1
|
Thomas CE, Peters U. Genomic landscape of cancer in racially and ethnically diverse populations. Nat Rev Genet 2025; 26:336-349. [PMID: 39609636 DOI: 10.1038/s41576-024-00796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/30/2024]
Abstract
Cancer incidence and mortality rates can vary widely among different racial and ethnic groups, attributed to a complex interplay of genetic, environmental and social factors. Recently, substantial progress has been made in investigating hereditary genetic risk factors and in characterizing tumour genomes. However, most research has been conducted in individuals of European ancestries and, increasingly, in individuals of Asian ancestries. The study of germline and somatic genetics in cancer across racial and ethnic groups using omics technologies offers opportunities to identify similarities and differences in both heritable traits and the molecular features of cancer genomes. An improved understanding of population-specific cancer genomics, as well as translation of those findings across populations, will help reduce cancer disparities and ensure that personalized medicine and public health approaches are equitable across racial and ethnic groups.
Collapse
Affiliation(s)
- Claire E Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Huang X, Lott PC, Hu D, Zavala VA, Jamal ZN, Vidaurre T, Casavilca-Zambrano S, Navarro Vásquez J, Castañeda CA, Valencia G, Morante Z, Calderón M, Abugattas JE, Fuentes HA, Liendo-Picoaga R, Cotrina JM, Neciosup SP, Rioja Viera P, Salinas LA, Galvez-Nino M, Huntsman S, Sanchez SE, Williams MA, Gelaye B, Estrada-Florez AP, Polanco-Echeverry G, Echeverry M, Velez A, Carmona-Valencia JA, Bohorquez-Lozano ME, Torres J, Cruz M, Ho WK, Teo SH, Tai MC, John EM, Haiman CA, Conti DV, Chen F, Torres-Mejía G, Kushi LH, Neuhausen SL, Ziv E, Carvajal-Carmona LG, Fejerman L. Evaluation of Multiple Breast Cancer Polygenic Risk Score Panels in Women of Latin American Heritage. Cancer Epidemiol Biomarkers Prev 2025; 34:234-245. [PMID: 39625644 PMCID: PMC11799839 DOI: 10.1158/1055-9965.epi-24-1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND A substantial portion of the genetic predisposition for breast cancer is explained by multiple common genetic variants of relatively small effect. A subset of these variants, which have been identified mostly in individuals of European (EUR) and Asian ancestries, have been combined to construct a polygenic risk score (PRS) to predict breast cancer risk, but the prediction accuracy of existing PRSs in Hispanic/Latinx individuals (H/L) remain relatively low. We assessed the performance of several existing PRS panels with and without addition of H/L-specific variants among self-reported H/L women. METHODS PRS performance was evaluated using multivariable logistic regression and the area under the ROC curve. RESULTS Both EUR and Asian PRSs performed worse in H/L samples compared with original reports. The best EUR PRS performed better than the best Asian PRS in pooled H/L samples. EUR PRSs had decreased performance with increasing Indigenous American (IA) ancestry, while Asian PRSs had increased performance with increasing IA ancestry. The addition of two H/L SNPs increased performance for all PRSs, most notably in the samples with high IA ancestry, and did not impact the performance of PRSs in individuals with lower IA ancestry. CONCLUSIONS A single PRS that incorporates risk variants relevant to the multiple ancestral components of individuals from Latin America, instead of a set of ancestry-specific panels, could be used in clinical practice. IMPACT The results highlight the importance of population-specific discovery and suggest a straightforward approach to integrate ancestry-specific variants into PRSs for clinical application.
Collapse
Affiliation(s)
- Xiaosong Huang
- Department of Public Health Sciences, University of California Davis, Davis, California
- Genome Center, University of California Davis, Davis, California
| | - Paul C. Lott
- Genome Center, University of California Davis, Davis, California
| | - Donglei Hu
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Valentina A. Zavala
- Department of Public Health Sciences, University of California Davis, Davis, California
- Genome Center, University of California Davis, Davis, California
| | - Zoeb N. Jamal
- Genome Center, University of California Davis, Davis, California
| | | | | | | | | | | | - Zaida Morante
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | | | | | | | | | | | | | | | | | - Scott Huntsman
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sixto E. Sanchez
- Departamento Académico de Medicina Preventiva y Salud Pública, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Michelle A. Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ana P. Estrada-Florez
- Genome Center, University of California Davis, Davis, California
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | | | - Magdalena Echeverry
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Alejandro Velez
- Dinamica IPS, Medellín, Colombia
- Hospital Pablo Tobon Uribe, Medellín, Colombia
| | | | - Mabel E. Bohorquez-Lozano
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Javier Torres
- UIM en Enfermedades Infecciosas, UMAE Pediatria, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel Cruz
- UIM en Bioquimica, UMAE especialidades, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Weang-Kee Ho
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Selangor, Malaysia
- Cancer Research Malaysia, Selangor, Malaysia
| | - Soo Hwang Teo
- Cancer Research Malaysia, Selangor, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya Centre, UM Cancer Research Institute, Kuala Lumpur, Malaysia
| | | | - Esther M. John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, California
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Christopher A. Haiman
- Department of Population and Public Health Science, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - David V. Conti
- Department of Population and Public Health Science, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Fei Chen
- Department of Population and Public Health Science, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gabriela Torres-Mejía
- Center for Population Health Research, National Institute of Public Health (INSP), Cuernavaca, Mexico
| | - Lawrence H. Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Luis G. Carvajal-Carmona
- Genome Center, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, California
| | | | - Laura Fejerman
- Department of Public Health Sciences, University of California Davis, Davis, California
- Genome Center, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| |
Collapse
|
3
|
Jia G, Chen Z, Ping J, Cai Q, Tao R, Li C, Bauer JA, Xie Y, Ambs S, Barnard ME, Chen Y, Choi JY, Gao YT, Garcia-Closas M, Gu J, Hu JJ, Iwasaki M, John EM, Kweon SS, Li CI, Matsuda K, Matsuo K, Nathanson KL, Nemesure B, Olopade OI, Pal T, Park SK, Park B, Press MF, Sanderson M, Sandler DP, Shen CY, Troester MA, Yao S, Zheng Y, Ahearn T, Brewster AM, Falusi A, Hennis AJM, Ito H, Kubo M, Lee ES, Makumbi T, Ndom P, Noh DY, O'Brien KM, Ojengbede O, Olshan AF, Park MH, Reid S, Yamaji T, Zirpoli G, Butler EN, Huang M, Low SK, Obafunwa J, Weinberg CR, Zhang H, Zhao H, Cote ML, Ambrosone CB, Huo D, Li B, Kang D, Palmer JR, Shu XO, Haiman CA, Guo X, Long J, Zheng W. Refining breast cancer genetic risk and biology through multi-ancestry fine-mapping analyses of 192 risk regions. Nat Genet 2025; 57:80-87. [PMID: 39753771 DOI: 10.1038/s41588-024-02031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/11/2024] [Indexed: 01/16/2025]
Abstract
Genome-wide association studies have identified approximately 200 genetic risk loci for breast cancer, but the causal variants and target genes are mostly unknown. We sought to fine-map all known breast cancer risk loci using genome-wide association study data from 172,737 female breast cancer cases and 242,009 controls of African, Asian and European ancestry. We identified 332 independent association signals for breast cancer risk, including 131 signals not reported previously, and for 50 of them, we narrowed the credible causal variants down to a single variant. Analyses integrating functional genomics data identified 195 putative susceptibility genes, enriched in PI3K/AKT, TNF/NF-κB, p53 and Wnt/β-catenin pathways. Single-cell RNA sequencing or in vitro experiment data provided additional functional evidence for 105 genes. Our study uncovered large numbers of association signals and candidate susceptibility genes for breast cancer, uncovered breast cancer genetics and biology, and supported the value of including multi-ancestry data in fine-mapping analyses.
Collapse
Affiliation(s)
- Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chao Li
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua A Bauer
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuhan Xie
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Yu Chen
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Esther M John
- Department of Epidemiology and Population Health and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, South Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katherine L Nathanson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Tuya Pal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Boyoung Park
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Chen-Yang Shen
- College of Public Health, China Medical University, Taichong, Taiwan
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Melissa A Troester
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ying Zheng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Abenaa M Brewster
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adeyinka Falusi
- Genetic and Bioethics Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anselm J M Hennis
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- George Alleyne Chronic Disease Research Centre, University of the West Indies, Bridgetown, Barbados
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eun-Sook Lee
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
- Hospital, National Cancer Center, Goyang, South Korea
| | | | - Paul Ndom
- Yaounde General Hospital, Yaounde, Cameroon
| | - Dong-Young Noh
- College of Medicine, Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Oladosu Ojengbede
- Center for Population and Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Andrew F Olshan
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Min-Ho Park
- Department of Surgery, Chonnam National University Medical School, Gwangju, South Korea
| | - Sonya Reid
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Gary Zirpoli
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Ebonee N Butler
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siew-Kee Low
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - John Obafunwa
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Lagos, Nigeria
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institutes of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Michelle L Cote
- Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dezheng Huo
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie JL, Aeilts AM, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 Germline Variants with TP53 Somatic Variants in Breast Tumors in a Genome-wide Study. CANCER RESEARCH COMMUNICATIONS 2024; 4:1597-1608. [PMID: 38836758 PMCID: PMC11210444 DOI: 10.1158/2767-9764.crc-24-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. A genome-wide association study was conducted in 2,850 women of European ancestry with breast cancer using TP53 and PIK3CA mutation status (positive or negative) as well as specific functional categories [e.g., TP53 gain-of-function (GOF) and loss-of-function, PIK3CA activating] as phenotypes. Germline variants showing evidence of association were selected for validation analyses and tested in multiple independent datasets. Discovery association analyses found five variants associated with TP53 mutation status with P values <1 × 10-6 and 33 variants with P values <1 × 10-5. Forty-four variants were associated with PIK3CA mutation status with P values <1 × 10-5. In validation analyses, only variants at the ESR1 locus were associated with TP53 mutation status after multiple comparisons corrections. Combined analyses in European and Malaysian populations found ESR1 locus variants rs9383938 and rs9479090 associated with the presence of TP53 mutations overall (P values 2 × 10-11 and 4.6 × 10-10, respectively). rs9383938 also showed association with TP53 GOF mutations (P value 6.1 × 10-7). rs9479090 showed suggestive evidence (P value 0.02) for association with TP53 mutation status in African ancestry populations. No other variants were significantly associated with TP53 or PIK3CA mutation status. Larger studies are needed to confirm these findings and determine if additional variants contribute to ancestry-specific differences in mutation frequency. SIGNIFICANCE Emerging data show ancestry-specific differences in TP53 and PIK3CA mutation frequency in breast tumors suggesting that germline variants may influence somatic mutational processes. This study identified variants near ESR1 associated with TP53 mutation status and identified additional loci with suggestive association which may provide biological insight into observed differences.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, New York
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Medical School, Columbus, Ohio
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, Ohio
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
| | | | - Amber M. Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, Ohio
| | - Heather Hampel
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, California
- Department of Integrative Translational Sciences, City of Hope, Duarte, California
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrick Stevens
- Bioinformatics Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Paolo Fadda
- Genomics Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur, Malaysia
| | - Joseph Paul McElroy
- Department of Biomedical Informatics, The Ohio State University Center for Biostatistics, Columbus, Ohio
| | - Amanda E. Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Gao G, McClellan J, Barbeira AN, Fiorica PN, Li JL, Mu Z, Olopade OI, Huo D, Im HK. A multi-tissue, splicing-based joint transcriptome-wide association study identifies susceptibility genes for breast cancer. Am J Hum Genet 2024; 111:1100-1113. [PMID: 38733992 PMCID: PMC11179262 DOI: 10.1016/j.ajhg.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Splicing-based transcriptome-wide association studies (splicing-TWASs) of breast cancer have the potential to identify susceptibility genes. However, existing splicing-TWASs test the association of individual excised introns in breast tissue only and thus have limited power to detect susceptibility genes. In this study, we performed a multi-tissue joint splicing-TWAS that integrated splicing-TWAS signals of multiple excised introns in each gene across 11 tissues that are potentially relevant to breast cancer risk. We utilized summary statistics from a meta-analysis that combined genome-wide association study (GWAS) results of 424,650 women of European ancestry. Splicing-level prediction models were trained in GTEx (v.8) data. We identified 240 genes by the multi-tissue joint splicing-TWAS at the Bonferroni-corrected significance level; in the tissue-specific splicing-TWAS that combined TWAS signals of excised introns in genes in breast tissue only, we identified nine additional significant genes. Of these 249 genes, 88 genes in 62 loci have not been reported by previous TWASs, and 17 genes in seven loci are at least 1 Mb away from published GWAS index variants. By comparing the results of our splicing-TWASs with previous gene-expression-based TWASs that used the same summary statistics and expression prediction models trained in the same reference panel, we found that 110 genes in 70 loci that are identified only by the splicing-TWASs. Our results showed that for many genes, expression quantitative trait loci (eQTL) did not show a significant impact on breast cancer risk, whereas splicing quantitative trait loci (sQTL) showed a strong impact through intron excision events.
Collapse
Affiliation(s)
- Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Julian McClellan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Alvaro N Barbeira
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Peter N Fiorica
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Zepeng Mu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Olufunmilayo I Olopade
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Godinez Paredes JM, Rodriguez I, Ren M, Orozco A, Ortiz J, Albanez A, Jones C, Nahleh Z, Barreda L, Garland L, Torres-Gonzalez E, Wu D, Luo W, Liu J, Argueta V, Orozco R, Gharzouzi E, Dean M. Germline pathogenic variants associated with triple-negative breast cancer in US Hispanic and Guatemalan women using hospital and community-based recruitment strategies. Breast Cancer Res Treat 2024; 205:567-577. [PMID: 38520597 PMCID: PMC11101360 DOI: 10.1007/s10549-024-07300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/21/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE Recruit and sequence breast cancer subjects in Guatemalan and US Hispanic populations. Identify optimum strategies to recruit Latin American and Hispanic women into genetic studies of breast cancer. METHODS We used targeted gene sequencing to identify pathogenic variants in 19 familial breast cancer susceptibility genes in DNA from unselected Hispanic breast cancer cases in the US and Guatemala. Recruitment across the US was achieved through community-based strategies. In addition, we obtained patients receiving cancer treatment at major hospitals in Texas and Guatemala. RESULTS We recruited 287 Hispanic US women, 38 (13%) from community-based and 249 (87%) from hospital-based strategies. In addition, we ascertained 801 Guatemalan women using hospital-based recruitment. In our experience, a hospital-based approach was more efficient than community-based recruitment. In this study, we sequenced 103 US and 137 Guatemalan women and found 11 and 10 pathogenic variants, respectively. The most frequently mutated genes were BRCA1, BRCA2, CHEK2, and ATM. In addition, an analysis of 287 US Hispanic patients with pathology reports showed a significantly higher percentage of triple-negative disease in patients with pathogenic variants (41% vs. 15%). Finally, an analysis of mammography usage in 801 Guatemalan patients found reduced screening in women with a lower socioeconomic status (p < 0.001). CONCLUSION Guatemalan and US Hispanic women have rates of hereditary breast cancer pathogenic variants similar to other populations and are more likely to have early age at diagnosis, a family history, and a more aggressive disease. Patient recruitment was higher using hospital-based versus community enrollment. This data supports genetic testing in breast cancer patients to reduce breast cancer mortality in Hispanic women.
