1
|
Satija N, Patel F, Schmidt G, Doanman DV, Kapoor M, La Porte A, Wang YC, Law KM, Esposito AM, Allette K, Beaumont KG, Sebra RP, Chen BK. Tracking HIV persistence across T cell lineages during early ART-treated HIV-1-infection using a reservoir-marking humanized mouse model. Nat Commun 2025; 16:2233. [PMID: 40044684 PMCID: PMC11883074 DOI: 10.1038/s41467-025-57368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection depletes CD4 T-cells, and long-term persistence of latent virus prevents full clearance of HIV even in the presence of effective antiretroviral therapy (ART), Here we present the HIV-1-induced lineage tracing (HILT) system, a model that irreversibly marks infected cells within a humanized mouse model, which detects rare latently infected cells. Immunodeficient mice transplanted with genetically modified hematopoietic stem cells develop a human immune system, in which CD4 T-cells contain a genetic switch that permanently labels cells infected by HIV-1 expressing cre-recombinase. Through single-cell RNA sequencing of HILT-marked cells during acute infection and post-ART treatment, we identify distinct CD4+ T-cell transcriptional lineages enriched in either active or latent infections. Comparative gene expression analysis highlights common pathways modulated in both states, including EIF2, Sirtuin, and protein ubiquitination. Critical regulators of these pathways, including JUN, BCL2, and MDM2, change to opposite directions in the two states, highlighting gene expression programs that may support HIV persistence across T-cell lineages and states.
Collapse
Affiliation(s)
- Namita Satija
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Foramben Patel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerrit Schmidt
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald V Doanman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manav Kapoor
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annalena La Porte
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth M Law
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lexeo Therapeutics, New York, NY, USA
| | - Anthony M Esposito
- Department of Biology, New Jersey City University, New Jersey City, NJ, USA
| | - Kimaada Allette
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin K Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Beliakova-Bethell N. Eliminating the persistent HIV reservoir based on biomarker expression - How do we get there? Virology 2025; 603:110368. [PMID: 39721194 DOI: 10.1016/j.virol.2024.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Persistent HIV reservoir with different levels of proviral transcriptional activity represents a hurdle to HIV cure. The absence of a specific molecular signature or a "biomarker" to define cells latently infected with HIV limits reservoir eradication efforts. Biomarkers proposed in the literature define subsets of latently infected cells. This article discusses factors contributing to biomarker heterogeneity: external stimuli the cells are exposed to, tissue microenvironments, and person-to-person variation. Despite reservoir heterogeneity, several biomarkers, e.g., programmed cell death 1 and the Fc fragment of IgG low affinity IIa receptor, were reported consistently in multiple studies; however, they alone are unlikely to define all the HIV reservoir cells. Identifying a minimal set of cell surface proteins that together define all reservoir subsets is needed. Future studies will need to focus on the identification of co-expressed proteins that define the same sets of cells to reduce the number of proteins in a biomarker panel. A detailed characterization of tissue biomarkers and proteins expressed in latently infected cells of the myeloid lineage is needed to ensure that all the reservoirs are targeted throughout the body. Furthermore, the effect of underlying conditions that develop as people with HIV age on the manifestation of latency should be evaluated. With the development of novel technologies, such as spatial transcriptomics and proteomics, such endeavors will soon be possible. Thus, there is promise that a minimal set of proteins defining all the different reservoir subsets can be identified and developed into a reservoir targeting strategy.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Manzanares M, Ramos-Martín F, Rodríguez-Mora S, Casado-Fernández G, Sánchez-Menéndez C, Simón-Rueda A, Mateos E, Cervero M, Spivak AM, Planelles V, Torres M, García-Gutiérrez V, Coiras M. Sustained antiviral response against in vitro HIV-1 infection in peripheral blood mononuclear cells from people with chronic myeloid leukemia treated with ponatinib. Front Pharmacol 2024; 15:1426974. [PMID: 39380908 PMCID: PMC11460598 DOI: 10.3389/fphar.2024.1426974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
