1
|
Retnakumar RJ, Chettri P, Lamtha SC, Sivakumar KC, Dutta P, Sen P, Biswas S, Agarwal N, Nath AN, Devi TB, Thapa N, Tamang JP, Chattopadhyay S. Genome-wide accumulations of non-random adaptive point mutations drive westward evolution of Helicobacter pylori. BMC Microbiol 2025; 25:229. [PMID: 40263995 PMCID: PMC12013172 DOI: 10.1186/s12866-025-03944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND For last seven decades we remained convinced that the natural point mutations occur randomly in the genome of an organism. However, our whole genome sequence analyses show that for the gastric pathogen Helicobacter pylori, which causes peptic ulcer and gastric cancer, accumulations of point mutations in the genome are non-random and they contribute to its unidirectional evolution. Based on the oncoprotein CagA, the pathogen can be classified into Eastern (East Asian countries like China and Japan; high incidence of gastric cancer) and Western (Europe, Africa, South-West Asian countries like India; low incidence of gastric cancer) types. RESULTS We have found a unique high-altitude Himalayan region, Sikkim (an Indian state bordering China, Nepal and Bhutan), where the evolving Eastern and Western H. pylori types co-exist and show the signs of genetic admixtures. Here, we present genomic evidence for more virulent Eastern-H. pylori getting converted to less virulent Western-H. pylori by accumulating non-random adaptive point mutations. CONCLUSION The lesser virulence of the westernized H. pylori is beneficial since this pathogen typically remains colonized in the stomach for decades before causing terminal diseases like gastric cancer. Moreover, the mutation-driven westward evolution of H. pylori is a global phenomenon, which occurred in the geographical regions where people from Eastern and Western ethnicities met and cohabited. The identified evolution of virulent Eastern H. pylori strains to lesser virulent Western variants by accumulation of point mutations also provides insight into the pathogenic potentials of different H. pylori strains.
Collapse
Affiliation(s)
- R J Retnakumar
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prakash Chettri
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Tadong, Sikkim, India
| | | | - K C Sivakumar
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Priya Dutta
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Pahil Sen
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sanjit Biswas
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Barry Marshall Research Centre for Helicobacter pylori, Asian Institute of Gastroenterology, Telangana, 500032, Hyderabad, India
| | - Nikita Agarwal
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Angitha N Nath
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - T Barani Devi
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Namrata Thapa
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Tadong, Sikkim, India.
| | | | - Santanu Chattopadhyay
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
- Barry Marshall Research Centre for Helicobacter pylori, Asian Institute of Gastroenterology, Telangana, 500032, Hyderabad, India.
| |
Collapse
|
2
|
Isokpehi RD, Simmons SS, Makolo AU, Hollman AL, Adesida SA, Ojo OO, Abioye AO. Insights into Functions of Universal Stress Proteins Encoded by Genomes of Gastric Cancer Pathogen Helicobacter pylori and Related Bacteria. Pathogens 2025; 14:275. [PMID: 40137760 PMCID: PMC11944479 DOI: 10.3390/pathogens14030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
The genes that encode the universal stress protein (USP) family domain (pfam00582) aid the survival of bacteria in specific host or habitat-induced stress conditions. Genome sequencing revealed that the genome of Helicobacter pylori, a gastric cancer pathogen, typically contains one USP gene, while related helicobacters have one or two distinct USP genes. However, insights into the functions of Helicobacteraceae (Helicobacter and Wolinella) USP genes are still limited to inferences from large-scale genome sequencing. Thus, we have combined bioinformatics and visual analytics approaches to conduct a more comprehensive data investigation of a set of 1045 universal stress protein sequences encoded in 1014 genomes including 785 Helicobacter pylori genomes. The study generated a representative set of 183 USP sequences consisting of 180 Helicobacter sequences, two Wolinella succinogenes sequences, and a sequence from a related campylobacteria. We used the amino acid residues and positions of the 12 possible functional sites in 1030 sequences to identify 25 functional sites patterns for guiding studies on functional interactions of Helicobacteraceae USPs with ATP and other molecules. Genomic context searches and analysis identified USP genes of gastric and enterohepatic helicobacters that are adjacent or in operons with genes for proteins responsive to DNA-damaging oxidative stress (ATP-dependent proteases: ClpS and ClpA); and DNA uptake proteins (natural competence for transformation proteins: ComB6, ComB7, ComB8, ComB9, ComB10, ComBE, and conjugative transfer signal peptidase TraF). Since transcriptomic evidence indicates that oxidative stress and the presence of virulence-associated genes regulate the transcription of H. pylori USP gene, we recommend further research on Helicobacter USP genes and their neighboring genes in oxidative stress response and virulence of helicobacters. To facilitate the reuse of data and research, we produced interactive analytics resources of a dataset composed of values for variables including phylogeography of H. pylori strains, protein sequence features, and gene neighborhood.
Collapse
Affiliation(s)
- Raphael D. Isokpehi
- Transdisciplinary Data Scholars Development Program, Bethune-Cookman University, Daytona Beach, FL 32114, USA
| | - Shaneka S. Simmons
- Division of Arts and Sciences, Jarvis Christian University, Hawkins, TX 75765, USA
| | - Angela U. Makolo
- University of Ibadan Bioinformatics Group, Department of Computer Science, University of Ibadan, Ibadan 200005, Oyo State, Nigeria
| | | | - Solayide A. Adesida
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka 101017, Lagos State, Nigeria
| | - Olabisi O. Ojo
- Department of Natural Sciences, Albany State University, Albany, GA 31721, USA
| | - Amos O. Abioye
- College of Pharmacy & Health Sciences, Belmont University, Nashville, TN 37212, USA;
| |
Collapse
|
3
|
Duan Y, Xu Y, Dou Y, Xu D. Helicobacter pylori and gastric cancer: mechanisms and new perspectives. J Hematol Oncol 2025; 18:10. [PMID: 39849657 PMCID: PMC11756206 DOI: 10.1186/s13045-024-01654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Gastric cancer remains a significant global health challenge, with Helicobacter pylori (H. pylori) recognized as a major etiological agent, affecting an estimated 50% of the world's population. There has been a rapidly expanding knowledge of the molecular and pathogenetic mechanisms of H. pylori over the decades. This review summarizes the latest research advances to elucidate the molecular mechanisms underlying the H. pylori infection in gastric carcinogenesis. Our investigation of the molecular mechanisms reveals a complex network involving STAT3, NF-κB, Hippo, and Wnt/β-catenin pathways, which are dysregulated in gastric cancer caused by H. pylori. Furthermore, we highlight the role of H. pylori in inducing oxidative stress, DNA damage, chronic inflammation, and cell apoptosis-key cellular events that pave the way for carcinogenesis. Emerging evidence also suggests the effect of H. pylori on the tumor microenvironment and its possible implications for cancer immunotherapy. This review synthesizes the current knowledge and identifies gaps that warrant further investigation. Despite the progress in our previous knowledge of the development in H. pylori-induced gastric cancer, a comprehensive investigation of H. pylori's role in gastric cancer is crucial for the advancement of prevention and treatment strategies. By elucidating these mechanisms, we aim to provide a more in-depth insights for the study and prevention of H. pylori-related gastric cancer.
Collapse
Affiliation(s)
- Yantao Duan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghu Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Linz B, Sticht H, Tegtmeyer N, Backert S. Cancer-associated SNPs in bacteria: lessons from Helicobacter pylori. Trends Microbiol 2024; 32:847-857. [PMID: 38485609 DOI: 10.1016/j.tim.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 09/06/2024]
Abstract
Several single-nucleotide polymorphisms (SNPs) in human chromosomes are known to predispose to cancer. However, cancer-associated SNPs in bacterial pathogens were unknown until discovered in the stomach pathogen Helicobacter pylori. Those include an alanine-threonine polymorphism in the EPIYA-B phosphorylation motif of the injected effector protein CagA that affects cancer risk by modifying inflammatory responses and loss of host cell polarity. A serine-to-leucine change in serine protease HtrA is associated with boosted proteolytic cleavage of epithelial junction proteins and introduction of DNA double-strand breaks (DSBs) in host chromosomes, which co-operatively elicit malignant alterations. In addition, H. pylori genome-wide association studies (GWAS) identified several other SNPs potentially associated with increased gastric cancer (GC) risk. Here we discuss the clinical importance, evolutionary origin, and functional advantage of the H. pylori SNPs. These exciting new data highlight cancer-associated SNPs in bacteria, which should be explored in more detail in future studies.
Collapse
Affiliation(s)
- Bodo Linz
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg; 91054 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
6
|
Backert S, Tegtmeyer N, Horn AHC, Sticht H, Linz B. Two remarkable serine/leucine polymorphisms in Helicobacter pylori: functional importance for serine protease HtrA and adhesin BabA. Cell Commun Signal 2024; 22:250. [PMID: 38698410 PMCID: PMC11064359 DOI: 10.1186/s12964-024-01635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) account for significant genomic variability in microbes, including the highly diverse gastric pathogen Helicobacter pylori. However, data on the effects of specific SNPs in pathogen-host interactions are scarce. Recent functional studies unravelled how a serine/leucine polymorphism in serine protease HtrA affects the formation of proteolytically active trimers and modulates cleavage of host cell-to-cell junction proteins during infection. A similar serine/leucine mutation in the carbohydrate binding domain of the adhesin BabA controls binding of ABO blood group antigens, enabling binding of either only the short Lewis b/H antigens of blood group O or also the larger antigens of blood groups A and B. Here we summarize the functional importance of these two remarkable bacterial SNPs and their effect on the outcome of pathogen-host interactions.
Collapse
Affiliation(s)
- Steffen Backert
- Department Biology, Division of Microbiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, 91058, Germany.
| | - Nicole Tegtmeyer
- Department Biology, Division of Microbiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, 91058, Germany
| | - Anselm H C Horn
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, Erlangen, 91054, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, Erlangen, 91054, Germany
| | - Bodo Linz
- Department Biology, Division of Microbiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, 91058, Germany
| |
Collapse
|
7
|
Sada RM, Matsuo H, Motooka D, Kutsuna S, Hamaguchi S, Yamamoto G, Ueda A. Clostridium butyricum Bacteremia Associated with Probiotic Use, Japan. Emerg Infect Dis 2024; 30:665-671. [PMID: 38413242 PMCID: PMC10977840 DOI: 10.3201/eid3004.231633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Clostridium butyricum, a probiotic commonly prescribed in Asia, most notably as MIYA-BM (Miyarisan Pharmaceutical Co., Ltd.; https://www.miyarisan.com), occasionally leads to bacteremia. The prevalence and characteristics of C. butyricum bacteremia and its bacteriologic and genetic underpinnings remain unknown. We retrospectively investigated patients admitted to Osaka University Hospital during September 2011-February 2023. Whole-genome sequencing revealed 5 (0.08%) cases of C. butyricum bacteremia among 6,576 case-patients who had blood cultures positive for any bacteria. Four patients consumed MIYA-BM, and 1 patient consumed a different C. butyricum-containing probiotic. Most patients had compromised immune systems, and common symptoms included fever and abdominal distress. One patient died of nonocclusive mesenteric ischemia. Sequencing results confirmed that all identified C. butyricum bacteremia strains were probiotic derivatives. Our findings underscore the risk for bacteremia resulting from probiotic use, especially in hospitalized patients, necessitating judicious prescription practices.
