1
|
Li Z, Chen S, Li S, Chao H, Hao W, Zhang S, Li Z, Wang J, Li X, Wan Y, Liu H. Nucleolar protein PEXF controls ribosomal RNA synthesis and pluripotency exit. Dev Cell 2025; 60:1087-1100.e7. [PMID: 39729985 DOI: 10.1016/j.devcel.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/27/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024]
Abstract
Maintenance and exit from pluripotency of embryonic stem cells (ESCs) are controlled by highly coordinated processes of protein synthesis and ribosome biogenesis (RiBi). ESCs are characterized by low rates of global protein synthesis and high levels of RiBi. Transient reduction of RiBi is a characteristic molecular event during the exit from pluripotency, of which the regulatory mechanism is unclear. Here, we identify that a previously uncharacterized nucleolar protein, pluripotency exit factor (PEXF), encoded by long noncoding RNA LINC00472, plays a role in the transient reduction of RiBi. PEXF dissociates RNA polymerase I from the rDNA through interaction with the rDNA promoter region in a liquid-liquid phase separation-dependent manner, therefore inhibiting the production of pre-ribosomal RNA, a key component of ribosomes. This finding reveals a potential mechanism of exit from pluripotency gated by ribosome levels in human ESCs.
Collapse
Affiliation(s)
- Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Sifang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Hua Chao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Shuai Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Gomes-Júnior R, Delai da Silva Horinouchi C, Hansel-Fröse AFF, Ribeiro AL, Pereira IT, Spangenberg L, Dallagiovanna B. Post-transcriptional regulation in early cell fate commitment of germ layers. BMC Genomics 2025; 26:225. [PMID: 40055639 PMCID: PMC11889779 DOI: 10.1186/s12864-025-11400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Cell differentiation during development is orchestrated by precisely coordinated gene expression programs. While some regulatory mechanisms are well understood, there is a significant room to explore unresolved aspects of lineage choice and cell-fate decisions, as many events in these processes are still not fully elucidated. Given that, gene expression is influenced not only by transcriptional control but also by post-transcriptional events. Here, we described the presence of post-transcriptional regulation on gene expression during lineage commitment across all three embryonic germ layers. We employed monolayer differentiation protocols to map early transcriptional and post-transcriptional events in human embryonic stem cell specification. This approach included obtaining representative populations from the three germ layers, followed by sequencing of both polysome-bound and total RNAs. RESULTS We characterized our model by its unique expression profile and the presence of specific markers for each differentiation. RNA sequencing revealed a consistent pattern of gene upregulated and downregulated when comparing the transcriptome and translatome during the differentiation of all three germ layers. By comparing these datasets, we identified genes subjected to post-transcriptional regulation in all germ layer differentiations and categorized the nature of this regulation. GO analysis demonstrated that polysome profiling serves as a complementary technique, capturing nuances that may be overlooked when analyzing only the transcriptome. Finally, we directly compared the transcriptome and translatome to identify genes actively recruited to the translation machinery, uncovering unique features specific to each germ layer. CONCLUSIONS Substantial post-transcriptional modulation was found during germ layer commitment, emphasizing the translatome potency in capturing nuanced gene expression regulation. These findings highlight the post-transcriptional regulation's critical role in early embryonic development, offering new insights into the molecular mechanisms of cell differentiation.
Collapse
Affiliation(s)
- Rubens Gomes-Júnior
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Curitiba, 81.350-010, Brazil
| | | | | | - Annanda Lyra Ribeiro
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Curitiba, 81.350-010, Brazil
| | - Isabela Tiemy Pereira
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Curitiba, 81.350-010, Brazil
| | - Lucia Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, CP, 11400, Uruguay
- Basic Medicine Department, Facultad de Medicina, Clinical Hospital, Universidad de La República Uruguay, Montevideo, CP, 11100, Uruguay
| | - Bruno Dallagiovanna
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Curitiba, 81.350-010, Brazil.
| |
Collapse
|
3
|
Krishnamoorthy VK, Hamdani F, Shukla P, Rao RA, Anaitullah S, Biligiri KK, Kadumuri RV, Pothula PR, Chavali S, Rampalli S. NSD3 protein methylation and stabilization transforms human ES cells into variant state. Life Sci Alliance 2025; 8:e202402871. [PMID: 39741006 PMCID: PMC11707394 DOI: 10.26508/lsa.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025] Open
Abstract
Cultured human embryonic stem cells (hESCs) can develop genetic anomalies that increase their susceptibility to transformation. In this study, we characterized a variant hESC (vhESC) line and investigated the molecular mechanisms leading to the drift towards a transformed state. Our findings revealed that vhESCs up-regulate EMT-specific markers, accelerate wound healing, exhibit compromised lineage differentiation, and retain pluripotency gene expression in teratomas. Furthermore, we discovered an altered epigenomic landscape and overexpression of the lysine methyltransferases EHMT1, EHMT2, and NSD group of proteins in vhESCs. Remarkably, depleting NSD3 oncogene reversed the molecular and phenotypic changes in vhESCs. We identified a detailed mechanism where EHMT2 interacts and methylates NSD3 at lysine 477, stabilizing its protein levels in vhESCs. In addition, we showed that NSD3 levels are regulated by protein degradation in hESCs, and its stabilization leads to the emergence of the variant state. Overall, our study identify that misregulation of NSD3 in pluripotent stem cells, through methylation-mediated abrogation of its protein degradation, drives hESCs towards oncogenic transformation.
Collapse
Affiliation(s)
- Vignesh K Krishnamoorthy
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Fariha Hamdani
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Pooja Shukla
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Radhika Arasala Rao
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Campus, Bangalore, India
| | - Shaikh Anaitullah
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Campus, Bangalore, India
| | - Kriti Kestur Biligiri
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | | | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Shravanti Rampalli
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Ma X, Dai L, Tan C, Li J, He X, Wang Y, Xue J, Huang M, Ren J, Xia Y, Wu Q, Zhao H, Chan WY, Feng B. β-catenin mediates endodermal commitment of human ES cells via distinct transactivation functions. Cell Biosci 2024; 14:96. [PMID: 39049023 PMCID: PMC11267888 DOI: 10.1186/s13578-024-01279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND β-catenin, acting as the core effector of canonical Wnt signaling pathway, plays a pivotal role in controlling lineage commitment and the formation of definitive endoderm (DE) during early embryonic development. Despite extensive studies using various animal and cell models, the β-catenin-centered regulatory mechanisms underlying DE formation remain incompletely understood, partly due to the rapid and complex cell fate transitions during early differentiation. RESULTS In this study, we generated new CTNNB1-/- human ES cells (hESCs) using CRISPR-based insertional gene disruption approach and systematically rescued the DE defect in these cells by introducing various truncated or mutant forms of β-catenin. Our analysis showed that a truncated β-catenin lacking both N- and C-terminal domains (ΔN148C) could robustly rescue the DE formation, whereas hyperactive β-catenin mutants with S33Y mutation or N-terminal deletion (ΔN90) had limited ability to induce DE lineage. Notably, the ΔN148C mutant exhibited significant nuclear translocation that was positively correlated with successful DE rescue. Transcriptomic analysis further uncovered that two weak β-catenin mutants lacking the C-terminal transactivation domain (CTD) activated primitive streak (PS) genes, whereas the hyperactive β-catenin mutants activated mesoderm genes. CONCLUSION Our study uncovered an unconventional regulatory function of β-catenin through weak transactivation, indicating that the levels of β-catenin activity determine the lineage bifurcation from mesendoderm into endoderm and mesoderm.
