Treatment with siTRAF1 was able to decrease MMPs levels and the phosphorylated forms of JNK/NF-κB in vitro. Moreover, JNK inhibitor could attenuate expression of MMPs and increase percentage of apoptosis in RA-FLSs, while siTRAF1 could not promote apoptosis when RA-FLSs were pretreated with JNK activator. CONCLUSIONS High levels of TRAF1 in RA synovium play an important role in the synovial hyperplasia of RA by suppressing apoptosis through activating JNK/NF-kB-dependent signaling pathways in response to the engagement of CD40.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Cuiping Liu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Huayong Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Mingjun Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
21
|
Zhang Z, Wang L, Wang Z, Zhang T, Shi M, Xin C, Zou Y, Wei W, Li X, Chen J, Zhao W. Lysosomal-associated transmembrane protein 5 deficiency exacerbates cerebral ischemia/reperfusion injury. Front Mol Neurosci 2022; 15:971361. [PMID: 36046710 PMCID: PMC9423384 DOI: 10.3389/fnmol.2022.971361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Lysosomal-associated transmembrane protein 5 (LAPTM5) has been demonstrated to be involved in regulating immunity, inflammation, cell death, and autophagy in the pathophysiological processes of many diseases. However, the function of LAPTM5 in cerebral ischemia-reperfusion (I/R) injury has not yet been reported. In this study, we found that LAPTM5 expression was dramatically decreased during cerebral I/R injury both in vivo and in vitro. LAPTM5 knockout (KO) mice were compared with a control, and they showed a larger infarct size and more serious neurological dysfunction after transient middle cerebral artery occlusion (tMCAO) treatment. In addition, inflammatory response and apoptosis were exacerbated in these processes. Furthermore, gain- and loss-of-function investigations in an in vitro model revealed that neuronal inflammation and apoptosis were aggravated by LAPTM5 knockdown but mitigated by its overexpression. Mechanistically, combined RNA sequencing and experimental verification showed that the apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase (JNK)/p38 pathway was mainly involved in the detrimental effects of LAPTM5 deficiency following I/R injury. Specifically, LAPTM5 directly interacts with ASK1, leading to decreased ASK1 N-terminal dimerization and the subsequent reduced activation of downstream JNK/p38 signaling. In conclusion, LAPTM5 was demonstrated to be a novel modulator in the pathophysiology of brain I/R injury, and targeting LAPTM5 may be feasible as a stroke treatment.
Collapse
Affiliation(s)
- Zongyong Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China
| | - Zhen Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tingbao Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Min Shi
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Can Xin
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yichun Zou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Jincao Chen,
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Wenyuan Zhao,
| |
Collapse
|
22
|
Chen YL, Bai L, Dilimulati D, Shao S, Qiu C, Liu T, Xu S, Bai XB, Du LJ, Zhou LJ, Lin WZ, Meng XQ, Jin YC, Liu Y, Zhang XH, Duan SZ, Jia F. Periodontitis Salivary Microbiota Aggravates Ischemic Stroke Through IL-17A. Front Neurosci 2022; 16:876582. [PMID: 35663549 PMCID: PMC9160974 DOI: 10.3389/fnins.2022.876582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Although epidemiological studies suggest that periodontitis is tightly associated with ischemic stroke, its impact on ischemic stroke and the underlysing mechanisms are poorly understood. Recent studies have shown that alteration in gut microbiota composition influences the outcomes of ischemic stroke. In the state of periodontitis, many oral pathogenic bacteria in the saliva are swallowed and transmitted to the gut. However, the role of periodontitis microbiota in the pathogenesis and progression of ischemic stroke is unclear. Therefore, we hypothesized that the periodontitis salivary microbiota influences the gut immune system and aggravates ischemic stroke. Mice receiving gavage of periodontitis salivary microbiota showed significantly worse stroke outcomes. And these mice also manifested more severe neuroinflammation, with higher infiltration of inflammatory cells and expression of inflammatory cytokines in the ischemic brain. More accumulation of Th17 cells and IL-17+ γδ T cells were observed in the ileum. And in Kaede transgenic mice after photoconversion. Migration of CD4+ T cells and γδ T cells from the ileum to the brain was observed after ischemic stroke in photoconverted Kaede transgenic mice. Furthermore, the worse stroke outcome was abolished in the IL-17A knockout mice. These findings suggest that periodontitis salivary microbiota increased IL-17A-producing immune cells in the gut, likely promoted the migration of these cells from the gut to the brain, and subsequently provoked neuroinflammation after ischemic stroke. These findings have revealed the role of periodontitis in ischemic stroke through the gut and provided new insights into the worse outcome of ischemic stroke coexisting with periodontitis in clinical trials.
Collapse
Affiliation(s)
- Yan-Lin Chen
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Dilirebati Dilimulati
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xue-Bing Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xiao-Qian Meng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Yi-Chao Jin
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiao-Hua Zhang,
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Sheng-Zhong Duan,
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Nantong First People’s Hospital, The Second Affiliated Hospital of Nantong University, Nantong, China
- Feng Jia,
| |
Collapse
|
23
|
Yu L, Liu S, Zhou R, Sun H, Su X, Liu Q, Li S, Ying J, Zhao F, Mu D, Qu Y. Atorvastatin inhibits neuronal apoptosis via activating cAMP/PKA/p-CREB/BDNF pathway in hypoxic-ischemic neonatal rats. FASEB J 2022; 36:e22263. [PMID: 35303316 DOI: 10.1096/fj.202101654rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022]
Abstract
Neuronal apoptosis is one of the main pathological processes of hypoxic-ischemic brain damage (HIBD) and is involved in the development of hypoxic-ischemic encephalopathy (HIE) in neonates. Atorvastatin has been found to have neuroprotective effects in some nervous system diseases, but its role in regulating the pathogenesis of neonatal HIBD remains elusive. Thus, this study aimed to explore the effects and related mechanisms of atorvastatin on the regulation of neuronal apoptosis after HIBD in newborn rats. The rat HIBD model and the neuronal oxygen glucose deprivation (OGD) model were established routinely. Atorvastatin, cAMP inhibitor (SQ22536), and BDNF inhibitor (ANA-12) were used to treat HIBD rats and OGD neurons. Cerebral infarction, learning and memory ability, cAMP/PKA/p-CREB/BDNF signaling molecules, and apoptosis-related indicators (TUNEL, cleaved caspase-3, and Bax/Bcl2) were then examined. In vivo, atorvastatin reduced cerebral infarction, improved learning and memory ability, decreased the number of TUNEL-positive neurons, inhibited the expression of cleaved caspase-3 and Bax/Bcl2, and activated the cAMP/PKA/p-CREB/BDNF pathway in the cerebral cortex after HIBD. In vitro, atorvastatin also decreased the apoptosis-related indicators and activated the cAMP/PKA/p-CREB/BDNF pathway in neurons after OGD. Furthermore, inhibition of cAMP or BDNF attenuated the effect of atorvastatin on the reduction of neuronal apoptosis, suggesting that atorvastatin inhibits HIBD-induced neuronal apoptosis and alleviates brain injury in neonatal rats mainly by activating the cAMP/PKA/p-CREB/BDNF pathway. In conclusion, atorvastatin may be developed as a potential drug for the treatment of neonatal HIE.