Collapse
|
8
|
Shi ZJ, Nayfach S, Pollard KS. Maast: genotyping thousands of microbial strains efficiently. Genome Biol 2023; 24:186. [PMID: 37563669 PMCID: PMC10416524 DOI: 10.1186/s13059-023-03030-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Existing single nucleotide polymorphism (SNP) genotyping algorithms do not scale for species with thousands of sequenced strains, nor do they account for conspecific redundancy. Here we present a bioinformatics tool, Maast, which empowers population genetic meta-analysis of microbes at an unrivaled scale. Maast implements a novel algorithm to heuristically identify a minimal set of diverse conspecific genomes, then constructs a reliable SNP panel for each species, and enables rapid and accurate genotyping using a hybrid of whole-genome alignment and k-mer exact matching. We demonstrate Maast's utility by genotyping thousands of Helicobacter pylori strains and tracking SARS-CoV-2 diversification.
Collapse
Affiliation(s)
- Zhou Jason Shi
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Gladstone Institutes of Data Science and Biotechnology, San Francisco, CA, USA
| | - Stephen Nayfach
- Joint Genome Institute, Department of Energy, Walnut Creek, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine S Pollard
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Gladstone Institutes of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Gómez-Garzón C, Payne SM. Divide and conquer: genetics, mechanism, and evolution of the ferrous iron transporter Feo in Helicobacter pylori. Front Microbiol 2023; 14:1219359. [PMID: 37469426 PMCID: PMC10353542 DOI: 10.3389/fmicb.2023.1219359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Feo is the most widespread and conserved system for ferrous iron uptake in bacteria, and it is important for virulence in several gastrointestinal pathogens. However, its mechanism remains poorly understood. Hitherto, most studies regarding the Feo system were focused on Gammaproteobacterial models, which possess three feo genes (feoA, B, and C) clustered in an operon. We found that the human pathogen Helicobacter pylori possesses a unique arrangement of the feo genes, in which only feoA and feoB are present and encoded in distant loci. In this study, we examined the functional significance of this arrangement. Methods Requirement and regulation of the individual H. pylori feo genes were assessed through in vivo assays and gene expression profiling. The evolutionary history of feo was inferred via phylogenetic reconstruction, and AlphaFold was used for predicting the FeoA-FeoB interaction. Results and Discussion Both feoA and feoB are required for Feo function, and feoB is likely subjected to tight regulation in response to iron and nickel by Fur and NikR, respectively. Also, we established that feoA is encoded in an operon that emerged in the common ancestor of most, but not all, helicobacters, and this resulted in feoA transcription being controlled by two independent promoters. The H. pylori Feo system offers a new model to understand ferrous iron transport in bacterial pathogens.
Collapse
Affiliation(s)
- Camilo Gómez-Garzón
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
- John Ring LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
10
|
Suerbaum S, Ailloud F. Genome and population dynamics during chronic infection with Helicobacter pylori. Curr Opin Immunol 2023; 82:102304. [PMID: 36958230 DOI: 10.1016/j.coi.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
Helicobacter pylori is responsible for one of the most prevalent bacterial infections worldwide. Chronic infection typically leads to chronic active gastritis. Clinical sequelae, including peptic ulcers, mucosa-associated lymphoid tissue lymphoma or, most importantly, gastric adenocarcinoma develop in 10-15% of cases. H. pylori is characterized by extensive inter-strain diversity which is the result of a high mutation rate, recombination, and a large repertoire of restriction-modification systems. This diversity is thought to be a major contributor to H. pylori's persistence and exceptional aptitude to adapt to the gastric environment and evade the immune system. This review covers efforts in the last decade to characterize and understand the multiple layers of H. pylori's diversity in different biological contexts.
Collapse
Affiliation(s)
- Sebastian Suerbaum
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany; German National Reference Centre for Helicobacter pylori, Pettenkoferstr. 9a, 80336 Munich, Germany.
| | - Florent Ailloud
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany
| |
Collapse
|
11
|
Analysis of Genetic Relatedness between Gastric and Oral Helicobacter pylori in Patients with Early Gastric Cancer Using Multilocus Sequence Typing. Int J Mol Sci 2023; 24:ijms24032211. [PMID: 36768541 PMCID: PMC9917182 DOI: 10.3390/ijms24032211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The oral cavity is the second most colonized site of Helicobacter pylori after the stomach. This study aimed to compare the genetic relatedness between gastric and oral H. pylori in Japanese patients with early gastric cancer through multilocus sequence typing (MLST) analysis using eight housekeeping genes. Gastric biopsy specimens and oral samples were collected from 21 patients with a fecal antigen test positive for H. pylori. The number of H. pylori allelic profiles ranged from zero to eight since the yield of DNA was small even when the nested PCR was performed. MLST analysis revealed that only one patient had a matching oral and gastric H. pylori genotype, suggesting that different genotypes of H. pylori inhabit the oral cavity and gastric mucosa. The phylogenetic analysis showed that oral H. pylori in six patients was similar to gastric H. pylori, implying that the two strains are related but not of the same origin, and those strains may be infected on separate occasions. It is necessary to establish a culture method for oral H. pylori to elucidate whether the oral cavity acts as the source of gastric infection, as our analysis was based on a limited number of allele sequences.
Collapse
|
12
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
13
|
Loh JT, Shuman JHB, Lin AS, Favret N, Piazuelo MB, Mallal S, Chopra A, McClain MS, Cover TL. Positive Selection of Mutations in the Helicobacter pylori katA 5' Untranslated Region in a Mongolian Gerbil Model of Gastric Disease. Infect Immun 2022; 90:e0000422. [PMID: 35652648 PMCID: PMC9302185 DOI: 10.1128/iai.00004-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
To evaluate potential effects of gastric inflammation on Helicobacter pylori diversification and evolution within the stomach, we experimentally infected Mongolian gerbils with an H. pylori strain in which Cag type IV secretion system (T4SS) activity is controlled by a TetR/tetO system. Gerbils infected with H. pylori under conditions in which Cag T4SS activity was derepressed had significantly higher levels of gastric inflammation than gerbils infected under conditions with repressed Cag T4SS activity. Mutations in the 5' untranslated region (UTR) of katA (encoding catalase) were detected in strains cultured from 8 of the 17 gerbils infected with Cag T4SS-active H. pylori and none of the strains from 17 gerbils infected with Cag T4SS-inactive H. pylori. Catalase enzymatic activity, steady-state katA transcript levels, and katA transcript stability were increased in strains with these single nucleotide polymorphisms (SNPs) compared to strains in which these SNPs were absent. Moreover, strains harboring these SNPs exhibited increased resistance to bactericidal effects of hydrogen peroxide, compared to control strains. Experimental introduction of the SNPs into the wild-type katA 5' UTR resulted in increased katA transcript stability, increased katA steady-state levels, and increased catalase enzymatic activity. Based on site-directed mutagenesis and modeling of RNA structure, increased katA transcript levels were correlated with higher predicted thermal stability of the katA 5' UTR secondary structure. These data suggest that high levels of gastric inflammation positively select for H. pylori strains producing increased levels of catalase, which may confer survival advantages to the bacteria in an inflammatory gastric environment.
Collapse
Affiliation(s)
- John T. Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jennifer H. B. Shuman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Natalie Favret
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Simon Mallal
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennesse, USA
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennesse, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Ansari S, Yamaoka Y. Animal Models and Helicobacter pylori Infection. J Clin Med 2022; 11:jcm11113141. [PMID: 35683528 PMCID: PMC9181647 DOI: 10.3390/jcm11113141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori colonize the gastric mucosa of at least half of the world’s population. Persistent infection is associated with the development of gastritis, peptic ulcer disease, and an increased risk of gastric cancer and gastric-mucosa-associated lymphoid tissue (MALT) lymphoma. In vivo studies using several animal models have provided crucial evidence for understanding the pathophysiology of H. pylori-associated complications. Numerous animal models, such as Mongolian gerbils, transgenic mouse models, guinea pigs, and other animals, including non-human primates, are being widely used due to their persistent association in causing gastric complications. However, finding suitable animal models for in vivo experimentation to understand the pathophysiology of gastric cancer and MALT lymphoma is a complicated task. In this review, we summarized the most appropriate and latest information in the scientific literature to understand the role and importance of H. pylori infection animal models.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: ; Tel.: +81-97-586-5740
| |
Collapse
|
15
|
Kumar S, Vinella D, De Reuse H. Nickel, an essential virulence determinant of Helicobacter pylori: Transport and trafficking pathways and their targeting by bismuth. Adv Microb Physiol 2022; 80:1-33. [PMID: 35489790 DOI: 10.1016/bs.ampbs.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Nickel is required for the pathogenicity of H. pylori. This bacterial pathogen colonizes the stomach of about half of the human population worldwide and is associated with gastric cancer that is responsible for 800,000 deaths per year. H. pylori possesses two nickel-enzymes that are essential for in vivo colonization, a [NiFe] hydrogenase and an abundant urease responsible for resistance to gastric acidity. Because of these two enzymes, survival of H. pylori relies on an important supply of nickel, implying tight control strategies to avoid its toxic accumulation or deprivation. H. pylori possesses original mechanisms for nickel uptake, distribution, storage and trafficking that will be discussed in this review. During evolution, acquisition of nickel transporters and specific nickel-binding proteins has been a decisive event to allow Helicobacter species to become able to colonize the stomach. Accordingly, many of the factors involved in these mechanisms are required for mouse colonization by H. pylori. These mechanisms are controlled at different levels including protein interaction networks, transcriptional, post-transcriptional and post-translational regulation. Bismuth is another metal used in combination with antibiotics to efficiently treat H. pylori infections. Although the precise mode of action of bismuth is unknown, many targets have been identified in H. pylori and there is growing evidence that bismuth interferes with the essential nickel pathways. Understanding the metal pathways will help improve treatments against H. pylori and other pathogens.