Collapse
Affiliation(s)
- Xun Ma
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Liujiang Dai
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Chunlai Tan
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiangchuan Li
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiangjun He
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Junyi Xue
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Min Huang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jianwei Ren
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Wai-Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
5
|
Tolue Ghasaban F, Ghanei M, Mahmoudian RA, Taghehchian N, Abbaszadegan MR, Moghbeli M. MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells. Heliyon 2024; 10:e30599. [PMID: 38726188 PMCID: PMC11079401 DOI: 10.1016/j.heliyon.2024.e30599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer (PC), as one of the main endocrine and digestive systems malignancies has the highest cancer related mortality in the world. Lack of the evident clinical symptoms and appropriate diagnostic markers in the early stages of tumor progression are the main reasons of the high mortality rate among PC patients. Therefore, it is necessary to investigate the molecular pathways involved in the PC progression, in order to introduce novel early diagnostic methods. Epithelial mesenchymal transition (EMT) is a critical cellular process associated with pancreatic tumor cells invasion and distant metastasis. MicroRNAs (miRNAs) are also important regulators of EMT process. In the present review, we discussed the role of miRNAs in regulation of EMT process during PC progression. It has been reported that the miRNAs mainly regulate the EMT process in pancreatic tumor cells through the regulation of EMT-specific transcription factors and several signaling pathways such as WNT, NOTCH, TGF-β, JAK/STAT, and PI3K/AKT. Considering the high stability of miRNAs in body fluids and their role in regulation of EMT process, they can be introduced as the non-invasive diagnostic markers in the early stages of malignant pancreatic tumors. This review paves the way to introduce a non-invasive EMT based panel marker for the early tumor detection among PC patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Zhang Y, Cheng Y, Zhao W, Song F, Cao Y. Effects of Halloysite Nanotubes and Multi-walled Carbon Nanotubes on Kruppel-like Factor 15-Mediated Downstream Events in Mouse Hearts After Intravenous Injection. Cardiovasc Toxicol 2024; 24:408-421. [PMID: 38411850 DOI: 10.1007/s12012-024-09844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Halloysite nanotubes (HNTs) are nanomaterials (NMs) derived from natural clays and have been considered as biocompatible NMs for biomedical uses. However, the cardiovascular toxicity of HNTs has not been thoroughly investigated. In this study, we compared the cardiotoxicity of HNTs and multi-walled carbon nanotubes (MWCNTs), focusing on the changes in Kruppel-like factor (KLF)-mediated signaling pathways. Mice were intravenously injected with 50 µg NMs, once a day, for 5 days, and then mouse hearts were removed for experiments. While HNTs or MWCNTs did not induce obvious pathological changes, RNA-sequencing data suggested the alterations of KLF gene expression. We further confirmed an increase of Klf15 positive cells, accompanied by changes in Klf15-related gene ontology (GO) terms. We noticed that most of the changed GO terms are related with the regulation of gene expression, and we confirmed that the NMs increased myoneurin (Mynn) but decreased snail family transcriptional repressor 1 (Snai1), two transcription factors (TFs) related with Klf15. Besides, the changed GO terms also include metal ion binding and positive regulation of glucose import, and we verified an increase of phosphoenolpyruvate carboxykinase 1 (Pck1) and insulin receptor (Insr). However, HNTs and MWCNTs only showed minimal impact on cell death signaling pathways, and no increase in apoptotic sites was observed after NM treatment. We concluded that intravenous administration of HNTs and MWCNTs activated a protective TF, namely Klf15 in mouse aortas, to alter gene expression and signaling pathways related with metal ion binding and glucose import.
Collapse
Affiliation(s)
- Yimin Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yujia Cheng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
7
|
Oda T, Tsutsumi K, Obata T, Ueta E, Kikuchi T, Ako S, Fujii Y, Yamazaki T, Uchida D, Matsumoto K, Horiguchi S, Kato H, Okada H, Chijimatsu R, Otsuka M. MicroRNA-34a-5p: A pivotal therapeutic target in gallbladder cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200765. [PMID: 38596294 PMCID: PMC10963938 DOI: 10.1016/j.omton.2024.200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/04/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024]
Abstract
Gallbladder cancer incidence has been increasing globally, and it remains challenging to expect long prognosis with the current systemic chemotherapy. We identified a novel nucleic acid-mediated therapeutic target against gallbladder cancer by using innovative organoid-based gallbladder cancer models generated from KrasLSL-G12D/+; Trp53f/f mice. Using comprehensive microRNA expression analyses and a bioinformatics approach, we identified significant microRNA-34a-5p downregulation in both murine gallbladder cancer organoids and resected human gallbladder cancer specimens. In three different human gallbladder cancer cell lines, forced microRNA-34a-5p expression inhibited cell proliferation and induced cell-cycle arrest at the G1 phase by suppressing direct target (CDK6) expression. Furthermore, comprehensive RNA sequencing revealed the significant enrichment of gene sets related to the cell-cycle regulators after microRNA-34a-5p expression in gallbladder cancer cells. In a murine xenograft model, locally injected microRNA-34a-5p mimics significantly inhibited gallbladder cancer progression and downregulated CDK6 expression. These results provide a rationale for promising therapeutics against gallbladder cancer by microRNA-34a-5p injection, as well as a strategy to explore therapeutic targets against cancers using organoid-based models, especially for those lacking useful genetically engineered murine models, such as gallbladder cancer.
Collapse
Affiliation(s)
- Takashi Oda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Koichiro Tsutsumi
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Taisuke Obata
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Eijiro Ueta
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Tatsuya Kikuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Soichiro Ako
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Yuki Fujii
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Tatsuhiro Yamazaki
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Daisuke Uchida
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Kazuyuki Matsumoto
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Hironari Kato
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Ryota Chijimatsu
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
8
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
9
|
Thiery JP, Sheng G, Shu X, Runyan R. How studies in developmental epithelial-mesenchymal transition and mesenchymal-epithelial transition inspired new research paradigms in biomedicine. Development 2024; 151:dev200128. [PMID: 38300897 DOI: 10.1242/dev.200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse mechanism, mesenchymal-epithelial transition (MET), are evolutionarily conserved mechanisms initially identified in studies of early metazoan development. EMT may even have been established in choanoflagellates, the closest unicellular relative of Metazoa. These crucial morphological transitions operate during body plan formation and subsequently in organogenesis. These findings have prompted an increasing number of investigators in biomedicine to assess the importance of such mechanisms that drive epithelial cell plasticity in multiple diseases associated with congenital disabilities and fibrosis, and, most importantly, in the progression of carcinoma. EMT and MET also play crucial roles in regenerative medicine, notably by contributing epigenetic changes in somatic cells to initiate reprogramming into stem cells and their subsequent differentiation into distinct lineages.
Collapse
Affiliation(s)
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Xiaodong Shu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Han Q, Qiu S, Hu H, Li W, Dang X, Li X. The relationship between the Hippo signaling pathway and bone metastasis of breast cancer. Front Oncol 2023; 13:1188310. [PMID: 37256184 PMCID: PMC10225633 DOI: 10.3389/fonc.2023.1188310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Bone is the most common site of metastasis from breast cancer, which is the most prevalent cancer affecting women globally. Bone metastasis from breast cancer severely affects the quality of life of patients and increases mortality. The molecular mechanisms of metastasis, colonization, and proliferation of breast cancer cells in bone are complex and involve the interaction between breast cancer cells and the bone microenvironment. However, the precise mechanism is not clear at present. In recent years, the Hippo signaling pathway has attracted much attention due to its important role in regulating the expression of major effector molecules during tumor development. In particular, studies have found that the mutation and aberrant expression of the core components of the Hippo signaling pathway affect breast cancer cell migration and invasion, indicating that this pathway plays a role in bone metastasis, although the molecular mechanism of this pathway in breast cancer metastasis has not been fully elucidated. In this review, we discuss the function of the Hippo signaling pathway, introducing its role in breast cancer metastasis, especially bone metastasis of breast cancer, so as to lay a solid theoretical foundation for further research and for the development of effective targeted therapeutic agents.
Collapse
Affiliation(s)
- Qinyu Han
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Shi Qiu
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Huiwen Hu
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xiangguo Dang
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xiangqi Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| |
Collapse
|
11
|
Schock EN, York JR, LaBonne C. The developmental and evolutionary origins of cellular pluripotency in the vertebrate neural crest. Semin Cell Dev Biol 2023; 138:36-44. [PMID: 35534333 PMCID: PMC11513157 DOI: 10.1016/j.semcdb.2022.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
Neural crest cells are central to vertebrate development and evolution, endowing vertebrates with a "new head" that resulted in morphological, physiological, and behavioral features that allowed vertebrates to become active predators. One remarkable feature of neural crest cells is their multi-germ layer potential that allows for the formation of both ectodermal (pigmentation, peripheral glia, sensory neurons) and mesenchymal (connective tissue, cartilage/bone, dermis) cell types. Understanding the cellular and evolutionary origins of this broad cellular potential in the neural crest has been a long-standing focus for developmental biologists. Here, we review recent work that has demonstrated that neural crest cells share key features with pluripotent blastula stem cells, including expression of the Yamanaka stem cell factors (Oct3/4, Klf4, Sox2, c-Myc). These shared features suggest that pluripotency is either retained in the neural crest from blastula stages or subsequently reactivated as the neural crest forms. We highlight the cellular and molecular parallels between blastula stem cells and neural crest cells and discuss the work that has led to current models for the cellular origins of broad potential in the crest. Finally, we explore how these themes can provide new insights into how and when neural crest cells and pluripotency evolved in vertebrates and the evolutionary relationship between these populations.