Collapse
Affiliation(s)
- Luting Yu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shixi Liu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruixi Zhou
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Hao Sun
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiaojuan Su
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qian Liu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shiping Li
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Junjie Ying
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Fengyan Zhao
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yi Qu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
24
|
Zheng M, Zhou M, Chen M, Lu Y, Shi D, Wang J, Liu C. Neuroprotective Effect of Daidzein Extracted From Pueraria lobate Radix in a Stroke Model Via the Akt/mTOR/BDNF Channel. Front Pharmacol 2022; 12:772485. [PMID: 35095491 PMCID: PMC8795828 DOI: 10.3389/fphar.2021.772485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
Daidzein is a plant isoflavonoid primarily isolated from Pueraria lobate Radix as the dry root of P. lobata (Wild.) Ohwi, have long been used as nutraceutical and medicinal herb in China. Despite the report that daidzein can prevent neuronal damage and improve outcome in experimental stroke, the mechanisms of this neuroprotective action have been not fully elucidated. The aim of this study was to determine whether the daidzein elicits beneficial actions in a stroke model, namely, cerebral ischemia/reperfusion (I/R) injury, and to reveal the underlying neuroprotective mechanisms associated with the regulation of Akt/mTOR/BDNF signal pathway. The results showed that I/R, daidzein treatment significantly improved neurological deficits, infarct volume, and brain edema at 20 and 30 mg/kg, respectively. Meanwhile, it was found out that the pretreatment with daidzein at 20 and 30 mg/kg evidently improved striatal dopamine and its metabolite levels. In addition, daidzein treatment reduced the cleaved Caspase-3 level but enhanced the phosphorylation of Akt, BAD and mTOR. Moreover, daidzein at 30 mg/kg treatment enhanced the expression of BDNF and CREB significantly. This protective effect of daidzein was ameliorated by inhibiting the PI3K/Akt/mTOR signaling pathway using LY294002. To sum up, our results demonstrated that daidzein could protect animals against ischemic damage through the regulation of the Akt/mTOR/BDNF channel, and the present study may facilitate the therapeutic research of stroke.
Collapse
Affiliation(s)
- Meizhu Zheng
- The Central Laboratory, Changchun Normal University, Changchun, China
| | - Mi Zhou
- College of Life Science, Changchun Normal University, Changchun, China
| | - Minghui Chen
- College of Life Science, Changchun Normal University, Changchun, China
| | - Yao Lu
- College of Life Science, Changchun Normal University, Changchun, China
| | - Dongfang Shi
- The Central Laboratory, Changchun Normal University, Changchun, China
| | - Jing Wang
- College of Life Science, Changchun Normal University, Changchun, China
| | - Chunming Liu
- The Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
25
|
Hao M, Zhang Z, Liu C, Tian Y, Duan J, He J, Sun Z, Xia H, Zhang S, Wang S, Sang Y, Xing G, Liu H. Hydroxyapatite Nanorods Function as Safe and Effective Growth Factors Regulating Neural Differentiation and Neuron Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100895. [PMID: 34247433 DOI: 10.1002/adma.202100895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Neural stem cell (NSC) transplantation is one of the most promising therapeutic strategies for neurodegenerative diseases. However, the slow spontaneous differentiation of NSCs often hampers their application in neural repair. Although some biological growth factors accelerate the differentiation of NSCs, their high cost, short half-life, and unpredictable behavior in vivo, as well as the complexity of the operation, hinder their clinical use. In this study, it is demonstrated that hydroxyapatite (HAp), the main component of bone, in the form of nanorods, can regulate the neural differentiation of NSCs and maturation of the newly differentiated cells. Culturing NSCs with HAp nanorods leads to the differentiation of NSCs into mature neurons that exhibit well-defined electrophysiological behavior within 5 days. The state of these neurons is much better than when culturing the cells without HAp nanorods, which undergo a 2-week differentiation process. Furthermore, RNA-sequencing data reveal that the neuroactive ligand-receptor interaction pathway is dominant in the enriched differentiated neuronal population. Hence, inorganic growth factors like HAp act as a feasible, effective, safe, and practical tool for regulating the differentiation of NSCs and can potentially be used in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zixian Zhang
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jianlong He
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhaoyang Sun
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - He Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Advanced Medical Research Institute, Shandong University, Jinan, 250100, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Advanced Medical Research Institute, Shandong University, Jinan, 250100, P. R. China
| | - Guogang Xing
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
26
|
Zhu T, Wang L, Xie W, Meng X, Feng Y, Sun G, Sun X. Notoginsenoside R1 Improves Cerebral Ischemia/Reperfusion Injury by Promoting Neurogenesis via the BDNF/Akt/CREB Pathway. Front Pharmacol 2021; 12:615998. [PMID: 34025400 PMCID: PMC8138209 DOI: 10.3389/fphar.2021.615998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Notoginsenoside R1 (R1), a major component isolated from P. notoginseng, is a phytoestrogen that exerts many neuroprotective effects in a rat model of ischemic stroke. However, its long-term effects on neurogenesis and neurological restoration after ischemic stroke have not been investigated. The aim of this study was to evaluate the effects of R1 on neurogenesis and long-term functional recovery after ischemic stroke. We used male Sprague-Dawley rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). R1 was administered by intraperitoneal (i.p.) injection immediately postischemia. We showed that R1 significantly decreased infarct volume and neuronal loss, restored neurological function, and stimulated neurogenesis and oligodendrogenesis in rats subjected to MCAO/R. More importantly, R1 promoted neuronal proliferation in PC12 cells in vitro. The proneurogenic effects of R1 were associated with the activation of Akt/cAMP responsive element-binding protein, as shown by the R1-induced increase in brain-derived neurotrophic factor (BDNF) expression, and with the activation of neurological function, which was partially eliminated by selective inhibitors of BDNF and PI3K. We demonstrated that R1 is a promising compound that exerts neuroprotective and proneurogenic effects, possibly via the activation of BDNF/Akt/CREB signaling. These findings offer insight into exploring new mechanisms in long-term functional recovery after R1 treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ting Zhu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.,China Pharmaceutical University, Jiangsu, China
| | - Weijie Xie
