1
|
Pedard M, Prevost L, Carpena C, Holleran B, Desrues L, Dubois M, Nicola C, Gruel R, Godefroy D, Deffieux T, Tanter M, Ali C, Leduc R, Prézeau L, Gandolfo P, Morin F, Wurtz O, Bonnard T, Vivien D, Castel H. The urotensin II receptor triggers an early meningeal response and a delayed macrophage-dependent vasospasm after subarachnoid hemorrhage in male mice. Nat Commun 2024; 15:8430. [PMID: 39341842 PMCID: PMC11439053 DOI: 10.1038/s41467-024-52654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) can be associated with neurological deficits and has profound consequences for mortality and morbidity. Cerebral vasospasm (CVS) and delayed cerebral ischemia affect neurological outcomes in SAH patients, but their mechanisms are not fully understood, and effective treatments are limited. Here, we report that urotensin II receptor UT plays a pivotal role in both early events and delayed mechanisms following SAH in male mice. Few days post-SAH, UT expression is triggered by blood or hemoglobin in the leptomeningeal compartment. UT contributes to perimeningeal glia limitans astrocyte reactivity, microvascular alterations and neuroinflammation independent of CNS-associated macrophages (CAMs). Later, CAM-dependent vascular inflammation and subsequent CVS develop, leading to cognitive dysfunction. In an SAH model using humanized UTh+/h+ male mice, we show that post-SAH CVS and behavioral deficits, mediated by UT through Gq/PLC/Ca2+ signaling, are prevented by UT antagonists. These results highlight the potential of targeting UT pathways to reduce early meningeal response and delayed cerebral ischemia in SAH patients.
Collapse
Affiliation(s)
- Martin Pedard
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Lucie Prevost
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Camille Carpena
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Brian Holleran
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laurence Desrues
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Martine Dubois
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Celeste Nicola
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Roxane Gruel
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - David Godefroy
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Rouen, France
| | - Thomas Deffieux
- Institute Physics for Medicine, Inserm U1273, CNRS UMR 8631, ESPCI Paris, Paris Sciences et Lettres PSL University, Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine, Inserm U1273, CNRS UMR 8631, ESPCI Paris, Paris Sciences et Lettres PSL University, Paris, France
| | - Carine Ali
- Normandie Université, UNICAEN, INSERM U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Pierrick Gandolfo
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Fabrice Morin
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Olivier Wurtz
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Thomas Bonnard
- Normandie Université, UNICAEN, INSERM U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Denis Vivien
- Normandie Université, UNICAEN, INSERM U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
- Centre Hospitalier Universitaire Caen, Department of Clinical Research, Caen, France
| | - Hélène Castel
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France.
| |
Collapse
|
2
|
Siegenthaler J, Betsholtz C. Commentary on "Structural characterization of SLYM - a 4th meningeal membrane". Fluids Barriers CNS 2024; 21:69. [PMID: 39252039 PMCID: PMC11385822 DOI: 10.1186/s12987-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
For centuries, the meninges have been described as three membranes: the inner pia, middle arachnoid and outer dura. It was therefore sensational when in early 2023 Science magazine published a report of a previously unrecognized - 4th - meningeal membrane located between the pia and arachnoid. Multiple features were claimed for this new membrane: a single cell layer marked by the transcription factor Prox1 that formed a barrier to low molecular weight substances and separated the subarachnoid space (SAS) into two fluid-filled compartments, not one as previously described. These features were further claimed to facilitate unidirectional glymphatic cerebrospinal fluid transport. These claims were immediately questioned by several researchers as misinterpretations of the authors' own data. The critics argued that (i) the 4th meningeal membrane as claimed did not exist as a separate structure but was part of the arachnoid, (ii) the "outer SAS" compartment was likely an artifactual subdural space created by the experimental procedures, and (iii) the 4th membrane barrier property was confused with the arachnoid barrier. Subsequent publications in late 2023 indeed showed that Prox1 + cells are embedded within the arachnoid and located immediately inside of and firmly attached to the arachnoid barrier cells by adherens junctions and gap junctions. In a follow-up study, published in this journal, the lead authors of the Science paper Kjeld Møllgård and Maiken Nedergaard reported additional observations they claim support the existence of a 4th meningeal membrane and the compartmentalization of the SAS into two non-communicating spaces. Their minor modification to the original paper was the 4th meningeal membrane was better observable at the ventral side of the brain than at the dorsal side where it was originally reported. The authors also claimed support for the existence of a 4th meningeal membrane in classical literature. Here, we outline multiple concerns over the new data and interpretation and argue against the claim there is prior support in the literature for a 4th meningeal membrane.
Collapse
Affiliation(s)
- Julie Siegenthaler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Anschutz Medical Campus, 12800 East 19th Ave, MS-8313, Aurora, CO, 80045, USA.
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
3
|
Abubaker M, Greaney A, Newport D, Mulvihill JJE. Characterization of primary human leptomeningeal cells in 2D culture. Heliyon 2024; 10:e26744. [PMID: 38434413 PMCID: PMC10906397 DOI: 10.1016/j.heliyon.2024.e26744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Maintaining the integrity of brain barriers is critical for a healthy central nervous system. While extensive research has focused on the blood-brain barrier (BBB) of the brain vasculature and blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus, the barriers formed by the meninges have not received as much attention. These membranes create a barrier between the brain and cerebrospinal fluid (CSF), as well as between CSF and blood. Recent studies have revealed that this barrier has been implicated in the development of neurological and immunological disorders. In order to gain a deeper comprehension of the functioning and significance of the meningeal barriers, sophisticated models of these barriers, need to be created. The aim of this paper is to investigate the characteristics of commercially available primary leptomeningeal cells (LMCs) that form the meningeal barriers, in a cultured environment, including their morphology, proteomics, and barrier properties, and to determine whether passaging of these cells affects their behaviour in comparison to their in vivo state. The results indicate that higher passage numbers significantly alter the morphology and protein localisation and expression of the LMCs. Furthermore, the primary cell culture co-stained for S100A6 and E-cadherin suggesting it is a co-culture of both pial and arachnoid cells. Additionally, cultured LMCs showed an increase in vimentin and cytokeratin expression and a lack of junctional proteins localisation on the cell membrane, which could suggest loss of epithelial properties due to culture, preventing barrier formation. This study shows that the LMCs may be a co-culture of pial and arachnoid cells, that the optimal LMC passage range is between passages two and five for experimentation and that the primary human LMCs form a weak barrier when in culture.