Collapse
Affiliation(s)
| | | | - Carole LaBonne
- Dept. of Molecular Biosciences; NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
12
|
Srivastava P, Romanazzo S, Kopecky C, Nemec S, Ireland J, Molley TG, Lin K, Jayathilaka PB, Pandzic E, Yeola A, Chandrakanthan V, Pimanda J, Kilian K. Defined Microenvironments Trigger In Vitro Gastrulation in Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203614. [PMID: 36519269 PMCID: PMC9929265 DOI: 10.1002/advs.202203614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Gastrulation is a stage in embryo development where three germ layers arise to dictate the human body plan. In vitro models of gastrulation have been demonstrated by treating pluripotent stem cells with soluble morphogens to trigger differentiation. However, in vivo gastrulation is a multistage process coordinated through feedback between soluble gradients and biophysical forces, with the multipotent epiblast transforming to the primitive streak followed by germ layer segregation. Here, the authors show how constraining pluripotent stem cells to hydrogel islands triggers morphogenesis that mirrors the stages preceding in vivo gastrulation, without the need for exogenous supplements. Within hours of initial seeding, cells display a contractile phenotype at the boundary, which leads to enhanced proliferation, yes-associated protein (YAP) translocation, epithelial to mesenchymal transition, and emergence of SRY-box transcription factor 17 (SOX17)+ T/BRACHYURY+ cells. Molecular profiling and pathway analysis reveals a role for mechanotransduction-coupled wingless-type (WNT) signaling in orchestrating differentiation, which bears similarities to processes observed in whole organism models of development. After two days, the colonies form multilayered aggregates, which can be removed for further growth and differentiation. This approach demonstrates how materials alone can initiate gastrulation, thereby providing in vitro models of development and a tool to support organoid bioengineering efforts.
Collapse
Affiliation(s)
- Pallavi Srivastava
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Sara Romanazzo
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Chantal Kopecky
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Stephanie Nemec
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jake Ireland
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Thomas G. Molley
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Kang Lin
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Pavithra B. Jayathilaka
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy FacilityMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Avani Yeola
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Vashe Chandrakanthan
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - John Pimanda
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- Department of HaematologyPrince of Wales HospitalRandwickNSW2031Australia
| | - Kristopher Kilian
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
13
|
Furlan G, Huyghe A, Combémorel N, Lavial F. Molecular versatility during pluripotency progression. Nat Commun 2023; 14:68. [PMID: 36604434 PMCID: PMC9814743 DOI: 10.1038/s41467-022-35775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
A challenge during development is to ensure lineage segregation while preserving plasticity. Using pluripotency progression as a paradigm, we review how developmental transitions are coordinated by redeployments, rather than global resettings, of cellular components. We highlight how changes in response to extrinsic cues (FGF, WNT, Activin/Nodal, Netrin-1), context- and stoichiometry-dependent action of transcription factors (Oct4, Nanog) and reconfigurations of epigenetic regulators (enhancers, promoters, TrxG, PRC) may confer robustness to naïve to primed pluripotency transition. We propose the notion of Molecular Versatility to regroup mechanisms by which molecules are repurposed to exert different, sometimes opposite, functions in close stem cell configurations.
Collapse
Affiliation(s)
- Giacomo Furlan
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
| | - Aurélia Huyghe
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Noémie Combémorel
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Fabrice Lavial
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France.
| |
Collapse
|
14
|
Kisan A, Chhabra R. Modulation of gene expression by YTH domain family (YTHDF) proteins in human physiology and pathology. J Cell Physiol 2023; 238:5-31. [PMID: 36326110 DOI: 10.1002/jcp.30907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The advent of high throughput techniques in the past decade has significantly advanced the field of epitranscriptomics. The internal chemical modification of the target RNA at a specific site is a basic feature of epitranscriptomics and is critical for its structural stability and functional property. More than 170 modifications at the transcriptomic level have been reported so far, among which m6A methylation is one of the more conserved internal RNA modifications, abundantly found in eukaryotic mRNAs and frequently involved in enhancing the target messenger RNA's (mRNA) stability and translation. m6A modification of mRNAs is essential for multiple physiological processes including stem cell differentiation, nervous system development and gametogenesis. Any aberration in the m6A modification can often result in a pathological condition. The deregulation of m6A methylation has already been described in inflammation, viral infection, cardiovascular diseases and cancer. The m6A modification is reversible in nature and is carried out by specialized m6A proteins including writers (m6A methyltransferases) that add methyl groups and erasers (m6A demethylases) that remove methyl groups selectively. The fate of m6A-modified mRNA is heavily reliant on the various m6A-binding proteins ("readers") which recognize and generate a functional signal from m6A-modified mRNA. In this review, we discuss the role of a family of reader proteins, "YT521-B homology domain containing family" (YTHDF) proteins, in human physiology and pathology. In addition, we critically evaluate the potential of YTHDF proteins as therapeutic targets in human diseases.
Collapse
Affiliation(s)
- Aju Kisan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
15
|
Ramdas B, Yuen LD, Palam LR, Patel R, Pasupuleti SK, Jideonwo V, Zhang J, Maguire C, Wong E, Kanumuri R, Zhang C, Sandusky G, Chan RJ, Zhang C, Stieglitz E, Haneline L, Kapur R. Inhibition of BTK and PI3Kδ impairs the development of human JMML stem and progenitor cells. Mol Ther 2022; 30:2505-2521. [PMID: 35443935 PMCID: PMC9263321 DOI: 10.1016/j.ymthe.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasia that lacks effective targeted chemotherapies. Clinically, JMML manifests as monocytic leukocytosis, splenomegaly with consequential thrombocytopenia. Most commonly, patients have gain-of-function (GOF) oncogenic mutations in PTPN11 (SHP2), leading to Erk and Akt hyperactivation. Mechanism(s) involved in co-regulation of Erk and Akt in the context of GOF SHP2 are poorly understood. Here, we show that Bruton's tyrosine kinase (BTK) is hyperphosphorylated in GOF Shp2-bearing cells and utilizes B cell adaptor for PI3K to cooperate with p110δ, the catalytic subunit of PI3K. Dual inhibition of BTK and p110δ reduces the activation of both Erk and Akt. In vivo, individual targeting of BTK or p110δ in a mouse model of human JMML equally reduces monocytosis and splenomegaly; however, the combined treatment results in a more robust inhibition and uniquely rescues anemia and thrombocytopenia. RNA-seq analysis of drug-treated mice showed a profound reduction in the expression of genes associated with leukemic cell migration and inflammation, leading to correction in the infiltration of leukemic cells in the lung, liver, and spleen. Remarkably, in a patient derived xenograft model of JMML, leukemia-initiating stem and progenitor cells were potently inhibited in response to the dual drug treatment.
Collapse
Affiliation(s)
- Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Lisa Deng Yuen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lakshmi Reddy Palam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roshini Patel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Santhosh Kumar Pasupuleti
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victoria Jideonwo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ji Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Callista Maguire
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric Wong
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Rahul Kanumuri
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chujing Zhang
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - George Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca J Chan
- Senior Director, Oncology, U.S. Medical Affairs, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Laura Haneline
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
16
|
LSD1: Expanding Functions in Stem Cells and Differentiation. Cells 2021; 10:cells10113252. [PMID: 34831474 PMCID: PMC8624367 DOI: 10.3390/cells10113252] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) provide a powerful model system to uncover fundamental mechanisms that control cellular identity during mammalian development. Histone methylation governs gene expression programs that play a key role in the regulation of the balance between self-renewal and differentiation of ESCs. Lysine-specific demethylase 1 (LSD1, also known as KDM1A), the first identified histone lysine demethylase, demethylates H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. Moreover, it has also been shown to demethylate non-histone substrates playing a central role in the regulation of numerous cellular processes. In this review, we summarize current knowledge about LSD1 and the molecular mechanism by which LSD1 influences the stem cells state, including the regulatory circuitry underlying self-renewal and pluripotency.