HIV-1 infection cannot be cured due to long-lived viral reservoirs formed by latently infected CD4+ T cells. "Shock and Kill" strategy has been considered to eliminate the viral reservoir and achieve a functional cure but the stimulation of cytotoxic immunity is necessary. Ponatinib is a tyrosine kinase inhibitor (TKI) clinically used against chronic myeloid leukemia (CML) that has demonstrated to be effective against HIV-1 infection in vitro. Several TKIs may induce a potent cytotoxic response against cancer cells that makes possible to discontinue treatment in people with CML who present long-term deep molecular response. In this longitudinal study, we analyzed the capacity of ponatinib to induce an antiviral response against HIV-1 infection in peripheral blood mononuclear cells (PBMCs) obtained from people with CML previously treated with imatinib for a median of 10 years who changed to ponatinib for 12 months to boost the anticancer response before discontinuing any TKI as part of the clinical trial NCT04043676. Participants were followed-up for an additional 12 months in the absence of treatment. PBMCs were obtained at different time points and then infected in vitro with HIV-1. The rate of infection was determined by quantifying the intracellular levels of p24-gag in CD4+ T cells. The levels of p24-gag+ CD4+ T-cells were lower when these cells were obtained during and after treatment with ponatinib in comparison with those obtained during treatment with imatinib. Cytotoxicity of PBMCs against HIV-infected target cells was significantly higher during treatment with ponatinib than during treatment with imatinib, and it was maintained at least 12 months after discontinuation. There was a significant negative correlation between the lower levels of p24-gag+ CD4+ T-cells and the higher cytotoxicity induced by PBMCs when cells were obtained during and after treatment with ponatinib. This cytotoxic immunity was mostly based on higher levels of Natural Killer and Tγδ cells seemingly boosted by ponatinib. In conclusion, transient treatment with immunomodulators like ponatinib along with ART could be explored to boost the antiviral activity of cytotoxic cells and contribute to the elimination of HIV-1 reservoir.
Collapse
Affiliation(s)
- Mario Manzanares
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Fernando Ramos-Martín
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Rodríguez-Mora
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Guiomar Casado-Fernández
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Sciences, Universidad de Alcalá, Madrid, Spain
| | - Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alicia Simón-Rueda
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Madrid, Spain
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Adam M. Spivak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt LakeCity, UT, United States
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt LakeCity, UT, United States
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Beliakova-Bethell N. Targeting noncoding RNAs to reactivate or eliminate latent HIV reservoirs. Curr Opin HIV AIDS 2024; 19:47-55. [PMID: 38169367 PMCID: PMC10872953 DOI: 10.1097/coh.0000000000000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW Expression of noncoding RNAs (ncRNAs) is more tissue and cell type-specific than expression of protein-coding genes. Understanding the mechanisms of action of ncRNAs and their roles in HIV replication and latency may inform targets for the latent HIV reservoir reactivation or elimination with high specificity to CD4 + T cells latently infected with HIV. RECENT FINDINGS While the number of studies in the field of ncRNAs and HIV is limited, evidence points to complex interactions between different ncRNAs, protein-coding RNAs, and proteins. Latency-reversing agents modulate the expression of ncRNAs, with some effects being inhibitory for HIV reactivation. An important limitation of basic research on the ncRNA mechanisms of action is the reliance on cell lines. Because of cell type specificity, it is uncertain whether the ncRNAs function similarly in primary cells. SUMMARY Comprehensive functional screens to uncover all ncRNAs that regulate HIV expression and the detailed exploration of their mechanisms of action in relevant cell types are needed to identify promising targets for HIV reservoir clearance. Classes of ncRNAs as a whole rather than individual ncRNAs might represent an attractive target for reservoir elimination. Compound screens for latency reversal should factor in the complexity of their effects on ncRNAs.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- Department of Medicine, University of California at San Diego, CA, USA
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA
| |
Collapse
|
5
|
Fonseca JA, King AC, Chahroudi A. More than the Infinite Monkey Theorem: NHP Models in the Development of a Pediatric HIV Cure. Curr HIV/AIDS Rep 2024; 21:11-29. [PMID: 38227162 PMCID: PMC10859349 DOI: 10.1007/s11904-023-00686-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW An HIV cure that eliminates the viral reservoir or provides viral control without antiretroviral therapy (ART) is an urgent need in children as they face unique challenges, including lifelong ART adherence and the deleterious effects of chronic immune activation. This review highlights the importance of nonhuman primate (NHP) models in developing an HIV cure for children as these models recapitulate the viral pathogenesis and persistence. RECENT FINDINGS Several cure approaches have been explored in infant NHPs, although knowledge gaps remain. Broadly neutralizing antibodies (bNAbs) show promise for controlling viremia and delaying viral rebound after ART interruption but face administration challenges. Adeno-associated virus (AAV) vectors hold the potential for sustained bNAb expression. Therapeutic vaccination induces immune responses against simian retroviruses but has yet to impact the viral reservoir. Combining immunotherapies with latency reversal agents (LRAs) that enhance viral antigen expression should be explored. Current and future cure approaches will require adaptation for the pediatric immune system and unique features of virus persistence, for which NHP models are fundamental to assess their efficacy.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis C King