Collapse
Affiliation(s)
- Jesica M Godinez Paredes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Isabel Rodriguez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Megan Ren
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Anali Orozco
- Instituto Cancerologia, Guatemala City, Guatemala
| | - Jeremy Ortiz
- Instituto Cancerologia, Guatemala City, Guatemala
| | | | - Catherine Jones
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Lilian Barreda
- Hospital General San Juan de Dios, Guatemala City, Guatemala
| | - Lisa Garland
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Edmundo Torres-Gonzalez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Dongjing Wu
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Wen Luo
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Jia Liu
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Victor Argueta
- Hospital General San Juan de Dios, Guatemala City, Guatemala
| | - Roberto Orozco
- Hospital General San Juan de Dios, Guatemala City, Guatemala
| | | | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA.
- National Cancer Institute, 9615 Medical Center Drive, Rm 3130, Rockville, MD, 20850, USA.
| |
Collapse
|
7
|
Jia G, Ping J, Guo X, Yang Y, Tao R, Li B, Ambs S, Barnard ME, Chen Y, Garcia-Closas M, Gu J, Hu JJ, Huo D, John EM, Li CI, Li JL, Nathanson KL, Nemesure B, Olopade OI, Pal T, Press MF, Sanderson M, Sandler DP, Shu XO, Troester MA, Yao S, Adejumo PO, Ahearn T, Brewster AM, Hennis AJM, Makumbi T, Ndom P, O'Brien KM, Olshan AF, Oluwasanu MM, Reid S, Butler EN, Huang M, Ntekim A, Qian H, Zhang H, Ambrosone CB, Cai Q, Long J, Palmer JR, Haiman CA, Zheng W. Genome-wide association analyses of breast cancer in women of African ancestry identify new susceptibility loci and improve risk prediction. Nat Genet 2024; 56:819-826. [PMID: 38741014 PMCID: PMC11284829 DOI: 10.1038/s41588-024-01736-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
We performed genome-wide association studies of breast cancer including 18,034 cases and 22,104 controls of African ancestry. Genetic variants at 12 loci were associated with breast cancer risk (P < 5 × 10-8), including associations of a low-frequency missense variant rs61751053 in ARHGEF38 with overall breast cancer (odds ratio (OR) = 1.48) and a common variant rs76664032 at chromosome 2q14.2 with triple-negative breast cancer (TNBC) (OR = 1.30). Approximately 15.4% of cases with TNBC carried six risk alleles in three genome-wide association study-identified TNBC risk variants, with an OR of 4.21 (95% confidence interval = 2.66-7.03) compared with those carrying fewer than two risk alleles. A polygenic risk score (PRS) showed an area under the receiver operating characteristic curve of 0.60 for the prediction of breast cancer risk, which outperformed PRS derived using data from females of European ancestry. Our study markedly increases the population diversity in genetic studies for breast cancer and demonstrates the utility of PRS for risk prediction in females of African ancestry.
Collapse
Affiliation(s)
- Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Yu Chen
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Jian Gu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Esther M John
- Departments of Epidemiology & Population Health and of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Katherine L Nathanson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, New York, NY, USA
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Tuya Pal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melissa A Troester
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
| | - Prisca O Adejumo
- Department of Nursing, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Abenaa M Brewster
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anselm J M Hennis
- George Alleyne Chronic Disease Research Centre, University of the West Indies, Bridgetown, Barbados
- Department of Family, Population and Preventive Medicine, Stony Brook University, New York, NY, USA
| | | | - Paul Ndom
- Yaounde General Hospital, Yaounde, Cameroon
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrew F Olshan
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mojisola M Oluwasanu
- Department of Health Promotion and Education, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sonya Reid
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ebonee N Butler
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maosheng Huang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Atara Ntekim
- Department of Radiation Oncology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Huijun Qian
- Department of Statistics and Operation Research, University of North Carolina, Chapel Hill, NC, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Paz-Cruz E, Cadena-Ullauri S, Guevara-Ramírez P, Ruiz-Pozo VA, Tamayo-Trujillo R, Simancas-Racines D, Zambrano AK. Thyroid cancer in Ecuador: A genetic variants review and a cross-sectional population-based analysis before and after COVID-19 pandemic. Heliyon 2024; 10:e23964. [PMID: 38226262 PMCID: PMC10788530 DOI: 10.1016/j.heliyon.2023.e23964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
Objectives The purpose of this study is to describe the genetic variants present in the Ecuadorian population and the incidence and mortality patterns of thyroid cancer in Ecuador from 2016 to 2021. Methods The present research constitutes a nationwide cross-sectional study encompassing all reported cases of thyroid cancer (C-73) in Ecuador from 2016 to 2021. Incidence rates were calculated based on the annual population at risk, considering factors such as ethnicity, sex, age group, and the geographic location of the incidence. All data was collected from the Hospital Discharge Statistics and the Statistical Registry of General Deaths Databases. Results Between 2016 and 2021, a total of 20,297 hospital admissions and 921 deaths attributed to thyroid cancer were reported in Ecuador. The incidence of thyroid cancer remained relatively stable from 2016 to 2019. However, there was a notable decrease in 2020, followed by an increase in 2021. Notably, thyroid cancer prevalence rates were found to be higher in highlands regions. Moreover, two genetic variants, the BRAFV600E and KITL678F, have been identified in the Ecuadorian population. It is noteworthy that women exhibited a higher susceptibility to thyroid cancer, being five times more likely than men to develop this condition. Conclusion Ecuador exhibits one of the highest global incidences of thyroid cancer. Consequently, describing the genetic variants and epidemiological characteristics of thyroid cancer is imperative for enhancing healthcare access and formulating evidence-based public health policies. This research contributes towards a comprehensive understanding of thyroid cancer in the Ecuadorian context, aiming to improve targeted interventions and health outcomes.
Collapse
Affiliation(s)
- Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE. Mariana de Jesús Ave, no number, Quito, Pichincha, 170129, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE. Mariana de Jesús Ave, no number, Quito, Pichincha, 170129, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE. Mariana de Jesús Ave, no number, Quito, Pichincha, 170129, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE. Mariana de Jesús Ave, no number, Quito, Pichincha, 170129, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE. Mariana de Jesús Ave, no number, Quito, Pichincha, 170129, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE. Mariana de Jesús Ave, no number, Quito, Pichincha, 170129, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE. Mariana de Jesús Ave, no number, Quito, Pichincha, 170129, Ecuador
| |
Collapse
|
9
|
Ren X, Yang H, Nierenberg JL, Sun Y, Chen J, Beaman C, Pham T, Nobuhara M, Takagi MA, Narayan V, Li Y, Ziv E, Shen Y. High-throughput PRIME-editing screens identify functional DNA variants in the human genome. Mol Cell 2023; 83:4633-4645.e9. [PMID: 38134886 PMCID: PMC10766087 DOI: 10.1016/j.molcel.2023.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/07/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Despite tremendous progress in detecting DNA variants associated with human disease, interpreting their functional impact in a high-throughput and single-base resolution manner remains challenging. Here, we develop a pooled prime-editing screen method, PRIME, that can be applied to characterize thousands of coding and non-coding variants in a single experiment with high reproducibility. To showcase its applications, we first identified essential nucleotides for a 716 bp MYC enhancer via PRIME-mediated single-base resolution analysis. Next, we applied PRIME to functionally characterize 1,304 genome-wide association study (GWAS)-identified non-coding variants associated with breast cancer and 3,699 variants from ClinVar. We discovered that 103 non-coding variants and 156 variants of uncertain significance are functional via affecting cell fitness. Collectively, we demonstrate that PRIME is capable of characterizing genetic variants at single-base resolution and scale, advancing accurate genome annotation for disease risk prediction, diagnosis, and therapeutic target identification.
Collapse
Affiliation(s)
- Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Han Yang
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jovia L Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Yifan Sun
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cooper Beaman
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Thu Pham
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Mai Nobuhara
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Maya Asami Takagi
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Vivek Narayan
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Elad Ziv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Division of General Internal Medicine, Department of Medicine, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie J, Aeilts A, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 germline variants with TP53 somatic variants in breast tumors in a genome-wide study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299442. [PMID: 38106140 PMCID: PMC10723566 DOI: 10.1101/2023.12.06.23299442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. HER2 positive and triple negative breast cancers (TNBC) have a higher frequency of TP53 somatic mutations than other subtypes. PIK3CA mutations are more frequently observed in hormone receptor positive tumors. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. Methods A genome-wide association study was conducted using breast cancer mutation status of TP53 and PIK3CA and functional mutation categories including TP53 gain of function (GOF) and loss of function mutations and PIK3CA activating/hotspot mutations. The discovery analysis consisted of 2850 European ancestry women from three datasets. Germline variants showing evidence of association with somatic mutations were selected for validation analyses based on predicted function, allele frequency, and proximity to known cancer genes or risk loci. Candidate variants were assessed for association with mutation status in a multi-ancestry validation study, a Malaysian study, and a study of African American/Black women with TNBC. Results The discovery Germline x Mutation (GxM) association study found five variants associated with one or more TP53 phenotypes with P values <1×10-6, 33 variants associated with one or more TP53 phenotypes with P values <1×10-5, and 44 variants associated with one or more PIK3CA phenotypes with P values <1×10-5. In the multi-ancestry and Malaysian validation studies, germline ESR1 locus variant, rs9383938, was associated with the presence of TP53 mutations overall (P values 6.8×10-5 and 9.8×10-8, respectively) and TP53 GOF mutations (P value 8.4×10-6). Multiple variants showed suggestive evidence of association with PIK3CA mutation status in the validation studies, but none were significant after correction for multiple comparisons. Conclusions We found evidence that germline variants were associated with TP53 and PIK3CA mutation status in breast cancers. Variants near the estrogen receptor alpha gene, ESR1, were significantly associated with overall TP53 mutations and GOF mutations. Larger multi-ancestry studies are needed to confirm these findings and determine if these variants contribute to ancestry-specific differences in mutation frequency.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, NY, USA
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Medical School, Columbus, OH, 43210, USA
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, OH 43210, USA
| | - Susan L. Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Elad Ziv
- University of California, Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
- University of California, Department of Medicine, San Francisco, San Francisco, CA, USA
- University of California San Francisco, Institute for Human Genetics, San Francisco, CA, USA
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jessica Gillespie
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amber Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Integrative Translational Sciences, City of Hope, Duarte, CA
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Patrick Stevens
- The Ohio State University Comprehensive Cancer Center, Bioinformatics Shared Resource, Columbus, OH, USA
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Genomics Shared Resource, Columbus, OH, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Joseph Paul McElroy
- The Ohio State University Center for Biostatistics, Department of Biomedical Informatics, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
11
|
Maldonado BL, Piqué DG, Kaplan RC, Claw KG, Gignoux CR. Genetic risk prediction in Hispanics/Latinos: milestones, challenges, and social-ethical considerations. J Community Genet 2023; 14:543-553. [PMID: 37962783 PMCID: PMC10725387 DOI: 10.1007/s12687-023-00686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Genome-wide association studies (GWAS) have allowed the identification of disease-associated variants, which can be leveraged to build polygenic scores (PGSs). Even though PGSs can be a valuable tool in personalized medicine, their predictive power is limited in populations of non-European ancestry, particularly in admixed populations. Recent efforts have focused on increasing racial and ethnic diversity in GWAS, thus, addressing some of the limitations of genetic risk prediction in these populations. Even with these efforts, few studies focus exclusively on Hispanics/Latinos. Additionally, Hispanic/Latino populations are often considered a single population despite varying admixture proportions between and within ethnic groups, diverse genetic heterogeneity, and demographic history. Combined with highly heterogeneous environmental and socioeconomic exposures, this diversity can reduce the transferability of genetic risk prediction models. Given the recent increase of genomic studies that include Hispanics/Latinos, we review the milestones and efforts that focus on genetic risk prediction, summarize the potential for improving PGS transferability, and highlight the challenges yet to be addressed. Additionally, we summarize social-ethical considerations and provide ideas to promote genetic risk prediction models that can be implemented equitably.
Collapse
Affiliation(s)
- Betzaida L Maldonado
- Human Medical Genetics & Genomics Graduate Program, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
- Colorado Center for Personalized Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
- Department of Biomedical Informatics, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| | - Daniel G Piqué
- Colorado Center for Personalized Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
- Section of Genetics and Metabolism, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO, USA
| | - Robert C Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Katrina G Claw
- Human Medical Genetics & Genomics Graduate Program, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
- Department of Biomedical Informatics, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher R Gignoux
- Human Medical Genetics & Genomics Graduate Program, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
- Department of Biomedical Informatics, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Newman L. Oncologic anthropology: Global variations in breast cancer risk, biology, and outcome. J Surg Oncol 2023; 128:959-966. [PMID: 37814598 DOI: 10.1002/jso.27459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
The global breast cancer burden is growing. Of 19.3 million new cancers diagnosed in 2020, 2.26 million were breast, surpassing lung as the most commonly diagnosed worldwide. Breast cancer is the fourth most common cause of cancer deaths worldwide, and the leading cause of death in females. Incidence and mortality rates are projected to rise disproportionately in low and middle-income countries, a consequence of socioeconomic factors and differences in tumor biology related to genetic ancestry.