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangbao Meng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Yicheng Feng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.,Beijing University of Chemical Technology, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Xiong LL, Tan YX, Du RL, Peng Y, Xue LL, Liu J, Al-Hawwas M, Bobrovskaya L, Liu DH, Chen L, Wang TH, Zhou XF. Effect of Sutellarin on Neurogenesis in Neonatal Hypoxia–Ischemia Rat Model: Potential Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:677-703. [PMID: 33704029 DOI: 10.1142/s0192415x21500312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the therapeutic efficacy of Scutellarin (SCU) on neurite growth and neurological functional recovery in neonatal hypoxic-ischemic (HI) rats. Primary cortical neurons were cultured to detect the effect of SCU on cell viability of neurons under oxygen-glucose deprivation (OGD). Double immunofluorescence staining of Tuj1 and TUNEL then observed the neurite growth and cell apoptosis in vitro,and double immunofluorescence staining of NEUN and TUNEL was performed to examine the neuronal apoptosis and cell apoptosis in brain tissues after HI in vivo. Pharmacological efficacy of SCU was also evaluated in HI rats by neurobehavioral tests, triphenyl tetrazolium chloride staining, Hematoxylin and eosin staining and Nissl staining. Astrocytes and microglia expression in damaged brain tissues were detected by immunostaining of GFAP and Iba1. A quantitative real-time polymerase chain reaction and western blot were applied to investigate the genetic expression changes and the protein levels of autophagy-related proteins in the injured cortex and hippocampus after HI. We found that SCU administration preserved cell viability, promoted neurite outgrowth and suppressed apoptosis of neurons subjected to OGD both in vitroand in vivo. Meanwhile, 20 mg/kg SCU treatment improved neurological functions and decreased the expression of astrocytes and microglia in the cortex and hippocampus of HI rats. Additionally, SCU treatment depressed the elevated levels of autophagy-related proteins and the p75 neurotrophin receptor (p75NTR) in both cortex and hippocampus. This study demonstrated the potential therapeutic efficacy of SCU by enhancing neurogenesis and restoring long-term neurological dysfunctions, which might be associated with p75NTR depletion in HI rats.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 550000, P. R. China
| | - Ya-Xin Tan
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Ruo-Lan Du
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Yuan Peng
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Lu-Lu Xue
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Jia Liu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Mohammed Al-Hawwas
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Larisa Bobrovskaya
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Dong-Hui Liu
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Li Chen
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Xin-Fu Zhou
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| |
Collapse
|
28
|
Astragaloside and/or Hydroxysafflor Yellow A Attenuates Oxygen-Glucose Deprivation-Induced Cultured Brain Microvessel Endothelial Cell Death through Downregulation of PHLPP-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3597527. [PMID: 33381198 PMCID: PMC7755473 DOI: 10.1155/2020/3597527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
The incidence of ischemic stroke, a life-threatening condition in humans, amongst Asians is high and the prognosis is poor. In the absence of effective therapeutics, traditional Chinese medicines have been used that have shown promising results. It is crucial to identify traditional Chinese medicine formulas that protect the blood-brain barrier, which is damaged by an ischemic stroke. In this study, we aimed to elucidate such formulas. Brain microvascular endothelial cells (BMECs) were used to establish an in vitro ischemia-reperfusion model for oxygen-glucose deprivation (OGD) experiments to evaluate the function of two traditional Chinese medicines, namely, astragaloside (AS-IV) and hydroxysafflor yellow A (HSYA), in protecting against BMEC. Our results revealed that AS-IV and HSYA attenuated the cell loss caused by OGD by increasing cell proliferation and inhibiting cell apoptosis. In addition, these compounds promoted the migration and invasion of BMECs in vitro. Furthermore, we found that BMECs rescued by AS-IV and HSYA could be functionally activated in vitro, with AS-IV and HSYA showing synergetic effects in rescuing BMECs survival in vitro by reducing the expression of PHLPP-1 and activating Akt signaling. Our results elucidated the potential of AS-IV and HSYA in the prevention and treatment of stroke by protecting against cerebral ischemia-reperfusion injury.
Collapse
|
29
|
Zhou W, Lin D, Zhong Z, Ye Q. Roles of TRAFs in Ischemia-Reperfusion Injury. Front Cell Dev Biol 2020; 8:586487. [PMID: 33224951 PMCID: PMC7674171 DOI: 10.3389/fcell.2020.586487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are a family of signaling molecules that function downstream of multiple receptor signaling pathways, and they play a pivotal role in the regulation of intracellular biological progresses. These TRAF-dependent signaling pathways and physiological functions have been involved in the occurrence and progression of ischemia-reperfusion injury (IRI), which is a common pathophysiological process that occurs in a wide variety of clinical events, including ischemic shock, organ transplantation, and thrombolytic therapy, resulting in a poor prognosis and high mortality. IRI occurs in multiple organs, including liver, kidney, heart, lung, brain, intestine, and retina. In recent years, mounting compelling evidence has confirmed that the genetic alterations of TRAFs can cause subversive phenotype changes during IRI of those organs. In this review, based on current knowledge, we summarized and analyzed the regulatory effect of TRAFs on the IRI of various organs, providing clear direction and a firm theoretical basis for the development of treatment strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in IRI-related diseases.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
30
|
Liu X, Lei Q. TRIM62 knockout protects against cerebral ischemic injury in mice by suppressing NLRP3-regulated neuroinflammation. Biochem Biophys Res Commun 2020; 529:140-147. [PMID: 32703402 DOI: 10.1016/j.bbrc.2020.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Cerebral stroke is a leading global cause for mortality and disability. However, its pathogenesis is still unclear. Most tripartite motif (TRIM) family proteins, including TRIM62, have E3 ubiquitin ligase activities, and have multiple functions in regulating cellular processes. Nevertheless, the effects of TRIM62 on cerebral stroke still remain vague. Here, we reported that TRIM62 expression was markedly up-regulated in oxygen and glucose deprivation (OGD)-treated microglial cells. After cerebral ischemia, significantly elevated expression of TRIM62 was detected in peri-infarct area of wild type (WT) mice. The TRIM62 knockout (KO) mice exhibited alleviated apoptosis and neuroinflammation in the ischemic brain, eventually attenuating the stroke outcomes. Both in vitro and in vivo studies showed that nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome was dramatically activated in cerebral ischemia/reperfusion (I/R) conditions, while being ameliorated in TRIM62-KO mice, contributing to the suppression of neuroinflammatory response. Importantly, the in vitro experiments showed that OGD could induce the K63-ubiquitination of TRIM62 and the interaction between TRIM62 and NLRP3. In addition, adenovirus-regulated TRIM62 over-expression promoted the NLRP3 and nuclear factor κB (NF-κB) signaling, along with elevated interleukin-1β (IL-1β) and IL-18 transcriptional activities. Together, our results demonstrated that TRIM62 suppression was strongly protective in ischemic stroke through inhibiting NLRP3-regulated neuroinflammation.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, Xi'an No.3 Hospital, Xi'an, Shaanxi, 710010, China
| | - Qi Lei
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China.