Collapse
|
17
|
Razmara E, Bitaraf A, Karimi B, Babashah S. Functions of the SNAI family in chondrocyte-to-osteocyte development. Ann N Y Acad Sci 2021; 1503:5-22. [PMID: 34403146 DOI: 10.1111/nyas.14668] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Different cellular mechanisms contribute to osteocyte development. And while critical roles for members of the zinc finger protein SNAI family (SNAIs) have been discussed in cancer-related models, there are few reviews summarizing their importance for chondrocyte-to-osteocyte development. To help fill this gap, we review the roles of SNAIs in the development of mature osteocytes from chondrocytes, including the regulation of chondro- and osteogenesis through different signaling pathways and in programmed cell death. We also discuss how epigenetic factors-including DNA methylation, histone methylation and acetylation, and noncoding RNAs-contribute differently to both chondrocyte and osteocyte development. To better grasp the important roles of SNAIs in bone development, we also review genotype-phenotype correlations in different animal models. We end with comments about the possible importance of the SNAI family in cartilage/bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnaz Karimi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Feeder-Free Human Embryonic Stem Cell Culture Under Defined Culture Conditions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2520:25-35. [PMID: 33959914 DOI: 10.1007/7651_2021_404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human embryonic stem (ES) cell culture has developed over the years allowing the subtle procedures that are easy to manipulate. Feeder-free ES cell culture is an important milestone for human pluripotent stem cell research which eliminates the feeder cells. Various matrices and medium formulations have been generated for feeder-independent culture. Here we described an mTeSR™1 based feeder-independent human ES cell culture on Matrigel® matrix. Culture, freeze/thaw, passaging and initiation of differentiation in suspension culture were described.
Collapse
|
19
|
Bivalkar-Mehla S, Puri D, Singh SB, Subramanyam D. Understanding the role of Beclin1 in mouse embryonic stem cell differentiation through CRISPR-Cas9-mediated gene editing. J Biosci 2021. [DOI: 10.1007/s12038-021-00139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Thawani A, Groves AK. Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Front Physiol 2020; 11:608880. [PMID: 33364980 PMCID: PMC7750469 DOI: 10.3389/fphys.2020.608880] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Wang H, Wang M, Wen Y, Xu C, Chen X, Wu D, Su P, Zhou W, Cheng T, Shi L, Zhou J. Biphasic Regulation of Mesenchymal Genes Controls Fate Switches During Hematopoietic Differentiation of Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001019. [PMID: 33101849 PMCID: PMC7578858 DOI: 10.1002/advs.202001019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Indexed: 05/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) or its reverse process mesenchymal-epithelial transition (MET) occurs in multiple physiological and pathological processes. However, whether an entire EMT-MET process exists and the potential function during human hematopoiesis remain largely elusive. Utilizing human pluripotent stem cell (hPSC)-based systems, it is discovered that while EMT occurs at the onset of human hematopoietic differentiation, MET is not detected subsequently during differentiation. Instead, a biphasic activation of mesenchymal genes during hematopoietic differentiation of hPSCs is observed. The expression of mesenchymal genes is upregulated during the fate switch from pluripotency to the mesoderm, sustained at the hemogenic endothelium (HE) stage, and attenuated during hemogenic endothelial cell (HEP) differentiation to hematopoietic progenitor cells (HPCs). A similar expression pattern of mesenchymal genes is also observed during human and murine hematopoietic development in vivo. Wnt signaling and its downstream gene SNAI1 mediate the up-regulation of mesenchymal genes and initiation of mesoderm induction from pluripotency. Inhibition of transforming growth factor-β (TGF-β) signaling and downregulation of HAND1, a downstream gene of TGF-β, are required for the downregulation of mesenchymal genes and the capacity of HEPs to generate HPCs. These results suggest that the biphasic regulation of mesenchymal genes is an essential mechanism during human hematopoiesis.
Collapse
Affiliation(s)
- Hongtao Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Mengge Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Yuqi Wen
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Changlu Xu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Xiaoyuan Chen
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Dan Wu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Pei Su
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Wen Zhou
- School of Basic Medical Science and Cancer Research InstituteCentral South UniversityChangsha410013China
| | - Tao Cheng
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Lihong Shi
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| |
Collapse
|
22
|
Kong J, Wang W. A Systemic Review on the Regulatory Roles of miR-34a in Gastrointestinal Cancer. Onco Targets Ther 2020; 13:2855-2872. [PMID: 32308419 PMCID: PMC7138617 DOI: 10.2147/ott.s234549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding single-stranded small-molecule RNAs that regulate gene expression by repressing target messenger RNA (mRNA) translation or degrading mRNA. miR-34a is one of the most important miRNAs participating in various physiological and pathological processes. miR-34a is abnormally expressed in a variety of tumors. The roles of miR-34a in gastrointestinal cancer (GIC) draw lots of attention. Numerous studies have demonstrated that dysregulated miR-34a is closely related to the proliferation, differentiation, migration, and invasion of tumor cells, as well as the diagnosis, prognosis, treatment, and chemo-resistance of tumors. Thus, we systematically reviewed the abnormal expression and regulatory roles of miR-34a in GICs including esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), and gallbladder cancer (GBC). It may provide a profile of versatile roles of miR-34a in GICs.
Collapse
Affiliation(s)
- Jiehong Kong
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
23
|
Song T, Yang Y, Wei H, Xie X, Lu J, Zeng Q, Peng J, Zhou Y, Jiang S, Peng J. Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation. Nucleic Acids Res 2020; 47:6130-6144. [PMID: 31037292 PMCID: PMC6614822 DOI: 10.1093/nar/gkz312] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/14/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
A complex and highly orchestrated gene expression program chiefly establishes the properties that define the adipocyte phenotype, in which the vast majority of factors are involved in transcriptional regulation. However, the mechanisms by post-transcriptional modulation are poorly understood. Here, we showed that zinc finger protein (Zfp217) couples gene transcription to m6A mRNA modification to facilitate adipogenesis. Zfp217 modulates m6A mRNA methylation by activating the transcription of m6A demethylase FTO. Consistently, depletion of Zfp217 compromises adipogenic differentiation of 3T3L1 cells and results in a global increase of m6A modification. Moreover, the interaction of Zfp217 with YTHDF2 is critical for allowing FTO to maintain its interaction with m6A sites on various mRNAs, as loss of Zfp217 leads to FTO decrease and augmented m6A levels. These findings highlight a role for Zfp217-dependent m6A modification to coordinate transcriptional and post-transcriptional regulation and thus promote adipogenic differentiation.
Collapse
Affiliation(s)
- Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yang Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaowei Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jinxin Lu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qianhui Zeng
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Siwen Jiang
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
24
|
Kwak S, Kim TW, Kang BH, Kim JH, Lee JS, Lee HT, Hwang IY, Shin J, Lee JH, Cho EJ, Youn HD. Zinc finger proteins orchestrate active gene silencing during embryonic stem cell differentiation. Nucleic Acids Res 2019; 46:6592-6607. [PMID: 29846698 PMCID: PMC6061687 DOI: 10.1093/nar/gky454] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 05/11/2018] [Indexed: 01/03/2023] Open
Abstract
Transcription factors and chromatin remodeling proteins control the transcriptional variability for ESC lineage commitment. During ESC differentiation, chromatin modifiers are recruited to the regulatory regions by transcription factors, thereby activating the lineage-specific genes or silencing the transcription of active ESC genes. However, the underlying mechanisms that link transcription factors to exit from pluripotency are yet to be identified. In this study, we show that the Ctbp2-interacting zinc finger proteins, Zfp217 and Zfp516, function as linkers for the chromatin regulators during ESC differentiation. CRISPR-Cas9-mediated knock-outs of both Zfp217 and Zfp516 in ESCs prevent the exit from pluripotency. Both zinc finger proteins regulate the Ctbp2-mediated recruitment of the NuRD complex and polycomb repressive complex 2 (PRC2) to active ESC genes, subsequently switching the H3K27ac to H3K27me3 during ESC differentiation for active gene silencing. We therefore suggest that some zinc finger proteins orchestrate to control the concise epigenetic states on active ESC genes during differentiation, resulting in natural lineage commitment.