Collapse
Affiliation(s)
- Lisa Newman
- Division of Breast Surgery, Interdisciplinary Breast Program, International Center for theStudy of Breast Cancer, Weill Cornell Medicine/New York Presbyterian Hospital Network, New York, New York, USA
| |
Collapse
|
13
|
Lanchbury JS, Pederson HJ. An apparent quandary: adoption of polygenics and gene panels for personalised breast cancer risk stratification. BJC REPORTS 2023; 1:15. [PMID: 39516244 PMCID: PMC11523941 DOI: 10.1038/s44276-023-00014-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 11/16/2024]
Abstract
Over the past 30 years, genetic and epidemiological advances have revolutionised the prediction of breast cancer risk in women with significant family history. By screening these women for high- and intermediate-risk pathogenic variants and by interrogating their genomes for multiple lower-risk single-nucleotide polymorphisms (SNPs), we can provide individually tailored risk profiles in carriers of Mendelian breast cancer risk variants and in non-carriers, but clinical implementation of this approach is suboptimal. Risk mitigation may involve enhanced surveillance, preventive medications or risk-reducing surgery but barriers exist to the adoption of polygenic risk score (PRS)-based models in the clinic. PRS development has suffered from both systematic biases resulting from development and validation in those of European ancestry and from the consequences of unanticipated evolutionary differences particularly with regard to those of African ancestry. PRS approaches which take into account underlying genetic diversity offer a practical solution to the misapplication of European-derived PRS to other population groups including women of multiple ancestries. All ancestry PRS technology offers net benefit regardless of potency differences. While the new science of polygenics has surged ahead and its stratification insights have been incorporated into risk modelling, training of providers and genetic counsellors lags far behind and an educational revolution is also necessary to provide optimal patient care.
Collapse
Affiliation(s)
| | - Holly J Pederson
- Medical Breast Services, Cleveland Clinic, Cleveland, OH, USA
- Department of Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| |
Collapse
|
14
|
Ding YC, Song H, Adamson AW, Schmolze D, Hu D, Huntsman S, Steele L, Patrick CS, Tao S, Hernandez N, Adams CD, Fejerman L, Gardner K, Nápoles AM, Pérez-Stable EJ, Weitzel JN, Bengtsson H, Huang FW, Neuhausen SL, Ziv E. Profiling the Somatic Mutational Landscape of Breast Tumors from Hispanic/Latina Women Reveals Conserved and Unique Characteristics. Cancer Res 2023; 83:2600-2613. [PMID: 37145128 PMCID: PMC10390863 DOI: 10.1158/0008-5472.can-22-2510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Somatic mutational profiling is increasingly being used to identify potential targets for breast cancer. However, limited tumor-sequencing data from Hispanic/Latinas (H/L) are available to guide treatment. To address this gap, we performed whole-exome sequencing (WES) and RNA sequencing on 146 tumors and WES of matched germline DNA from 140 H/L women in California. Tumor intrinsic subtype, somatic mutations, copy-number alterations, and expression profiles of the tumors were characterized and compared with data from tumors of non-Hispanic White (White) women in The Cancer Genome Atlas (TCGA). Eight genes were significantly mutated in the H/L tumors including PIK3CA, TP53, GATA3, MAP3K1, CDH1, CBFB, PTEN, and RUNX1; the prevalence of mutations in these genes was similar to that observed in White women in TCGA. Four previously reported Catalogue of Somatic Mutations in Cancer (COSMIC) mutation signatures (1, 2, 3, 13) were found in the H/L dataset, along with signature 16 that has not been previously reported in other breast cancer datasets. Recurrent amplifications were observed in breast cancer drivers including MYC, FGFR1, CCND1, and ERBB2, as well as a recurrent amplification in 17q11.2 associated with high KIAA0100 gene expression that has been implicated in breast cancer aggressiveness. In conclusion, this study identified a higher prevalence of COSMIC signature 16 and a recurrent copy-number amplification affecting expression of KIAA0100 in breast tumors from H/L compared with White women. These results highlight the necessity of studying underrepresented populations. SIGNIFICANCE Comprehensive characterization of genomic and transcriptomic alterations in breast tumors from Hispanic/Latina patients reveals distinct genetic alterations and signatures, demonstrating the importance of inclusive studies to ensure equitable care for patients. See related commentary by Schmit et al., p. 2443.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Aaron W. Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Daniel Schmolze
- Department of Pathology, City of Hope Medical Center, Duarte, California
| | - Donglei Hu
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Scott Huntsman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Carmina S. Patrick
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Shu Tao
- Integrative Genomics Shared Resource, Beckman Research Institute of City of Hope, Duarte, California
| | - Natalie Hernandez
- Western University of Health Sciences College of Graduate Nursing, Pomona, California
| | | | - Laura Fejerman
- Department of Public Health Sciences and Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, New York
| | - Anna María Nápoles
- Division of Intramural Research, National Institute on Minority and Health Disparities, National Institutes of Health, Bethesda, Maryland
| | | | | | - Henrik Bengtsson
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Franklin W. Huang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
- Chan Zuckerberg Biohub, San Francisco, California
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
15
|
Ren X, Yang H, Nierenberg JL, Sun Y, Chen J, Beaman C, Pham T, Nobuhara M, Takagi MA, Narayan V, Li Y, Ziv E, Shen Y. High throughput PRIME editing screens identify functional DNA variants in the human genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548736. [PMID: 37502948 PMCID: PMC10370011 DOI: 10.1101/2023.07.12.548736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Despite tremendous progress in detecting DNA variants associated with human disease, interpreting their functional impact in a high-throughput and base-pair resolution manner remains challenging. Here, we develop a novel pooled prime editing screen method, PRIME, which can be applied to characterize thousands of coding and non-coding variants in a single experiment with high reproducibility. To showcase its applications, we first identified essential nucleotides for a 716 bp MYC enhancer via PRIME-mediated saturation mutagenesis. Next, we applied PRIME to functionally characterize 1,304 non-coding variants associated with breast cancer and 3,699 variants from ClinVar. We discovered that 103 non-coding variants and 156 variants of uncertain significance are functional via affecting cell fitness. Collectively, we demonstrate PRIME capable of characterizing genetic variants at base-pair resolution and scale, advancing accurate genome annotation for disease risk prediction, diagnosis, and therapeutic target identification.
Collapse
Affiliation(s)
- Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Han Yang
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jovia L. Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Yifan Sun
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cooper Beaman
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Thu Pham
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Mai Nobuhara
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Maya Asami Takagi
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Vivek Narayan
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Elad Ziv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, Department of Medicine, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Saadawy SF, Raafat N, Samy WM, Raafat A, Talaat A. Role of Circ-ITCH Gene Polymorphisms and Its Expression in Breast Cancer Susceptibility and Prognosis. Diagnostics (Basel) 2023; 13:2033. [PMID: 37370928 DOI: 10.3390/diagnostics13122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION/OBJECTIVE Breast cancer (BC) is the first leading cause of cancer-related mortality in females worldwide. We have investigated the correlation between circ-ITCH gene polymorphisms, circ-ITCH expression, and their effect on β-catenin levels and BC development. METHODS Participants included 62 BC and 62 controls matched in terms of age. The circ-ITCH polymorphisms rs10485505 and rs4911154 were genotyped using whole blood samples. In addition, mRNA expression analysis of circ-ITCH was performed on BC tissues. The β-catenin levels in serum samples were measured using ELISA. RESULTS The qRT-PCR results demonstrated that circ-ITCH was significantly downregulated in BC compared to normal healthy tissues. The genotype distribution of rs10485505 and rs4911154 were significantly associated with BC risk. For rs10485505, genotype CT and TT were significantly associated with an increased BC risk. In contrast, there was a significant association between rs4911154, genotypes GA and AA, and an increased BC risk. Regarding the rs10485505 genotype, carriers of the T allele frequently have a poor prognosis compared to carriers of the CC genotype. Serum β-catenin in the BC patients' group was significantly higher than in the control group. The relative expression levels of circ-ITCH were remarkably decreased in the BC samples of patients carrying the A allele at rs4911154 compared to patients with a GG genotype. Conversely, β-catenin protein levels were increased in patients carrying the A allele, while rs10485505 genotype carriers of the CT and TT genotypes showed downregulation of circ-ITCH expression fold compared to the CC genotype. Contrarily, β-catenin levels markedly increased in TT and CT genotypes compared with the CC genotype. CONCLUSIONS Our research showed that the rs10485505 polymorphism (T allele) and the rs4911154 polymorphism (A allele) are associated with the risk and prognosis of BC. This finding may be due to the effect on the level of circ-ITCH mRNA expression in BC tissues as well as the level of β-catenin in BC patients.
Collapse
Affiliation(s)
- Sara F Saadawy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig 44523, Egypt
| | - Nermin Raafat
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig 44523, Egypt
| | - Walaa M Samy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig 44523, Egypt
| | - Ahmed Raafat
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig 44523, Egypt
| | - Aliaa Talaat
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig 44523, Egypt
| |
Collapse
|
17
|
Advancing workforce diversity by leveraging the Clinical and Translational Science Awards (CTSA) program. J Clin Transl Sci 2023; 7:e30. [PMID: 36845302 PMCID: PMC9947598 DOI: 10.1017/cts.2022.489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Clinical trials continue to disproportionately underrepresent people of color. Increasing representation of diverse backgrounds among clinical research personnel has the potential to yield greater representation in clinical trials and more efficacious medical interventions by addressing medical mistrust. In 2019, North Carolina Central University (NCCU), a Historically Black College and University with a more than 80% underrepresented student population, established the Clinical Research Sciences Program with support from the Clinical and Translational Science Awards (CTSA) program at neighboring Duke University. This program was designed to increase exposure of students from diverse educational, racial, and ethnic backgrounds to the field of clinical research, with a special focus on health equity education. In the first year, the program graduated 11 students from the two-semester certificate program, eight of whom now hold positions as clinical research professionals. This article describes how leveraging the CTSA program helped NCCU build a framework for producing a highly trained, competent, and diverse workforce in clinical research responsive to the call for increased diversity in clinical trial participation.
Collapse
|
18
|
Mueller SH, Lai AG, Valkovskaya M, Michailidou K, Bolla MK, Wang Q, Dennis J, Lush M, Abu-Ful Z, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Augustinsson A, Baert T, Freeman LEB, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bogdanova NV, Bojesen SE, Bonanni B, Brenner H, Brucker SY, Buys SS, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Choi JY, Chung WK, Colonna SV, Cornelissen S, Couch FJ, Czene K, Daly MB, Devilee P, Dörk T, Dossus L, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Engel C, Evans DG, Fasching PA, Fletcher O, Flyger H, Gago-Dominguez M, Gao YT, García-Closas M, García-Sáenz JA, Genkinger J, Gentry-Maharaj A, Grassmann F, Guénel P, Gündert M, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Harkness EF, Harrington PA, Hartikainen JM, Hartman M, Hein A, Ho WK, Hooning MJ, Hoppe R, Hopper JL, Houlston RS, Howell A, Hunter DJ, Huo D, Ito H, Iwasaki M, Jakubowska A, Janni W, John EM, Jones ME, Jung A, Kaaks R, Kang D, Khusnutdinova EK, Kim SW, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Kwong A, Lacey JV, Lambrechts D, Le Marchand L, et alMueller SH, Lai AG, Valkovskaya M, Michailidou K, Bolla MK, Wang Q, Dennis J, Lush M, Abu-Ful Z, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Augustinsson A, Baert T, Freeman LEB, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bogdanova NV, Bojesen SE, Bonanni B, Brenner H, Brucker SY, Buys SS, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Choi JY, Chung WK, Colonna SV, Cornelissen S, Couch FJ, Czene K, Daly MB, Devilee P, Dörk T, Dossus L, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Engel C, Evans DG, Fasching PA, Fletcher O, Flyger H, Gago-Dominguez M, Gao YT, García-Closas M, García-Sáenz JA, Genkinger J, Gentry-Maharaj A, Grassmann F, Guénel P, Gündert M, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Harkness EF, Harrington PA, Hartikainen JM, Hartman M, Hein A, Ho WK, Hooning MJ, Hoppe R, Hopper JL, Houlston RS, Howell A, Hunter DJ, Huo D, Ito H, Iwasaki M, Jakubowska A, Janni W, John EM, Jones ME, Jung A, Kaaks R, Kang D, Khusnutdinova EK, Kim SW, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Kwong A, Lacey JV, Lambrechts D, Le Marchand L, Li J, Linet M, Lo WY, Long J, Lophatananon A, Mannermaa A, Manoochehri M, Margolin S, Matsuo K, Mavroudis D, Menon U, Muir K, Murphy RA, Nevanlinna H, Newman WG, Niederacher D, O'Brien KM, Obi N, Offit K, Olopade OI, Olshan AF, Olsson H, Park SK, Patel AV, Patel A, Perou CM, Peto J, Pharoah PDP, Plaseska-Karanfilska D, Presneau N, Rack B, Radice P, Ramachandran D, Rashid MU, Rennert G, Romero A, Ruddy KJ, Ruebner M, Saloustros E, Sandler DP, Sawyer EJ, Schmidt MK, Schmutzler RK, Schneider MO, Scott C, Shah M, Sharma P, Shen CY, Shu XO, Simard J, Surowy H, Tamimi RM, Tapper WJ, Taylor JA, Teo SH, Teras LR, Toland AE, Tollenaar RAEM, Torres D, Torres-Mejía G, Troester MA, Truong T, Vachon CM, Vijai J, Weinberg CR, Wendt C, Winqvist R, Wolk A, Wu AH, Yamaji T, Yang XR, Yu JC, Zheng W, Ziogas A, Ziv E, Dunning AM, Easton DF, Hemingway H, Hamann U, Kuchenbaecker KB. Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry. Genome Med 2023; 15:7. [PMID: 36703164 PMCID: PMC9878779 DOI: 10.1186/s13073-022-01152-5] [Show More Authors] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. METHODS We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. RESULTS In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10-6) and AC058822.1 (P = 1.47 × 10-4), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. CONCLUSIONS Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10-5), demonstrating the importance of diversifying study cohorts.