Collapse
Affiliation(s)
- Sumith Kumar
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Daniel Vinella
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Hilde De Reuse
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France.
| |
Collapse
|
16
|
Jang S, Hansen LM, Su H, Solnick JV, Cha JH. Host immune response mediates changes in cagA copy number and virulence potential of Helicobacter pylori. Gut Microbes 2022; 14:2044721. [PMID: 35289715 PMCID: PMC8928821 DOI: 10.1080/19490976.2022.2044721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori is the major risk factor for gastric cancer. H. pylori harboring the type IV secretion system (T4SS) and its effector CagA encoded on the cag pathogenicity Island (cagPAI) increases the risk. H. pylori PMSS1 has a multi-cagA genotype, modulating cagA copy number dynamically from zero to four copies. To examine the effect of the immune response on cagA copy number change, we utilized a mouse model with different immune status. PMSS1 recovered from Rag1-/- mice, lacking functional T or B cells, retained more cagA copies. PMSS1 recovered from Il10-/- mice, showing intense inflammation, had fewer cagA copies compared to those recovered from wild-type mice. Moreover, cagA copy number of PMSS1 recovered from wild-type and Il10-/- mice was positively correlated with the capacity to induce IL-8 secretion at four weeks of infection. Since recombination in cagY influences T4SS function, including CagA translocation and IL-8 induction, we constructed a multiple linear regression model to predict H. pylori-induced IL-8 expression based on cagA copy number and cagY recombination status; H. pylori induces more IL-8 secretion when the strain has more cagA copies and intact cagY. This study shows that H. pylori PMSS1 in mice with less intense immune response possess higher cagA copy number than those infected in mice with more intense immune response and thus the multi-cagA genotype, along with cagY recombination, functions as an immune-sensitive regulator of H. pylori virulence.
Collapse
Affiliation(s)
- Sungil Jang
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Oral Biochemistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Lori M. Hansen
- Center for Immunology and Infectious Diseases; Departments of Medicine and of Microbiology and Immunology, School of Medicine; University of California Davis, Davis, CA, USA
| | - Hanfu Su
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Jay V. Solnick
- Center for Immunology and Infectious Diseases; Departments of Medicine and of Microbiology and Immunology, School of Medicine; University of California Davis, Davis, CA, USA
| | - Jeong-Heon Cha
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Thomas P, Abdel-Glil MY, Eichhorn I, Semmler T, Werckenthin C, Baumbach C, Murmann W, Bodenthin-Drauschke A, Zimmermann P, Schotte U, Galante D, Slavic D, Wagner M, Wieler LH, Neubauer H, Seyboldt C. Genome Sequence Analysis of Clostridium chauvoei Strains of European Origin and Evaluation of Typing Options for Outbreak Investigations. Front Microbiol 2021; 12:732106. [PMID: 34659160 PMCID: PMC8513740 DOI: 10.3389/fmicb.2021.732106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Black quarter caused by Clostridium (C.) chauvoei is an important bacterial disease that affects cattle and sheep with high mortality. A comparative genomics analysis of 64 C. chauvoei strains, most of European origin and a few of non-European and unknown origin, was performed. The pangenome analysis showed limited new gene acquisition for the species. The accessory genome involved prophages and genomic islands, with variations in gene composition observed in a few strains. This limited accessory genome may indicate that the species replicates only in the host or that an active CRISPR/Cas system provides immunity to foreign genetic elements. All strains contained a CRISPR type I-B system and it was confirmed that the unique spacer sequences therein can be used to differentiate strains. Homologous recombination events, which may have contributed to the evolution of this pathogen, were less frequent compared to other related species from the genus. Pangenome single nucleotide polymorphism (SNP) based phylogeny and clustering indicate diverse clusters related to geographical origin. Interestingly the identified SNPs were mostly non-synonymous. The study demonstrates the possibility of the existence of polymorphic populations in one host, based on strain variability observed for strains from the same animal and strains from different animals of one outbreak. The study also demonstrates that new outbreak strains are mostly related to earlier outbreak strains from the same farm/region. This indicates the last common ancestor strain from one farm can be crucial to understand the genetic changes and epidemiology occurring at farm level. Known virulence factors for the species were highly conserved among the strains. Genetic elements involved in Nicotinamide adenine dinucleotide (NAD) precursor synthesis (via nadA, nadB, and nadC metabolic pathway) which are known as potential anti-virulence loci are completely absent in C. chauvoei compared to the partial inactivation in C. septicum. A novel core-genome MLST based typing method was compared to sequence typing based on CRISPR spacers to evaluate the usefulness of the methods for outbreak investigations.
Collapse
Affiliation(s)
- Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Inga Eichhorn
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | | | - Christiane Werckenthin
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Oldenburg, Germany
| | - Christina Baumbach
- State Office for Agriculture, Food Safety and Fisheries Mecklenburg-Western Pomerania, Rostock, Germany
| | - Wybke Murmann
- Chemical and Veterinary Investigations Office, Freiburg, Germany
| | | | - Pia Zimmermann
- Bavarian Health and Food Safety Authority (LGL), Laboratory of Food Microbiology, Oberschleißheim, Germany
| | - Ulrich Schotte
- Department A-Veterinary Medicine, Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Durda Slavic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
| | - Martin Wagner
- Unit for Food Microbiology, Institute for Food Safety, Technology and Veterinary Public Health, University for Veterinary Medicine, Vienna, Austria
| | | | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
18
|
Mehrotra T, Devi TB, Kumar S, Talukdar D, Karmakar SP, Kothidar A, Verma J, Kumari S, Alexander SM, Retnakumar RJ, Devadas K, Ray A, Mutreja A, Nair GB, Chattopadhyay S, Das B. Antimicrobial resistance and virulence in Helicobacter pylori: Genomic insights. Genomics 2021; 113:3951-3966. [PMID: 34619341 DOI: 10.1016/j.ygeno.2021.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/10/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022]
Abstract
Microbes evolve rapidly by modifying their genome through mutations or acquisition of genetic elements. Antimicrobial resistance in Helicobacter pylori is increasingly prevalent in India. However, limited information is available about the genome of resistant H. pylori isolated from India. Our pan- and core-genome based analyses of 54 Indian H. pylori strains revealed plasticity of its genome. H. pylori is highly heterogenous both in terms of the genomic content and DNA sequence homology of ARGs and virulence factors. We observed that the H. pylori strains are clustered according to their geographical locations. The presence of point mutations in the ARGs and absence of acquired genetic elements linked with ARGs suggest target modifications are the primary mechanism of its antibiotic resistance. The findings of the present study would help in better understanding the emergence of drug-resistant H. pylori and controlling gastric disorders by advancing clinical guidance on selected treatment regimens.
Collapse
Affiliation(s)
- Tanshi Mehrotra
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - T Barani Devi
- Microbiome Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Shakti Kumar
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Daizee Talukdar
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Sonali Porey Karmakar
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Akansha Kothidar
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyoti Verma
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Shashi Kumari
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Sneha Mary Alexander
- Microbiome Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - R J Retnakumar
- Microbiome Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Animesh Ray
- Department of Medicine, All India Institute of Medical, Science, New Delhi, India
| | - Ankur Mutreja
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India; Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge CB20QQ, United Kingdom
| | - G Balakrish Nair
- Microbiome Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Santanu Chattopadhyay
- Microbiome Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India.
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
19
|
Kamiya R, Uchiyama J, Matsuzaki S, Murata K, Iwasaki K, Miyazaki N. Acid-stable capsid structure of Helicobacter pylori bacteriophage KHP30 by single-particle cryoelectron microscopy. Structure 2021; 30:300-312.e3. [PMID: 34597601 DOI: 10.1016/j.str.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/04/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy, respectively. The capsids have icosahedral T = 9 symmetry and consist of each 540 copies of 2 structural proteins, a major capsid protein, and a cement protein. The major capsid proteins form 12 pentagonal capsomeres occupying icosahedral vertexes and 80 hexagonal capsomeres located at icosahedral faces and edges. The major capsid protein has a unique protruding loop extending to the neighboring subunit that stabilizes hexagonal capsomeres. Furthermore, the capsid is decorated with trimeric cement proteins with a jelly roll motif. The cement protein trimer sits on the quasi-three-fold axis formed by three major capsid protein capsomeres, thereby enhancing the particle stability by connecting these capsomeres. Sequence and structure comparisons between the related Helicobacter pylori phages suggest a possible mechanism of phage adaptation to the human gastric environment.
Collapse
Affiliation(s)
- Ryosuke Kamiya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan
| | - Jumpei Uchiyama
- Laboratory of Veterinary Microbiology I, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan; Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Shigenobu Matsuzaki
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi 780-0955, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan
| | - Naoyuki Miyazaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan.
| |
Collapse
|
20
|
Harvey ML, Lin AS, Sun L, Koyama T, Shuman JHB, Loh JT, Algood HMS, Scholz MB, McClain MS, Cover TL. Enhanced Fitness of a Helicobacter pylori babA Mutant in a Murine Model. Infect Immun 2021; 89:e0072520. [PMID: 34310886 PMCID: PMC8445181 DOI: 10.1128/iai.00725-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori genomes encode over 60 predicted outer membrane proteins (OMPs). Several OMPs in the Hop family act as adhesins, but the functions of most Hop proteins are unknown. To identify hop mutant strains exhibiting differential fitness in vivo compared to in vitro, we used a genetic barcoding method that allowed us to track changes in the proportional abundance of H. pylori strains within a mixed population. We generated a library of hop mutant strains, each containing a unique nucleotide barcode, as well as a library of control strains, each containing a nucleotide barcode in an intergenic region predicted to be a neutral locus unrelated to bacterial fitness. We orogastrically inoculated each of the libraries into mice and analyzed compositional changes in the populations over time in vivo compared to changes detected in the populations during library passage in vitro. The control library proliferated as a relatively stable community in vitro, but there was a reduction in the population diversity of this library in vivo and marked variation in the dominant strains recovered from individual animals, consistent with the existence of a nonselective bottleneck in vivo. We did not identify any OMP mutants exhibiting fitness defects exclusively in vivo without corresponding fitness defects in vitro. Conversely, a babA mutant exhibited a strong fitness advantage in vivo but not in vitro. These findings, when taken together with results of other studies, suggest that production of BabA may have differential effects on H. pylori fitness depending on the environmental conditions.