Collapse
Affiliation(s)
- Sojung Kwak
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Wan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Byung-Hee Kang
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jae-Hwan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jang-Seok Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Han-Teo Lee
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul 03080, Republic of Korea
| | - In-Young Hwang
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihoon Shin
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jong-Hyuk Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Eun-Jung Cho
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
25
|
Ozdil B, Güler G, Acikgoz E, Kocaturk DC, Aktug H. The effect of extracellular matrix on the differentiation of mouse embryonic stem cells. J Cell Biochem 2019; 121:269-283. [PMID: 31168838 DOI: 10.1002/jcb.29159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) are promising research materials to investigate cell fate determination since they have the capability to differentiate. Stem cell differentiation has been extensively studied with various microenvironment mimicking structures to modify cellular dynamics associated with the cell-extracellular matrix (ECM) interactions and cell-cell communications. In the current study, our aim was to determine the effect of microenvironmental proteins with different concentrations on the capacity and differentiation capability of mouse ESCs (mESCs), combining the biochemical assays, imaging techniques, Fourier transform infrared (FTIR) spectroscopy, and unsupervised multivariate analysis. Based on our data, coating the surface of mESCs with Matrigel, used as an acellular matrix substrate, resulted in morphological and biochemical changes. mESCs exhibited alterations in their phenotype after growing on the Matrigel-coated surfaces, including their differentiation capacity, cell cycle phase pattern, membrane fluidity, and metabolic activities. In conclusion, mESCs can be stimulated physiologically, chemically, or mechanically to convert them a new phenotype. Thus, identification of ESCs' behavior in the acellular microenvironment could be vital to elucidate the mechanism of diseases. It might also be promising to control the cell fate in the field of tissue engineering.
Collapse
Affiliation(s)
- Berrin Ozdil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Günnur Güler
- Department of Biomedical Engineering, Izmir University of Economics, Izmir, Turkey.,Center for Drug Research & Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Duygu Calik Kocaturk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Huseyin Aktug
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
26
|
|
27
|
Wang H, Unternaehrer JJ. Epithelial-mesenchymal Transition and Cancer Stem Cells: At the Crossroads of Differentiation and Dedifferentiation. Dev Dyn 2018; 248:10-20. [DOI: 10.1002/dvdy.24678] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/29/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| |
Collapse
|
28
|
Gong J, Lang BJ, Weng D, Eguchi T, Murshid A, Borges TJ, Doshi S, Song B, Stevenson MA, Calderwood SK. Genotoxic stress induces Sca-1-expressing metastatic mammary cancer cells. Mol Oncol 2018; 12:1249-1263. [PMID: 29738110 PMCID: PMC6068352 DOI: 10.1002/1878-0261.12321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/28/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
We describe a cell damage-induced phenotype in mammary carcinoma cells involving acquisition of enhanced migratory and metastatic properties. Induction of this state by radiation required increased activity of the Ptgs2 gene product cyclooxygenase 2 (Cox2), secretion of its bioactive lipid product prostaglandin E2 (PGE2), and the activity of the PGE2 receptor EP4. Although largely transient, decaying to low levels in a few days to a week, this phenotype was cumulative with damage and levels of cell markers Sca-1 and ALDH1 increased with treatment dose. The Sca-1+ , metastatic phenotype was inhibited by both Cox2 inhibitors and PGE2 receptor antagonists, suggesting novel approaches to radiosensitization.
Collapse
Affiliation(s)
- Jianlin Gong
- Department of MedicineBoston University Medical CenterMAUSA
| | - Benjamin J. Lang
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Desheng Weng
- Department of MedicineBoston University Medical CenterMAUSA
| | - Takanori Eguchi
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Ayesha Murshid
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Thiago J. Borges
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Sachin Doshi
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Baizheng Song
- Department of MedicineBoston University Medical CenterMAUSA
| | - Mary A. Stevenson
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Stuart K. Calderwood
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
29
|
Ren LL, Yan TT, Shen CQ, Tang JY, Kong X, Wang YC, Chen J, Liu Q, He J, Zhong M, Chen HY, Hong J, Fang JY. The distinct role of strand-specific miR-514b-3p and miR-514b-5p in colorectal cancer metastasis. Cell Death Dis 2018; 9:687. [PMID: 29880874 PMCID: PMC5992212 DOI: 10.1038/s41419-018-0732-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
The abnormal expression of microRNAs (miRNAs) in colorectal cancer (CRC) progression has been widely investigated. It was reported that the same hairpin RNA structure could generate mature products from each strand, termed 5p and 3p, which binds different target mRNAs. Here, we explored the expression, functions, and mechanisms of miR-514b-3p and miR-514b-5p in CRC cells and tissues. We found that miR-514b-3p was significantly down-regulated in CRC samples, and the ratio of miR-514b-3p/miR-514b-5p increased from advanced CRC, early CRC to matched normal colorectal tissues. Follow-up functional experiments illustrated that miR-514b-3p and miR-514b-5p had distinct effects through interacting with different target genes: MiR-514b-3p reduced CRC cell migration, invasion and drug resistance through increasing epithelial marker and decreasing mesenchymal marker expressions, conversely, miR-514b-5p exerted its pro-metastatic properties in CRC by promoting EMT progression. MiR-514b-3p overexpressing CRC cells developed tumors more slowly in mice compared with control cells, however, miR-514b-5p accelerated tumor metastasis. Overall, our data indicated that though miR-514b-3p and miR-514b-5p were transcribed from the same RNA hairpin, each microRNA has distinct effect on CRC metastasis.
Collapse
Affiliation(s)
- Lin-Lin Ren
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong Sheng, China
| | - Ting-Ting Yan
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Chao-Qin Shen
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Jia-Yin Tang
- Department of Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xuan Kong
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Chao Wang
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Jinxian Chen
- Department of Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jie He
- Department of Gastroenterology & Guangzhou Key Laboratory of Digestive Disease, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming Zhong
- Department of Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Hao-Yan Chen
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
30
|
SNAIL is a key regulator of alveolar rhabdomyosarcoma tumor growth and differentiation through repression of MYF5 and MYOD function. Cell Death Dis 2018; 9:643. [PMID: 29844345 PMCID: PMC5974324 DOI: 10.1038/s41419-018-0693-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS) is a mesenchymal tumor of soft tissue in children that originates from a myogenic differentiation defect. Expression of SNAIL transcription factor is elevated in the alveolar subtype of RMS (ARMS), characterized by a low myogenic differentiation status and high aggressiveness. In RMS patients SNAIL level increases with higher stage. Moreover, SNAIL level negatively correlates with MYF5 expression. The differentiation of human ARMS cells diminishes SNAIL level. SNAIL silencing in ARMS cells inhibits proliferation and induces differentiation in vitro, and thereby completely abolishes the growth of human ARMS xenotransplants in vivo. SNAIL silencing induces myogenic differentiation by upregulation of myogenic factors and muscle-specific microRNAs, such as miR-206. SNAIL binds to the MYF5 promoter suppressing its expression. SNAIL displaces MYOD from E-box sequences (CANNTG) that are associated with genes expressed during differentiation and G/C rich in their central dinucleotides. SNAIL silencing allows the re-expression of MYF5 and canonical MYOD binding, promoting ARMS cell myogenic differentiation. In differentiating ARMS cells SNAIL forms repressive complex with histone deacetylates 1 and 2 (HDAC1/2) and regulates their expression. Accordingly, in human myoblasts SNAIL silencing induces differentiation by upregulation of myogenic factors. Our data clearly point to SNAIL as a key regulator of myogenic differentiation and a new promising target for future ARMS therapies.