Collapse
Affiliation(s)
| | - Alvina G Lai
- Institute of Health Informatics, University College London, London, UK
| | | | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Zomoruda Abu-Ful
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, 35254, Haifa, Israel
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, 92617, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040, Minsk, Belarus
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, 222 42, Lund, Sweden
| | - Thais Baert
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000, Louvain, Belgium
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Javier Benitez
- Biomedical Network On Rare Diseases (CIBERER), 28029, Madrid, Spain
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
- Department of Oncology, Örebro University Hospital, 70185, Örebro, Sweden
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040, Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, 30625, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sara Y Brucker
- Department of Gynecology and Obstetrics, University of Tübingen, 72076, Tübingen, Germany
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, 36312, Vigo, Spain
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China
- Department of Molecular Pathology, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, 10032, USA
| | - Sarah V Colonna
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Sten Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), 69372, Lyon, France
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Arif B Ekici
- Institute of Human Genetics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107, Leipzig, Germany
- LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig, 04103, Leipzig, Germany
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Fundación Pœblica Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, 15706, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, 20032, China
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - José A García-Sáenz
- Medical Oncology Department, Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Jeanine Genkinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | | | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Health and Medical University, 14471, Potsdam, Germany
| | - Pascal Guénel
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, 94805, Villejuif, France
| | - Melanie Gündert
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), C08069120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lothar Haeberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Department of Oncology, 118 83, Sšdersjukhuset, Stockholm, Sweden
| | - Elaine F Harkness
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Nightingale and Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, M23 9LT, UK
- NIHR Manchester Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Patricia A Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Jaana M Hartikainen
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore, 119077, Singapore
- Department of Surgery, National University Health System, Singapore, 119228, Singapore
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Weang-Kee Ho
- Department of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Malaysia
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, 47500, Selangor, Malaysia
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, 3015 GD, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tübingen, 72074, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Dezheng Huo
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center Institute for Cancer Control, Tokyo, 104-0045, Japan
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, 71-252, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Wolfgang Janni
- Department of Gynaecology and Obstetrics, University Hospital Ulm, 89075, Ulm, Germany
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Daehee Kang
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, 450000, Russia
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul, 07442, Korea
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379, Oslo, Norway
| | - Katerina Kubelka-Sabit
- Department of Histopathology and Cytology, Clinical Hospital Acibadem Sistina, Skopje, 1000, Republic of North Macedonia
| | - Allison W Kurian
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
- Department of Surgery and Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, 91010, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, 3001, Louvain, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, 3000, Louvain, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Wing-Yee Lo
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tübingen, 72074, Tübingen, Germany
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sara Margolin
- Department of Oncology, 118 83, Sšdersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Sšdersjukhuset, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Keitaro Matsuo
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10, Heraklion, Greece
| | - Usha Menon
- Institute of Clinical Trials and Methodology, University College London, London, WC1V 6LJ, UK
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Cancer Control Research, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, 222 42, Lund, Sweden
| | - Sue K Park
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, 30303, USA
| | - Achal Patel
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", MASA, Skopje, 1000, Republic of North Macedonia
| | - Nadege Presneau
- School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Brigitte Rack
- Department of Gynaecology and Obstetrics, University Hospital Ulm, 89075, Ulm, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), 20133, Milan, Italy
| | - Dhanya Ramachandran
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, 54000, Pakistan
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, 35254, Haifa, Israel
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
| | - Kathryn J Ruddy
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Elinor J Sawyer
- School of Cancer and Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, SE1 9RT, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Michael O Schneider
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, 66205, USA
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- School of Public Health, China Medical University, Taichung, Taiwan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, G1V 4G2, Canada
| | - Harald Surowy
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), C08069120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - William J Tapper
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, 47500, Selangor, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, 30303, USA
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, 110231, Bogota, Colombia
| | - Gabriela Torres-Mejía
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, 94805, Villejuif, France
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joseph Vijai
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Camilla Wendt
- Department of Clinical Science and Education, Sšdersjukhuset, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, 90570, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, 90570, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, 751 05, Uppsala, Sweden
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center Institute for Cancer Control, Tokyo, 104-0045, Japan
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, 92617, USA
| | - Elad Ziv
- Department of Medicine, Diller Family Comprehensive Cancer Center, Institute for Human Genetics, UCSF Helen, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, University College London, London, UK
- University College London Hospitals Biomedical Research Centre (UCLH BRC), London, UK
- The Alan Turing Institute, London, UK
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Karoline B Kuchenbaecker
- Division of Psychiatry, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| |
Collapse
|
19
|
Cadena-Ullauri S, Paz-Cruz E, Tamayo-Trujillo R, Guevara-Ramírez P, Ruiz-Pozo V, Solis-Pazmino P, Garcia C, Godoy R, Lincango-Naranjo E, Zambrano AK. Identification of KIT and BRAF mutations in thyroid tissue using next-generation sequencing in an Ecuadorian patient: A case report. Front Oncol 2023; 12:1101530. [PMID: 36733350 PMCID: PMC9887188 DOI: 10.3389/fonc.2022.1101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Background The incidence of thyroid cancer has increased worldwide. Ecuador presents the highest incidence among Latin American countries and the second around the world. Genetic alteration is the driving force for thyroid tumorigenesis and progression. The change from valine (V) to glutamic acid (E) at codon 600 of the BRAF gene (BRAFVal600Glu) is the most commonly reported mutation in thyroid cancer. Moreover, the BRAF mutation is not the only mutation that has been correlated with TC. For instance, mutations and overexpression of the KIT gene has been associated with different types of cancer, including lung and colon cancer, and neuroblastoma. Case presentation A woman in her early fifties, self-identified as mestizo, from Otavalo, Imbabura-Ecuador had no systemic diseases and denied allergies, but she had a family history of a benign thyroid nodule. Physical examination revealed a thyroid gland enlargement. The fine-needle aspiration biopsy indicated papillary thyroid cancer. The patient underwent a successful total thyroidectomy with an excellent recovery and no additional treatments after surgery. Using Next-Generation sequencing a heterozygous mutation in the BRAF gene, causing an amino acid change Val600Glu was identified. Similarly, in the KIT gene, a heterozygous mutation resulting in an amino acid change Leu678Phe was detected. Moreover, an ancestry analysis was performed, and the results showed 3.1% African, 20.9% European, and 76% Native American ancestry. Conclusions This report represents the genetic characteristics of papillary thyroid cancer in an Ecuadorian woman with a mainly Native American ethnic component. Further studies of pathological variants are needed to determine if the combined demographic and molecular profiles are useful to develop targeted treatments focused on the Ecuadorian population.
Collapse
Affiliation(s)
- Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Paola Solis-Pazmino
- Surgery Group of Los Angeles, Department of Colorectal Surgery, Los Angeles, CA, United States,Instituto de la Tiroides y Enfermedades de Cabeza y Cuello (ITECC), Department of Head and Neck Surgery, Quito, Ecuador
| | - Cristhian Garcia
- Instituto de la Tiroides y Enfermedades de Cabeza y Cuello (ITECC), Department of Head and Neck Surgery, Quito, Ecuador
| | - Richard Godoy
- Instituto de la Tiroides y Enfermedades de Cabeza y Cuello (ITECC), Department of Head and Neck Surgery, Quito, Ecuador
| | - Eddy Lincango-Naranjo
- Instituto de la Tiroides y Enfermedades de Cabeza y Cuello (ITECC), Department of Head and Neck Surgery, Quito, Ecuador,Department of Teaching and Research, Hospital Vozandes, Quito, Ecuador,CaTaLiNA Research Initiative (Cáncer de tiroides en Latinoamérica), Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador,*Correspondence: Ana Karina Zambrano,
| |
Collapse
|
20
|
Khorshid Shamshiri A, Alidoust M, Hemmati Nokandei M, Pasdar A, Afzaljavan F. Genetic architecture of mammographic density as a risk factor for breast cancer: a systematic review. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1729-1747. [PMID: 36639603 DOI: 10.1007/s12094-022-03071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mammography Density (MD) is a potential risk marker that is influenced by genetic polymorphisms and can subsequently modulate the risk of breast cancer. This qualitative systematic review summarizes the genes and biological pathways involved in breast density and discusses the potential clinical implications in view of the genetic risk profile for breast density. METHODS The terms related to "Common genetic variations" and "Breast density" were searched in Scopus, PubMed, and Web of Science databases. Gene pathways analysis and assessment of protein interactions were also performed. RESULTS Eighty-six studies including 111 genes, reported a significant association between mammographic density in different populations. ESR1, IGF1, IGFBP3, and ZNF365 were the most prevalent genes. Moreover, estrogen metabolism, signal transduction, and prolactin signaling pathways were significantly related to the associated genes. Mammography density was an associated phenotype, and eight out of 111 genes, including COMT, CYP19A1, CYP1B1, ESR1, IGF1, IGFBP1, IGFBP3, and LSP1, were modifiers of this trait. CONCLUSION Genes involved in developmental processes and the evolution of secondary sexual traits play an important role in determining mammographic density. Due to the effect of breast tissue density on the risk of breast cancer, these genes may also be associated with breast cancer risk.
Collapse
Affiliation(s)
- Asma Khorshid Shamshiri
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Alidoust
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Hemmati Nokandei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Fahimeh Afzaljavan
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, 917794-8564, Iran.
| |
Collapse
|
21
|
Sreekar N, Shrestha S. Bioinformatic Evaluation of Features on Cis-regulatory Elements at 6q25.1. Bioinform Biol Insights 2023; 17:11779322231167971. [PMID: 37124129 PMCID: PMC10134125 DOI: 10.1177/11779322231167971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Eukaryotic non-coding regulatory features contribute significantly to cellular plasticity which on aberration leads to cellular malignancy. Enhancers are cis-regulatory elements that contribute to the development of resistance to endocrine therapy in estrogen receptor (ER)-positive breast cancer leading to poor clinical outcome. ER is vital for therapeutic targets in ER-positive breast cancer. Here, we review and report the different regulatory features present on ER with the objective to delineate potential mechanisms which may contribute to development of resistance. The UCSC Genome Browser, data mining, and bioinformatics tools were used to review enhancers, transcription factors (TFs), histone marks, long non-coding RNAs (lncRNAs), and variants residing in the non-coding region of the ER gene. We report 7 enhancers, 3 of which were rich in TF-binding sites and histone marks in a cell line-specific manner. Furthermore, some enhancers contain estrogen resistance variants and sites for lncRNA. Our review speculates putative models suggesting potential aberrations in gene regulation and expression if these regulatory landscapes and assemblies are altered. This review gives an interesting perspective in designing integrated in vitro studies including non-coding elements to study development of endocrine resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
| | - Smeeta Shrestha
- Smeeta Shrestha, Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 636921, Singapore.
| |
Collapse
|
22
|
Rey-Vargas L, Bejarano-Rivera LM, Mejia-Henao JC, Sua LF, Bastidas-Andrade JF, Ossa CA, Gutiérrez-Castañeda LD, Fejerman L, Sanabria-Salas MC, Serrano-Gómez SJ. Association of genetic ancestry with HER2, GRB7 AND estrogen receptor expression among Colombian women with breast cancer. Front Oncol 2022; 12:989761. [PMID: 36620598 PMCID: PMC9815522 DOI: 10.3389/fonc.2022.989761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background Our previous study reported higher mRNA levels of the human epidermal growth factor receptor 2 (HER2)-amplicon genes ERBB2 and GRB7 in estrogen receptor (ER)-positive breast cancer patients with relatively high Indigenous American (IA) ancestry from Colombia. Even though the protein expression of HER2 and GRB7 is highly correlated, they may also express independently, an event that could change the patients' prognosis. In this study, we aimed to explore the differences in ER, HER2 and GRB7 protein expression according to genetic ancestry, to further assess the clinical implications of this association. Methods We estimated genetic ancestry from non-tumoral breast tissue DNA and assessed tumoral protein expression of ER, HER2, and GRB7 by immunohistochemistry in a cohort of Colombian patients from different health institutions. We used binomial and multinomial logistic regression models to test the association between genetic ancestry and protein expression. Kaplan-Meier and log-rank tests were used to evaluate the effect of HER2/GRB7 co-expression on patients' survival. Results Our results show that patients with higher IA ancestry have higher odds of having HER2+/GRB7- breast tumors, compared to the HER2-/GRB7- subtype, and this association seems to be stronger among ER-positive tumors (ER+/HER2+/GRB7-: OR=3.04, 95% CI, 1.47-6.37, p<0.05). However, in the multivariate model this association was attenuated (OR=1.80, 95% CI, 0.72-4.44, p=0.19). On the other hand, it was observed that having a higher European ancestry patients presented lower odds of ER+/HER2+/GRB7- breast tumors, this association remained significant in the multivariate model (OR=0.36, 95% CI, 0.13 - 0.93, p= 0.0395). The survival analysis according to HER2/GRB7 co-expression did not show statistically significant differences in the overall survival and recurrence-free survival. Conclusions Our results suggest that Colombian patients with higher IA ancestry and a lower European fraction have higher odds of ER+/HER2+/GRB7- tumors compared to ER+/HER2-/GRB7- disease. However, this association does not seem to be associated with patients' overall or recurrence-free survival.