Collapse
Affiliation(s)
- Mannthalah Abubaker
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - Aisling Greaney
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - David Newport
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| |
Collapse
|
4
|
Santorella E, Balsbaugh JL, Ge S, Saboori P, Baker D, Pachter JS. Proteomic interrogation of the meninges reveals the molecular identities of structural components and regional distinctions along the CNS axis. Fluids Barriers CNS 2023; 20:74. [PMID: 37858244 PMCID: PMC10588166 DOI: 10.1186/s12987-023-00473-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
The meninges surround the brain and spinal cord, affording physical protection while also serving as a niche of neuroimmune activity. Though possessing stromal qualities, its complex cellular and extracellular makeup has yet to be elaborated, and it remains unclear whether the meninges vary along the neuroaxis. Hence, studies were carried-out to elucidate the protein composition and structural organization of brain and spinal cord meninges in normal, adult Biozzi ABH mice. First, shotgun, bottom-up proteomics was carried-out. Prominent proteins at both brain and spinal levels included Type II collagen and Type II keratins, representing extracellular matrix (ECM) and cytoskeletal categories, respectively. While the vast majority of total proteins detected was shared between both meningeal locales, more were uniquely detected in brain than in spine. This pattern was also seen when total proteins were subdivided by cellular compartment, except in the case of the ECM category where brain and spinal meninges each had near equal number of unique proteins, and Type V and type III collagen registered exclusively in the spine. Quantitative analysis revealed differential expression of several collagens and cytoskeletal proteins between brain and spinal meninges. High-resolution immunofluorescence and immunogold-scanning electronmicroscopy on sections from whole brain and spinal cord - still encased within bone -identified major proteins detected by proteomics, and highlighted their association with cellular and extracellular elements of variously shaped arachnoid trabeculae. Western blotting aligned with the proteomic and immunohistological analyses, reinforcing differential appearance of proteins in brain vs spinal meninges. Results could reflect regional distinctions in meninges that govern protective and/or neuroimmune functions.
Collapse
Affiliation(s)
- Elise Santorella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, 06269, USA
| | - Shujun Ge
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Parisa Saboori
- Department of Mechanical Engineering, Manhattan College, Bronx, NY, 10071, USA
| | - David Baker
- Blizard Institute, Queen Mary University of London, London, England
| | - Joel S Pachter
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
5
|
Clarkson-Paredes C, Karl MT, Popratiloff A, Miller RH. A unique cell population expressing the Epithelial-Mesenchymal Transition-transcription factor Snail moderates microglial and astrocyte injury responses. PNAS NEXUS 2023; 2:pgad334. [PMID: 37901440 PMCID: PMC10612478 DOI: 10.1093/pnasnexus/pgad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Insults to the central nervous system (CNS) elicit common glial responses including microglial activation evidenced by functional, morphological, and phenotypic changes, as well as astrocyte reactions including hypertrophy, altered process orientation, and changes in gene expression and function. However, the cellular and molecular mechanisms that initiate and modulate such glial response are less well-defined. Here we show that an adult cortical lesion generates a population of ultrastructurally unique microglial-like cells that express Epithelial-Mesenchymal Transcription factors including Snail. Knockdown of Snail with antisense oligonucleotides results in a postinjury increase in activated microglial cells, elevation in astrocyte reactivity with increased expression of C3 and phagocytosis, disruption of astrocyte junctions and neurovascular structure, increases in neuronal cell death, and reduction in cortical synapses. These changes were associated with alterations in pro-inflammatory cytokine expression. By contrast, overexpression of Snail through microglia-targeted an adeno-associated virus (AAV) improved many of the injury characteristics. Together, our results suggest that the coordination of glial responses to CNS injury is partly mediated by epithelial-mesenchymal transition-factors (EMT-Fsl).
Collapse
Affiliation(s)
- Cheryl Clarkson-Paredes
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
- Nanofabrication and Imaging Center, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Molly T Karl
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
| | - Anastas Popratiloff
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
- Nanofabrication and Imaging Center, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Robert H Miller
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
| |
Collapse
|
6
|
Buenaventura RG, Harvey AC, Burns MP, Main BS. Traumatic brain injury induces an adaptive immune response in the meningeal transcriptome that is amplified by aging. Front Neurosci 2023; 17:1210175. [PMID: 37588516 PMCID: PMC10425597 DOI: 10.3389/fnins.2023.1210175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Traumatic Brain Injury (TBI) is a major cause of disability and mortality, particularly among the elderly, yet our mechanistic understanding of how age renders the post-traumatic brain vulnerable to poor clinical outcomes and susceptible to neurological disease remains poorly understood. It is well established that dysregulated and sustained immune responses contribute to negative outcomes after TBI, however our understanding of the interactions between central and peripheral immune reservoirs is still unclear. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in healthy and disease settings. It has been previously shown that disruption of this system exacerbates inflammation in age related neurodegenerative disorders such as Alzheimer's disease, however we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. Here, we examine the meningeal tissue and its response to brain injury in young (3-months) and aged (18-months) mice. Utilizing a bioinformatic approach, high-throughput RNA sequencing demonstrates alterations in the meningeal transcriptome at sub-acute (7-days) and chronic (1 month) timepoints after injury. We find that age alone chronically exacerbates immunoglobulin production and B cell responses. After TBI, adaptive immune response genes are up-regulated in a temporal manner, with genes involved in T cell responses elevated sub-acutely, followed by increases in B cell related genes at chronic time points after injury. Pro-inflammatory cytokines are also implicated as contributing to the immune response in the meninges, with ingenuity pathway analysis identifying interferons as master regulators in aged mice compared to young mice following TBI. Collectively these data demonstrate the temporal series of meningeal specific signatures, providing insights into how age leads to worse neuroinflammatory outcomes in TBI.