Collapse
Affiliation(s)
- M. Lorena Harvey
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lili Sun
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - John T. Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Matthew B. Scholz
- Vanderbilt Technologies for Advanced Genetics (VANTAGE), Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol Rev 2021; 45:5900976. [PMID: 32880636 DOI: 10.1093/femsre/fuaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, spiral shaped bacterium that selectively and chronically infects the gastric mucosa of humans. The clinical course of this infection can range from lifelong asymptomatic infection to severe disease, including peptic ulcers or gastric cancer. The high mutation rate and natural competence typical of this species are responsible for massive inter-strain genetic variation exceeding that observed in all other bacterial human pathogens. The adaptive value of such a plastic genome is thought to derive from a rapid exploration of the fitness landscape resulting in fast adaptation to the changing conditions of the gastric environment. Nevertheless, diversity is also lost through recurrent bottlenecks and H. pylori's lifestyle is thus a perpetual race to maintain an appropriate pool of standing genetic variation able to withstand selection events. Another aspect of H. pylori's diversity is a large and variable repertoire of restriction-modification systems. While not yet completely understood, methylome evolution could generate enough transcriptomic variation to provide another intricate layer of adaptive potential. This review provides an up to date synopsis of this rapidly emerging area of H. pylori research that has been enabled by the ever-increasing throughput of Omics technologies and a multitude of other technological advances.
Collapse
Affiliation(s)
- Florent Ailloud
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Iratxe Estibariz
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany.,DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Pettenkoferstr. 9a, 80336 München, Germany.,National Reference Center for Helicobacter pylori, Pettenkoferstr. 9a, 80336 München, Germany
| |
Collapse
|
22
|
Szczepanowski P, Noszka M, Żyła-Uklejewicz D, Pikuła F, Nowaczyk-Cieszewska M, Krężel A, Stingl K, Zawilak-Pawlik A. HP1021 is a redox switch protein identified in Helicobacter pylori. Nucleic Acids Res 2021; 49:6863-6879. [PMID: 34139017 PMCID: PMC8266642 DOI: 10.1093/nar/gkab440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a gram-negative, microaerophilic, pathogenic bacterium and a widespread colonizer of humans. H. pylori has developed mechanisms that enable it to overcome the harsh environment of the human stomach, including reactive oxygen species (ROS). Interestingly, up to now no typical regulator dedicated to the oxidative-stress response has been discovered. In this work, we reveal that the inhibitor of replication initiation HP1021 functions as a redox switch protein in H. pylori and plays an important role in response to oxidative stress of the gastric pathogen. Each of the two predicted HP1021 domains contains three cysteine residues. We show that the cysteine residues of HP1021 are sensitive to oxidation both in vitro and in vivo, and we demonstrate that HP1021 DNA-binding activity to oriC depends on the redox state of the protein. Moreover, Zn2+ modulates HP1021 affinity towards oriC template DNA. Transcription analysis of selected H. pylori genes by RT-qPCR indicated that HP1021 is directly involved in the oxygen-dependent control of H. pylori fecA3 and gluP genes, which are implicated in response to oxidative stress. In conclusion, HP1021 is a redox switch protein and could be a target for H. pylori control strategies.
Collapse
Affiliation(s)
- Piotr Szczepanowski
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Dorota Żyła-Uklejewicz
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Fabian Pikuła
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Malgorzata Nowaczyk-Cieszewska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment, Berlin 12277, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| |
Collapse
|
23
|
Small RNA mediated gradual control of lipopolysaccharide biosynthesis affects antibiotic resistance in Helicobacter pylori. Nat Commun 2021; 12:4433. [PMID: 34290242 PMCID: PMC8295292 DOI: 10.1038/s41467-021-24689-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
The small, regulatory RNA RepG (Regulator of polymeric G-repeats) regulates the expression of the chemotaxis receptor TlpB in Helicobacter pylori by targeting a variable G-repeat in the tlpB mRNA leader. Here, we show that RepG additionally controls lipopolysaccharide (LPS) phase variation by also modulating the expression of a gene (hp0102) that is co-transcribed with tlpB. The hp0102 gene encodes a glycosyltransferase required for LPS O-chain biosynthesis and in vivo colonization of the mouse stomach. The G-repeat length defines a gradual (rather than ON/OFF) control of LPS biosynthesis by RepG, and leads to gradual resistance to a membrane-targeting antibiotic. Thus, RepG-mediated modulation of LPS structure might impact host immune recognition and antibiotic sensitivity, thereby helping H. pylori to adapt and persist in the host. The small RNA RepG modulates expression of chemotaxis receptor TlpB in Helicobacter pylori by targeting a length-variable G-repeat in the tlpB mRNA. Here, Pernitzsch et al. show that RepG also gradually controls lipopolysaccharide biosynthesis, antibiotic susceptibility, and in-vivo colonization of the stomach, by regulating a gene that is co-transcribed with tlpB.
Collapse
|
24
|
Kocsmár É, Buzás GM, Szirtes I, Kocsmár I, Kramer Z, Szijártó A, Fadgyas-Freyler P, Szénás K, Rugge M, Fassan M, Kiss A, Schaff Z, Röst G, Lotz G. Primary and secondary clarithromycin resistance in Helicobacter pylori and mathematical modeling of the role of macrolides. Nat Commun 2021; 12:2255. [PMID: 33859206 PMCID: PMC8050269 DOI: 10.1038/s41467-021-22557-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Clarithromycin is a macrolide antibiotic widely used for eradication of Helicobacter pylori infection, and thus resistance to this antibiotic is a major cause of treatment failure. Here, we present the results of a retrospective observational study of clarithromycin resistance (Cla-res) in 4744 H. pylori-infected patients from Central Hungary. We use immunohistochemistry and fluorescence in situ hybridization on fixed gastric tissue samples to determine H. pylori infection and to infer Cla-res status, respectively. We correlate this information with macrolide dispensing data for the same patients (available through a prescription database) and develop a mathematical model of the population dynamics of Cla-res H. pylori infections. Cla-res is found in 5.5% of macrolide-naive patients (primary Cla-res), with no significant sex difference. The model predicts that this primary Cla-res originates from transmission of resistant bacteria in 98.7% of cases, and derives from spontaneous mutations in the other 1.3%. We find an age-dependent preponderance of female patients among secondary (macrolide-exposed) clarithromycin-resistant infections, predominantly associated with prior use of macrolides for non-eradication purposes. Our results shed light into the sources of primary resistant cases, and indicate that the growth rate of Cla-res prevalence would likely decrease if macrolides were no longer used for purposes other than H. pylori eradication.
Collapse
Affiliation(s)
- Éva Kocsmár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - György Miklós Buzás
- Department of Gastroenterology, Ferencváros Health Center, Budapest, Hungary
| | - Ildikó Szirtes
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Ildikó Kocsmár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsófia Kramer
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Attila Szijártó
- 1st Department of Surgery and Interventional Gastroenterology, Semmelweis University, Budapest, Hungary
| | | | - Kató Szénás
- Department of Pathology, Péterfy Hospital, Budapest, Hungary
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
- Veneto Tumor Registry (RTV), Veneto Regional Authority, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - András Kiss
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Gergely Röst
- Wolfson Center for Mathematical Biology, University of Oxford, Oxford, United Kingdom
- Bolyai Institute, University of Szeged, Szeged, Hungary
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
25
|
A bacterial small RNA regulates the adaptation of Helicobacter pylori to the host environment. Nat Commun 2021; 12:2085. [PMID: 33837194 PMCID: PMC8035401 DOI: 10.1038/s41467-021-22317-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. However, the mechanisms by which the bacteria adapt to the stomach environment are poorly understood. Here, we show that a small non-coding RNA of H. pylori (HPnc4160, also known as IsoB or NikS) regulates the pathogen’s adaptation to the host environment as well as bacterial oncoprotein production. In a rodent model of H. pylori infection, the genomes of bacteria isolated from the stomach possess an increased number of T-repeats upstream of the HPnc4160-coding region, and this leads to reduced HPnc4160 expression. We use RNA-seq and iTRAQ analyses to identify eight targets of HPnc4160, including genes encoding outer membrane proteins and oncoprotein CagA. Mutant strains with HPnc4160 deficiency display increased colonization ability of the mouse stomach, in comparison with the wild-type strain. Furthermore, HPnc4160 expression is lower in clinical isolates from gastric cancer patients than in isolates derived from non-cancer patients, while the expression of HPnc4160’s targets is higher in the isolates from gastric cancer patients. Therefore, the small RNA HPnc4160 regulates H. pylori adaptation to the host environment and, potentially, gastric carcinogenesis. Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. Here, Kinoshita-Daitoku et al. show that a small non-coding RNA of H. pylori regulates bacterial adaptation to the stomach environment and bacterial oncoprotein production.
Collapse
|
26
|
Capparelli R, Iannelli D. Genetics of Host Protection against Helicobacter pylori Infections. Int J Mol Sci 2021; 22:ijms22063192. [PMID: 33801073 PMCID: PMC8004045 DOI: 10.3390/ijms22063192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
This narrative review discusses the genetics of protection against Helicobacter pylori (Hp) infection. After a brief overview of the importance of studying infectious disease genes, we provide a detailed account of the properties of Hp, with a view to those relevant for our topic. Hp displays a very high level of genetic diversity, detectable even between single colonies from the same patient. The high genetic diversity of Hp can be evaded by stratifying patients according to the infecting Hp strain. This approach enhances the power and replication of the study. Scanning for single nucleotide polymorphisms is generally not successful since genes rarely work alone. We suggest selecting genes to study from among members of the same family, which are therefore inclined to cooperate. Further, extending the analysis to the metabolism would significantly enhance the power of the study. This combined approach displays the protective role of MyD88, TIRAP, and IL1RL1 against Hp infection. Finally, several studies in humans have demonstrated that the blood T cell levels are under the genetic control of the CD39+ T regulatory cells (TREGS).