Collapse
|
31
|
Wei H, Yan B, Gagneur J, Conradt B. Caenorhabditis elegans CES-1 Snail Represses pig-1 MELK Expression To Control Asymmetric Cell Division. Genetics 2017; 206:2069-2084. [PMID: 28652378 PMCID: PMC5560807 DOI: 10.1534/genetics.117.202754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
Snail-like transcription factors affect stem cell function through mechanisms that are incompletely understood. In the Caenorhabditis elegans neurosecretory motor neuron (NSM) neuroblast lineage, CES-1 Snail coordinates cell cycle progression and cell polarity to ensure the asymmetric division of the NSM neuroblast and the generation of two daughter cells of different sizes and fates. We have previously shown that CES-1 Snail controls cell cycle progression by repressing the expression of cdc-25.2 CDC25. However, the mechanism through which CES-1 Snail affects cell polarity has been elusive. Here, we systematically searched for direct targets of CES-1 Snail by genome-wide profiling of CES-1 Snail binding sites and identified >3000 potential CES-1 Snail target genes, including pig-1, the ortholog of the oncogene maternal embryonic leucine zipper kinase (MELK). Furthermore, we show that CES-1 Snail represses pig-1 MELK transcription in the NSM neuroblast lineage and that pig-1 MELK acts downstream of ces-1 Snail to cause the NSM neuroblast to divide asymmetrically by size and along the correct cell division axis. Based on our results we propose that by regulating the expression of the MELK gene, Snail-like transcription factors affect the ability of stem cells to divide asymmetrically and, hence, to self-renew. Furthermore, we speculate that the deregulation of MELK contributes to tumorigenesis by causing cells that normally divide asymmetrically to divide symmetrically instead.
Collapse
Affiliation(s)
- Hai Wei
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Bo Yan
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Julien Gagneur
- Gene Center Munich, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Barbara Conradt
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
32
|
Sart S, Bejoy J, Li Y. Characterization of 3D pluripotent stem cell aggregates and the impact of their properties on bioprocessing. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Goossens S, Vandamme N, Van Vlierberghe P, Berx G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer 2017; 1868:584-591. [PMID: 28669750 DOI: 10.1016/j.bbcan.2017.06.006] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023]
Abstract
Reactivation of an embryonic epithelial-to-mesenchymal (EMT) program is commonly accepted as a core component of carcinoma progression. Collectively, EMT and transcription factors (EMT-TFs) of the ZEB, SNAIL and TWIST families are quoted in the same breath for nearly 20years. Recent work on these EMT-TFs has extended their scope, and their typical definition as EMT-inducing factors has become out-of-date. New insights have warranted a re-evaluation of these transcription factors and their pleiotropic functions in physiological and pathological conditions, not solely limited to cell invasion and dissemination.
Collapse
Affiliation(s)
- Steven Goossens
- Molecular Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.; Centre for Medical Genetics, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- Molecular Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.; Inflammation Research Center (IRC), VIB, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.; Centre for Medical Genetics, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium..
| |
Collapse
|
34
|
Vincent PH, Benedikz E, Uhlén P, Hovatta O, Sundström E. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells. Stem Cells Dev 2017; 26:876-887. [DOI: 10.1089/scd.2016.0346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Per Henrik Vincent
- Division of Neurodegeneration, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eirikur Benedikz
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Uhlén
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Outi Hovatta
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Stockholms Sjukhem, Stockholm, Sweden
| |
Collapse
|
35
|
A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes. Nat Commun 2017; 8:15166. [PMID: 28466868 PMCID: PMC5418622 DOI: 10.1038/ncomms15166] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/03/2017] [Indexed: 12/30/2022] Open
Abstract
Reprogramming has been shown to involve EMT–MET; however, its role in cell differentiation is unclear. We report here that in vitro differentiation of hESCs to hepatic lineage undergoes a sequential EMT–MET with an obligatory intermediate mesenchymal phase. Gene expression analysis reveals that Activin A-induced formation of definitive endoderm (DE) accompanies a synchronous EMT mediated by autocrine TGFβ signalling followed by a MET process. Pharmacological inhibition of TGFβ signalling blocks the EMT as well as DE formation. We then identify SNAI1 as the key EMT transcriptional factor required for the specification of DE. Genetic ablation of SNAI1 in hESCs does not affect the maintenance of pluripotency or neural differentiation, but completely disrupts the formation of DE. These results reveal a critical mesenchymal phase during the acquisition of DE, highlighting a role for sequential EMT–METs in both differentiation and reprogramming. Reprogramming has been shown to involve EMT-MET; however, its role in cell differentiation is unclear. Here the authors show that during in vitro differentiation of hepatocytes, Activin A-induced formation of definitive endoderm requires EMT mediated by TGFβ signalling, followed by a MET process.
Collapse
|
36
|
Chen T, You Y, Jiang H, Wang ZZ. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol 2017; 232:3261-3272. [PMID: 28079253 DOI: 10.1002/jcp.25797] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/14/2022]
Abstract
The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.
Collapse
Affiliation(s)
- Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanan You
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Hua Jiang
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
Steens J, Zuk M, Benchellal M, Bornemann L, Teichweyde N, Hess J, Unger K, Görgens A, Klump H, Klein D. In Vitro Generation of Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature from Murine Induced Pluripotent Stem Cells. Stem Cell Reports 2017; 8:919-932. [PMID: 28366456 PMCID: PMC5390238 DOI: 10.1016/j.stemcr.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. In vitro generation of (VW)-typical MSCs from iPSCs based on a specific HOX code Reprogrammed fibroblasts (NEST-iPSCs) facilitated lineage tracing A lentiviral vector expressing HOXB7, HOXC6, and HOXC8 induced MSC differentiation Generated VW-MSCs showed classical MSC characteristics in vitro and in vivo
Collapse
Affiliation(s)
- Jennifer Steens
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Melanie Zuk
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Mohamed Benchellal
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Lea Bornemann
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Nadine Teichweyde
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany.
| |
Collapse
|
38
|
Cadherins Associate with Distinct Stem Cell-Related Transcription Factors to Coordinate the Maintenance of Stemness in Triple-Negative Breast Cancer. Stem Cells Int 2017; 2017:5091541. [PMID: 28392805 PMCID: PMC5368378 DOI: 10.1155/2017/5091541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with poor prognosis and is enriched in cancer stem cells (CSCs). However, it is not completely understood how the CSCs were maintained in TNBC. In this study, by analyzing The Cancer Genome Atlas (TCGA) provisional datasets and several small-size breast datasets, we found that cadherins (CDHs) 2, 4, 6, and 17 were frequently amplified/overexpressed in 47% of TNBC while E-cadherin (CDH1) was downregulated/mutated at 10%. The alterations of CDH2/4/6/17 were strongly associated with the elevated levels of several stem cell-related transcription factors (SC-TFs) including FOXM1, MCM2, WWTR1, SNAI1, and SOX9. CDH2/4/6/17-enriched genes including FOXM1 and MCM2 were also clustered and regulated by NFY (nuclear transcription factor Y) and/or EVI1/MECOM. Meanwhile, these SC-TFs including NFYA were upregulated in TNBC cells, but they were downregulated in luminal type of cells. Furthermore, small compounds might be predicted via the Connectivity Map analysis to target TNBC with the alterations of CDH2/4/6/17 and SC-TFs. Together with the important role of these SC-TFs in the stem cell regulation, our data provide novel insights into the maintenance of CSCs in TNBC and the discovery of these SC-TFs associated with the alterations of CDH2/4/6/17 has an implication in targeted therapy of TNBC.
Collapse
|
39
|
Tang Y, Tang Y, Cheng YS. miR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial-mesenchymal transition and the Notch signaling pathway. Sci Rep 2017; 7:38232. [PMID: 28145431 PMCID: PMC5286431 DOI: 10.1038/srep38232] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and Notch signaling are important for the growth and invasion of pancreatic cancer, which is a leading cause of cancer-related deaths worldwide. miR-34a has been shown to play pivotal roles in the progression of several types of cancer. However, little is known about the regulatory mechanisms of miR-34a in pancreatic cancer processes. The aim of this study was to determine whether miR-34a has negative effects on pancreatic cancer and whether these effects are related to EMT and Notch signaling. In vitro, we demonstrated that miR-34a inhibited, while miR-34a inhibitors enhanced, migration and invasion of pancreatic cancer cell lines (PANC-1 and SW-1990).These effects were reversed by Snail1 overexpression or Snail1 shRNA. Furthermore, the anti-apoptotic effects of the miR-34a inhibitors in pancreatic cancer cells were abrogated by Notch1 shRNA. Luciferase reporter assays revealed that the Snail1 and Notch1 genes were direct targets of miR-34a. In vivo, we also demonstrated that miR-34a inhibited pancreatic cancer growth by decreasing Snail1 and Notch1 expression. Therefore, our results indicate that miR-34a inhibits pancreatic cancer progression by post-transcriptionally regulating Snail1 and Notch1 expression.