Collapse
Affiliation(s)
| | | | | | - Bevan S. Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
7
|
Shibamoto J, Arita T, Konishi H, Kataoka S, Furuke H, Takaki W, Kiuchi J, Shimizu H, Yamamoto Y, Komatsu S, Shiozaki A, Kuriu Y, Otsuji E. Roles of miR-4442 in Colorectal Cancer: Predicting Early Recurrence and Regulating Epithelial-Mesenchymal Transition. Genes (Basel) 2023; 14:1414. [PMID: 37510319 PMCID: PMC10378884 DOI: 10.3390/genes14071414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Early recurrence in patients with colorectal cancer (CRC) is associated with a poor prognosis. We aimed to identify circulating microRNAs that are biomarkers of early CRC recurrence and elucidate their functions. We identified miR-4442 as a candidate biomarker by microRNA array analysis comparing preoperative and postoperative plasma levels in patients with CRC, with and without recurrence. The association between preoperative plasma miR-4442 levels, clinicopathological features, and recurrence-free survival was analyzed in 108 patients with CRC after curative surgery. Furthermore, cell-function analyses were performed, and the involvement of miR-4442 in regulating epithelial-mesenchymal transition (EMT) was examined. Preoperatively plasma miR-4442 levels were associated with CRC recurrence and exhibited an incremental increase with earlier recurrence dates. Moreover, miR-4442 demonstrated high sensitivity and specificity as a potential biomarker for early CRC recurrence. The expression of miR-4442 in cancer tissues of patients with metastatic liver cancer from CRC was higher than in normal liver, CRC, and normal colorectal tissues. The overexpression of miR-4442 promoted the proliferative, migratory, and invasive activities of CRC cells, decreased levels of RBMS1 and E-cadherin, and increased levels of N-cadherin and Snail1. Plasma miR-4442 is a clinically useful biomarker for predicting the early recurrence of CRC. Furthermore, miR-4442 regulates EMT in CRC by directly targeting the messenger RNA of RBMS1.
Collapse
Affiliation(s)
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kimura S, Lok J, Gelman IH, Lo EH, Arai K. Role of A-Kinase Anchoring Protein 12 in the Central Nervous System. J Clin Neurol 2023; 19:329-337. [PMID: 37417430 DOI: 10.3988/jcn.2023.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 07/08/2023] Open
Abstract
A-kinase anchoring protein (AKAP) 12 is a scaffolding protein that anchors various signaling proteins to the plasma membrane. These signaling proteins include protein kinase A, protein kinase C, protein phosphatase 2B, Src-family kinases, cyclins, and calmodulin, which regulate their respective signaling pathways. AKAP12 expression is observed in the neurons, astrocytes, endothelial cells, pericytes, and oligodendrocytes of the central nervous system (CNS). Its physiological roles include promoting the development of the blood-brain barrier, maintaining white-matter homeostasis, and even regulating complex cognitive functions such as long-term memory formation. Under pathological conditions, dysregulation of AKAP12 expression levels may be involved in the pathology of neurological diseases such as ischemic brain injury and Alzheimer's disease. This minireview aimed to summarize the current literature on the role of AKAP12 in the CNS.
Collapse
Affiliation(s)
- Shintaro Kimura
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Irwin H Gelman
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Reversible lysine fatty acylation of an anchoring protein mediates adipocyte adrenergic signaling. Proc Natl Acad Sci U S A 2022; 119:2119678119. [PMID: 35149557 PMCID: PMC8851525 DOI: 10.1073/pnas.2119678119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 01/05/2023] Open
Abstract
N-myristoylation on glycine is an irreversible modification that has long been recognized to govern protein localization and function. In contrast, the biological roles of lysine myristoylation remain ill-defined. We demonstrate that the cytoplasmic scaffolding protein, gravin-α/A kinase-anchoring protein 12, is myristoylated on two lysine residues embedded in its carboxyl-terminal protein kinase A (PKA) binding domain. Histone deacetylase 11 (HDAC11) docks to an adjacent region of gravin-α and demyristoylates these sites. In brown and white adipocytes, lysine myristoylation of gravin-α is required for signaling via β2- and β3-adrenergic receptors (β-ARs), which are G protein-coupled receptors (GPCRs). Lysine myristoylation of gravin-α drives β-ARs to lipid raft membrane microdomains, which results in PKA activation and downstream signaling that culminates in protective thermogenic gene expression. These findings define reversible lysine myristoylation as a mechanism for controlling GPCR signaling and highlight the potential of inhibiting HDAC11 to manipulate adipocyte phenotypes for therapeutic purposes.
Collapse
|
10
|
Characterization, isolation, and in vitro culture of leptomeningeal fibroblasts. J Neuroimmunol 2021; 361:577727. [PMID: 34688068 DOI: 10.1016/j.jneuroim.2021.577727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/08/2021] [Accepted: 09/26/2021] [Indexed: 11/22/2022]
Abstract
Meninges, or the membranous coverings of the brain and spinal cord, play host to dozens of morbid pathologies. In this study we provide a method to isolate the leptomeningeal cell layer, identify leptomeninges in histologic slides, and maintain leptomeningeal fibroblasts in in vitro culture. Using an array of transcriptomic, histological, and cytometric analyses, we identified ICAM1 and SLC38A2 as two novel markers of leptomeningeal cells in vivo and in vitro. Our results confirm the fibroblastoid nature of leptomeningeal cells and their ability to form a sheet-like layer that covers the brain and spine parenchyma. These findings will enable researchers in central nervous system barriers to describe leptomeningeal cell functions in health and disease.
Collapse
|
11
|
Derk J, Jones HE, Como C, Pawlikowski B, Siegenthaler JA. Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Front Cell Neurosci 2021; 15:703944. [PMID: 34276313 PMCID: PMC8281977 DOI: 10.3389/fncel.2021.703944] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
The meninges are the fibrous covering of the central nervous system (CNS) which contain vastly heterogeneous cell types within its three layers (dura, arachnoid, and pia). The dural compartment of the meninges, closest to the skull, is predominantly composed of fibroblasts, but also includes fenestrated blood vasculature, an elaborate lymphatic system, as well as immune cells which are distinct from the CNS. Segregating the outer and inner meningeal compartments is the epithelial-like arachnoid barrier cells, connected by tight and adherens junctions, which regulate the movement of pathogens, molecules, and cells into and out of the cerebral spinal fluid (CSF) and brain parenchyma. Most proximate to the brain is the collagen and basement membrane-rich pia matter that abuts the glial limitans and has recently be shown to have regional heterogeneity within the developing mouse brain. While the meninges were historically seen as a purely structural support for the CNS and protection from trauma, the emerging view of the meninges is as an essential interface between the CNS and the periphery, critical to brain development, required for brain homeostasis, and involved in a variety of diseases. In this review, we will summarize what is known regarding the development, specification, and maturation of the meninges during homeostatic conditions and discuss the rapidly emerging evidence that specific meningeal cell compartments play differential and important roles in the pathophysiology of a myriad of diseases including: multiple sclerosis, dementia, stroke, viral/bacterial meningitis, traumatic brain injury, and cancer. We will conclude with a list of major questions and mechanisms that remain unknown, the study of which represent new, future directions for the field of meninges biology.