| |
Collapse
|
31
|
Triad3A displays a critical role in suppression of cerebral ischemic/reperfusion (I/R) injury by regulating necroptosis. Biomed Pharmacother 2020; 128:110045. [PMID: 32460187 DOI: 10.1016/j.biopha.2020.110045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/21/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemic stroke is a major cause of death and disability worldwide. Necroptosis is known as a form of cell death, playing an essential role in regulating ischemia-induced brain injury. Triad3A is a ubiquitin ligase of the RING-in-between-RING family, and regulates necroptotic cell death under different pathological conditions, including neurodegenerative disorders. In the present study, the effects of Triad3A on experimental stroke were explored on a mouse model with middle cerebral artery occlusion (MCAO). The results indicated that Triad3A expression was markedly induced in the ischemic brain after MCAO operation. The neurons and microglia cells were the major cellular sources for Triad3A induction. Triad3A knockdown enhanced the infarction area, cell death, microglia activity, and the expression levels of pro-inflammatory markers including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, inducible nitric oxide synthase (iNOS), CD32 and CD68 in MCAO mice. Triad3A and necroptosis were triggered in mouse microglia cells treated with oxygen and glucose deprivation (OGD), and in TNFα-incubated mouse hippocampal neuronal cells treated with Z-VAD-fmk, known as a pan-caspase inhibitor. Moreover, Triad3A knockdown accelerated cell death in microglial cells and neurons under these stresses. Furthermore, pre-treatment with necroptosis inhibitor markedly inhibited the cell death promoted by Triad3A silence in brain of mice with MCAO operation, demonstrating that Triad3A could regulate necroptosis to meditate the progression of cerebral I/R injury. Collectively, these finding illustrated that Triad3A could be served as a potential target for stroke therapy.
Collapse
|
32
|
Kim CM, Park HH. Comparison of Target Recognition by TRAF1 and TRAF2. Int J Mol Sci 2020; 21:ijms21082895. [PMID: 32326186 PMCID: PMC7215387 DOI: 10.3390/ijms21082895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Although TRAF1 and TRAF2 share common receptors and have extremely conserved amino acid residues, recent studies have shown that key differences in receptor binding preferences with different affinities exist, which might be important for their different functions in TRAF-mediated signal transduction. To better understand TRAF1 and TRAF2 signaling, we analyzed and compared their receptor binding-affinities. Our study revealed that TRADD, TANK, and caspase-2 bind to both TRAF1 and TRAF2 with different affinities in vitro. Sequence and structural analyses revealed that S454 on TRAF2 (corresponding to A369 of TRAF1) is critical for the binding of TRADD, and F347 on TRAF1 (corresponding to L432 of TRAF2) is a critical determinant for high affinity binding of TANK and caspase-2.
Collapse
|
33
|
Li Q, Cao Y, Dang C, Han B, Han R, Ma H, Hao J, Wang L. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol Med 2020; 12:e11002. [PMID: 32239625 PMCID: PMC7136961 DOI: 10.15252/emmm.201911002] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Cytosolic double‐stranded DNA (dsDNA) is a danger signal that is tightly monitored and sensed by nucleic acid‐sensing pattern recognition receptors. We study the inflammatory cascade on dsDNA recognition and investigate the neuroprotective effect of cyclic GMP‐AMP (cGAMP) synthase (cGAS) antagonist A151 and its mechanisms of neuroprotection in a mouse model of experimental stroke. Here, we found that cerebral ischemia promoted the release of dsDNA into the cytosol, where it initiated inflammatory responses by activating the cGAS. A151 effectively reduced the expression of cGAS, absent in melanoma 2 (AIM2) inflammasome, and pyroptosis‐related molecules, including caspase‐1, gasdermin D, IL‐1β, and IL‐18. Furthermore, mice treated with A151 showed a dampened immune response to stroke, with reduced counts of neutrophils, microglia, and microglial production of IL‐6 and TNF‐α after MCAO. Moreover, A151 administration significantly reduced infarct volume, attenuated neurodeficits, and diminished cell death. Notably, the protective effect of A151 was blocked in a microglia‐specific cGAS knockout mouse. These findings offer unique perspectives on stroke pathogenesis and indicate that inhibition of cGAS could attenuate brain inflammatory burden, representing a potential therapeutic opportunity for stroke.
Collapse
Affiliation(s)
- Qian Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuze Cao
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chun Dang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ranran Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Heping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
34
|
Yuan L, Sun S, Pan X, Zheng L, Li Y, Yang J, Wu C. Pseudoginsenoside-F11 improves long-term neurological function and promotes neurogenesis after transient cerebral ischemia in mice. Neurochem Int 2020; 133:104586. [DOI: 10.1016/j.neuint.2019.104586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
|
35
|
Li S, Jiang D, Ehlerding EB, Rosenkrans ZT, Engle JW, Wang Y, Liu H, Ni D, Cai W. Intrathecal Administration of Nanoclusters for Protecting Neurons against Oxidative Stress in Cerebral Ischemia/Reperfusion Injury. ACS NANO 2019; 13:13382-13389. [PMID: 31603304 PMCID: PMC6881527 DOI: 10.1021/acsnano.9b06780] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Oxidative stress is one of the important mechanisms in cerebral ischemia/reperfusion (I/R) injury. Antioxidants with high brain accumulation are highly desired to help prevent cerebral I/R injury. Herein, intrathecal injection of polyoxometalate (POM) nanoclusters as nano-antioxidants with preferential brain uptake were applied for neuronal protection in cerebral I/R injury. Using powerful positron emission tomography imaging, the uptake of nano-antioxidants in the brain was non-invasively and real-timely monitored. Our results demonstrated that POM nanoclusters rapidly reached the ischemic penumbra after intrathecal injection and effectively scavenged reactive oxygen species (ROS) for inhibiting oxidative stress. The infarct size was reduced, and neurological function was restored in cerebral I/R injury rat models. As a proof-of-concept, the intrathecal injection of nano-antioxidants is an excellent therapeutic strategy to ameliorate cerebral I/R injury.