Collapse
|
27
|
Jackson LK, Potter B, Schneider S, Fitzgibbon M, Blair K, Farah H, Krishna U, Bedford T, Peek RM, Salama NR. Helicobacter pylori diversification during chronic infection within a single host generates sub-populations with distinct phenotypes. PLoS Pathog 2020; 16:e1008686. [PMID: 33370399 PMCID: PMC7794030 DOI: 10.1371/journal.ppat.1008686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/08/2021] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori chronically infects the stomach of approximately half of the world's population. Manifestation of clinical diseases associated with H. pylori infection, including cancer, is driven by strain properties and host responses; and as chronic infection persists, both are subject to change. Previous studies have documented frequent and extensive within-host bacterial genetic variation. To define how within-host diversity contributes to phenotypes related to H. pylori pathogenesis, this project leverages a collection of 39 clinical isolates acquired prospectively from a single subject at two time points and from multiple gastric sites. During the six years separating collection of these isolates, this individual, initially harboring a duodenal ulcer, progressed to gastric atrophy and concomitant loss of acid secretion. Whole genome sequence analysis identified 1,767 unique single nucleotide polymorphisms (SNPs) across isolates and a nucleotide substitution rate of 1.3x10-4 substitutions/site/year. Gene ontology analysis identified cell envelope genes among the genes with excess accumulation of nonsynonymous SNPs (nSNPs). A maximum likelihood tree based on genetic similarity clusters isolates from each time point separately. Within time points, there is segregation of subgroups with phenotypic differences in bacterial morphology, ability to induce inflammatory cytokines, and mouse colonization. Higher inflammatory cytokine induction in recent isolates maps to shared polymorphisms in the Cag PAI protein, CagY, while rod morphology in a subgroup of recent isolates mapped to eight mutations in three distinct helical cell shape determining (csd) genes. The presence of subgroups with unique genetic and phenotypic properties suggest complex selective forces and multiple niches within the stomach during chronic infection.
Collapse
Affiliation(s)
- Laura K. Jackson
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Barney Potter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Sean Schneider
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Matthew Fitzgibbon
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Kris Blair
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Hajirah Farah
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Uma Krishna
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Trevor Bedford
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Nina R. Salama
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
28
|
Eisenbart SK, Alzheimer M, Pernitzsch SR, Dietrich S, Stahl S, Sharma CM. A Repeat-Associated Small RNA Controls the Major Virulence Factors of Helicobacter pylori. Mol Cell 2020; 80:210-226.e7. [PMID: 33002424 DOI: 10.1016/j.molcel.2020.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Many bacterial pathogens regulate their virulence genes via phase variation, whereby length-variable simple sequence repeats control the transcription or coding potential of those genes. Here, we have exploited this relationship between DNA structure and physiological function to discover a globally acting small RNA (sRNA) regulator of virulence in the gastric pathogen Helicobacter pylori. Our study reports the first sRNA whose expression is affected by a variable thymine (T) stretch in its promoter. We show the sRNA post-transcriptionally represses multiple major pathogenicity factors of H. pylori, including CagA and VacA, by base pairing to their mRNAs. We further demonstrate transcription of the sRNA is regulated by the nickel-responsive transcriptional regulator NikR (thus named NikS for nickel-regulated sRNA), thereby linking virulence factor regulation to nickel concentrations. Using in-vitro infection experiments, we demonstrate NikS affects host cell internalization and epithelial barrier disruption. Together, our results show NikS is a phase-variable, post-transcriptional global regulator of virulence properties in H. pylori.
Collapse
Affiliation(s)
- Sara K Eisenbart
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Mona Alzheimer
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sandy R Pernitzsch
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sascha Dietrich
- Core Unit Systems Medicine, Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stephanie Stahl
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Cynthia M Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
29
|
In Vivo Genome and Methylome Adaptation of cag-Negative Helicobacter pylori during Experimental Human Infection. mBio 2020; 11:mBio.01803-20. [PMID: 32843556 PMCID: PMC7448279 DOI: 10.1128/mbio.01803-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exceptional genetic diversity and variability are hallmarks of Helicobacter pylori, but the biological role of this plasticity remains incompletely understood. Here, we had the rare opportunity to investigate the molecular evolution during the first weeks of H. pylori infection by comparing the genomes and epigenomes of H. pylori strain BCS 100 used to challenge human volunteers in a vaccine trial with those of bacteria reisolated from the volunteers 10 weeks after the challenge. The data provide molecular insights into the process of establishment of this highly versatile pathogen in 10 different human individual hosts, showing, for example, selection for changes in host-interaction molecules as well as changes in epigenetic methylation patterns. The data provide important clues to the early adaptation of H. pylori to new host niches after transmission, which we believe is vital to understand its success as a chronic pathogen and develop more efficient treatments and vaccines. Multiple studies have demonstrated rapid bacterial genome evolution during chronic infection with Helicobacter pylori. In contrast, little was known about genetic changes during the first stages of infection, when selective pressure is likely to be highest. Using single-molecule, real-time (SMRT) and Illumina sequencing technologies, we analyzed genome and methylome evolution during the first 10 weeks of infection by comparing the cag pathogenicity island (cagPAI)-negative H. pylori challenge strain BCS 100 with pairs of H. pylori reisolates from gastric antrum and corpus biopsy specimens of 10 human volunteers who had been infected with this strain as part of a vaccine trial. Most genetic changes detected in the reisolates affected genes with a surface-related role or a predicted function in peptide uptake. Apart from phenotypic changes of the bacterial envelope, a duplication of the catalase gene was observed in one reisolate, which resulted in higher catalase activity and improved survival under oxidative stress conditions. The methylomes also varied in some of the reisolates, mostly by activity switching of phase-variable methyltransferase (MTase) genes. The observed in vivo mutation spectrum was remarkable for a very high proportion of nonsynonymous mutations. Although the data showed substantial within-strain genome diversity in the challenge strain, most antrum and corpus reisolates from the same volunteers were highly similar to each other, indicating that the challenge infection represents a major selective bottleneck shaping the transmitted population. Our findings suggest rapid in vivo selection of H. pylori during early-phase infection providing adaptation to different individuals by common mechanisms of genetic and epigenetic alterations.
Collapse
|
30
|
Chaguza C, Senghore M, Bojang E, Gladstone RA, Lo SW, Tientcheu PE, Bancroft RE, Worwui A, Foster-Nyarko E, Ceesay F, Okoi C, McGee L, Klugman KP, Breiman RF, Barer MR, Adegbola RA, Antonio M, Bentley SD, Kwambana-Adams BA. Within-host microevolution of Streptococcus pneumoniae is rapid and adaptive during natural colonisation. Nat Commun 2020; 11:3442. [PMID: 32651390 PMCID: PMC7351774 DOI: 10.1038/s41467-020-17327-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
Genomic evolution, transmission and pathogenesis of Streptococcus pneumoniae, an opportunistic human-adapted pathogen, is driven principally by nasopharyngeal carriage. However, little is known about genomic changes during natural colonisation. Here, we use whole-genome sequencing to investigate within-host microevolution of naturally carried pneumococci in ninety-eight infants intensively sampled sequentially from birth until twelve months in a high-carriage African setting. We show that neutral evolution and nucleotide substitution rates up to forty-fold faster than observed over longer timescales in S. pneumoniae and other bacteria drives high within-host pneumococcal genetic diversity. Highly divergent co-existing strain variants emerge during colonisation episodes through real-time intra-host homologous recombination while the rest are co-transmitted or acquired independently during multiple colonisation episodes. Genic and intergenic parallel evolution occur particularly in antibiotic resistance, immune evasion and epithelial adhesion genes. Our findings suggest that within-host microevolution is rapid and adaptive during natural colonisation.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Darwin College, University of Cambridge, Silver Street, Cambridge, UK.
| | - Madikay Senghore
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Ebrima Bojang
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Rebecca A Gladstone
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Stephanie W Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Peggy-Estelle Tientcheu
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Rowan E Bancroft
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Archibald Worwui
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Ebenezer Foster-Nyarko
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Fatima Ceesay
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Catherine Okoi
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, USA
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | | | - Michael R Barer
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Richard A Adegbola
- RAMBICON Immunisation & Global Health Consulting, 6A Platinum Close, Lekki, Lagos State, Nigeria
| | - Martin Antonio
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Brenda A Kwambana-Adams
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
31
|
Cheng Y, Chen C. A multifunctional DNA polymerase I involves in the maturation of Okazaki fragments during the lagging‐strand DNA synthesis in
Helicobacter pylori. FEBS J 2020; 288:884-901. [DOI: 10.1111/febs.15434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/01/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yi‐Wen Cheng
- Department of Medical Laboratory Science and Biotechnology College of Medicine National Cheng Kung University Tainan City Taiwan
| | - Cheng‐Yao Chen
- Department of Medical Laboratory Science and Biotechnology College of Medicine National Cheng Kung University Tainan City Taiwan
- Institute of Biological Chemistry Academia Sinica Taipei Taiwan
| |
Collapse
|
32
|
Affiliation(s)
- Chrispin Chaguza
- Genomics of Pneumonia and Meningitis, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
33
|
Doin de Moura GG, Remigi P, Masson-Boivin C, Capela D. Experimental Evolution of Legume Symbionts: What Have We Learnt? Genes (Basel) 2020; 11:E339. [PMID: 32210028 PMCID: PMC7141107 DOI: 10.3390/genes11030339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Rhizobia, the nitrogen-fixing symbionts of legumes, are polyphyletic bacteria distributed in many alpha- and beta-proteobacterial genera. They likely emerged and diversified through independent horizontal transfers of key symbiotic genes. To replay the evolution of a new rhizobium genus under laboratory conditions, the symbiotic plasmid of Cupriavidus taiwanensis was introduced in the plant pathogen Ralstonia solanacearum, and the generated proto-rhizobium was submitted to repeated inoculations to the C. taiwanensis host, Mimosa pudica L.. This experiment validated a two-step evolutionary scenario of key symbiotic gene acquisition followed by genome remodeling under plant selection. Nodulation and nodule cell infection were obtained and optimized mainly via the rewiring of regulatory circuits of the recipient bacterium. Symbiotic adaptation was shown to be accelerated by the activity of a mutagenesis cassette conserved in most rhizobia. Investigating mutated genes led us to identify new components of R. solanacearum virulence and C. taiwanensis symbiosis. Nitrogen fixation was not acquired in our short experiment. However, we showed that post-infection sanctions allowed the increase in frequency of nitrogen-fixing variants among a non-fixing population in the M. pudica-C. taiwanensis system and likely allowed the spread of this trait in natura. Experimental evolution thus provided new insights into rhizobium biology and evolution.