Collapse
Affiliation(s)
- Yan Tang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, China
| | - Yong Tang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying-sheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, China
| |
Collapse
|
40
|
Tang Y, Weiss SJ. Snail/Slug-YAP/TAZ complexes cooperatively regulate mesenchymal stem cell function and bone formation. Cell Cycle 2017; 16:399-405. [PMID: 28112996 DOI: 10.1080/15384101.2017.1280643] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Snail and Slug are zinc-finger transcription factors that play key roles in directing the epithelial-mesenchymal transition (EMT) programs associated with normal development as well as disease progression. More recent work suggests that these EMT-associated transcription factors also modulate the function of both embryonic and adult stem cells. Interestingly, YAP and TAZ, the co-transcriptional effectors of the Hippo pathway, likewise play an important role in stem cell self-renewal and lineage commitment. While direct intersections between the Snail/Slug and Hippo pathways have not been described previously, we recently described an unexpected cooperative interaction between Snail/Slug and YAP/TAZ that controls the self-renewal and differentiation properties of bone marrow-derived mesenchymal stem cells (MSCs), a cell population critical to bone development. Additional studies revealed that both Snail and Slug are able to form binary complexes with either YAP or TAZ that, together, control YAP/TAZ transcriptional activity and function throughout mouse development. Given the more recent observations that MSC-like cell populations are found in association throughout the vasculature where they participate in tissue regeneration, fibrosis and cancer, the Snail/Slug-YAP/TAZ axis is well-positioned to regulate global stem cell function in health and disease.
Collapse
Affiliation(s)
- Yi Tang
- a Division of Molecular Medicine and Genetics, Department of Internal Medicine , University of Michigan , Ann Arbor , MI , USA.,b Life Sciences Institute, University of Michigan , Ann Arbor , MI , USA
| | - Stephen J Weiss
- a Division of Molecular Medicine and Genetics, Department of Internal Medicine , University of Michigan , Ann Arbor , MI , USA.,b Life Sciences Institute, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
41
|
Stryjewska A, Dries R, Pieters T, Verstappen G, Conidi A, Coddens K, Francis A, Umans L, van IJcken WFJ, Berx G, van Grunsven LA, Grosveld FG, Goossens S, Haigh JJ, Huylebroeck D. Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells. Stem Cells 2016; 35:611-625. [PMID: 27739137 PMCID: PMC5396376 DOI: 10.1002/stem.2521] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022]
Abstract
In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm versus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulatory network in these cell‐fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal RNA‐sequencing (RNA‐seq) and reduced representation bisulfite sequencing (RRBS) analysis in neural differentiation. This shows that Zeb2 acts preferentially as a transcriptional repressor associated with developmental progression and that Zeb2 KO ESCs can exit from their naïve state. However, most cells in these EBs stall in an early epiblast‐like state and are impaired in both neural and mesendodermal differentiation. Genes involved in pluripotency, epithelial‐to‐mesenchymal transition (EMT), and DNA‐(de)methylation, including Tet1, are deregulated in the absence of Zeb2. The observed elevated Tet1 levels in the mutant cells and the knowledge of previously mapped Tet1‐binding sites correlate with loss‐of‐methylation in neural‐stimulating conditions, however, after the cells initially acquired the correct DNA‐methyl marks. Interestingly, cells from such Zeb2 KO EBs maintain the ability to re‐adapt to 2i + LIF conditions even after prolonged differentiation, while knockdown of Tet1 partially rescues their impaired differentiation. Hence, in addition to its role in EMT, Zeb2 is critical in ESCs for exit from the epiblast state, and links the pluripotency network and DNA‐methylation with irreversible commitment to differentiation. Stem Cells2017;35:611–625
Collapse
Affiliation(s)
- Agata Stryjewska
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Ruben Dries
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium.,Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Tim Pieters
- VIB Inflammation Research Center (IRC), Unit Vascular Cell Biology.,Department of Biomedical Molecular Biology.,VIB-IRC, Unit Molecular and Cellular Oncology, Ghent University, Ghent, 9052, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Griet Verstappen
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Kathleen Coddens
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Annick Francis
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Lieve Umans
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands.,Center for Biomics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Geert Berx
- Department of Biomedical Molecular Biology.,VIB-IRC, Unit Molecular and Cellular Oncology, Ghent University, Ghent, 9052, Belgium
| | - Leo A van Grunsven
- Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Jette, 1090, Belgium
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Steven Goossens
- VIB Inflammation Research Center (IRC), Unit Vascular Cell Biology.,Department of Biomedical Molecular Biology.,VIB-IRC, Unit Molecular and Cellular Oncology, Ghent University, Ghent, 9052, Belgium.,ACBD - Blood Cancers and Stem Cells, Group Mammalian Functional Genetics, Monash University, Melbourne, VIC, 3004, Australia
| | - Jody J Haigh
- VIB Inflammation Research Center (IRC), Unit Vascular Cell Biology.,Department of Biomedical Molecular Biology.,ACBD - Blood Cancers and Stem Cells, Group Mammalian Functional Genetics, Monash University, Melbourne, VIC, 3004, Australia
| | - Danny Huylebroeck
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium.,Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| |
Collapse
|
42
|
Dhasarathy A, Roemmich JN, Claycombe KJ. Influence of maternal obesity, diet and exercise on epigenetic regulation of adipocytes. Mol Aspects Med 2016; 54:37-49. [PMID: 27825817 DOI: 10.1016/j.mam.2016.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Archana Dhasarathy
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - James N Roemmich
- USDA-ARS-PA, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58203, USA
| | - Kate J Claycombe
- USDA-ARS-PA, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58203, USA.
| |
Collapse
|
43
|
Ni T, Li XY, Lu N, An T, Liu ZP, Fu R, Lv WC, Zhang YW, Xu XJ, Grant Rowe R, Lin YS, Scherer A, Feinberg T, Zheng XQ, Chen BA, Liu XS, Guo QL, Wu ZQ, Weiss SJ. Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol 2016; 18:1221-1232. [PMID: 27749822 DOI: 10.1038/ncb3425] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 09/16/2016] [Indexed: 12/17/2022]
Abstract
The zinc-finger transcription factor Snail1 is inappropriately expressed in breast cancer and associated with poor prognosis. While interrogating human databases, we uncovered marked decreases in relapse-free survival of breast cancer patients expressing high Snail1 levels in tandem with wild-type, but not mutant, p53. Using a Snail1 conditional knockout model of mouse breast cancer that maintains wild-type p53, we find that Snail1 plays an essential role in tumour progression by controlling the expansion and activity of tumour-initiating cells in preneoplastic glands and established tumours, whereas it is not required for normal mammary development. Growth and survival of preneoplastic as well as neoplastic mammary epithelial cells is dependent on the formation of a Snail1/HDAC1/p53 tri-molecular complex that deacetylates active p53, thereby promoting its proteasomal degradation. Our findings identify Snail1 as a molecular bypass that suppresses the anti-proliferative and pro-apoptotic effects exerted by wild-type p53 in breast cancer.