Collapse
Affiliation(s)
- Laura Rey-Vargas
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia,Doctoral Program in Biological Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Juan Carlos Mejia-Henao
- Oncological Pathology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia
| | - Luz F. Sua
- Department of Pathology and Laboratory Medicine, Fundación Valle del Lili, and Faculty of Health Sciences, Universidad ICESI, Cali, Colombia
| | | | | | - Luz Dary Gutiérrez-Castañeda
- Research Institute, Group of Basic Sciences in Health (CBS), Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Laura Fejerman
- Department of Public Health Sciences and Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | | | - Silvia J. Serrano-Gómez
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia,Research support and follow-up group, National Cancer Institute of Colombia, Bogotá, Colombia,*Correspondence: Silvia J. Serrano-Gómez,
| |
Collapse
|
23
|
Hughes E, Wagner S, Pruss D, Bernhisel R, Probst B, Abkevich V, Simmons T, Hullinger B, Judkins T, Rosenthal E, Roa B, Domchek SM, Eng C, Garber J, Gary M, Klemp J, Mukherjee S, Offit K, Olopade OI, Vijai J, Weitzel JN, Whitworth P, Yehia L, Gordon O, Pederson H, Kurian A, Slavin TP, Gutin A, Lanchbury JS. Development and Validation of a Breast Cancer Polygenic Risk Score on the Basis of Genetic Ancestry Composition. JCO Precis Oncol 2022; 6:e2200084. [PMID: 36331239 PMCID: PMC9666117 DOI: 10.1200/po.22.00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/11/2022] [Accepted: 09/08/2022] [Indexed: 08/12/2023] Open
Abstract
PURPOSE Polygenic risk scores (PRSs) for breast cancer (BC) risk stratification have been developed primarily in women of European ancestry. Their application to women of non-European ancestry has lagged because of the lack of a formal approach to incorporate genetic ancestry and ancestry-dependent variant frequencies and effect sizes. Here, we propose a multiple-ancestry PRS (MA-PRS) that addresses these issues and may be useful in the development of equitable PRSs across other cancers and common diseases. MATERIALS AND METHODS Women referred for hereditary cancer testing were divided into consecutive cohorts for development (n = 189,230) and for independent validation (n = 89,126). Individual genetic composition as fractions of three reference ancestries (African, East Asian, and European) was determined from ancestry-informative single-nucleotide polymorphisms. The MA-PRS is a combination of three ancestry-specific PRSs on the basis of genetic ancestral composition. Stratification of risk was evaluated by multivariable logistic regression models controlling for family cancer history. Goodness-of-fit analysis compared expected with observed relative risks by quantiles of the MA-PRS distribution. RESULTS In independent validation, the MA-PRS was significantly associated with BC risk in the full cohort (odds ratio, 1.43; 95% CI, 1.40 to 1.46; P = 8.6 × 10-308) and within each major ancestry. The top decile of the MA-PRS consistently identified patients with two-fold increased risk of developing BC. Goodness-of-fit tests showed that the MA-PRS was well calibrated and predicted BC risk accurately in the tails of the distribution for both European and non-European women. CONCLUSION The MA-PRS uses genetic ancestral composition to expand the utility of polygenic risk prediction to non-European women. Inclusion of genetic ancestry in polygenic risk prediction presents an opportunity for more personalized treatment decisions for women of varying and mixed ancestries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Susan M. Domchek
- Basser Center for BRCA, University of Pennsylvania, Philadelphia, PA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH
| | | | | | - Jennifer Klemp
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS
| | | | - Kenneth Offit
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Joseph Vijai
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Lamis Yehia
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Ora Gordon
- Providence Health and Services, Renton, WA
| | - Holly Pederson
- Medical Breast Services, Cleveland Clinic, Cleveland, OH
| | | | | | | | | |
Collapse
|
24
|
Reflection on Black and Ethnic Minority Participation in Clinical Trials. Clin Oncol (R Coll Radiol) 2022; 34:674-677. [PMID: 35989209 DOI: 10.1016/j.clon.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/18/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
|
25
|
Zavala VA, Casavilca-Zambrano S, Navarro-Vásquez J, Castañeda CA, Valencia G, Morante Z, Calderón M, Abugattas JE, Gómez H, Fuentes HA, Liendo-Picoaga R, Cotrina JM, Monge C, Neciosup SP, Huntsman S, Hu D, Sánchez SE, Williams MA, Núñez-Marrero A, Godoy L, Hechmer A, Olshen AB, Dutil J, Ziv E, Zabaleta J, Gelaye B, Vásquez J, Gálvez-Nino M, Enriquez-Vera D, Vidaurre T, Fejerman L. Association between Ancestry-Specific 6q25 Variants and Breast Cancer Subtypes in Peruvian Women. Cancer Epidemiol Biomarkers Prev 2022; 31:1602-1609. [PMID: 35654312 PMCID: PMC9662925 DOI: 10.1158/1055-9965.epi-22-0069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Breast cancer incidence in the United States is lower in Hispanic/Latina (H/L) compared with African American/Black or Non-Hispanic White women. An Indigenous American breast cancer-protective germline variant (rs140068132) has been reported near the estrogen receptor 1 gene. This study tests the association of rs140068132 and other polymorphisms in the 6q25 region with subtype-specific breast cancer risk in H/Ls of high Indigenous American ancestry. METHODS Genotypes were obtained for 5,094 Peruvian women with (1,755) and without (3,337) breast cancer. Associations between genotype and overall and subtype-specific risk for the protective variant were tested using logistic regression models and conditional analyses, including other risk-associated polymorphisms in the region. RESULTS We replicated the reported association between rs140068132 and breast cancer risk overall [odds ratio (OR), 0.53; 95% confidence interval (CI), 0.47-0.59], as well as the lower odds of developing hormone receptor negative (HR-) versus HR+ disease (OR, 0.77; 95% CI, 0.61-0.97). Models, including HER2, showed further heterogeneity with reduced odds for HR+HER2+ (OR, 0.68; 95% CI, 0.51-0.92), HR-HER2+ (OR, 0.63; 95% CI, 0.44-0.90) and HR-HER2- (OR, 0.77; 95% CI, 0.56-1.05) compared with HR+HER2-. Inclusion of other risk-associated variants did not change these observations. CONCLUSIONS The rs140068132 polymorphism is associated with decreased risk of breast cancer in Peruvians and is more protective against HR- and HER2+ diseases independently of other breast cancer-associated variants in the 6q25 region. IMPACT These results could inform functional analyses to understand the mechanism by which rs140068132-G reduces risk of breast cancer development in a subtype-specific manner. They also illustrate the importance of including diverse individuals in genetic studies.
Collapse
Affiliation(s)
- Valentina A. Zavala
- Department of Public Health Sciences, University of California Davis, Davis, California
| | | | | | | | | | - Zaida Morante
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | | | - Henry Gómez
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | | | | | - Claudia Monge
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | - Scott Huntsman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Donglei Hu
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Sixto E. Sánchez
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru and Asociación Civil Proyectos en Salud (PROESA), Lima, Peru
| | - Michelle A. Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Angel Núñez-Marrero
- Department of Biochemistry, Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Lenin Godoy
- Department of Biochemistry, Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Aaron Hechmer
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Adam B. Olshen
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Julie Dutil
- Department of Biochemistry, Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center LSUHSC, New Orleans, Louisiana
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jule Vásquez
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | | | | | - Laura Fejerman
- Department of Public Health Sciences, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
- Corresponding Author: Laura Fejerman, UC Davis Comprehensive Cancer Center, 451 Health Sciences Drive, Davis, CA 95616. Phone: 530-754-1690; E-mail:
| |
Collapse
|
26
|
Fejerman L, Ramirez AG, Nápoles AM, Gomez SL, Stern MC. Cancer Epidemiology in Hispanic Populations: What Have We Learned and Where Do We Need to Make Progress? Cancer Epidemiol Biomarkers Prev 2022; 31:932-941. [PMID: 35247883 DOI: 10.1158/1055-9965.epi-21-1303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The Hispanic/Latino(x) population (H/L) in the United States of America is heterogeneous and fast growing. Cancer is the number one cause of death among H/Ls, accounting for 21% of deaths. Whereas for the most common cancers, incidence rates are lower in H/Ls compared with non-H/L White (NHW) individuals, H/Ls have a higher incidence of liver, stomach, cervical, penile, and gallbladder cancers. H/L patients tend to be diagnosed at more advanced stages for breast, colorectal, prostate, and lung cancers, and melanoma compared with NHW individuals. Etiologic and cancer outcomes research among H/Ls lags other populations. In this review, we provide a summary of challenges, opportunities, and research priorities related to cancer etiology, cancer outcomes, and survivorship to make progress in addressing scientific gaps. Briefly, we prioritize the need for more research on determinants of obesity, nonalcoholic fatty liver disease and its progression to liver cancer, stomach and gallbladder cancers, and pediatric acute lymphoblastic leukemia. We emphasize the need to improve cancer screening, early detection of cancer, and survivorship care. We highlight critical resources needed to make progress in cancer epidemiologic studies among H/L populations, including the importance of training the next generation of cancer epidemiologists conducting research in H/Ls.
Collapse
Affiliation(s)
- Laura Fejerman
- Department of Public Health Sciences, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Amelie G Ramirez
- Department of Population Health Sciences, School of Medicine, Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Anna María Nápoles
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, NIH, Bethesda, Maryland
| | - Scarlett Lin Gomez
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Department of Urology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| |
Collapse
|
27
|
Morrow M, Newman LA. Disparities in Cancer Care: Educational Initiatives. Ann Surg Oncol 2022; 29:2136-2137. [PMID: 35099656 PMCID: PMC8802537 DOI: 10.1245/s10434-021-11095-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Monica Morrow
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medicine, New York, NY, USA
| | - Lisa A Newman
- Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Wang Q, Sun J, Wei D. Two‐Dimensional
Metal Organic Frameworks and Covalent Organic Frameworks. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| | - Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| |
Collapse
|
29
|
Kurian AW, Hughes E, Simmons T, Bernhisel R, Probst B, Meek S, Caswell-Jin JL, John EM, Lanchbury JS, Slavin TP, Wagner S, Gutin A, Rohan TE, Shadyab AH, Manson JE, Lane D, Chlebowski RT, Stefanick ML. Performance of the IBIS/Tyrer-Cuzick model of breast cancer risk by race and ethnicity in the Women's Health Initiative. Cancer 2021; 127:3742-3750. [PMID: 34228814 DOI: 10.1002/cncr.33767] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The IBIS/Tyrer-Cuzick model is used clinically to guide breast cancer screening and prevention, but was developed primarily in non-Hispanic White women. Little is known about its long-term performance in a racially/ethnically diverse population. METHODS The Women's Health Initiative study enrolled postmenopausal women from 1993-1998. Women were included who were aged <80 years at enrollment with no prior breast cancer or mastectomy and with data required for IBIS/Tyrer-Cuzick calculation (weight; height; ages at menarche, first birth, and menopause; menopausal hormone therapy use; and family history of breast or ovarian cancer). Calibration was assessed by the ratio of observed breast cancer cases to the number expected by the IBIS/Tyrer-Cuzick model (O/E; calculated as the sum of cumulative hazards). Differential discrimination was tested for by self-reported race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, Asian or Pacific Islander, and American Indian or Alaskan Native) using Cox regression. Exploratory analyses, including simulation of a protective single-nucleotide polymorphism (SNP), rs140068132 at 6q25, were performed. RESULTS During follow-up (median 18.9 years, maximum 23.4 years), 6783 breast cancer cases occurred among 90,967 women. IBIS/Tyrer-Cuzick was well calibrated overall (O/E ratio = 0.95; 95% CI, 0.93-0.97) and in most racial/ethnic groups, but overestimated risk for Hispanic women (O/E ratio = 0.75; 95% CI, 0.62-0.90). Discrimination did not differ by race/ethnicity. Exploratory simulation of the protective SNP suggested improved IBIS/Tyrer-Cuzick calibration for Hispanic women (O/E ratio = 0.80; 95% CI, 0.66-0.96). CONCLUSIONS The IBIS/Tyrer-Cuzick model is well calibrated for several racial/ethnic groups over 2 decades of follow-up. Studies that incorporate genetic and other risk factors, particularly among Hispanic women, are essential to improve breast cancer-risk prediction.
Collapse
Affiliation(s)
- Allison W Kurian
- Department of Medicine, Stanford University School of Medicine, Stanford, California.,Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Aladdin H Shadyab
- Department of Family Medicine and Public Health, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dorothy Lane
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Rowan T Chlebowski
- Department of Medicine, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Marcia L Stefanick
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
30
|
Batai K, Hooker S, Kittles RA. Leveraging genetic ancestry to study health disparities. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:363-375. [PMID: 32935870 PMCID: PMC8246846 DOI: 10.1002/ajpa.24144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/22/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Research to understand human genomic variation and its implications in health has great potential to contribute in the reduction of health disparities. Biological anthropology can play important roles in genomics and health disparities research using a biocultural approach. This paper argues that racial/ethnic categories should not be used as a surrogate for sociocultural factors or global genomic clusters in biomedical research or clinical settings, because of the high genetic heterogeneity that exists within traditional racial/ethnic groups. Genetic ancestry is used to show variation in ancestral genomic contributions to recently admixed populations in the United States, such as African Americans and Hispanic/Latino Americans. Genetic ancestry estimates are also used to examine the relationship between ancestry-related biological and sociocultural factors affecting health disparities. To localize areas of genomes that contribute to health disparities, admixture mapping and genome-wide association studies (GWAS) are often used. Recent GWAS have identified many genetic variants that are highly differentiated among human populations that are associated with disease risk. Some of these are population-specific variants. Many of these variants may impact disease risk and help explain a portion of the difference in disease burden among racial/ethnic groups. Genetic ancestry is also of particular interest in precision medicine and disparities in drug efficacy and outcomes. By using genetic ancestry, we can learn about potential biological differences that may contribute to the heterogeneity observed across self-reported racial groups.
Collapse
Affiliation(s)
- Ken Batai
- Department of UrologyUniversity of ArizonaTucsonArizonaUSA
| | - Stanley Hooker
- Division of Health Equities, Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Rick A. Kittles
- Division of Health Equities, Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
31
|
Martini R, Newman L, Davis M. Breast cancer disparities in outcomes; unmasking biological determinants associated with racial and genetic diversity. Clin Exp Metastasis 2021; 39:7-14. [PMID: 33950410 DOI: 10.1007/s10585-021-10087-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/20/2021] [Indexed: 12/28/2022]
Abstract
Breast cancer (BC) remains a leading cause of death among women today, and mortality among African American women in the US remains 40% higher than that of their White counterparts, despite reporting a similar incidence of disease over recent years. Previous meta-analyses and studies of BC mortality highlight that tumor characteristics, rather than socio-economic factors, drive excess mortality among African American women with BC. This is further complicated by the heterogeneity of BC, where BC can more appropriately be defined as a collection of diseases rather than a single disease. Molecular phenotyping and gene expression profiling distinguish subtypes of BC, and these subtypes have distinct prognostic outcomes. Racial disparities transcend these subtype-specific outcomes, where African American women suffer higher mortality rates among all BC subtypes. The most striking differences are observed among the most aggressive molecular subtype, triple-negative BC (TNBC), where incidence and mortality are significantly higher among African American women compared to all other race/ethnicity groups. We and others have shown that this predisposition for triple-negative disease may be linked to shared west African ancestry, where the highest rates of TNBC are observed among west African nations, and these high frequencies follow into the African diaspora. Genetic and molecular characterization of breast tumors among subtypes and racial/ethnic groups have begun to identify targets with future therapeutic potential, but more work needs to be done to identify targeted treatment options for all women who suffer from BC.