Collapse
Affiliation(s)
| | | | | | - Delphine Capela
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31320, France; (G.G.D.d.M.); (P.R.); (C.M.-B.)
| |
Collapse
|
34
|
Marques AT, Vítor JMB, Santos A, Oleastro M, Vale FF. Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches. Microb Genom 2020; 6:e000344. [PMID: 32118532 PMCID: PMC7200067 DOI: 10.1099/mgen.0.000344] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
For a long time Helicobacter pylori infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of H. pylori treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and combinations of point mutations found in the 23S rRNA gene associated with resistance. Additionally, we consider the methods used to detect clarithromycin resistance, emphasizing the use of high-throughput next-generation sequencing methods, which were applied to 17 newly sequenced pairs of H. pylori strains isolated from the antrum and corpus of a recent colonized paediatric population. This set of isolates was composed of six pairs of resistant strains whose phenotype was associated with two point mutations found in the 23S rRNA gene: A2142C and A2143G. Other point mutations were found simultaneously in the same gene, but, according to our results, it is unlikely that they contribute to resistance. Further, among susceptible isolates, genomic variations compatible with mutations previously associated with clarithromycin resistance were detected. Exposure to clarithromycin may select low-frequency variants, resulting in a progressive increase in the resistance rate due to selection pressure.
Collapse
Affiliation(s)
- Andreia T. Marques
- Host–Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jorge M. B. Vítor
- Host–Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649 003 Lisbon, Portugal
| | - Andrea Santos
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Filipa F. Vale
- Host–Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
35
|
Detection of Helicobacter pylori Microevolution and Multiple Infection from Gastric Biopsies by Housekeeping Gene Amplicon Sequencing. Pathogens 2020; 9:pathogens9020097. [PMID: 32033301 PMCID: PMC7168683 DOI: 10.3390/pathogens9020097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the great efforts devoted to research on Helicobacter pylori, the prevalence of single-strain infection or H. pylori mixed infection and its implications in the mode of transmission of this bacterium are still controversial. In this study, we explored the usefulness of housekeeping gene amplicon sequencing in the detection of H. pylori microevolution and multiple infections. DNA was extracted from five gastric biopsies from four patients infected with distinct histopathological diagnoses. PCR amplification of six H. pylori-specific housekeeping genes was then assessed on each sample. Optimal results were obtained for the cgt and luxS genes, which were selected for amplicon sequencing. A total of 11,833 cgt and 403 luxS amplicon sequences were obtained, 2042 and 112 of which were unique sequences, respectively. All cgt and luxS sequences were clustered at 97% to 9 and 13 operational taxonomic units (OTUs), respectively. For each sample from a different patient, a single OTU comprised the majority of sequences in both genes, but more than one OTU was detected in all samples. These results suggest that multiple infections with a predominant strain together with other minority strains are the main way by which H. pylori colonizes the human stomach.
Collapse
|
36
|
Suzuki R, Satou K, Shiroma A, Shimoji M, Teruya K, Matsumoto T, Akada J, Hirano T, Yamaoka Y. Genome-wide mutation analysis of Helicobacter pylori after inoculation to Mongolian gerbils. Gut Pathog 2019; 11:45. [PMID: 31558915 PMCID: PMC6754630 DOI: 10.1186/s13099-019-0326-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background Helicobacter pylori is a pathogenic bacterium that causes various gastrointestinal diseases in the human stomach. H. pylori is well adapted to the human stomach but does not easily infect other animals. As a model animal, Mongolian gerbils are often used, however, the genome of the inoculated H. pylori may accumulate mutations to adapt to the new host. To investigate mutations occurring in H. pylori after infection in Mongolian gerbils, we compared the whole genome sequence of TN2 wild type strain (TN2wt) and next generation sequencing data of retrieved strains from the animals after different lengths of infection. Results We identified mutations in 21 loci of 17 genes of the post-inoculation strains. Of the 17 genes, five were outer membrane proteins that potentially influence on the colonization and inflammation. Missense and nonsense mutations were observed in 15 and 6 loci, respectively. Multiple mutations were observed in three genes. Mutated genes included babA, tlpB, and gltS, which are known to be associated with adaptation to murine. Other mutations were involved with chemoreceptor, pH regulator, and outer membrane proteins, which also have potential to influence on the adaptation to the new host. Conclusions We confirmed mutations in genes previously reported to be associated with adaptation to Mongolian gerbils. We also listed up genes that mutated during the infection to the gerbils, though it needs experiments to prove the influence on adaptation.
Collapse
Affiliation(s)
- Rumiko Suzuki
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Kazuhito Satou
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Akino Shiroma
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Makiko Shimoji
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Kuniko Teruya
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Takashi Matsumoto
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Junko Akada
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Takashi Hirano
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Yoshio Yamaoka
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan.,3Department of Medicine-Gastroenterology, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030 USA.,Global Oita Medical Advanced Research Center for Health, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| |
Collapse
|
37
|
Evolutionary mechanism leading to the multi-cagA genotype in Helicobacter pylori. Sci Rep 2019; 9:11203. [PMID: 31371778 PMCID: PMC6672019 DOI: 10.1038/s41598-019-47240-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
Infection with CagA+ Helicobacter pylori strains is linked to an increased risk for gastric diseases, including gastric cancer. Recent evidence indicates that dynamic expansion and contraction of cagA copy number may serve as a novel mechanism to enhance disease development. Herein, comparative genomic analysis divided hpEurope into two groups: hpEurope/type-A and type-B. Only hpEurope/type-B displayed the multi-cagA genotype. Further analysis showed that cagPAI appears to have been independently introduced into two different H. pylori types, termed pre-type-A and pre-type-B, which consequently evolved to cagPAI type-A and type-B, respectively; importantly, all multi-cagA genotype strains displayed cagPAI type-B. Two direct cagA-flanking repeats of a genetic element termed CHA-ud were essential for the multi-cagA genotype in strain PMSS1 (hpEurope/type-B and cagPAI type-B). Furthermore, introduction of this genetic element into strain G27 (hpEurope/type-A and cagPAI type-A) was sufficient to generate the multi-cagA genotype. The critical steps in the evolution of the multi-cagA genotype involved creation of CHA-ud at cagA upstream in cagPAI type-B strains followed by its duplication to cagA downstream. En masse, elucidation of the mechanism by which H. pylori evolved to carry multiple copies of cagA helps to provide a better understanding of how this ancient pathogen interacts with its host.
Collapse
|
38
|
Hadfield J, Bénard A, Domman D, Thomson N. The Hidden Genomics of Chlamydia trachomatis. Curr Top Microbiol Immunol 2019; 412:107-131. [PMID: 29071471 DOI: 10.1007/82_2017_39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of whole-genome sequencing has moved us on from sequencing single genomes to defining unravelling population structures in different niches, and at the -species, -serotype or even -genus level, and in local, national and global settings. This has been instrumental in cataloguing and revealing a huge a range of diversity in this bacterium, when at first we thought there was little. Genomics has challenged assumptions, added insight, as well as confusion and glimpses of truths. What is clear is that at a time when we start to realise the extent and nature of the diversity contained within a genus or a species like this, the huge depth of knowledge communities have developed, through cell biology, as well as the new found molecular approaches will be more precious than ever to link genotype to phenotype. Here we detail the technological developments and insights we have seen during the relatively short time since we began to see the hidden genome of Chlamydia trachomatis.
Collapse
Affiliation(s)
- James Hadfield
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Angèle Bénard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Daryl Domman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicholas Thomson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
39
|
Ailloud F, Didelot X, Woltemate S, Pfaffinger G, Overmann J, Bader RC, Schulz C, Malfertheiner P, Suerbaum S. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. Nat Commun 2019; 10:2273. [PMID: 31118420 PMCID: PMC6531487 DOI: 10.1038/s41467-019-10050-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
The human pathogen Helicobacter pylori displays extensive genetic diversity. While H. pylori is known to evolve during infection, population dynamics inside the gastric environment have not been extensively investigated. Here we obtained gastric biopsies from multiple stomach regions of 16 H. pylori-infected adults, and analyze the genomes of 10 H. pylori isolates from each biopsy. Phylogenetic analyses suggest location-specific evolution and bacterial migration between gastric regions. Migration is significantly more frequent between the corpus and the fundus than with the antrum, suggesting that physiological differences between antral and oxyntic mucosa contribute to spatial partitioning of H. pylori populations. Associations between H. pylori gene polymorphisms and stomach niches suggest that chemotaxis, regulatory functions and outer membrane proteins contribute to specific adaptation to the antral and oxyntic mucosa. Moreover, we show that antibiotics can induce severe population bottlenecks and likely play a role in shaping the population structure of H. pylori.
Collapse
Affiliation(s)
- Florent Ailloud
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 80336, Munich, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, MHH Hannover Medical School, 30625, Hannover, Germany
- DZIF German Center for Infection Research, Munich Site, Munich, Germany
- DZIF German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Xavier Didelot
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
| | - Sabrina Woltemate
- Institute of Medical Microbiology and Hospital Epidemiology, MHH Hannover Medical School, 30625, Hannover, Germany
| | - Gudrun Pfaffinger
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 80336, Munich, Germany
| | - Jörg Overmann
- DZIF German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany
| | - Ruth Christiane Bader
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 80336, Munich, Germany
- National Reference Center for Helicobacter pylori, Max von Pettenkofer Institute, 80336, Munich, Germany
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, 39106, Magdeburg, Germany
- Department of Medicine 2, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, 39106, Magdeburg, Germany
- Department of Medicine 2, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Sebastian Suerbaum
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 80336, Munich, Germany.
- Institute of Medical Microbiology and Hospital Epidemiology, MHH Hannover Medical School, 30625, Hannover, Germany.
- DZIF German Center for Infection Research, Munich Site, Munich, Germany.
- DZIF German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany.
- National Reference Center for Helicobacter pylori, Max von Pettenkofer Institute, 80336, Munich, Germany.
| |
Collapse
|
40
|
α-Difluoromethylornithine reduces gastric carcinogenesis by causing mutations in Helicobacter pylori cagY. Proc Natl Acad Sci U S A 2019; 116:5077-5085. [PMID: 30804204 DOI: 10.1073/pnas.1814497116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection by Helicobacter pylori is the primary cause of gastric adenocarcinoma. The most potent H. pylori virulence factor is cytotoxin-associated gene A (CagA), which is translocated by a type 4 secretion system (T4SS) into gastric epithelial cells and activates oncogenic signaling pathways. The gene cagY encodes for a key component of the T4SS and can undergo gene rearrangements. We have shown that the cancer chemopreventive agent α-difluoromethylornithine (DFMO), known to inhibit the enzyme ornithine decarboxylase, reduces H. pylori-mediated gastric cancer incidence in Mongolian gerbils. In the present study, we questioned whether DFMO might directly affect H. pylori pathogenicity. We show that H. pylori output strains isolated from gerbils treated with DFMO exhibit reduced ability to translocate CagA in gastric epithelial cells. Further, we frequently detected genomic modifications in the middle repeat region of the cagY gene of output strains from DFMO-treated animals, which were associated with alterations in the CagY protein. Gerbils did not develop carcinoma when infected with a DFMO output strain containing rearranged cagY or the parental strain in which the wild-type cagY was replaced by cagY with DFMO-induced rearrangements. Lastly, we demonstrate that in vitro treatment of H. pylori by DFMO induces oxidative DNA damage, expression of the DNA repair enzyme MutS2, and mutations in cagY, demonstrating that DFMO directly affects genomic stability. Deletion of mutS2 abrogated the ability of DFMO to induce cagY rearrangements directly. In conclusion, DFMO-induced oxidative stress in H. pylori leads to genomic alterations and attenuates virulence.