Collapse
Affiliation(s)
- Shiyong Li
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang City 330006, China
- Departments of Radiology, Medical Physics, and Pharmaceutical Sciences, University of Wisconsin - Madison, Madison, Wisconsin 53705, United States
| | - Dawei Jiang
- Departments of Radiology, Medical Physics, and Pharmaceutical Sciences, University of Wisconsin - Madison, Madison, Wisconsin 53705, United States
| | - Emily B. Ehlerding
- Departments of Radiology, Medical Physics, and Pharmaceutical Sciences, University of Wisconsin - Madison, Madison, Wisconsin 53705, United States
| | - Zachary T. Rosenkrans
- Departments of Radiology, Medical Physics, and Pharmaceutical Sciences, University of Wisconsin - Madison, Madison, Wisconsin 53705, United States
| | - Jonathan W. Engle
- Departments of Radiology, Medical Physics, and Pharmaceutical Sciences, University of Wisconsin - Madison, Madison, Wisconsin 53705, United States
| | - Ye Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang City 330006, China
| | - Huisheng Liu
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Dalong Ni
- Departments of Radiology, Medical Physics, and Pharmaceutical Sciences, University of Wisconsin - Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology, Medical Physics, and Pharmaceutical Sciences, University of Wisconsin - Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
36
|
Xu W, Zhang L, Zhang Y, Zhang K, Wu Y, Jin D. TRAF1 Exacerbates Myocardial Ischemia Reperfusion Injury via ASK1-JNK/p38 Signaling. J Am Heart Assoc 2019; 8:e012575. [PMID: 31650881 PMCID: PMC6898833 DOI: 10.1161/jaha.119.012575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background After acute myocardial infarction, the recovery of ischemic myocardial blood flow may cause myocardial reperfusion injury, which reduces the efficacy of myocardial reperfusion. Ways to reduce and prevent myocardial ischemia/reperfusion (I/R) injury are of great clinical significance in the treatment of patients with acute myocardial infarction. TRAF1 (tumor necrosis factor receptor-associated factor 1) is an important adapter protein that is implicated in molecular events regulating immunity, inflammation, and cell death. Little is known about the role and impact of TRAF1 in myocardial I/R injury. Methods and Results TRAF1 expression is markedly induced in wild-type mice and cardiomyocytes after I/R or hypoxia/reoxygenation stimulation. I/R models were established in TRAF1 knockout mice and wild type mice (n=10 per group). We demonstrated that TRAF1 deficiency protects against myocardial I/R-induced loss of heat function, inflammation, and cardiomyocyte death. In addition, overexpression of TRAF1 in primary cardiomyocytes promotes hypoxia/reoxygenation-induced inflammation and apoptosis in vitro. Mechanistically, TRAF1 promotes myocardial I/R injury through regulating ASK1 (apoptosis signal-regulating kinase 1)-mediated JNK/p38 (c-Jun N-terminal kinase/p38) MAPK (mitogen-activated protein kinase) cascades. Conclusions Our results indicated that TRAF1 aggravates the development of myocardial I/R injury by enhancing the activation of ASK1-mediated JNK/p38 cascades. Targeting the TRAF1-ASK1-JNK/p38 pathway provide feasible therapies for cardiac I/R injury.
Collapse
Affiliation(s)
- Weipan Xu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Huang Shi China
| | - Li Zhang
- Center for Animal Experiment Wuhan University Wuhan China
| | - Yi Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Kai Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Yongbo Wu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Daoqun Jin
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| |
Collapse
|
37
|
Recognition of TRAIP with TRAFs: Current understanding and associated diseases. Int J Biochem Cell Biol 2019; 115:105589. [DOI: 10.1016/j.biocel.2019.105589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023]
|
38
|
Liu Q, Zhang Y. PRDX1 enhances cerebral ischemia-reperfusion injury through activation of TLR4-regulated inflammation and apoptosis. Biochem Biophys Res Commun 2019; 519:453-461. [PMID: 31526567 DOI: 10.1016/j.bbrc.2019.08.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Stroke is still a leading cause of death across the world. Despite various signals or molecules that contribute to the pathophysiological process have been investigated, the exact molecular mechanisms revealing stroke damage still remain to be explored. Peroxiredoxin 1 (PRDX1) has been identified as a stress-induced macrophage redox protein with multiple functions. Although PRDX1 is a critical factor related to the regulation of immunity, inflammation, apoptosis and oxidative stress, its effects on cerebral ischemia-reperfusion (I-R) injury were presently unclear. In the study, by using a mouse model of I-R injury, we found that PRDX1 expression was up-regulated during I-R injury in a time-dependent manner. Additionally, PRDX1-knockout mice showed reduced infarction area and alleviated neuropathological scores with decreased brain water contents. Furthermore, cell death and inflammatory response in mice with cerebral I-R injury were markedly attenuated by PRDX1 knockout, which were associated with the blockage of Caspase-3 and nuclear factor-κB (NF-κB) signaling pathways. Mechanistically, PRDX1-regulated cerebral I-R injury was through the promotion of toll-like receptor-4 (TLR4), as proved by the evidence that TLR4 suppression abrogated the exacerbated effect of TLR4 on inflammatory response and apoptosis in oxygen and glucose deprivation (OGD)-treated primary microglial cells. These data demonstrated that PRDX1 contributed to cerebral stroke by interacting with TLR4, providing an effective therapeutic approach for cerebral I-R injury.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Yan'an University Affiliated Hospital, Yan'an, Shannxi, 716000, China
| | - Yuan Zhang
- Department of EMG Evoked Potential Chamber, Heze Municipal Hospital, Shandong Province, Heze City, Shandong Province, 274000, China.