Collapse
Affiliation(s)
- Rachel Martini
- Department of Surgery, Weill Cornell Medical College, 420 E 70th Street, New York City, NY, 10065, USA.,Department of Genetics, University of Georgia, Athens, GA, USA
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medical College, 420 E 70th Street, New York City, NY, 10065, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medical College, 420 E 70th Street, New York City, NY, 10065, USA.
| |
Collapse
|
32
|
Conley CC, Castro-Figueroa EM, Moreno L, Dutil J, García JD, Burgos C, Ricker C, Kim J, Graves KD, Ashing KT, Quinn GP, Soliman H, Vadaparampil ST. A pilot randomized trial of an educational intervention to increase genetic counseling and genetic testing among Latina breast cancer survivors. J Genet Couns 2021; 30:394-405. [PMID: 32936981 PMCID: PMC7960565 DOI: 10.1002/jgc4.1324] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023]
Abstract
Latinas are less likely to participate in genetic counseling (GC) and genetic testing (GT) than non-Hispanic Whites. A multisite, randomized pilot study tested a culturally targeted educational intervention to increase uptake of GC/GT among Latina breast cancer (BC) survivors (N = 52). Participants were recruited in Tampa, FL and Ponce, PR and randomized to: (a) fact sheet about BC survivorship (control) or (b) a culturally targeted educational booklet about GC/GT (intervention). Participants in the intervention condition were also offered no-cost telephone GC followed by free GT with mail-based saliva sample collection. Participants self-reported hereditary breast and ovarian cancer (HBOC) knowledge and emotional distress at baseline and 1- and 3-month follow-ups. We used logistic regression to examine differences in GC/GT uptake by study arm (primary outcome) and repeated measures ANOVA to examine the effects of study arm and time on HBOC knowledge and emotional distress (secondary outcomes). Compared to the control arm, intervention participants were more likely to complete GC (ORIntervention = 13.92, 95% CI = 3.06-63.25, p < .01) and GT (ORIntervention = 12.93, 95% CI = 2.82-59.20, p < .01). Study site did not predict uptake of GC (p = .08) but Ponce participants were more likely to complete GT (ORPonce = 4.53, 95% CI = 1.04-19.72, p = .04). ANOVAs demonstrated an increase in HBOC knowledge over time across both groups (F(2,88) = 12.24, p < .01, ηp2 = 0.22). We also found a significant interaction of study arm and time, such that intervention participants demonstrated a greater and sustained (to the 3-month follow-up) increase in knowledge than control participants (F(2,88) = 3.66, p = .03, ηp2 = 0.08). No other main or interaction effects were significant (all p's> .15). Study findings demonstrate the potential of our culturally targeted print intervention. Lessons learned from this multisite pilot study for enhancing GC/GT in Latinas include the need to attend to both access to GC/GT and individual factors such as attitudes and knowledge.
Collapse
Affiliation(s)
- Claire C. Conley
- Moffitt Cancer Center, Tampa, FL
- Georgetown Lombardi Cancer Center, Washington, DC
| | | | | | | | | | | | - Charité Ricker
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | | | | | | | | | | | | |
Collapse
|
33
|
Zavala VA, Bracci PM, Carethers JM, Carvajal-Carmona L, Coggins NB, Cruz-Correa MR, Davis M, de Smith AJ, Dutil J, Figueiredo JC, Fox R, Graves KD, Gomez SL, Llera A, Neuhausen SL, Newman L, Nguyen T, Palmer JR, Palmer NR, Pérez-Stable EJ, Piawah S, Rodriquez EJ, Sanabria-Salas MC, Schmit SL, Serrano-Gomez SJ, Stern MC, Weitzel J, Yang JJ, Zabaleta J, Ziv E, Fejerman L. Cancer health disparities in racial/ethnic minorities in the United States. Br J Cancer 2021; 124:315-332. [PMID: 32901135 PMCID: PMC7852513 DOI: 10.1038/s41416-020-01038-6] [Citation(s) in RCA: 573] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
There are well-established disparities in cancer incidence and outcomes by race/ethnicity that result from the interplay between structural, socioeconomic, socio-environmental, behavioural and biological factors. However, large research studies designed to investigate factors contributing to cancer aetiology and progression have mainly focused on populations of European origin. The limitations in clinicopathological and genetic data, as well as the reduced availability of biospecimens from diverse populations, contribute to the knowledge gap and have the potential to widen cancer health disparities. In this review, we summarise reported disparities and associated factors in the United States of America (USA) for the most common cancers (breast, prostate, lung and colon), and for a subset of other cancers that highlight the complexity of disparities (gastric, liver, pancreas and leukaemia). We focus on populations commonly identified and referred to as racial/ethnic minorities in the USA-African Americans/Blacks, American Indians and Alaska Natives, Asians, Native Hawaiians/other Pacific Islanders and Hispanics/Latinos. We conclude that even though substantial progress has been made in understanding the factors underlying cancer health disparities, marked inequities persist. Additional efforts are needed to include participants from diverse populations in the research of cancer aetiology, biology and treatment. Furthermore, to eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.
Collapse
Affiliation(s)
- Valentina A Zavala
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John M Carethers
- Departments of Internal Medicine and Human Genetics, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Luis Carvajal-Carmona
- University of California Davis Comprehensive Cancer Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | | | - Marcia R Cruz-Correa
- Department of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Melissa Davis
- Division of Breast Surgery, Department of Surgery, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rena Fox
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kristi D Graves
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Scarlett Lin Gomez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Llera
- Laboratorio de Terapia Molecular y Celular, IIBBA, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lisa Newman
- Division of Breast Surgery, Department of Surgery, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
- Interdisciplinary Breast Program, New York-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Tung Nguyen
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nynikka R Palmer
- Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California, San Francisco, San Francisco, CA, USA
| | - Eliseo J Pérez-Stable
- Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Office of the Director, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Sorbarikor Piawah
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Erik J Rodriquez
- Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Silvia J Serrano-Gomez
- Grupo de investigación en biología del cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Mariana C Stern
- Departments of Preventive Medicine and Urology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey Weitzel
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center LSUHSC, New Orleans, LA, USA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Fejerman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Slanař O, Hronová K, Bartošová O, Šíma M. Recent advances in the personalized treatment of estrogen receptor-positive breast cancer with tamoxifen: a focus on pharmacogenomics. Expert Opin Drug Metab Toxicol 2020; 17:307-321. [PMID: 33320718 DOI: 10.1080/17425255.2021.1865310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Tamoxifen is still an important drug in hormone-dependent breast cancer therapy. Personalization of its clinical use beyond hormone receptor positivity could improve the substantial variability of the treatment response.Areas covered: The overview of the current evidence for the treatment personalization using therapeutic drug monitoring, or using genetic biomarkers including CYP2D6 is provided. Although many studies focused on the PK aspects or the impact of CYP2D6 variability the translation into clinical routine is not clearly defined due to the inconsistent clinical outcome data.Expert opinion: We believe that at least the main candidate factors, i.e. CYP2D6 polymorphism, CYP2D6 inhibition, endoxifen serum levels may become important predictors of clinical relevance for tamoxifen treatment personalization in the future. To achieve this aim, however, further research should take into consideration more precise characterization of the disease, epigenetic factors and also utilize an appropriately powered multifactorial approach instead of a single gene evaluating studies.
Collapse
Affiliation(s)
- Ondřej Slanař
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Karolína Hronová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Olga Bartošová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
35
|
Sergesketter AR, Thomas SM, Parrilla Castellar ER, Fayanju OM, Menendez C, Hwang ES, Plichta JK. Do Histopathology and Clinical Outcomes of Breast Atypia Vary by Race/Ethnicity? J Surg Res 2020; 255:205-215. [PMID: 32563761 PMCID: PMC7541625 DOI: 10.1016/j.jss.2020.05.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND The clinical behavior of breast cancer varies by racial and ethnic makeup (REM), but the impact of REM on the clinical outcomes of breast atypia remains understudied. We examined the impact of REM on risk of underlying or subsequent carcinoma following a diagnosis of breast atypia. METHODS In this retrospective, single-institution chart review, adult women diagnosed with breast atypia (atypical ductal hyperplasia, atypical lobular hyperplasia, or lobular carcinoma in situ) were stratified by REM. Regression modeling was used to estimate risk of underlying or subsequent carcinoma. RESULTS We identified 539 patients with breast atypia, including 15 Hispanic (2.8%), 127 non-Hispanic black (23.6%), and 397 non-Hispanic white women (73.7%). Diagnoses included 75.1% atypical ductal hyperplasia (n = 405), 4.6% atypical lobular hyperplasia (n = 25), and 20.2% lobular carcinoma in situ (n = 109). Rates for each type of atypia did not vary by REM (P = 0.33). Of those with atypia on needle biopsy, the rate of underlying carcinoma at excision was 17.3%. After adjustment, REM was not associated with greater risk for carcinoma at excision (P = 0.41). Of those with atypia alone on surgical excision, the rate of a subsequent carcinoma diagnosis was 15.4% (median follow-up 49 mo). REM was not associated with a long-term risk for carcinoma (P = 0.37) or differences in time to subsequent carcinoma (log-rank P = 0.52). Chemoprevention uptake rates were low (10.6%), especially among Hispanic (0%) and non-Hispanic black (3.8%) patients (P = 0.01). CONCLUSIONS Among patients with atypia, REM does not appear to influence type of histologic atypia, risk for carcinoma, or clinical outcome, despite differences in chemoprevention rates.
Collapse
Affiliation(s)
| | - Samantha M Thomas
- Duke Cancer Institute, Durham, North Carolina; Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina
| | | | - Oluwadamilola M Fayanju
- Duke University Medical Center, Department of Surgery, Durham, North Carolina; Duke Cancer Institute, Durham, North Carolina; Durham VA Medical Center, Department of Surgery, Durham, North Carolina
| | - Carolyn Menendez
- Duke University Medical Center, Department of Surgery, Durham, North Carolina; Duke Cancer Institute, Durham, North Carolina
| | - E Shelley Hwang
- Duke University Medical Center, Department of Surgery, Durham, North Carolina; Duke Cancer Institute, Durham, North Carolina
| | - Jennifer K Plichta
- Duke University Medical Center, Department of Surgery, Durham, North Carolina; Duke Cancer Institute, Durham, North Carolina.
| |
Collapse
|
36
|
Tuazon AMDA, Lott P, Bohórquez M, Benavides J, Ramirez C, Criollo A, Estrada-Florez A, Mateus G, Velez A, Carmona J, Olaya J, Garcia E, Polanco-Echeverry G, Stultz J, Alvarez C, Tapia T, Ashton-Prolla P, Vega A, Lazaro C, Tornero E, Martinez-Bouzas C, Infante M, De La Hoya M, Diez O, Browning BL, Rannala B, Teixeira MR, Carvallo P, Echeverry M, Carvajal-Carmona LG. Haplotype analysis of the internationally distributed BRCA1 c.3331_3334delCAAG founder mutation reveals a common ancestral origin in Iberia. Breast Cancer Res 2020; 22:108. [PMID: 33087180 PMCID: PMC7579869 DOI: 10.1186/s13058-020-01341-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/16/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The BRCA1 c.3331_3334delCAAG founder mutation has been reported in hereditary breast and ovarian cancer families from multiple Hispanic groups. We aimed to evaluate BRCA1 c.3331_3334delCAAG haplotype diversity in cases of European, African, and Latin American ancestry. METHODS BC mutation carrier cases from Colombia (n = 32), Spain (n = 13), Portugal (n = 2), Chile (n = 10), Africa (n = 1), and Brazil (n = 2) were genotyped with the genome-wide single nucleotide polymorphism (SNP) arrays to evaluate haplotype diversity around BRCA1 c.3331_3334delCAAG. Additional Portuguese (n = 13) and Brazilian (n = 18) BC mutation carriers were genotyped for 15 informative SNPs surrounding BRCA1. Data were phased using SHAPEIT2, and identical by descent regions were determined using BEAGLE and GERMLINE. DMLE+ was used to date the mutation in Colombia and Iberia. RESULTS The haplotype reconstruction revealed a shared 264.4-kb region among carriers from all six countries. The estimated mutation age was ~ 100 generations in Iberia and that it was introduced to South America early during the European colonization period. CONCLUSIONS Our results suggest that this mutation originated in Iberia and later introduced to Colombia and South America at the time of Spanish colonization during the early 1500s. We also found that the Colombian mutation carriers had higher European ancestry, at the BRCA1 gene harboring chromosome 17, than controls, which further supported the European origin of the mutation. Understanding founder mutations in diverse populations has implications in implementing cost-effective, ancestry-informed screening.
Collapse
Affiliation(s)
| | - Paul Lott
- Genome Center, University of California Davis, Davis, CA USA
| | | | | | | | | | | | | | - Alejandro Velez
- Hospital Pablo Tobon Uribe, Medellín, Colombia
- Dinamica IPS, Medellín, Colombia
| | | | - Justo Olaya
- Hospital Universitario Hernando Moncaleano Perdomo, Neiva, Colombia
| | - Elisha Garcia
- Genome Center, University of California Davis, Davis, CA USA
| | | | - Jacob Stultz
- Genome Center, University of California Davis, Davis, CA USA
| | | | - Teresa Tapia
- Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Ashton-Prolla
- Department of Genetics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Post-graduate Course in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Conxi Lazaro
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Eva Tornero
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Mar Infante
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Valladolid, Spain
| | - Miguel De La Hoya
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos. IdISSC (Instituto de Investigación Sanitaria San Carlos), Madrid, Spain
| | - Orland Diez
- Grupo de Cáncer Hereditario, Instituto Oncológico Vall d’Hebron (VHIO), Madrid, Spain
| | - Brian L. Browning
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA USA
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California Davis, Davis, CA USA
| | - Manuel R. Teixeira
- Portuguese Oncology Institute of Porto (IPO Porto) and Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Pilar Carvallo
- Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Luis G. Carvajal-Carmona
- Genome Center, University of California Davis, Davis, CA USA
- Division de Investigaciones, Fundacion de Genética y Genómica, Ibague, Colombia
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
37
|
Palmer JR. Polygenic Risk Scores for Breast Cancer Risk Prediction: Lessons Learned and Future Opportunities. J Natl Cancer Inst 2020; 112:555-556. [PMID: 31553456 PMCID: PMC7301152 DOI: 10.1093/jnci/djz176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Julie R Palmer
- Correspondence to: Julie R. Palmer, ScD, MPH, Slone Epidemiology Center at Boston University, 72 E Concord St, L-7, Boston, MA 02118 (e-mail: )
| |
Collapse
|
38
|
Shieh Y, Fejerman L, Lott PC, Marker K, Sawyer SD, Hu D, Huntsman S, Torres J, Echeverry M, Bohórquez ME, Martínez-Chéquer JC, Polanco-Echeverry G, Estrada-Flórez AP, Haiman CA, John EM, Kushi LH, Torres-Mejía G, Vidaurre T, Weitzel JN, Zambrano SC, Carvajal-Carmona LG, Ziv E, Neuhausen SL. A Polygenic Risk Score for Breast Cancer in US Latinas and Latin American Women. J Natl Cancer Inst 2020; 112:590-598. [PMID: 31553449 PMCID: PMC7301155 DOI: 10.1093/jnci/djz174] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/23/2019] [Accepted: 09/04/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND More than 180 single nucleotide polymorphisms (SNPs) associated with breast cancer susceptibility have been identified; these SNPs can be combined into polygenic risk scores (PRS) to predict breast cancer risk. Because most SNPs were identified in predominantly European populations, little is known about the performance of PRS in non-Europeans. We tested the performance of a 180-SNP PRS in Latinas, a large ethnic group with variable levels of Indigenous American, European, and African ancestry. METHODS We conducted a pooled case-control analysis of US Latinas and Latin American women (4658 cases and 7622 controls). We constructed a 180-SNP PRS consisting of SNPs associated with breast cancer risk (P < 5 × 10-8). We evaluated the association between the PRS and breast cancer risk using multivariable logistic regression, and assessed discrimination using an area under the receiver operating characteristic curve. We also assessed PRS performance across quartiles of Indigenous American genetic ancestry. All statistical tests were two-sided. RESULTS Of 180 SNPs tested, 142 showed directionally consistent associations compared with European populations, and 39 were nominally statistically significant (P < .05). The PRS was associated with breast cancer risk, with an odds ratio per SD increment of 1.58 (95% confidence interval [CI = 1.52 to 1.64) and an area under the receiver operating characteristic curve of 0.63 (95% CI = 0.62 to 0.64). The discrimination of the PRS was similar between the top and bottom quartiles of Indigenous American ancestry. CONCLUSIONS The 180-SNP PRS predicts breast cancer risk in Latinas, with similar performance as reported for Europeans. The performance of the PRS did not vary substantially according to Indigenous American ancestry.