Collapse
Affiliation(s)
- Ting Ni
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yan Li
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Teng An
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Ping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Cong Lv
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Wei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Jun Xu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - R Grant Rowe
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yong-Shun Lin
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Amanda Scherer
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tamar Feinberg
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiao-Qi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Bao-An Chen
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 210009, China
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, The Dana-Farber Cancer Institute, Harvard School of Public Health, Harvard University, Boston, Massachusetts 02115, USA
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
44
|
Przybyla L, Muncie JM, Weaver VM. Mechanical Control of Epithelial-to-Mesenchymal Transitions in Development and Cancer. Annu Rev Cell Dev Biol 2016; 32:527-554. [DOI: 10.1146/annurev-cellbio-111315-125150] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laralynne Przybyla
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
| | - Jonathon M. Muncie
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
- Joint Graduate Group in Bioengineering (University of California, San Francisco, and University of California, Berkeley), San Francisco, California 94143
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
- Departments of Anatomy, Bioengineering, and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143
| |
Collapse
|
45
|
Alba-Castellón L, Olivera-Salguero R, Mestre-Farrera A, Peña R, Herrera M, Bonilla F, Casal JI, Baulida J, Peña C, García de Herreros A. Snail1-Dependent Activation of Cancer-Associated Fibroblast Controls Epithelial Tumor Cell Invasion and Metastasis. Cancer Res 2016; 76:6205-6217. [PMID: 27503928 DOI: 10.1158/0008-5472.can-16-0176] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/24/2016] [Indexed: 11/16/2022]
Abstract
Snail1 transcriptional factor is essential for triggering epithelial-to-mesenchymal transition (EMT) and inducing tumor cell invasion. We report here an EMT-independent action of Snail1 on tumor invasion, as it is required for the activation of cancer-associated fibroblasts (CAF). Snail1 expression in fibroblasts requires signals derived from tumor cells, such as TGFβ; reciprocally, in fibroblasts, Snail1 organizes a complex program that stimulates invasion of epithelial cells independent of the expression of Snail1 in these cells. Epithelial cell invasion is stimulated by the secretion by fibroblast of diffusible signaling molecules, such as prostaglandin E2 The capability of human or murine CAFs to promote tumor invasion is dependent on Snail1 expression. Inducible Snail1 depletion in mice decreases the invasion of breast tumors; moreover, epithelial tumor cells coxenografted with Snail1-depleted fibroblasts originated tumors with lower invasion than those transplanted with control fibroblasts. Therefore, these results demonstrate that the role of Snail1 in tumor invasion is not limited to EMT, but it is also dependent on its activity in stromal fibroblasts, where it orchestrates the cross-talk with epithelial tumor cells. Cancer Res; 76(21); 6205-17. ©2016 AACR.
Collapse
Affiliation(s)
- Lorena Alba-Castellón
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Rubén Olivera-Salguero
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Aida Mestre-Farrera
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Mercedes Herrera
- Servicio de Oncología Médica, Hospital Puerta de Hierro, Majadahonda, Spain
| | | | | | - Josep Baulida
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Cristina Peña
- Servicio de Oncología Médica, Hospital Puerta de Hierro, Majadahonda, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
46
|
Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat Cell Biol 2016; 18:917-29. [PMID: 27479603 PMCID: PMC5007193 DOI: 10.1038/ncb3394] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 06/30/2016] [Indexed: 12/16/2022]
Abstract
Bone marrow-derived skeletal stem/stromal cell (SSC) self-renewal and function are critical to skeletal development, homeostasis and repair. Nevertheless, the mechanisms controlling SSC behavior, particularly bone formation, remain ill-defined. Using knockout mouse models that target the zinc-finger transcription factors, Snail, Slug or Snail and Slug combined, a regulatory axis has been uncovered wherein Snail and Slug cooperatively control SSC self-renewal, osteoblastogenesis and bone formation. Mechanistically, Snail/Slug regulate SSC function by forming complexes with the transcriptional co-activators, YAP and TAZ, in tandem with the inhibition of the Hippo pathway-dependent regulation of YAP/TAZ signaling cascades. In turn, the Snail/Slug-YAP/TAZ axis activates a series of YAP/TAZ/TEAD and Runx2 downstream targets that control SSC homeostasis and osteogenesis. Together, these results demonstrate that SSCs mobilize Snail/Slug-YAP/TAZ complexes to control stem cell function.
Collapse
|
47
|
Yu CY, Kuo HC. The Trans-Spliced Long Noncoding RNA ts RMST Impedes Human Embryonic Stem Cell Differentiation Through WNT5A-Mediated Inhibition of the Epithelial-to-Mesenchymal Transition. Stem Cells 2016; 34:2052-2062. [DOI: 10.1002/stem.2386] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The trans-spliced noncoding RNA RMST (tsRMST) is an emerging regulatory lncRNA in the human pluripotency circuit. Previously, we found that tsRMST represses lineage-specific transcription factors through the PRC2 complex and NANOG in human pluripotent stem cells (hESCs). Here, we demonstrate that tsRMST also modulates noncanonical Wnt signaling to suppress the epithelial-to-mesenchymal transition (EMT) and in vitro differentiation of embryonic stem cells (ESCs). Our results demonstrate that disruption of tsRMST expression in hESCs results in the upregulation of WNT5A, EMT, and lineage-specific genes/markers. Furthermore, we found that the PKC inhibitors Go6983 and Go6976 inhibited the effects of WNT5A, indicating that WNT5A promotes the EMT and in vitro differentiation although conventional and novel PKC activation in hESCs. Finally, we showed that either antiserum neutralization of WNT5A or Go6983 treatment in tsRMST knockdown cells decreased the expression of mesenchymal and lineage-specific markers. Together, these findings indicate that tsRMST regulates Wnt and EMT signaling pathways in hESCs by repressing WNT5A, which is a potential EMT inducer for promoting in vitro differentiation of hESCs through PKC activation. Our findings provide further insights into the role of trans-spliced RNA and WNT5A in hESC differentiation, in which EMT plays an important role.
Collapse
Affiliation(s)
- Chun-Ying Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
48
|
Smith BN, Bhowmick NA. Role of EMT in Metastasis and Therapy Resistance. J Clin Med 2016; 5:E17. [PMID: 26828526 PMCID: PMC4773773 DOI: 10.3390/jcm5020017] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex molecular program that regulates changes in cell morphology and function during embryogenesis and tissue development. EMT also contributes to tumor progression and metastasis. Cells undergoing EMT expand out of and degrade the surrounding microenvironment to subsequently migrate from the primary site. The mesenchymal phenotype observed in fibroblasts is specifically important based on the expression of smooth muscle actin (α-SMA), fibroblast growth factor (FGF), fibroblast-specific protein-1 (FSP1), and collagen to enhance EMT. Although EMT is not completely dependent on EMT regulators such as Snail, Twist, and Zeb-1/-2, analysis of upstream signaling (i.e., TGF-β, EGF, Wnt) is necessary to understand tumor EMT more comprehensively. Tumor epithelial-fibroblast interactions that regulate tumor progression have been identified during prostate cancer. The cellular crosstalk is significant because these events influence therapy response and patient outcome. This review addresses how canonical EMT signals originating from prostate cancer fibroblasts contribute to tumor metastasis and recurrence after therapy.
Collapse
Affiliation(s)
- Bethany N Smith
- Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Blvd., Atrium 103, Los Angeles, CA 90048, USA.
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Blvd., Atrium 103, Los Angeles, CA 90048, USA.
| |
Collapse
|
49
|
Chen CY, Lee DS, Yan YT, Shen CN, Hwang SM, Lee ST, Hsieh PC. Bcl3 Bridges LIF-STAT3 to Oct4 Signaling in the Maintenance of Naïve Pluripotency. Stem Cells 2015; 33:3468-80. [DOI: 10.1002/stem.2201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/25/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Chen-Yun Chen
- Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Desy S. Lee
- Institute of Clinical Medicine; National Cheng Kung University and Hospital; Tainan Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Chia-Ning Shen
- Genomics Research Center; Academia Sinica; Taipei Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center; Food Industry Research and Development Institute; Hsinchu Taiwan
| | - Sho Tone Lee
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Patrick C.H. Hsieh
- Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
- Institute of Clinical Medicine; National Cheng Kung University and Hospital; Tainan Taiwan
| |
Collapse
|
50
|
Parfitt DE, Shen MM. From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0542. [PMID: 25349451 DOI: 10.1098/rstb.2013.0542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To date, many regulatory genes and signalling events coordinating mammalian development from blastocyst to gastrulation stages have been identified by mutational analyses and reverse-genetic approaches, typically on a gene-by-gene basis. More recent studies have applied bioinformatic approaches to generate regulatory network models of gene interactions on a genome-wide scale. Such models have provided insights into the gene networks regulating pluripotency in embryonic and epiblast stem cells, as well as cell-lineage determination in vivo. Here, we review how regulatory networks constructed for different stem cell types relate to corresponding networks in vivo and provide insights into understanding the molecular regulation of the blastocyst-gastrula transition.
Collapse
Affiliation(s)
- David-Emlyn Parfitt
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael M Shen
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|