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| |
Collapse
|
6
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
7
|
Zhang X, Qazi AA, Deshmukh S, Lobato Ventura R, Mukim A, Beliakova-Bethell N. Single-cell RNA sequencing reveals common and unique gene expression profiles in primary CD4+ T cells latently infected with HIV under different conditions. Front Cell Infect Microbiol 2023; 13:1286168. [PMID: 38156317 PMCID: PMC10754520 DOI: 10.3389/fcimb.2023.1286168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background The latent HIV reservoir represents the major barrier to a cure. One curative strategy is targeting diseased cells for elimination based on biomarkers that uniquely define these cells. Single-cell RNA sequencing (scRNA-seq) has enabled the identification of gene expression profiles associated with disease at the single-cell level. Because HIV provirus in many cells during latency is not entirely silent, it became possible to determine gene expression patterns in a subset of cells latently infected with HIV. Objective The primary objective of this study was the identification of the gene expression profiles of single latently infected CD4+ T cells using scRNA-seq. Different conditions of latency establishment were considered. The identified profiles were then explored to prioritize the identified genes for future experimental validation. Methods To facilitate gene prioritization, three approaches were used. First, we characterized and compared the gene expression profiles of HIV latency established in different environments: in cells that encountered an activation stimulus and then returned to quiescence, and in resting cells that were infected directly via cell-to-cell viral transmission from autologous activated, productively infected cells. Second, we characterized and compared the gene expression profiles of HIV latency established with viruses of different tropisms, using an isogenic pair of CXCR4- and CCR5-tropic viruses. Lastly, we used proviral expression patterns in cells from people with HIV to more accurately define the latently infected cells in vitro. Results Our analyses demonstrated that a subset of genes is expressed differentially between latently infected and uninfected cells consistently under most conditions tested, including cells from people with HIV. Our second important observation was the presence of latency signatures, associated with variable conditions when latency was established, including cellular exposure and responsiveness to a T cell receptor stimulus and the tropism of the infecting virus. Conclusion Common signatures, specifically genes that encode proteins localized to the cell surface, should be prioritized for further testing at the protein level as biomarkers for the ability to enrich or target latently infected cells. Cell- and tropism-dependent biomarkers may need to be considered in developing targeting strategies to ensure that all the different reservoir subsets are eliminated.
Collapse
Affiliation(s)
- Xinlian Zhang
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, United States
| | - Andrew A. Qazi
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Savitha Deshmukh
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Roni Lobato Ventura
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Amey Mukim
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Nadejda Beliakova-Bethell
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
8
|
Reeves DB, Bacchus-Souffan C, Fitch M, Abdel-Mohsen M, Hoh R, Ahn H, Stone M, Hecht F, Martin J, Deeks SG, Hellerstein MK, McCune JM, Schiffer JT, Hunt PW. Estimating the contribution of CD4 T cell subset proliferation and differentiation to HIV persistence. Nat Commun 2023; 14:6145. [PMID: 37783718 PMCID: PMC10545742 DOI: 10.1038/s41467-023-41521-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
Persistence of HIV in people living with HIV (PWH) on suppressive antiretroviral therapy (ART) has been linked to physiological mechanisms of CD4+ T cells. Here, in the same 37 male PWH on ART we measure longitudinal kinetics of HIV DNA and cell turnover rates in five CD4 cell subsets: naïve (TN), stem-cell- (TSCM), central- (TCM), transitional- (TTM), and effector-memory (TEM). HIV decreases in TTM and TEM but not in less-differentiated subsets. Cell turnover is ~10 times faster than HIV clearance in memory subsets, implying that cellular proliferation consistently creates HIV DNA. The optimal mathematical model for these integrated data sets posits HIV DNA also passages between CD4 cell subsets via cellular differentiation. Estimates are heterogeneous, but in an average participant's year ~10 (in TN and TSCM) and ~104 (in TCM, TTM, TEM) proviruses are generated by proliferation while ~103 proviruses passage via cell differentiation (per million CD4). In simulations, therapies blocking proliferation and/or enhancing differentiation could reduce HIV DNA by 1-2 logs over 3 years. In summary, HIV exploits cellular proliferation and differentiation to persist during ART but clears faster in more proliferative/differentiated CD4 cell subsets and the same physiological mechanisms sustaining HIV might be temporarily modified to reduce it.