Collapse
Affiliation(s)
- Julia Derk
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Hannah E. Jones
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Christina Como
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| | - Bradley Pawlikowski
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Julie A. Siegenthaler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| |
Collapse
|
12
|
Xu L, Yao Y. Central Nervous System Fibroblast-Like Cells in Stroke and Other Neurological Disorders. Stroke 2021; 52:2456-2464. [PMID: 33940953 DOI: 10.1161/strokeaha.120.033431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblasts are the most common cell type of connective tissues. In the central nervous system (CNS), fibroblast-like cells are mainly located in the meninges and perivascular Virchow-Robin space. The origins of these fibroblast-like cells and their functions in both CNS development and pathological conditions remain largely unknown. In this review, we first introduce the anatomic location and molecular markers of CNS fibroblast-like cells. Next, the functions of fibroblast-like cells in CNS development and neurological disorders, including stroke, CNS traumatic injuries, and other neurological diseases, are discussed. Third, current challenges and future directions in the field are summarized. We hope to provide a synthetic review that stimulates future research on CNS fibroblast-like cells.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens
| |
Collapse
|
13
|
Takase H, Hamanaka G, Ohtomo R, Park JH, Chung KK, Gelman IH, Kim KW, Lok J, Lo EH, Arai K. Roles of A-kinase Anchor Protein 12 in Astrocyte and Oligodendrocyte Precursor Cell in Postnatal Corpus Callosum. Stem Cell Rev Rep 2021; 17:1446-1455. [PMID: 33492625 DOI: 10.1007/s12015-021-10118-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
The formation of the corpus callosum in the postnatal period is crucial for normal neurological function, and clinical genetic studies have identified an association of 6q24-25 microdeletion in this process. However, the mechanisms underlying corpus callosum formation and its critical gene(s) are not fully understood or identified. In this study, we examined the roles of AKAP12 in postnatal corpus callosum formation by focusing on the development of glial cells, because AKAP12 is coded on 6q25.1 and has recently been shown to play roles in the regulations of glial function. In mice, the levels of AKAP12 expression was confirmed to be larger in the corpus callosum compared to the cortex, and AKAP12 levels decreased with age both in the corpus callosum and cortex regions. In addition, astrocytes expressed AKAP12 in the corpus callosum after birth, but oligodendrocyte precursor cells (OPCs), another major type of glial cell in the developing corpus callosum, did not. Furthermore, compared to wild types, Akap12 knockout mice showed smaller numbers of both astrocytes and OPCs, along with slower development of corpus callosum after birth. These findings suggest that AKAP12 signaling may be required for postnatal glial formation in the corpus callosum through cell- and non-cell autonomous mechanisms.
Collapse
Affiliation(s)
- Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ryo Ohtomo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ji Hyun Park
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kelly K Chung
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Irwin H Gelman
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 08826, Seoul, Republic of Korea
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA. .,Neuroprotection Research Laboratory, MGH East, 149-2401, Charlestown, MA, 02129, USA.
| |
Collapse
|
14
|
Ramaglia V, Florescu A, Zuo M, Sheikh-Mohamed S, Gommerman JL. Stromal Cell–Mediated Coordination of Immune Cell Recruitment, Retention, and Function in Brain-Adjacent Regions. THE JOURNAL OF IMMUNOLOGY 2021; 206:282-291. [DOI: 10.4049/jimmunol.2000833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
|
15
|
Hao J, Kohler C, van den Dorpel H, Scholl HPN, Meyer P, Killer HE, Neutzner A. The extracellular matrix composition of the optic nerve subarachnoid space. Exp Eye Res 2020; 200:108250. [PMID: 32956686 DOI: 10.1016/j.exer.2020.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/20/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
The meninges not only surround the brain and the spinal cord but also the optic nerve. Meningeal-derived extracellular matrix (ECM) is a crucial component of the pial basement membrane, glia limitans and important for maintenance of optic nerve axon integrity, homeostasis and retinal ganglion cell health. To get closer insight into optic nerve meningeal-derived ECM composition, we performed proteomic analysis of the sheep optic nerve subarachnoid space (SAS). Candidate components were confirmed in cultures of primary human meningothelial cells (phMECs) and human optic nerve samples. Sheep optic nerve SAS samples were analysed by LC-MS, identified proteins were matched to their human orthologs and filtered using gene lists representing all major ECM components. To validate these findings digital droplet PCR (ddPCR) to evaluate mRNA expression of all candidate components identified was performed on cultures of phMECs. In addition, one protein per major ECM group was stained on human optic nerve sections and on phMEC cultures. Employing LC-MS, 1273 proteins were identified and subjected to bioinformatic analysis. Gene ontology analysis revealed six out of forty-four collagen types (1A1, 1A2, 3A1, 6A2, 6A3 and 14A1), three out of eleven laminin subunits (A4, B2, C1) and six out of twenty-seven hyaluronan binding proteins (CD44, versican (VCAN), C1q binding protein, neurocan (NCAN), brevican (BCAN) and hyalaluronan proteoglycan link protein 2 (HAPLN2)) were present in our cohort. DdPCR in phMEC cell culture confirmed presence of all candidate components except NCAN, BCAN and HAPLN2. Immunohistochemistry (IHC) staining on human optic nerve sections and immunofluorescence (IF) staining on in vitro cultured phMECs showed strong immunopositivity for collagen-typeI-α1 (COL1A1), lamininγ1 (LAMC1), and VCAN. Fibronectin (FN1) was exclusively present in cultures of phMECs. Using a combined bioinformatics and immunohistological approach, we describe the ECM composition of the optic nerve subarachnoid space. As this space plays an important role in maintaining optic nerve function, a better understanding of ECM composition in this delicate environment might be key to further pathophysiological insight into optic nerve degeneration and associated disorders.