| |
Collapse
|
39
|
Xiaohong W, Jun Z, Hongmei G, Fan Q. CFLAR is a critical regulator of cerebral ischaemia-reperfusion injury through regulating inflammation and endoplasmic reticulum (ER) stress. Biomed Pharmacother 2019; 117:109155. [DOI: 10.1016/j.biopha.2019.109155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
|
40
|
NR4A1 regulates cerebral ischemia-induced brain injury by regulating neuroinflammation through interaction with NF-κB/p65. Biochem Biophys Res Commun 2019; 518:59-65. [PMID: 31445702 DOI: 10.1016/j.bbrc.2019.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/03/2019] [Indexed: 12/12/2022]
Abstract
Stroke is reported as a leading cause of mortality and disability in the world. Neuroinflammation is significantly induced responding to ischemic stroke, and this process is accompanied with microglial activation. However, the pathogenesis contributing to ischemic stroke remains unclear. NR4A1 (Nur77) is a nuclear receptor that is expressed in macrophages, playing a significant role in regulating inflammatory response. In the present study, we attempted to explore the effects of NR4A1 on ischemic stroke using in vivo and in vitro studies. Results suggested that NR4A1 expression in microglia was markedly increased after cerebral ischemic damage. Then, we found that NR4A1 knockout attenuated ischemia-triggered infarction volume and neuron injury. Also, cognitive impairments were improved in ischemic mice with NR4A1 deficiency, resulting in functional improvements. Moreover, M1 polarization in microglia and neutrophil recruitment was significantly alleviated by NR4A1 deletion, as evidenced by the reduced expression of M1 markers, chemokines, as well as intracellular adhesion molecule-1 (ICAM-1) and myeloperoxidase (MPO) levels. Importantly, we found that NR4A1 could interact with nuclear factor-κB (NF-κB)/p65 based on in vivo and in vitro results. Suppressing p65 activation by the use of its inhibitor clearly reduced the NR4A1 expression, M1 polarization and neutrophil recruitments, while rescued the expression of anti-inflammatory factors in microglia treated with oxygen-glucose deprivation (OGD). Therefore, NR4A1 suppression in microglia restrained neuroinflammation through interacting with NF-κB/p65 to attenuate ischemic stroke.
Collapse
|
41
|
Hung KY, Liao WI, Pao HP, Wu SY, Huang KL, Chu SJ. Targeting F-Box Protein Fbxo3 Attenuates Lung Injury Induced by Ischemia-Reperfusion in Rats. Front Pharmacol 2019; 10:583. [PMID: 31178737 PMCID: PMC6544082 DOI: 10.3389/fphar.2019.00583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/06/2019] [Indexed: 01/12/2023] Open
Abstract
Background: Increasing evidence suggests that Fbxo3 signaling has an important impact on the pathophysiology of the inflammatory process. Fbxo3 protein inhibition has reduced cytokine-driven inflammation and improved disease severity in animal model of Pseudomonas-induced lung injury. However, it remains unclear whether inhibition of Fbxo3 protein provides protection in acute lung injury induced by ischemia-reperfusion (I/R). In this study, we investigated the protective effects of BC-1215 administration, a Fbxo3 inhibitor, on acute lung injury induced by I/R in rats. Methods: Lung I/R injury was induced by ischemia (40 min) followed by reperfusion (60 min). The rats were randomly assigned into one of six experimental groups (n = 6 rats/group): the control group, control + BC-1215 (Fbxo3 inhibitor, 0.5 mg/kg) group, I/R group, or I/R + BC-1215 (0.1, 0.25, 0.5 mg/kg) groups. The effects of BC-1215 on human alveolar epithelial cells subjected to hypoxia-reoxygenation (H/R) were also examined. Results: BC-1215 significantly attenuated I/R-induced lung edema, indicated by a reduced vascular filtration coefficient, wet/dry weight ratio, lung injury scores, and protein levels in bronchoalveolar lavage fluid (BALF). Oxidative stress and the level of inflammatory cytokines in BALF were also significantly reduced following administration of BC-1215. Additionally, BC-1215 mitigated I/R-stimulated apoptosis, NF-κB, and mitogen-activated protein kinase activation in the injured lung tissue. BC-1215 increased Fbxl2 protein expression and suppressed Fbxo3 and TNFR associated factor (TRAF)1–6 protein expression. BC-1215 also inhibited IL-8 production and NF-κB activation in vitro in experiments with alveolar epithelial cells exposed to H/R. Conclusions: Our findings demonstrated that Fbxo3 inhibition may represent a novel therapeutic approach for I/R-induced lung injury, with beneficial effects due to destabilizing TRAF proteins.
Collapse
Affiliation(s)
- Kuei-Yi Hung
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
42
|
Huang X, Gao Y, Qin J, Lu S. miR-214 Down-Regulation Promoted Hypoxia/Reoxygenation-Induced Hepatocyte Apoptosis Through TRAF1/ASK1/JNK Pathway. Dig Dis Sci 2019; 64:1217-1225. [PMID: 30560327 DOI: 10.1007/s10620-018-5405-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study investigated the role of miR-214 in the hepatocyte apoptosis induced by hypoxia/reoxygenation (H/R) injury. MATERIALS AND METHODS In vivo hepatic ischemia/reperfusion (HIR) injury, mice model and in vitro HR model were established. miR-214, TRAF1, ASK1, and JNK expression levels were detected by qRT-PCR and western blot. The apoptosis of mouse hepatocyte AML12 was detected by flow cytometry analysis. The interaction between miR-214 and TRAF1 was confirmed by dual-luciferase reporter gene assay. RESULTS Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were elevated in HIR injury mice compared with sham mice. miR-214 expression was down-regulated in liver tissues of HIR and H/R-induced hepatocytes, whereas TRAF1, ASK1, and JNK expressions were up-regulated in HIR and H/R groups. H/R stimulation promoted the apoptosis of hepatocytes, and miR-214 overexpression inhibited the apoptosis of hepatocytes. Besides, TRAF1 was a target of miR-214 and negatively regulated by miR-214. miR-214/TRAF1 pathway involved in the modulation of H/R-induced apoptosis of hepatocytes. In vivo study proved miR-214 reduced hepatic injury of HIR mice. CONCLUSION miR-214 overexpression reduces hepatocyte apoptosis after HIR injury through negatively regulating TRAF1/ASK1/JNK pathway.