Collapse
Affiliation(s)
- Yiwey Shieh
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Laura Fejerman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Paul C Lott
- UC Davis Genome Center, University of California, Davis, Davis, CA
| | - Katie Marker
- School of Public Health, University of California, Berkeley; Berkeley, CA
| | | | - Donglei Hu
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Scott Huntsman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Magdalena Echeverry
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Mabel E Bohórquez
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | | | | | - Ana P Estrada-Flórez
- UC Davis Genome Center, University of California, Davis, Davis, CA
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | | | - Christopher A Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Esther M John
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Lawrence H Kushi
- UC Davis Genome Center, University of California, Davis, Davis, CA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | | | | - Jeffrey N Weitzel
- Division of Clinical Genetics, City of Hope National Medical Center, Duarte, CA
| | | | - Luis G Carvajal-Carmona
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA
- Population Science and Health Disparities Program, University of California Davis Comprehensive Cancer Center, Sacramento, CA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
39
|
Abstract
Purpose of the review Breast cancer incidence and mortality rates are lower in some Hispanic/Latino subpopulations compared to Non-Hispanic White women. However, studies suggest that the risk of breast cancer-specific mortality is higher in US Hispanics/Latinas. In this review we summarized current knowledge on factors associated with breast cancer incidence and risk of mortality in women of Hispanic/Latino origin. Recent findings Associative studies have proposed a multiplicity of factors likely contributing to differences in breast cancer incidence and survival between population groups, including socioeconomic/sociodemographic factors, lifestyle choices as well as access to and quality of care. Reports of association between global genetic ancestry overall as well as subtype-specific breast cancer risk among Hispanic/Latinas suggest that incidence and subtype distribution could result from differential exposure to environmental and lifestyle related factors correlated with genetic ancestry as well as germline genetic variation. Summary Hispanic/Latino in the United States have been largely underrepresented in cancer research. It is important to implement inclusive programs that facilitate the access of this population to health services and that also include education programs for the community on the importance of screening. In addition, it is important to continue promoting the inclusion of Hispanics/Latinos in genomic studies that allow understanding the biological behavior of this disease in the context of all human genetic diversity.
Collapse
|
40
|
Marker KM, Zavala VA, Vidaurre T, Lott PC, Vásquez JN, Casavilca-Zambrano S, Calderón M, Abugattas JE, Gómez HL, Fuentes HA, Picoaga RL, Cotrina JM, Neciosup SP, Castañeda CA, Morante Z, Valencia F, Torres J, Echeverry M, Bohórquez ME, Polanco-Echeverry G, Estrada-Florez AP, Serrano-Gómez SJ, Carmona-Valencia JA, Alvarado-Cabrero I, Sanabria-Salas MC, Velez A, Donado J, Song S, Cherry D, Tamayo LI, Huntsman S, Hu D, Ruiz-Cordero R, Balassanian R, Ziv E, Zabaleta J, Carvajal-Carmona L, Fejerman L. Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer Is Associated with Indigenous American Ancestry in Latin American Women. Cancer Res 2020; 80:1893-1901. [PMID: 32245796 PMCID: PMC7202960 DOI: 10.1158/0008-5472.can-19-3659] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/11/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Women of Latin American origin in the United States are more likely to be diagnosed with advanced breast cancer and have a higher risk of mortality than non-Hispanic White women. Studies in U.S. Latinas and Latin American women have reported a high incidence of HER2 positive (+) tumors; however, the factors contributing to this observation are unknown. Genome-wide genotype data for 1,312 patients from the Peruvian Genetics and Genomics of Breast Cancer Study (PEGEN-BC) were used to estimate genetic ancestry. We tested the association between HER2 status and genetic ancestry using logistic and multinomial logistic regression models. Findings were replicated in 616 samples from Mexico and Colombia. Average Indigenous American (IA) ancestry differed by subtype. In multivariate models, the odds of having an HER2+ tumor increased by a factor of 1.20 with every 10% increase in IA ancestry proportion (95% CI, 1.07-1.35; P = 0.001). The association between HER2 status and IA ancestry was independently replicated in samples from Mexico and Colombia. Results suggest that the high prevalence of HER2+ tumors in Latinas could be due in part to the presence of population-specific genetic variant(s) affecting HER2 expression in breast cancer. SIGNIFICANCE: The positive association between Indigenous American genetic ancestry and HER2+ breast cancer suggests that the high incidence of HER2+ subtypes in Latinas might be due to population and subtype-specific genetic risk variants.
Collapse
Affiliation(s)
- Katie M Marker
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
- Division of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, California
| | - Valentina A Zavala
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Paul C Lott
- UC Davis Genome Center, University of California, Davis, Davis, California
| | | | | | | | | | - Henry L Gómez
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Hugo A Fuentes
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | | | - Jose M Cotrina
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | | | | | - Zaida Morante
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | | | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Instituto Mexicano del Seguro Social; México City, México
| | - Magdalena Echeverry
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Mabel E Bohórquez
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | | | - Ana P Estrada-Florez
- UC Davis Genome Center, University of California, Davis, Davis, California
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Silvia J Serrano-Gómez
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | | | | | - Alejandro Velez
- Dinamica IPS, Medellín, Colombia
- Hospital Pablo Tobon Uribe, Medellín, Colombia
| | | | - Sikai Song
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Daniel Cherry
- Department of Medicine, University of California San Diego, San Diego, California
| | - Lizeth I Tamayo
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Scott Huntsman
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Donglei Hu
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Ronald Balassanian
- Department of Pathology, University of California, San Francisco, California
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, Louisiana
- Department of Pediatrics, LSUHSC, New Orleans, Louisiana
| | | | - Laura Fejerman
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
41
|
Chang H, Yao S, Tritchler D, Hullar MA, Lampe JW, Thompson LU, McCann SE. Genetic Variation in Steroid and Xenobiotic Metabolizing Pathways and Enterolactone Excretion Before and After Flaxseed Intervention in African American and European American Women. Cancer Epidemiol Biomarkers Prev 2020; 28:265-274. [PMID: 30709839 DOI: 10.1158/1055-9965.epi-18-0826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Metabolism and excretion of the phytoestrogen enterolactone (ENL), which has been associated with breast cancer risk, may be affected by variation in steroid hormone and xenobiotic-metabolizing genes. METHODS We conducted a randomized, crossover flaxseed intervention study in 252 healthy, postmenopausal women [137 European ancestry (EA) and 115 African ancestry (AA)] from western New York. Participants were randomly assigned to maintain usual diet or consume 10 g/day ground flaxseed for 6 weeks. After a 2-month washout period, participants crossed over to the other diet condition for an additional 6 weeks. Urinary ENL excretion was measured by gas chromatography-mass spectrometry and 70 polymorphisms in 29 genes related to steroid hormone and xenobiotic metabolism were genotyped. Mixed additive genetic models were constructed to examine association of genetic variation with urinary ENL excretion at baseline and after the flaxseed intervention. RESULTS SNPs in several genes were nominally (P < 0.05) associated with ENL excretion at baseline and/or after intervention: ESR1, CYP1B1, COMT, CYP3A5, ARPC1A, BCL2L11, SHBG, SLCO1B1, and ZKSCAN5. A greater number of SNPs were associated among AA women than among EA women, and no SNPs were associated in both races. No SNP-ENL associations were statistically significant after correction for multiple comparisons. CONCLUSIONS Variation in several genes related to steroid hormone metabolism was associated with lignan excretion at baseline and/or after flaxseed intervention among postmenopausal women. IMPACT These findings may contribute to our understanding of the differences observed in urinary ENL excretion among AA and EA women and thus hormone-related breast cancer risk.
Collapse
Affiliation(s)
- Huiru Chang
- Department of Biostatistics, University at Buffalo, Buffalo, New York
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - David Tritchler
- Department of Biostatistics, University at Buffalo, Buffalo, New York
| | | | | | - Lilian U Thompson
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Susan E McCann
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
42
|
Du Z, Hopp H, Ingles SA, Huff C, Sheng X, Weaver B, Stern M, Hoffmann TJ, John EM, Van Den Eeden SK, Strom S, Leach RJ, Thompson IM, Witte JS, Conti DV, Haiman CA. A genome-wide association study of prostate cancer in Latinos. Int J Cancer 2020; 146:1819-1826. [PMID: 31226226 PMCID: PMC7028127 DOI: 10.1002/ijc.32525] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022]
Abstract
Latinos represent <1% of samples analyzed to date in genome-wide association studies of cancer. The clinical value of genetic information in guiding personalized medicine in populations of non-European ancestry will require additional discovery and risk locus characterization efforts across populations. In the present study, we performed a GWAS of prostate cancer (PrCa) in 2,820 Latino PrCa cases and 5,293 controls to search for novel PrCa risk loci and to examine the generalizability of known PrCa risk loci in Latino men. We also conducted a genetic admixture-mapping scan to identify PrCa risk alleles associated with local ancestry. Genome-wide significant associations were observed with 84 variants all located at the known PrCa risk regions at 8q24 (128.484-128.548) and 10q11.22 (MSMB gene). In admixture mapping, we observed genome-wide significant associations with local African ancestry at 8q24. Of the 162 established PrCa risk variants that are common in Latino men, 135 (83.3%) had effects that were directionally consistent as previously reported, among which 55 (34.0%) were statistically significant with p < 0.05. A polygenic risk model of the known PrCa risk variants showed that, compared to men with average risk (25th-75th percentile of the polygenic risk score distribution), men in the top 10% had a 3.19-fold (95% CI: 2.65, 3.84) increased PrCa risk. In conclusion, we found that the known PrCa risk variants can effectively stratify PrCa risk in Latino men. Larger studies in Latino populations will be required to discover and characterize genetic risk variants for PrCa and improve risk stratification for this population.
Collapse
Affiliation(s)
- Zhaohui Du
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
| | - Hannah Hopp
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
| | - Sue A. Ingles
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
| | - Chad Huff
- The University of Texas MD Anderson Cancer CenterHoustonTX
| | - Xin Sheng
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
| | - Brandi Weaver
- Department of UrologyUniversity of Texas Health Science CenterSan AntonioTX
| | - Mariana Stern
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
| | - Thomas J. Hoffmann
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCA
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoCA
| | - Esther M. John
- Department of Medicine and Stanford Cancer InstituteStanford University School of MedicineStanfordCA
| | - Stephen K. Van Den Eeden
- Division of Research, Kaiser Permanente, Northern CaliforniaOaklandCA
- Department of UrologyUniversity of California San FranciscoSan FranciscoCA
| | - Sara Strom
- The University of Texas MD Anderson Cancer CenterHoustonTX
| | - Robin J. Leach
- Department of UrologyUniversity of Texas Health Science CenterSan AntonioTX
| | - Ian M. Thompson
- Department of UrologyUniversity of Texas Health Science CenterSan AntonioTX
| | - John S. Witte
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCA
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoCA
- Department of UrologyUniversity of California San FranciscoSan FranciscoCA
| | - David V. Conti
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
- Center for Genetic EpidemiologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Christopher A. Haiman
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
- Center for Genetic EpidemiologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| |
Collapse
|
43
|
Benavides J, Suárez J, Estrada A, Bohórquez M, Ramírez C, Olaya J, Sánchez Y, Mateus G, Carvajal L, Echeverry MM. Breast cancer in six families from Tolima and Huila: BRCA1 3450del4 mutation. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2020; 40:185-194. [PMID: 32220173 PMCID: PMC7357381 DOI: 10.7705/biomedica.4673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Introduction: Breast cancer is a worldwide public health problem; between 5% and 10% of the cases present familial aggregation explained by genes of high risk such as BRCA1 and BRCA2. The founding origin of the deletion BRCA1 3450del4 in Colombia has been previously reported. Objective: To carry out in six families from Tolima and Huila departments a descriptive analysis of the presence of the BRCA1 3450del4 mutation associated with breast cancer and familial aggregation. Materials and methods: We conducted a descriptive and cross-sectional study of six index cases with breast cancer positive for BRCA1 3450del4 that fulfilled three of the criteria established by Jalkh, et al. The genealogical trees were made using the information of the interview data (GenoPro™, version 2016). The mutation was typified in healthy and affected relatives who agreed to participate. Results: Thirty of the 78 individuals selected by convenience in the six families presented the mutation BRCA1 3450del4 six of whom developed breast cancer, one, ovarian cancer, one ovarian and breast cancer, and one prostate cancer; 21 did not present any type of neoplasm at the time of the study. Of the 30 individuals carrying the pathogenic variant, six were men, 24 were women, and 13 of these were under 30. Conclusions: In this study of families with the deletion BRCA1 3450del4 in Tolima and Huila we confirmed its association with familial aggregation of breast cancer.