Collapse
Affiliation(s)
- Jie Hao
- Department of Biomedicine, University Hospital Basel & University Basel, Hebelstr.20, 4031, Basel, Switzerland; Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Corina Kohler
- Department of Biomedicine, University Hospital Basel & University Basel, Hebelstr.20, 4031, Basel, Switzerland; Department of Ophthalmology, University Hospital Basel & University Basel, Mittlere Str.91, 4056, Basel, Switzerland.
| | - Hubrecht van den Dorpel
- Department of Biomedicine, University Hospital Basel & University Basel, Hebelstr.20, 4031, Basel, Switzerland; Department of Ophthalmology, University Hospital Basel & University Basel, Mittlere Str.91, 4056, Basel, Switzerland.
| | - Hendrik P N Scholl
- Department of Biomedicine, University Hospital Basel & University Basel, Hebelstr.20, 4031, Basel, Switzerland; Department of Ophthalmology, University Hospital Basel & University Basel, Mittlere Str.91, 4056, Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology, Mittlere Str.91, 4056, Basel, Switzerland.
| | - Peter Meyer
- Department of Ophthalmology, University Hospital Basel & University Basel, Mittlere Str.91, 4056, Basel, Switzerland.
| | - Hanspeter E Killer
- Department of Biomedicine, University Hospital Basel & University Basel, Hebelstr.20, 4031, Basel, Switzerland; Department of Ophthalmology, Kantonsspital Aarau, Herzogstrasse 15, 5000, Aarau, Switzerland.
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel & University Basel, Hebelstr.20, 4031, Basel, Switzerland; Department of Ophthalmology, University Hospital Basel & University Basel, Mittlere Str.91, 4056, Basel, Switzerland.
| |
Collapse
|
16
|
Chi Y, Remsik J, Kiseliovas V, Derderian C, Sener U, Alghader M, Saadeh F, Nikishina K, Bale T, Iacobuzio-Donahue C, Thomas T, Pe'er D, Mazutis L, Boire A. Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science 2020; 369:276-282. [PMID: 32675368 DOI: 10.1126/science.aaz2193] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment plays a critical regulatory role in cancer progression, especially in central nervous system metastases. Cancer cells within the cerebrospinal fluid (CSF)-filled leptomeninges face substantial microenvironmental challenges, including inflammation and sparse micronutrients. To investigate the mechanism by which cancer cells in these leptomeningeal metastases (LM) overcome these constraints, we subjected CSF from five patients with LM to single-cell RNA sequencing. We found that cancer cells, but not macrophages, within the CSF express the iron-binding protein lipocalin-2 (LCN2) and its receptor SCL22A17. These macrophages generate inflammatory cytokines that induce cancer cell LCN2 expression but do not generate LCN2 themselves. In mouse models of LM, cancer cell growth is supported by the LCN2/SLC22A17 system and is inhibited by iron chelation therapy. Thus, cancer cells appear to survive in the CSF by outcompeting macrophages for iron.
Collapse
Affiliation(s)
- Yudan Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jan Remsik
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vaidotas Kiseliovas
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Camille Derderian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ugur Sener
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Majdi Alghader
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fadi Saadeh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katie Nikishina
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tejus Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christine Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
17
|
Yu J, Navickas A, Asgharian H, Culbertson B, Fish L, Garcia K, Olegario JP, Dermit M, Dodel M, Hänisch B, Luo Y, Weinberg EM, Dienstmann R, Warren RS, Mardakheh FK, Goodarzi H. RBMS1 Suppresses Colon Cancer Metastasis through Targeted Stabilization of Its mRNA Regulon. Cancer Discov 2020; 10:1410-1423. [PMID: 32513775 DOI: 10.1158/2159-8290.cd-19-1375] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022]
Abstract
Identifying master regulators that drive pathologic gene expression is a key challenge in precision oncology. Here, we have developed an analytic framework, named PRADA, that identifies oncogenic RNA-binding proteins through the systematic detection of coordinated changes in their target regulons. Application of this approach to data collected from clinical samples, patient-derived xenografts, and cell line models of colon cancer metastasis revealed the RNA-binding protein RBMS1 as a suppressor of colon cancer progression. We observed that silencing RBMS1 results in increased metastatic capacity in xenograft mouse models, and that restoring its expression blunts metastatic liver colonization. We have found that RBMS1 functions as a posttranscriptional regulator of RNA stability by directly binding its target mRNAs. Together, our findings establish a role for RBMS1 as a previously unknown regulator of RNA stability and as a suppressor of colon cancer metastasis with clinical utility for risk stratification of patients. SIGNIFICANCE: By applying a new analytic approach to transcriptomic data from clinical samples and models of colon cancer progression, we have identified RBMS1 as a suppressor of metastasis and as a post-transcriptional regulator of RNA stability. Notably, RBMS1 silencing and downregulation of its targets are negatively associated with patient survival.See related commentary by Carter, p. 1261.This article is highlighted in the In This Issue feature, p. 1241.
Collapse
Affiliation(s)
- Johnny Yu
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Albertas Navickas
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Hosseinali Asgharian
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Bruce Culbertson
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Lisa Fish
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Kristle Garcia
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - John Paolo Olegario
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Maria Dermit
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Martin Dodel
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Benjamin Hänisch
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Yikai Luo
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Ethan M Weinberg
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Robert S Warren
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Faraz K Mardakheh
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California. .,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
18
|
Kim JG, Kim HH, Bae SJ. Akap12beta supports asymmetric heart development via modulating the Kupffer’s vesicle formation in zebrafish. BMB Rep 2019. [PMID: 31383248 PMCID: PMC6726206 DOI: 10.5483/bmbrep.2019.52.8.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The vertebrate body plan is accomplished by left-right asymmetric organ development and the heart is a representative asymmetric internal organ which jogs to the left-side. Kupffer’s vesicle (KV) is a spherical left-right organizer during zebrafish embryogenesis and is derived from a cluster of dorsal forerunner cells (DFCs). Cadherin1 is required for collective migration of a DFC cluster and failure of DFC collective migration by Cadherin1 decrement causes KV malformation which results in defective heart laterality. Recently, loss of function mutation of A-kinase anchoring protein 12 (AKAP12) is reported as a high-risk gene in congenital heart disease patients. In this study, we demonstrated the role of akap12β in asymmetric heart development. The akap12β, one of the akap12 isoforms, was expressed in DFCs which give rise to KV and akap12β-deficient zebrafish embryos showed defective heart laterality due to the fragmentation of DFC clusters which resulted in KV malformation. DFC-specific loss of akap12β also led to defective heart laterality as a consequence of the failure of collective migration by cadherin1 reduction. Exogenous akap12β mRNA not only restored the defective heart laterality but also increased cadherin1 expression in akap12β morphant zebrafish embryos. Taken together, these findings provide the first experimental evidence that akap12β regulates heart laterality via cadherin1.