Collapse
Affiliation(s)
- Xinli Huang
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yun Gao
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jianjie Qin
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Sen Lu
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
43
|
TRAF2 protects against cerebral ischemia-induced brain injury by suppressing necroptosis. Cell Death Dis 2019; 10:328. [PMID: 30988281 PMCID: PMC6465397 DOI: 10.1038/s41419-019-1558-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
Necroptosis contributes to ischemia-induced brain injury. Tumor necrosis factor (TNF) receptor associated factor 2 (TRAF2) has been reported to suppress necroptotic cell death under several pathological conditions. In this study, we investigated the role of TRAF2 in experimental stroke using a mouse middle cerebral artery occlusion (MCAO) model and in vitro cellular models. TRAF2 expression in the ischemic brain was assessed with western blot and real-time RT-PCR. Gene knockdown of TRAF2 by lentivirus was utilized to investigate the role of TRAF2 in stroke outcomes. The expression of TRAF2 was significantly induced in the ischemic brain at 24 h after reperfusion, and neurons and microglia were two of the cellular sources of TRAF2 induction. Striatal knockdown of TRAF2 increased infarction size, cell death, microglial activation and the expression of pro-inflammatory markers at 24 h after reperfusion. TRAF2 expression and necroptosis were induced in mouse primary microglia treated with conditioned medium collected from neurons subject to oxygen and glucose deprivation (OGD) and in TNFα-treated mouse hippocampal neuronal HT-22 cells in the presence of the pan-caspase inhibitor Z-VAD. In addition, TRAF2 knockdown exacerbated microglial cell death and neuronal cell death under these conditions. Moreover, pre-treatment with a specific necroptosis inhibitor necrostatin-1 (nec-1) suppressed the cell death exacerbated by TRAF2 knockdown in the brain following MCAO, indicating that TRAF2 impacted ischemic brain damage through necroptosis mechanism. Taken together, our results demonstrate that TRAF2 is a novel regulator of cerebral ischemic injury.
Collapse
|
44
|
Yu Y, Cai J, She Z, Li H. Insights into the Epidemiology, Pathogenesis, and Therapeutics of Nonalcoholic Fatty Liver Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801585. [PMID: 30828530 PMCID: PMC6382298 DOI: 10.1002/advs.201801585] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Indexed: 05/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease which affects ≈25% of the adult population worldwide, placing a tremendous burden on human health. The disease spectrum ranges from simple steatosis to steatohepatitis, fibrosis, and ultimately, cirrhosis and carcinoma, which are becoming leading reasons for liver transplantation. NAFLD is a complex multifactorial disease involving myriad genetic, metabolic, and environmental factors; it is closely associated with insulin resistance, metabolic syndrome, obesity, diabetes, and many other diseases. Over the past few decades, countless studies focusing on the investigation of noninvasive diagnosis, pathogenesis, and therapeutics have revealed different aspects of the mechanism and progression of NAFLD. However, effective pharmaceuticals are still in development. Here, the current epidemiology, diagnosis, animal models, pathogenesis, and treatment strategies for NAFLD are comprehensively reviewed, emphasizing the outstanding breakthroughs in the above fields and promising medications in and beyond phase II.
Collapse
Affiliation(s)
- Yao Yu
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Jingjing Cai
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Zhigang She
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Hongliang Li
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| |
Collapse
|
45
|
Bin W, Ming X, Wen-Xia C. TRAF1 meditates lipopolysaccharide-induced acute lung injury by up regulating JNK activation. Biochem Biophys Res Commun 2019; 511:49-56. [PMID: 30760405 DOI: 10.1016/j.bbrc.2019.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 01/11/2023]
Abstract
Acute lung injury (ALI) is served as a severe life-threatening disease. However, the pathogenesis that contributes to ALI has not been fully understood. Tumor necrosis factor receptor-associated factor 1 (TRAF1) interacts with multiple regulators, performing its diverse role in biological functions. However, the effects of TRAF1 on ALI remain unknown. In this study, we attempted to explore the role of TRAF1 in ALI progression. The findings suggested that TRAF1-knockout (KO) markedly attenuated LPS-induced severe mortality rate in murine animals. LPS-elicited histological alterations in pulmonary tissues were significantly alleviated by TRAF1-deletion. Additionally, TRAF1 knockout effectively attenuated lung injury, as evidenced by the reduced lung wet/dry (W/D) weight ratio, as well as decreased bronchoalveolar lavage fluid (BALF) protein levels and neutrophil infiltration. Meanwhile, TRAF1 deletion markedly lessened inflammation, oxidative stress and apoptosis in BALF and/or lung tissues. The levels of pro-inflammatory cytokines stimulated by LPS were down-regulated by TRAF1 ablation, along with the inactivation of nuclear factor κB (NF-κB). LPS-promoted reactive oxygen species (ROS) generation was decreased in TRAF1-KO mice, partly through the improvement of anti-oxidants. Apoptosis was also inhibited by TRAF1 deletion in lung tissues of LPS-challenged mice through the suppression of cleaved Caspase-3. Moreover, TRAF1 knockout significantly decreased c-Jun N-terminal kinase (JNK) activation and its down-streaming signal of c-Jun in pulmonary samples of LPS-induced mice. Importantly, the in vitro study suggested that promoting JNK activation markedly abrogated TRAF1 knockdown-attenuated inflammation, ROS production and apoptosis in LPS-exposed A549 cells. Therefore, our experimental results provided evidence that TRAF1 suppression effectively protected LPS-induced ALI against inflammation, oxidative stress and apoptosis through the suppression of JNK activity.
Collapse
Affiliation(s)
- Wan Bin
- Department of Pediatrics, Renmin Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Xue Ming
- Department of Pediatrics, Pediatrics of Traditional Chinese Medicine Hospital of Baoji City, Baoji, 721001, China
| | - Chen Wen-Xia
- Department of Pediatrics, Ankang Central Hospital, Ankang, 725000, China.