Collapse
Affiliation(s)
- Jennyfer Benavides
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Colombia.
| | - Jonh Suárez
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Colombia.
| | - Ana Estrada
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Colombia.
| | - Mábel Bohórquez
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Colombia.
| | - Carolina Ramírez
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Colombia.
| | - Justo Olaya
- Unidad de Oncología, Hospital Universitario Hernando Moncaleano Perdomo, Neiva, Colombia.
| | - Yesid Sánchez
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Colombia; Programa de Medicina, Universidad del Tolima, Ibagué, Colombia.
| | - Gilbert Mateus
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Colombia; Unidad de Oncología, Hospital Federico Lleras Acosta, Ibagué, Colombia.
| | - Luis Carvajal
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Colombia; Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, USA; Unidad de Oncología, Fundación Genética y Genómica, Medellín, Colombia.
| | - María Magdalena Echeverry
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Colombia.
| |
Collapse
|
44
|
Yanes T, Young MA, Meiser B, James PA. Clinical applications of polygenic breast cancer risk: a critical review and perspectives of an emerging field. Breast Cancer Res 2020; 22:21. [PMID: 32066492 PMCID: PMC7026946 DOI: 10.1186/s13058-020-01260-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/07/2020] [Indexed: 01/04/2023] Open
Abstract
Polygenic factors are estimated to account for an additional 18% of the familial relative risk of breast cancer, with those at the highest level of polygenic risk distribution having a least a twofold increased risk of the disease. Polygenic testing promises to revolutionize health services by providing personalized risk assessments to women at high-risk of breast cancer and within population breast screening programs. However, implementation of polygenic testing needs to be considered in light of its current limitations, such as limited risk prediction for women of non-European ancestry. This article aims to provide a comprehensive review of the evidence for polygenic breast cancer risk, including the discovery of variants associated with breast cancer at the genome-wide level of significance and the use of polygenic risk scores to estimate breast cancer risk. We also review the different applications of this technology including testing of women from high-risk breast cancer families with uninformative genetic testing results, as a moderator of monogenic risk, and for population screening programs. Finally, a potential framework for introducing testing for polygenic risk in familial cancer clinics and the potential challenges with implementing this technology in clinical practice are discussed.
Collapse
Affiliation(s)
- Tatiane Yanes
- Psychosocial Research Group, Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia. .,The University of Queensland Diamantina Institute, Dermatology Research Centre, University of Queensland, Brisbane, QLD, 4102, Australia.
| | - Mary-Anne Young
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Bettina Meiser
- Psychosocial Research Group, Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Paul A James
- Parkville Integrated Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| |
Collapse
|
45
|
Identification of two novel breast cancer loci through large-scale genome-wide association study in the Japanese population. Sci Rep 2019; 9:17332. [PMID: 31757997 PMCID: PMC6874604 DOI: 10.1038/s41598-019-53654-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 10/26/2019] [Indexed: 12/21/2022] Open
Abstract
Genome-wide association studies (GWAS) have successfully identified about 70 genomic loci associated with breast cancer. Owing to the complexity of linkage disequilibrium and environmental exposures in different populations, it is essential to perform regional GWAS for better risk prediction. This study aimed to investigate the genetic architecture and to assess common genetic risk model of breast cancer with 6,669 breast cancer patients and 21,930 female controls in the Japanese population. This GWAS identified 11 genomic loci that surpass genome-wide significance threshold of P < 5.0 × 10−8 with nine previously reported loci and two novel loci that include rs9862599 on 3q13.11 (ALCAM) and rs75286142 on 21q22.12 (CLIC6-RUNX1). Validation study was carried out with 981 breast cancer cases and 1,394 controls from the Aichi Cancer Center. Pathway analyses of GWAS signals identified association of dopamine receptor medicated signaling and protein amino acid deacetylation with breast cancer. Weighted genetic risk score showed that individuals who were categorized in the highest risk group are approximately 3.7 times more likely to develop breast cancer compared to individuals in the lowest risk group. This well-powered GWAS is a representative study to identify SNPs that are associated with breast cancer in the Japanese population.
Collapse
|
46
|
Sugita BM, Pereira SR, de Almeida RC, Gill M, Mahajan A, Duttargi A, Kirolikar S, Fadda P, de Lima RS, Urban CA, Makambi K, Madhavan S, Boca SM, Gusev Y, Cavalli IJ, Ribeiro EMSF, Cavalli LR. Integrated copy number and miRNA expression analysis in triple negative breast cancer of Latin American patients. Oncotarget 2019; 10:6184-6203. [PMID: 31692930 PMCID: PMC6817452 DOI: 10.18632/oncotarget.27250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Triple negative breast cancer (TNBC), a clinically aggressive breast cancer subtype, affects 15-35% of women from Latin America. Using an approach of direct integration of copy number and global miRNA profiling data, performed simultaneously in the same tumor specimens, we identified a panel of 17 miRNAs specifically associated with TNBC of ancestrally characterized patients from Latin America, Brazil. This panel was differentially expressed between the TNBC and non-TNBC subtypes studied (p ≤ 0.05, FDR ≤ 0.25), with their expression levels concordant with the patterns of copy number alterations (CNAs), present mostly frequent at 8q21.3-q24.3, 3q24-29, 6p25.3-p12.2, 1q21.1-q44, 5q11.1-q22.1, 11p13-p11.2, 13q12.11-q14.3, 17q24.2-q25.3 and Xp22.33-p11.21. The combined 17 miRNAs presented a high power (AUC = 0.953 (0.78-0.99);95% CI) in discriminating between the TNBC and non-TNBC subtypes of the patients studied. In addition, the expression of 14 and 15 of the 17miRNAs was significantly associated with tumor subtype when adjusted for tumor stage and grade, respectively. In conclusion, the panel of miRNAs identified demonstrated the impact of CNAs in miRNA expression levels and identified miRNA target genes potentially affected by both CNAs and miRNA deregulation. These targets, involved in critical signaling pathways and biological functions associated specifically with the TNBC transcriptome of Latina patients, can provide biological insights into the observed differences in the TNBC clinical outcome among racial/ethnic groups, taking into consideration their genetic ancestry.
Collapse
Affiliation(s)
- Bruna M Sugita
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Silma R Pereira
- Department of Biology, Federal University of Maranhão, São Luis, MA, Brazil
| | - Rodrigo C de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Akanksha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Saurabh Kirolikar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rubens S de Lima
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil
| | - Cicero A Urban
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil
| | - Kepher Makambi
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington DC, USA
| | - Subha Madhavan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Simina M Boca
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Yuriy Gusev
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Iglenir J Cavalli
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Luciane R Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
47
|
Li Y, Giorgi EE, Beckman KB, Caberto C, Kazma R, Lum-Jones A, Haiman CA, Marchand LL, Stram DO, Saxena R, Cheng I. Association between mitochondrial genetic variation and breast cancer risk: The Multiethnic Cohort. PLoS One 2019; 14:e0222284. [PMID: 31577800 PMCID: PMC6774509 DOI: 10.1371/journal.pone.0222284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/26/2019] [Indexed: 01/17/2023] Open
Abstract
Background The mitochondrial genome encodes for thirty-seven proteins, among them thirteen are essential for the oxidative phosphorylation (OXPHOS) system. Inherited variation in mitochondrial genes may influence cancer development through changes in mitochondrial proteins, altering the OXPHOS process and promoting the production of reactive oxidative species. Methods To investigate the association between mitochondrial genetic variation and breast cancer risk, we tested 314 mitochondrial SNPs (mtSNPs), capturing four complexes of the mitochondrial OXPHOS pathway and mtSNP groupings for rRNA and tRNA, in 2,723 breast cancer cases and 3,260 controls from the Multiethnic Cohort Study. Results We examined the collective set of 314 mtSNPs as well as subsets of mtSNPs grouped by mitochondrial OXPHOS pathway, complexes, and genes, using the sequence kernel association test and adjusting for age, sex, and principal components of global ancestry. We also tested haplogroup associations using unconditional logistic regression and adjusting for the same covariates. Stratified analyses were conducted by self-reported maternal race/ethnicity. No significant mitochondrial OXPHOS pathway, gene, and haplogroup associations were observed in African Americans, Asian Americans, Latinos, and Native Hawaiians. In European Americans, a global test of all genetic variants of the mitochondrial genome identified an association with breast cancer risk (P = 0.017, q = 0.102). In mtSNP-subset analysis, the gene MT-CO2 (P = 0.001, q = 0.09) in Complex IV (cytochrome c oxidase) and MT-ND2 (P = 0.004, q = 0.19) in Complex I (NADH dehydrogenase (ubiquinone)) were significantly associated with breast cancer risk. Conclusions In summary, our findings suggest that collective mitochondrial genetic variation and particularly in the MT-CO2 and MT-ND2 may play a role in breast cancer risk among European Americans. Further replication is warranted in larger populations and future studies should evaluate the contribution of mitochondrial proteins encoded by both the nuclear and mitochondrial genomes to breast cancer risk.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, California, United States of America
| | - Elena E. Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Kenneth B. Beckman
- University of Minnesota Genomics Center, Minneapolis, Minnesota, United States of America
| | - Christian Caberto
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Remi Kazma
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Annette Lum-Jones
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Daniel O. Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Richa Saxena
- Center for Human Genetic Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program of Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Estrada-Flórez AP, Bohórquez ME, Vélez A, Duque CS, Donado JH, Mateus G, Panqueba-Tarazona C, Polanco-Echeverry G, Sahasrabudhe R, Echeverry M, Carvajal-Carmona LG. BRAF and TERT mutations in papillary thyroid cancer patients of Latino ancestry. Endocr Connect 2019; 8:1310-1317. [PMID: 31454788 PMCID: PMC6765322 DOI: 10.1530/ec-19-0376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
Papillary thyroid cancer (PTC) is the second most commonly diagnosed malignancy in U.S. Latinas and in Colombian women. Studies in non-Latinos indicate that BRAF and TERT mutations are PTC prognostic markers. This study aimed to determine the prevalence and clinical associations of BRAF and TERT mutations in PTC Latino patients from Colombia. We analyzed mutations of BRAF (V600E) and TERT promoter (C228T, C250T) in tumor DNA from 141 patients (75 with classical variant PTC, CVPTC; 66 with follicular variant PTC, FVPTC) recruited through a multi-center study. Associations between mutations and clinical variables were evaluated with Fisher exact tests. Survival was evaluated with Kaplan-Meier plots. Double-mutant tumors (BRAF+/TERT+, n = 14 patients) were more common in CVPTC (P = 0.02). Relative to patients without mutations (n = 48), double mutations were more common in patients with large tumors (P = 0.03), lymph node metastasis (P = 0.01), extra-thyroid extension (P = 0.03), and advanced stage (P = 6.0 × 10-5). In older patients, TERT mutations were more frequent (mean age 51 years vs 45 years for wild type TERT, P = 0.04) and survival was lower (HR = 1.20; P = 0.017); however, given the small sample size, the decrease in survival was not statically significant between genotypes. Comparisons with published data in US whites revealed that Colombian patients had a higher prevalence of severe pathological features and of double-mutant tumors (10 vs 6%, P = 0.001). Mutations in both oncogenes show prognostic associations in Latinos from Colombia. Our study is important to advance Latino PTC precision medicine and replicates previous prognostic associations between BRAF and TERT in this population.
Collapse
Affiliation(s)
- Ana P Estrada-Flórez
- Genome Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California, USA
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Tolima, Colombia
- Facultad de Ciencias para la Salud, Universidad de Caldas, Manizales, Caldas, Colombia
| | - Mabel E Bohórquez
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Tolima, Colombia
| | - Alejandro Vélez
- Dinamica IPS, Medellín, Antioquia, Colombia
- Hospital Pablo Tobón Uribe, Medellín, Antioquia, Colombia
| | - Carlos S Duque
- Hospital Pablo Tobón Uribe, Medellín, Antioquia, Colombia
| | - Jorge H Donado
- Hospital Pablo Tobón Uribe, Medellín, Antioquia, Colombia
| | - Gilbert Mateus
- Hospital Federico Lleras Acosta, Ibagué, Tolima, Colombia
| | | | - Guadalupe Polanco-Echeverry
- Genome Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California, USA
| | - Ruta Sahasrabudhe
- Genome Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California, USA
| | - Magdalena Echeverry
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Tolima, Colombia
| | - Luis G Carvajal-Carmona
- Genome Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California, USA
- Dinamica IPS, Medellín, Antioquia, Colombia
- University of California Davis Comprehensive Cancer Center, Sacramento, California, USA
- Fundación de Genética y Genómica, Medellín, Antioquia, Colombia
- Correspondence should be addressed to L G Carvajal-Carmona:
| |
Collapse
|
49
|
Rey-Vargas L, Sanabria-Salas MC, Fejerman L, Serrano-Gómez SJ. Risk Factors for Triple-Negative Breast Cancer among Latina Women. Cancer Epidemiol Biomarkers Prev 2019; 28:1771-1783. [DOI: 10.1158/1055-9965.epi-19-0035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/15/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022] Open
|
50
|
Nakshatri H, Kumar B, Burney HN, Cox ML, Jacobsen M, Sandusky GE, D'Souza-Schorey C, Storniolo AMV. Genetic Ancestry-dependent Differences in Breast Cancer-induced Field Defects in the Tumor-adjacent Normal Breast. Clin Cancer Res 2019; 25:2848-2859. [PMID: 30718355 PMCID: PMC11216537 DOI: 10.1158/1078-0432.ccr-18-3427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic ancestry influences evolutionary pathways of cancers. However, whether ancestry influences cancer-induced field defects is unknown. The goal of this study was to utilize ancestry-mapped true normal breast tissues as controls to identify cancer-induced field defects in normal tissue adjacent to breast tumors (NATs) in women of African American (AA) and European (EA) ancestry. EXPERIMENTAL DESIGN A tissue microarray comprising breast tissues of ancestry-mapped 100 age-matched healthy women from the Komen Tissue Bank (KTB) at Indiana University (Indianapolis, IN) and tumor-NAT pairs from 100 women (300 samples total) was analyzed for the levels of ZEB1, an oncogenic transcription factor that is central to cell fate, mature luminal cell-enriched estrogen receptor alpha (ERα), GATA3, FOXA1, and for immune cell composition. RESULTS ZEB1+ cells, which were localized surrounding the ductal structures of the normal breast, were enriched in the KTB-normal of AA compared with KTB-normal of EA women. In contrast, in EA women, both NATs and tumors compared with KTB-normal contained higher levels of ZEB1+ cells. FOXA1 levels were lower in NATs compared with KTB-normal in AA but not in EA women. We also noted variations in the levels of GATA3, CD8+ T cells, PD1+ immune cells, and PDL1+ cell but not CD68+ macrophages in NATs of AA and EA women. ERα levels did not change in any of our analyses, pointing to the specificity of ancestry-dependent variations. CONCLUSIONS Genetic ancestry-mapped tissues from healthy individuals are required for proper assessment and development of cancer-induced field defects as early cancer detection markers. This finding is significant in light of recent discoveries of influence of genetic ancestry on both normal biology and tumor evolution.
Collapse
Affiliation(s)
- Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather N Burney
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary L Cox
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Anna Maria V Storniolo
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|