Collapse
Affiliation(s)
- Jeong-gyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyun-Ho Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Biological and Medical Device Evaluation Team, Korea Testing & Research Institute, Gwacheon 13810, Korea
| | - Sung-Jin Bae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Korean Medicine Research Center for Healthy Aging, Pusan National Univerity, Yangsan 50612, Korea
| |
Collapse
|
19
|
Eles JR, Vazquez AL, Kozai TDY, Cui XT. Meningeal inflammatory response and fibrous tissue remodeling around intracortical implants: An in vivo two-photon imaging study. Biomaterials 2018; 195:111-123. [PMID: 30634095 DOI: 10.1016/j.biomaterials.2018.12.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/15/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
Meningeal inflammation and encapsulation of neural electrode arrays is a leading cause of device failure, yet little is known about how it develops over time or what triggers it. This work characterizes the dynamic changes of meningeal inflammatory cells and collagen-I in order to understand the meningeal tissue response to neural electrode implantation. We use in vivo two-photon microscopy of CX3CR1-GFP mice over the first month after electrode implantation to quantify changes in inflammatory cell behavior as well as meningeal collagen-I remodeling. We define a migratory window during the first day after electrode implantation hallmarked by robust inflammatory cell migration along electrodes in the meninges as well as cell trafficking through meningeal venules. This migratory window attenuates by 2 days post-implant, but over the next month, the meningeal collagen-I remodels to conform to the surface of the electrode and thickens. This work shows that there are distinct time courses for initial meningeal inflammatory cell infiltration and meningeal collagen-I remodeling. This may indicate a therapeutic window early after implantation for modulation and mitigation of meningeal inflammation.
Collapse
Affiliation(s)
- J R Eles
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - A L Vazquez
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; Radiology, University of Pittsburgh, United States
| | - T D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; NeuroTech Center of the University of Pittsburgh Brain Institute, United States; Center for Neuroscience, University of Pittsburgh, United States
| | - X T Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| |
Collapse
|
20
|
Altered AKAP12 expression in portal fibroblasts and liver sinusoids mediates transition from hepatic fibrogenesis to fibrosis resolution. Exp Mol Med 2018; 50:1-13. [PMID: 29700280 PMCID: PMC5938025 DOI: 10.1038/s12276-018-0074-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis can be reversed by removing its causative injuries; however, the molecular mechanisms mediating the resolution of liver fibrogenesis are poorly understood. We investigate the role of a scaffold protein, A-Kinase Anchoring Protein 12 (AKAP12), during liver fibrosis onset, and resolution. Biliary fibrogenesis and fibrosis resolution was induced in wild-type (WT) or AKAP12-deficient C57BL/6 mice through different feeding regimens with 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing chow. AKAP12 expression in portal fibroblasts (PFs) and liver sinusoidal endothelial cells (LSECs) gradually decreased as fibrosis progressed but was restored after cessation of the fibrotic challenge. Histological analysis of human liver specimens with varying degrees of fibrosis of different etiologies revealed that AKAP12 expression diminishes in hepatic fibrosis from its early stages onward. AKAP12 KO mice displayed reduced fibrosis resolution in a DDC-induced biliary fibrosis model, which was accompanied by impaired normalization of myofibroblasts and capillarized sinusoids. RNA sequencing of the liver transcriptome revealed that genes related to ECM accumulation and vascular remodeling were mostly elevated in AKAP12 KO samples. Gene ontology (GO) and bioinformatic pathway analyses identified that the differentially expressed genes were significantly enriched in GO categories and pathways, such as the adenosine 3′,5′-cyclic monophosphate (cAMP) pathway. Knockdown of the AKAP12 gene in cultured primary PFs revealed that AKAP12 inhibited PF activation in association with the adenosine 3′,5′-cyclic monophosphate (cAMP) pathway. Moreover, AKAP12 knockdown in LSECs led to enhanced angiogenesis, endothelin-1 expression and alterations in laminin composition. Collectively, this study demonstrates that AKAP12-mediated regulation of PFs and LSECs has a central role in resolving hepatic fibrosis. A scaffolding protein that modulates cell signaling pathways contributes to reverse liver scarring. Liver fibrosis is caused by a build-up of scar tissue that interferes with liver function. However, the damage is reversed when the cause of injury is removed. Kyu-Won Kim at Seoul National University, South Korea, and colleagues examined the levels of A-Kinase Anchoring Protein 12 (AKAP12), a scaffolding protein that regulates the subcellular location of signaling proteins, in mouse and human livers. Levels of AKAP12 were reduced in fibrotic livers but restored when fibrosis was reversed. Mice lacking AKAP12 were unable to effectively repair the damage caused by fibrosis. Genetic analyses suggest that AKAP12 stimulates signaling through the adenosine 3′,5′-cyclic monophosphate (cAMP) pathway, which can inhibit fibrosis. These findings highlight a key role for AKAP12 in accelerating liver recovery.