| |
Collapse
|
46
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
47
|
Zhang Y, Xu N, Ding Y, Doycheva DM, Zhang Y, Li Q, Flores J, Haghighiabyaneh M, Tang J, Zhang JH. Chemerin reverses neurological impairments and ameliorates neuronal apoptosis through ChemR23/CAMKK2/AMPK pathway in neonatal hypoxic-ischemic encephalopathy. Cell Death Dis 2019; 10:97. [PMID: 30718467 PMCID: PMC6362229 DOI: 10.1038/s41419-019-1374-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a devastating neurological event that contributes to the prolonged neurodevelopmental consequences in infants. Therapeutic strategies focused on attenuating neuronal apoptosis in the penumbra appears to be promising. Given the increasingly recognized neuroprotective roles of adipokines in HIE, we investigated the potential anti-apoptotic roles of a novel member of adipokines, Chemerin, in an experimental model of HIE. In the present study, 10-day-old rat pups underwent right common carotid artery ligation followed by 2.5 h hypoxia. At 1 h post hypoxia, pups were intranasally administered with human recombinant chemerin (rh-chemerin). Here, we showed that rh-chemerin prevented the neuronal apoptosis and degeneration as evidenced by the decreased expression of the pro-apoptotic markers, cleaved caspase 3 and Bax, as well as the numbers of Fluoro-Jade C and TUNEL-positive neurons. Furthermore, rh-Chemerin reversed neurological and morphological impairments induced by hypoxia-ischemia in neonatal rats at 24 h and 4 weeks after HIE. In addition, chemerin-mediated neuronal survival correlated with the elevation of chemerin receptor 23 (chemR23), phosphorylated calmodulin-dependent protein kinase kinase 2 (CAMKK2), as well as phosphorylated adenosine monophosphate-activated protein kinase (AMPK). Specific inhibition of chemR23, CAMKK2, and AMPK abolished the anti-apoptotic effects of rh-chemerin at 24 h after HIE, demonstrating that rh-chemerin ameliorated neuronal apoptosis partially via activating chemR23/CAMKK2/AMPK signaling pathway. Neuronal apoptosis is a well-established contributing factor of pathological changes and the neurological impairment after HIE. These results revealed mechanisms of neuroprotection by rh-chemerin, and indicated that activation of chemR23 might be harnessed to protect from neuronal apoptosis in HIE.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Ningbo Xu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Yiting Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Qian Li
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Mina Haghighiabyaneh
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
48
|
DUSP14 rescues cerebral ischemia/reperfusion (IR) injury by reducing inflammation and apoptosis via the activation of Nrf-2. Biochem Biophys Res Commun 2019; 509:713-721. [DOI: 10.1016/j.bbrc.2018.12.170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
|
49
|
Jun-Long H, Yi L, Bao-Lian Z, Jia-Si L, Ning Z, Zhou-Heng Y, Xue-Jun S, Wen-Wu L. Necroptosis Signaling Pathways in Stroke: From Mechanisms to Therapies. Curr Neuropharmacol 2018; 16:1327-1339. [PMID: 29663889 PMCID: PMC6251040 DOI: 10.2174/1570159x16666180416152243] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/20/2017] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
It has been confirmed that apoptosis, autophagy and necrosis are the three major modes of cell death. For a long time, necrosis is regarded as a deranged or accidental cell demise. In recent years, there is evidence showing that necrotic cell death can be a well regulated and orchestrated event, which is also known as programmed cell death or “necroptosis”. Necroptosis can be triggered by a variety of external stimuli and regulated by a caspase-independent pathway. It plays a key role in the pathogenesis of some diseases including neurological diseases. In the past two decades, a variety of studies have revealed that the necroptosis related pathway is activated in stroke, and plays a crucial role in the pathogenesis of stroke. Moreover, necroptosis may serve as a potential target in the therapy of stroke because genetic or pharmacological inhibition of necroptosis has been shown to be neuroprotective in stroke in vitro and in vivo. In this review, we briefly summarize re-cent advances in necroptosis, introduce the mechanism and strategies targeting necroptosis in stroke, and finally propose some issues in the treatment of stroke by targeting necroptosis
Collapse
Affiliation(s)
- Huang Jun-Long
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Li Yi
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Zhao Bao-Lian
- Department of Naval Clinical Medicine, Second Military Medical University, Shanghai 200433, China
| | - Li Jia-Si
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhang Ning
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Ye Zhou-Heng
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Sun Xue-Jun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Liu Wen-Wu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
50
|
Qin JJ, Mao W, Wang X, Sun P, Cheng D, Tian S, Zhu XY, Yang L, Huang Z, Li H. Caspase recruitment domain 6 protects against hepatic ischemia/reperfusion injury by suppressing ASK1. J Hepatol 2018; 69:1110-1122. [PMID: 29958938 DOI: 10.1016/j.jhep.2018.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS The hepatic injury caused by ischemia/reperfusion (I/R) insult is predominantly determined by the complex interplay of sterile inflammation and liver cell death. Caspase recruitment domain family member 6 (CARD6) was initially shown to play important roles in NF-κB activation. In our preliminary studies, CARD6 downregulation was closely related to hepatic I/R injury in liver transplantation patients and mouse models. Thus, we hypothesized that CARD6 protects against hepatic I/R injury and investigated the underlying molecular mechanisms. METHODS A partial hepatic I/R operation was performed in hepatocyte-specific Card6 knockout mice (HKO), Card6 transgenic mice with CARD6 overexpression specifically in hepatocytes (HTG), and the corresponding control mice. Hepatic histology, serum aminotransferases, inflammatory cytokines/chemokines, cell death, and inflammatory signaling were examined to assess liver damage. The molecular mechanisms of CARD6 function were explored in vivo and in vitro. RESULTS Liver injury was alleviated in Card6-HTG mice compared with control mice as shown by decreased cell death, lower serum aminotransferase levels, and reduced inflammation and infiltration, whereas Card6-HKO mice had the opposite phenotype. Mechanistically, phosphorylation of ASK1 and its downstream effectors JNK and p38 were increased in the livers of Card6-HKO mice but repressed in those of Card6-HTG mice. Furthermore, ASK1 knockdown normalized the effect of CARD6 deficiency on the activation of NF-κB, JNK and p38, while ASK1 overexpression abrogated the suppressive effect of CARD6. CARD6 was also shown to interact with ASK1. Mutant CARD6 that lacked the ability to interact with ASK1 could not inhibit ASK1 and failed to protect against hepatic I/R injury. CONCLUSIONS CARD6 is a novel protective factor against hepatic I/R injury that suppresses inflammation and liver cell death by inhibiting the ASK1 signaling pathway. LAY SUMMARY The protein CARD6 plays an important role during the process of liver blood flow restriction (ischemia) and restoration (reperfusion). By suppressing the activity of ASK1, CARD6 can protect against hepatocyte injury. Targeting CARD6 is a potential strategy for prevention and treatment of ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Juan-Juan Qin
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Basic Medical School, Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Wenzhe Mao
- Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Xiaozhan Wang
- Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Daqing Cheng
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Song Tian
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Xue-Yong Zhu
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Ling Yang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Zan Huang
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China.
| | - Hongliang Li
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China.
| |
Collapse
|