Collapse
|
41
|
Rojas-Rengifo DF, Ulloa-Guerrero CP, Joppich M, Haas R, Del Pilar Delgado M, Jaramillo C, Jiménez-Soto LF. Tryptophan usage by Helicobacter pylori differs among strains. Sci Rep 2019; 9:873. [PMID: 30696868 PMCID: PMC6351589 DOI: 10.1038/s41598-018-37263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/19/2018] [Indexed: 11/14/2022] Open
Abstract
Because of its association with severe gastric pathologies, including gastric cancer, Helicobacter pylori has been subject of research for more than 30 years. Its capacity to adapt and survive in the human stomach can be attributed to its genetic flexibility. Its natural competence and its capacity to turn genes on and off allows H. pylori to adapt rapidly to the changing conditions of its host. Because of its genetic variability, it is difficult to establish the uniqueness of each strain obtained from a human host. The methods considered to-date to deliver the best result for differentiation of strains are Rapid Amplification of Polymorphic DNA (RAPD), Multilocus Sequence Typing (MLST) and Whole Genome Sequencing (WGS) analysis. While RAPD analysis is cost-effective, it requires a stable genome for its reliability. MLST and WGS are optimal for strain identification, however, they require analysis of data at the bioinformatics level. Using the StainFree method, which modifies tryptophan residues on proteins using 2, 2, 2, - trichloroethanol (TCE), we observed a strain specific pattern of tryptophan in 1D acrylamide gels. In order to establish the effectiveness of tryptophan fingerprinting for strain identification, we compared the graphic analysis of tryptophan-labelled bands in the gel images with MLST results. Based on this, we find that tryptophan banding patterns can be used as an alternative method for the differentiation of H. pylori strains. Furthermore, investigating the origin for these differences, we found that H. pylori strains alters the number and/or position of tryptophan present in several proteins at the genetic code level, with most exchanges taking place in membrane- and cation-binding proteins, which could be part of a novel response of H. pylori to host adaptation.
Collapse
Affiliation(s)
- Diana F Rojas-Rengifo
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia.,Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany
| | - Cindy P Ulloa-Guerrero
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia.,Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany
| | - Markus Joppich
- Lehr- und Forschungseinheit Bioinformatik. Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstr. 17, D-80333, Munich, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany
| | - Maria Del Pilar Delgado
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia
| | - Carlos Jaramillo
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia
| | - Luisa F Jiménez-Soto
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany. .,Ludwig-Maximillians University, Munich, Germany.
| |
Collapse
|
42
|
Bonsor DA, Sundberg EJ. Roles of Adhesion to Epithelial Cells in Gastric Colonization by Helicobacter pylori. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:57-75. [PMID: 31016628 DOI: 10.1007/5584_2019_359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori adherence to host epithelial cells is essential for its survival against the harsh conditions of the stomach and for successful colonization. Adherence of H. pylori is achieved through several related families of outer membrane proteins and proteins of a type IV secretion system (T4SS), which bridge H. pylori to host cells through protein-protein and other protein-ligand interactions. Local environmental conditions such as cell type, available host cell surface proteins and/or ligands, as well as responses by the host immune system force H. pylori to alter expression of these proteins to adapt quickly to the local environment in order to colonize and survive. Some of these host-pathogen interactions appear to function in a "catch-and-release" manner, regulated by reversible binding at varying pH and allowing H. pylori to detach itself from cells or debris sloughed off the gastric epithelial lining in order to return for subsequent productive interactions. Other interactions between bacterial adhesin proteins and host adhesion molecules, however, appear to function as a committed step in certain pathogenic processes, such as translocation of the CagA oncoprotein through the H. pylori T4SS and into host gastric epithelial cells. Understanding these adhesion interactions is critical for devising new therapeutic strategies, as they are responsible for the earliest stage of infection and its maintenance. This review will discuss the expression and regulation of several outer membrane proteins and CagL, how they engage their known host cell protein/ligand targets, and their effects on clinical outcome.
Collapse
Affiliation(s)
- Daniel A Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
43
|
Evaluating the origin and virulence of a Helicobacter pylori cagA-positive strain isolated from a non-human primate. Sci Rep 2018; 8:15981. [PMID: 30374120 PMCID: PMC6206097 DOI: 10.1038/s41598-018-34425-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori cagA-positive strains are critically involved in the development of gastric cancer. Upon delivery into gastric epithelial cells via type IV secretion, the cagA-encoded CagA interacts with and thereby perturbs the pro-oncogenic phosphatase SHP2 and the polarity-regulating kinase PAR1b via the tyrosine-phosphorylated EPIYA-C/D segment and the CM sequence, respectively. Importantly, sequences spanning these binding regions exhibit variations among CagA proteins, which influence the pathobiological/oncogenic potential of individual CagA. Here we isolated an H. pylori strain (Hp_TH2099) naturally infecting the stomach of a housed macaque, indicating a zoonotic feature of H. pylori infection. Whole genome sequence analysis revealed that Hp_TH2099 belongs to the hpAsia2 cluster and possesses ABC-type Western CagA, which contains hitherto unreported variations in both EPIYA-C and CM sequences. The CM variations almost totally abolished PAR1b binding. Whereas pTyr + 5 variation in the EPIYA-C segment potentiated SHP2-binding affinity, pTyr-2 variation dampened CagA tyrosine phosphorylation and thus impeded CagA-SHP2 complex formation. As opposed to the H. pylori standard strain, infection of mouse ES cell-derived gastric organoids with Hp_TH2099 failed to elicit CagA-dependent epithelial destruction. Thus, the macaque-isolated H. pylori showed low virulence due to attenuated CagA activity through multiple substitutions in the sequences involved in binding with SHP2 and PAR1b.
Collapse
|
44
|
Noto JM, Chopra A, Loh JT, Romero-Gallo J, Piazuelo MB, Watson M, Leary S, Beckett AC, Wilson KT, Cover TL, Mallal S, Israel DA, Peek RM. Pan-genomic analyses identify key Helicobacter pylori pathogenic loci modified by carcinogenic host microenvironments. Gut 2018; 67:1793-1804. [PMID: 28924022 PMCID: PMC5857411 DOI: 10.1136/gutjnl-2017-313863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/30/2017] [Accepted: 07/15/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Helicobacter pylori is the strongest risk factor for gastric cancer; however, the majority of infected individuals do not develop disease. Pathological outcomes are mediated by complex interactions among bacterial, host and environmental constituents, and two dietary factors linked with gastric cancer risk are iron deficiency and high salt. We hypothesised that prolonged adaptation of H. pylori to in vivo carcinogenic microenvironments results in genetic modification important for disease. DESIGN Whole genome sequencing of genetically related H. pylori strains that differ in virulence and targeted H. pylori sequencing following prolonged exposure of bacteria to in vitro carcinogenic conditions were performed. RESULTS A total of 180 unique single nucleotide polymorphisms (SNPs) were identified among the collective genomes when compared with a reference H. pylori genome. Importantly, common SNPs were identified in isolates harvested from iron-depleted and high salt carcinogenic microenvironments, including an SNP within fur (FurR88H). To investigate the direct role of low iron and/or high salt, H. pylori was continuously cultured in vitro under low iron or high salt conditions to assess fur genetic variation. Exposure to low iron or high salt selected for the FurR88H variant after only 5 days. To extend these results, fur was sequenced in 339 clinical H. pylori strains. Among the isolates examined, 17% (40/232) of strains isolated from patients with premalignant lesions harboured the FurR88H variant, compared with only 6% (6/107) of strains from patients with non-atrophic gastritis alone (p=0.0034). CONCLUSION These results indicate that specific genetic variation arises within H. pylori strains during in vivo adaptation to conditions conducive for gastric carcinogenesis.
Collapse
Affiliation(s)
- Jennifer M Noto
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - John T Loh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Judith Romero-Gallo
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark Watson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Amber C Beckett
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith T Wilson
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy L Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA,Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, Tennessee, USA
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia,Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, Tennessee, USA
| | - Dawn A Israel
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard M Peek
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
45
|
Torres-Silva CF, Repolês BM, Ornelas HO, Macedo AM, Franco GR, Junho Pena SD, Tahara EB, Machado CR. Assessment of genetic mutation frequency induced by oxidative stress in Trypanosoma cruzi. Genet Mol Biol 2018; 41:466-474. [PMID: 30088612 PMCID: PMC6082238 DOI: 10.1590/1678-4685-gmb-2017-0281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease, a public health challenge due to its morbidity and mortality rates, which affects around 6-7 million people worldwide. Symptoms, response to chemotherapy, and the course of Chagas disease are greatly influenced by T. cruzi's intra-specific variability. Thus, DNA mutations in this parasite possibly play a key role in the wide range of clinical manifestations and in drug sensitivity. Indeed, the environmental conditions of oxidative stress faced by T. cruzi during its life cycle can generate genetic mutations. However, the lack of an established experimental design to assess mutation rates in T. cruzi precludes the study of conditions and mechanisms that potentially produce genomic variability in this parasite. We developed an assay that employs a reporter gene that, once mutated in specific positions, convert G418-sensitive into G418-insenstitive T. cruzi. We were able to determine the frequency of DNA mutations in T. cruzi exposed and non-exposed to oxidative insults assessing the number of colony-forming units in solid selective media after plating a defined number of cells. We verified that T. cruzi's spontaneous mutation frequency was comparable to those found in other eukaryotes, and that exposure to hydrogen peroxide promoted a two-fold increase in T. cruzi's mutation frequency. We hypothesize that genetic mutations in T. cruzi can arise from oxidative insults faced by this parasite during its life cycle.