Collapse
|
21
|
Li Y, Yu QH, Chu Y, Wu WM, Song JX, Zhu XB, Wang Q. Blockage of AKAP12 accelerates angiotensin II (Ang II)-induced cardiac injury in mice by regulating the transforming growth factor β1 (TGF-β1) pathway. Biochem Biophys Res Commun 2018; 499:128-135. [PMID: 29501491 DOI: 10.1016/j.bbrc.2018.02.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
Hypertension is a multifactorial chronic inflammatory disease that leads to cardiac remodeling. A-kinase anchor protein 12 (AKAP12) is a scaffolding protein that has multiple functions in various biological events, including the regulation of vessel integrity and differentiation of neural barriers in blood. However, the role of AKAP12 in angiotensin II (Ang II)-induced cardiac injury remains unclear. In the present study, Ang II infusion reduced AKAP12 expressions in the hearts of wild-type (WT) mice, and AKAP12 knockout (KO) enhanced the infiltration of inflammatory cells. In addition, AKAP12 deletion accelerated Ang II-induced cardiac histologic alterations and dysfunction. Further, AKAP12-/- aggravated heart failure by promoting the inflammation, oxidative stress, cellular apoptosis, and autophagy induced by Ang II. Furthermore, AKAP12 KO elevated Ang II-induced cardiac fibrosis, as indicated by the following: (1) Masson trichrome staining showed that Ang II infusion markedly increased fibrotic areas of the WT mouse heart, which was greatly accelerated in AKAP12-/- mice; (2) immunohistochemistry analysis showed increased expression of transforming growth factor β1 (TGF-β1) and α-smooth muscle actin (α-SMA) in the AKAP12-/- mouse heart; (3) reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) analysis showed increased expression of fibrosis-related molecules in the AKAP12-deficient mouse heart; and (4) Western blot analysis indicated significantly higher upregulation of p-SMAD2/3 in the AKAP12-/- mouse heart. In vitro, AKAP12 knockdown in HL-1 cells was responsible for TGF-β1-induced inflammation, the generation of reactive oxygen species (ROS), apoptosis, autophagy, and fibrosis. Furthermore, overexpression of AKAP12 reduced fibrosis triggered by TGF-β1 in cells. Overall, our study suggests that fibrosis induced by Ang II may be alleviated by AKAP12 expression through inactivation of the TGF-β1 pathway.
Collapse
Affiliation(s)
- Yong Li
- Department of Cardiology, Wujin People's Hospital of Changzhou, Changzhou 213017, China
| | - Qiu-Hua Yu
- Department of Cardio-Thoracic, Wujin People's Hospital of Changzhou, Changzhou 213017, China
| | - Ying Chu
- Central Laboratory, Wujin People's Hospital of Changzhou, Changzhou 213017, China
| | - Wei-Min Wu
- Department of Cardio-Thoracic, Wujin People's Hospital of Changzhou, Changzhou 213017, China
| | - Jian-Xiang Song
- Department of Cardiac Surgery, The Third Hospital of Yancheng, Yancheng 224000, China
| | - Xiao-Bo Zhu
- Department of Cardio-Thoracic, Wujin People's Hospital of Changzhou, Changzhou 213017, China
| | - Qiang Wang
- Department of Cardio-Thoracic, Wujin People's Hospital of Changzhou, Changzhou 213017, China.
| |
Collapse
|
22
|
Park YH, Seo JH, Park JH, Lee HS, Kim KW. Hsp70 acetylation prevents caspase-dependent/independent apoptosis and autophagic cell death in cancer cells. Int J Oncol 2017. [PMID: 28627586 DOI: 10.3892/ijo.2017.4039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer cells are continuously challenged by adverse environmental factors including hypoxia, metabolite restriction, and immune reactions, and must adopt diverse strategies to survive. Heat shock protein (Hsp) 70 plays a central role in protection against stress-induced cell death by maintaining protein homeostasis and interfering with the process of programmed cell death. Recent findings have suggested that Hsp70 acetylation is a key regulatory modification required for its chaperone activity, but its relevance in the process of programmed cell death and the underlying mechanisms involved are not well understood. In this study, we sought to investigate mechanisms mediated by Hsp70 acetylation in relation to apoptotic and autophagic programmed cell death. Upon stress-induced apoptosis, Hsp70 acetylation inhibits apoptotic cell death, mediated by Hsp70 association with apoptotic protease-activating factor (Apaf)-1 and apoptosis-inducing factor (AIF), key modulators of caspase-dependent and -independent apoptotic pathways, respectively. Hsp70 acetylation also attenuated autophagic cell death associated with upregulation of autophagy-related genes and autophagosome induction. Collectively, these results suggest that the acetylation of Hsp70 plays key regulatory roles in cell death pathways as well as in its function as a chaperone, together enabling cellular protection in response to stress.
Collapse
Affiliation(s)
- Yoo Hoi Park
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Ji-Hyeon Park
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Shin Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Structural environment built by AKAP12+ colon mesenchymal cells drives M2 macrophages during inflammation recovery. Sci Rep 2017; 7:42723. [PMID: 28205544 PMCID: PMC5311874 DOI: 10.1038/srep42723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/13/2017] [Indexed: 01/22/2023] Open
Abstract
Macrophages exhibit phenotypic plasticity, as they have the ability to switch their functional phenotypes during inflammation and recovery. Simultaneously, the mechanical environment actively changes. However, how these dynamic alterations affect the macrophage phenotype is unknown. Here, we observed that the extracellular matrix (ECM) constructed by AKAP12+ colon mesenchymal cells (CMCs) generated M2 macrophages by regulating their shape during recovery. Notably, rounded macrophages were present in the linear and loose ECM of inflamed colons and polarized to the M1 phenotype. In contrast, ramified macrophages emerged in the contracted ECM of recovering colons and mainly expressed M2 macrophage markers. These contracted structures were not observed in the inflamed colons of AKAP12 knockout (KO) mice. Consequently, the proportion of M2 macrophages in inflamed colons was lower in AKAP12 KO mice than in WT mice. In addition, clinical symptoms and histological damage were more severe in AKAP12 KO mice than in WT mice. In experimentally remodeled collagen gels, WT CMCs drove the formation of a more compacted structure than AKAP12 KO CMCs, which promoted the polarization of macrophages toward an M2 phenotype. These results demonstrated that tissue contraction during recovery provides macrophages with the physical cues that drive M2 polarization.
Collapse
|
24
|
Rabelo K, Trugilho MRO, Costa SM, Pereira BAS, Moreira OC, Ferreira ATS, Carvalho PC, Perales J, Alves AMB. The effect of the dengue non-structural 1 protein expression over the HepG2 cell proteins in a proteomic approach. J Proteomics 2016; 152:339-354. [PMID: 27826075 DOI: 10.1016/j.jprot.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 10/14/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023]
Abstract
Dengue is an important mosquito borne viral disease in the world. Dengue virus (DENV) encodes a polyprotein, which is cleaved in ten proteins, including the non-structural protein 1 (NS1). In this work, we analyzed the effect of NS1 expression in one hepatic cell line, HepG2, through a shotgun proteomic approach. Cells were transfected with pcENS1 plasmid, which encodes the DENV2 NS1 protein, or the controls pcDNA3 (negative control) and pMAXGFP (GFP, a protein unrelated to dengue). Expression of NS1 was detected by immunofluorescence, western blot and flow cytometry. We identified 14,138 peptides that mapped to 4,756 proteins in all analyzed conditions. We found 41 and 81 differentially abundant proteins when compared to cells transfected with plasmids pcDNA3 and pMAXGFP, respectively. Besides, 107 proteins were detected only in the presence of NS1. We identified clusters of proteins involved mainly in mRNA process and viral RNA replication. Down regulation expression of one protein (MARCKS), identified by the proteomic analysis, was also confirmed by real time PCR in HepG2 cells infected with DENV2. Identification of proteins modulated by the presence of NS1 may improve our understanding of its role in virus infection and pathogenesis, contributing to development of new therapies and vaccines. BIOLOGICAL SIGNIFICANCE Dengue is an important viral disease, with epidemics in tropical and subtropical regions of the world. The disease is complex, with different manifestations, in which the liver is normally affected. The NS1 is found in infected cells associated with plasma membrane and secreted into the circulation as a soluble multimer. This protein is essential for virus viability, although its function is not elucidated. Some reports indicate that the NS1 can be used as a protective antigen for the development of a dengue vaccine, while others suggest its involvement in viral pathogenesis. In this work, we report an in-depth comprehensive proteomic profiling resulting from the presence of NS1 in HepG2 cells. These results can contribute to a better understanding of the NS1 role during infection.
Collapse
Affiliation(s)
- Kíssila Rabelo
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Monique R O Trugilho
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Simone M Costa
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Bernardo A S Pereira
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Otacílio C Moreira
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - André T S Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Paulo C Carvalho
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Paraná, Brazil
| | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Ada M B Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Seo JH, Park JH, Lee EJ, Vo TTL, Choi H, Kim JY, Jang JK, Wee HJ, Lee HS, Jang SH, Park ZY, Jeong J, Lee KJ, Seok SH, Park JY, Lee BJ, Lee MN, Oh GT, Kim KW. ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation. Nat Commun 2016; 7:12882. [PMID: 27708256 PMCID: PMC5059642 DOI: 10.1038/ncomms12882] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/10/2016] [Indexed: 01/04/2023] Open
Abstract
Heat shock protein (Hsp)70 is a molecular chaperone that maintains protein homoeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. However, the mechanisms by which Hsp70 balances these opposing functions under stress conditions remain unknown. Here, we demonstrate that Hsp70 preferentially facilitates protein refolding after stress, gradually switching to protein degradation via a mechanism dependent on ARD1-mediated Hsp70 acetylation. During the early stress response, Hsp70 is immediately acetylated by ARD1 at K77, and the acetylated Hsp70 binds to the co-chaperone Hop to allow protein refolding. Thereafter, Hsp70 is deacetylated and binds to the ubiquitin ligase protein CHIP to complete protein degradation during later stages. This switch is required for the maintenance of protein homoeostasis and ultimately rescues cells from stress-induced cell death in vitro and in vivo. Therefore, ARD1-mediated Hsp70 acetylation is a regulatory mechanism that temporally balances protein refolding/degradation in response to stress. The chaperone Hsp70 has a dual role, promoting both protein refolding and protein degradation. Seo and Park et al. show that Hsp70 acetylation enhances protein refolding after stress, and that subsequent deacetylation progressively promotes ubiquitin ligase binding and protein degradation.
Collapse
Affiliation(s)
- Ji Hae Seo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Ji-Hyeon Park
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Eun Ji Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Tam Thuy Lu Vo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hoon Choi
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jun Yong Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Jae Kyung Jang
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hye Shin Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science &Technology, Gwangju 61005, Korea
| | - Zee Yong Park
- School of Life Sciences, Gwangju Institute of Science &Technology, Gwangju 61005, Korea
| | - Jaeho Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Seung-Hyeon Seok
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jin Young Park
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Bong Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Mi-Ni Lee
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
26
|
He DX, Gu F, Gao F, Hao JJ, Gong D, Gu XT, Mao AQ, Jin J, Fu L, Ma X. Genome-wide profiles of methylation, microRNAs, and gene expression in chemoresistant breast cancer. Sci Rep 2016; 6:24706. [PMID: 27094684 PMCID: PMC4837395 DOI: 10.1038/srep24706] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/30/2016] [Indexed: 12/17/2022] Open
Abstract
Cancer chemoresistance is regulated by complex genetic and epigenetic networks. In this study, the features of gene expression, methylation, and microRNA (miRNA) expression were investigated with high-throughput sequencing in human breast cancer MCF-7 cells resistant to adriamycin (MCF-7/ADM) and paclitaxel (MCF-7/PTX). We found that: ① both of the chemoresistant cell lines had similar, massive changes in gene expression, methylation, and miRNA expression versus chemosensitive controls. ② Pairwise integration of the data highlighted sets of genes that were regulated by either methylation or miRNAs, and sets of miRNAs whose expression was controlled by DNA methylation in chemoresistant cells. ③ By combining the three sets of high-throughput data, we obtained a list of genes whose expression was regulated by both methylation and miRNAs in chemoresistant cells; ④ Expression of these genes was then validated in clinical breast cancer samples to generate a 17-gene signature that showed good predictive and prognostic power in triple-negative breast cancer patients receiving anthracycline-taxane-based neoadjuvant chemotherapy. In conclusion, our results have generated a new workflow for the integrated analysis of the effects of miRNAs and methylation on gene expression during the development of chemoresistance.
Collapse
Affiliation(s)
- Dong-Xu He
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Feng Gu
- Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, PR China
| | - Fei Gao
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jun-jun Hao
- State Key Lab of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Desheng Gong
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiao-Ting Gu
- Department of Cellular and Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Ai-Qin Mao
- Department of Cellular and Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jian Jin
- Department of Cellular and Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, PR China
| | - Xin Ma
- Department of Cellular and Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
27
|
Cha JH, Kim KW. "Standby" EMT and "immune cell trapping" structure as novel mechanisms for limiting neuronal damage after CNS injury. Neural Regen Res 2014; 9:2032-5. [PMID: 25657713 PMCID: PMC4316460 DOI: 10.4103/1673-5374.147922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jong-Ho Cha
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea ; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|