Collapse
Affiliation(s)
| | - Bruno Marçal Repolês
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hugo Oliveira Ornelas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréa Mara Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sérgio Danilo Junho Pena
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Erich Birelli Tahara
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
46
|
Beckett AC, Loh JT, Chopra A, Leary S, Lin AS, McDonnell WJ, Dixon BREA, Noto JM, Israel DA, Peek RM, Mallal S, Algood HMS, Cover TL. Helicobacter pylori genetic diversification in the Mongolian gerbil model. PeerJ 2018; 6:e4803. [PMID: 29796347 PMCID: PMC5961626 DOI: 10.7717/peerj.4803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori requires genetic agility to infect new hosts and establish long-term colonization of changing gastric environments. In this study, we analyzed H. pylori genetic adaptation in the Mongolian gerbil model. This model is of particular interest because H. pylori-infected gerbils develop a high level of gastric inflammation and often develop gastric adenocarcinoma or gastric ulceration. We analyzed the whole genome sequences of H. pylori strains cultured from experimentally infected gerbils, in comparison to the genome sequence of the input strain. The mean annualized single nucleotide polymorphism (SNP) rate per site was 1.5e−5, which is similar to the rates detected previously in H. pylori-infected humans. Many of the mutations occurred within or upstream of genes associated with iron-related functions (fur, tonB1, fecA2, fecA3, and frpB3) or encoding outer membrane proteins (alpA, oipA, fecA2, fecA3, frpB3 and cagY). Most of the SNPs within coding regions (86%) were non-synonymous mutations. Several deletion or insertion mutations led to disruption of open reading frames, suggesting that the corresponding gene products are not required or are deleterious during chronic H. pylori colonization of the gerbil stomach. Five variants (three SNPs and two deletions) were detected in isolates from multiple animals, which suggests that these mutations conferred a selective advantage. One of the mutations (FurR88H) detected in isolates from multiple animals was previously shown to confer increased resistance to oxidative stress, and we now show that this SNP also confers a survival advantage when H. pylori is co-cultured with neutrophils. Collectively, these analyses allow the identification of mutations that are positively selected during H. pylori colonization of the gerbil model.
Collapse
Affiliation(s)
- Amber C Beckett
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - John T Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Beverly R E A Dixon
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Jennifer M Noto
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Dawn A Israel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Richard M Peek
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Simon Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Holly M Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, United States of America
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, United States of America
| |
Collapse
|
47
|
CagY-Dependent Regulation of Type IV Secretion in Helicobacter pylori Is Associated with Alterations in Integrin Binding. mBio 2018; 9:mBio.00717-18. [PMID: 29764950 PMCID: PMC5954226 DOI: 10.1128/mbio.00717-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Strains of Helicobacter pylori that cause ulcer or gastric cancer typically express a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI). CagY is an ortholog of VirB10 that, unlike other VirB10 orthologs, has a large middle repeat region (MRR) with extensive repetitive sequence motifs, which undergo CD4+ T cell-dependent recombination during infection of mice. Recombination in the CagY MRR reduces T4SS function, diminishes the host inflammatory response, and enables the bacteria to colonize at a higher density. Since CagY is known to bind human α5β1 integrin, we tested the hypothesis that recombination in the CagY MRR regulates T4SS function by modulating binding to α5β1 integrin. Using a cell-free microfluidic assay, we found that H. pylori binding to α5β1 integrin under shear flow is dependent on the CagY MRR, but independent of the presence of the T4SS pili, which are only formed when H. pylori is in contact with host cells. Similarly, expression of CagY in the absence of other T4SS genes was necessary and sufficient for whole bacterial cell binding to α5β1 integrin. Bacteria with variant cagY alleles that reduced T4SS function showed comparable reduction in binding to α5β1 integrin, although CagY was still expressed on the bacterial surface. We speculate that cagY-dependent modulation of H. pylori T4SS function is mediated by alterations in binding to α5β1 integrin, which in turn regulates the host inflammatory response so as to maximize persistent infection.IMPORTANCE Infection with H. pylori can cause peptic ulcers and is the most important risk factor for gastric cancer, the third most common cause of cancer death worldwide. The major H. pylori virulence factor that determines whether infection causes disease or asymptomatic colonization is the type IV secretion system (T4SS), a sort of molecular syringe that injects bacterial products into gastric epithelial cells and alters host cell physiology. We previously showed that recombination in CagY, an essential T4SS component, modulates the function of the T4SS. Here we found that these recombination events produce parallel changes in specific binding to α5β1 integrin, a host cell receptor that is essential for T4SS-dependent translocation of bacterial effectors. We propose that CagY-dependent binding to α5β1 integrin acts like a molecular rheostat that alters T4SS function and modulates the host immune response to promote persistent infection.
Collapse
|
48
|
Nell S, Estibariz I, Krebes J, Bunk B, Graham DY, Overmann J, Song Y, Spröer C, Yang I, Wex T, Korlach J, Malfertheiner P, Suerbaum S. Genome and Methylome Variation in Helicobacter pylori With a cag Pathogenicity Island During Early Stages of Human Infection. Gastroenterology 2018; 154:612-623.e7. [PMID: 29066327 DOI: 10.1053/j.gastro.2017.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori is remarkable for its genetic variation; yet, little is known about its genetic changes during early stages of human infection, as the bacteria adapt to their new environment. We analyzed genome and methylome variations in a fully virulent strain of H pylori during experimental infection. METHODS We performed a randomized Phase I/II, observer-blind, placebo-controlled study of 12 healthy, H pylori-negative adults in Germany from October 2008 through March 2010. The volunteers were given a prophylactic vaccine candidate (n = 7) or placebo (n = 5) and then challenged with H pylori strain BCM-300. Biopsy samples were collected and H pylori were isolated. Genomes of the challenge strain and 12 reisolates, obtained 12 weeks after (or in 1 case, 62 weeks after) infection were sequenced by single-molecule, real-time technology, which, in parallel, permitted determination of genome-wide methylation patterns for all strains. Functional effects of genetic changes observed in H pylori strains during human infection were assessed by measuring release of interleukin 8 from AGS cells (to detect cag pathogenicity island function), neutral red uptake (to detect vacuolating cytotoxin activity), and adhesion assays. RESULTS The observed mutation rate was in agreement with rates previously determined from patients with chronic H pylori infections, without evidence of a mutation burst. A loss of cag pathogenicity island function was observed in 3 reisolates. In addition, 3 reisolates from the vaccine group acquired mutations in the vacuolating cytotoxin gene vacA, resulting in loss of vacuolization activity. We observed interstrain variation in methylomes due to phase variation in genes encoding methyltransferases. CONCLUSIONS We analyzed adaptation of a fully virulent strain of H pylori to 12 different volunteers to obtain a robust estimate of the frequency of genetic and epigenetic changes in the absence of interstrain recombination. Our findings indicate that the large amount of genetic variation in H pylori poses a challenge to vaccine development. ClinicalTrials.gov no: NCT00736476.
Collapse
Affiliation(s)
- Sandra Nell
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany
| | - Iratxe Estibariz
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
| | - Juliane Krebes
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany
| | - Boyke Bunk
- German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - David Y Graham
- Baylor College of Medicine, Michael E. DeBakey VAMC, Houston, Texas
| | - Jörg Overmann
- German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Yi Song
- Pacific Biosciences, Menlo Park, California
| | - Cathrin Spröer
- German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ines Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany
| | - Thomas Wex
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany; National Reference Center for Helicobacter pylori, München, Germany.
| |
Collapse
|
49
|
Achtman M. How old are bacterial pathogens? Proc Biol Sci 2017; 283:rspb.2016.0990. [PMID: 27534956 DOI: 10.1098/rspb.2016.0990] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/21/2016] [Indexed: 12/26/2022] Open
Abstract
Only few molecular studies have addressed the age of bacterial pathogens that infected humans before the beginnings of medical bacteriology, but these have provided dramatic insights. The global genetic diversity of Helicobacter pylori, which infects human stomachs, parallels that of its human host. The time to the most recent common ancestor (tMRCA) of these bacteria approximates that of anatomically modern humans, i.e. at least 100 000 years, after calibrating the evolutionary divergence within H. pylori against major ancient human migrations. Similarly, genomic reconstructions of Mycobacterium tuberculosis, the cause of tuberculosis, from ancient skeletons in South America and mummies in Hungary support estimates of less than 6000 years for the tMRCA of M. tuberculosis Finally, modern global patterns of genetic diversity and ancient DNA studies indicate that during the last 5000 years plague caused by Yersinia pestis has spread globally on multiple occasions from China and Central Asia. Such tMRCA estimates provide only lower bounds on the ages of bacterial pathogens, and additional studies are needed for realistic upper bounds on how long humans and animals have suffered from bacterial diseases.
Collapse
Affiliation(s)
- Mark Achtman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
50
|
Dolan B, Burkitt-Gray L, Shovelin S, Bourke B, Drumm B, Rowland M, Clyne M. The use of stool specimens reveals Helicobacter pylori strain diversity in a cohort of adolescents and their family members in a developed country. Int J Med Microbiol 2017; 308:247-255. [PMID: 29153619 PMCID: PMC5864523 DOI: 10.1016/j.ijmm.2017.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori infection occurs within families but the transmission route is unknown. The use of stool specimens to genotype strains facilitates inclusion of complete families in transmission studies. Therefore, we aimed to use DNA from stools to analyze strain diversity in H. pylori infected families. We genotyped H. pylori strains using specific biprobe qPCR analysis of glmM, recA and hspA. Concentration of H. pylori organisms before DNA isolation enhanced subsequent DNA amplification. We isolated H. pylori DNA from 50 individuals in 13 families. Tm data for at least 2 of the 3 genes and sequencing of the glmM amplicon were analyzed. Similar strains were commonly found in both mothers and children and in siblings. However, 20/50 (40%) individuals had multiple strains and several individuals harbored strains not found in other family members, suggesting that even in developed countries sources of infection outside of the immediate family may exist. Whether infection occurs multiple times or one transmission event with several strains occurs is not known but future studies should aim to analyze strains from children much closer to infection onset. The presence of multiple stains in infected persons has implications for antibiotic sensitivity testing and treatment strategies.
Collapse
Affiliation(s)
- Brendan Dolan
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| | - Lucy Burkitt-Gray
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| | | | - Billy Bourke
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; The National Childrens Research Centre, Crumlin, Dublin, Ireland.
| | - Brendan Drumm
- School of Medicine, University College Dublin, Dublin, Ireland.
| | - Marion Rowland
- School of Medicine, University College Dublin, Dublin, Ireland.
| | - Marguerite Clyne
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|