Collapse
Affiliation(s)
- Daniel B Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
- Department of Global Health, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| | | | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California, University Avenue and Oxford St, Berkeley, CA, 94720, USA
| | | | - Rebecca Hoh
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Haelee Ahn
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Mars Stone
- Vitalant Research Institute, 360 Spear St Suite 200, San Francisco, CA, 94105, USA
| | - Frederick Hecht
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Jeffrey Martin
- Epidemiology & Biostatistics, University of California San Francisco School of Medicine, 550 16th Street, San Francisco, CA, 94158, USA
| | - Steven G Deeks
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, University Avenue and Oxford St, Berkeley, CA, 94720, USA
| | - Joseph M McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation, 500 5th Ave N, Seattle, WA, 98109, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Allergy and Infectious Diseases, School of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Peter W Hunt
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| |
Collapse
|
9
|
Dubé M, Tastet O, Dufour C, Sannier G, Brassard N, Delgado GG, Pagliuzza A, Richard C, Nayrac M, Routy JP, Prat A, Estes JD, Fromentin R, Chomont N, Kaufmann DE. Spontaneous HIV expression during suppressive ART is associated with the magnitude and function of HIV-specific CD4 + and CD8 + T cells. Cell Host Microbe 2023; 31:1507-1522.e5. [PMID: 37708853 PMCID: PMC10542967 DOI: 10.1016/j.chom.2023.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
Spontaneous transcription and translation of HIV can persist during suppressive antiretroviral therapy (ART). The quantity, phenotype, and biological relevance of this spontaneously "active" reservoir remain unclear. Using multiplexed single-cell RNAflow-fluorescence in situ hybridization (FISH), we detect active HIV transcription in 14/18 people with HIV on suppressive ART, with a median of 28/million CD4+ T cells. While these cells predominantly exhibit abortive transcription, p24-expressing cells are evident in 39% of participants. Phenotypically diverse, active reservoirs are enriched in central memory T cells and CCR6- and activation-marker-expressing cells. The magnitude of the active reservoir positively correlates with total HIV-specific CD4+ and CD8+ T cell responses and with multiple HIV-specific T cell clusters identified by unsupervised analysis. These associations are particularly strong with p24-expressing active reservoir cells. Single-cell vDNA sequencing shows that active reservoirs are largely dominated by defective proviruses. Our data suggest that these reservoirs maintain HIV-specific CD4+ and CD8+ T responses during suppressive ART.
Collapse
Affiliation(s)
- Mathieu Dubé
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada.
| | - Olivier Tastet
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Caroline Dufour
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Gérémy Sannier
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nathalie Brassard
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Gloria-Gabrielle Delgado
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Amélie Pagliuzza
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Corentin Richard
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Manon Nayrac
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre (CUSM), Montreal, QC H4A 3J1, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Alexandre Prat
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Rémi Fromentin
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Nicolas Chomont
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Daniel E Kaufmann
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
10
|
Sachdeva M, Sharma A, Arora SK. High frequency of memory stem cells with a distinct gene signature in HIV patients with treatment interruption. Scand J Immunol 2023; 97:e13262. [PMID: 36853017 DOI: 10.1111/sji.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Reservoirs of HIV remain a major obstacle to the complete eradication of virus despite regular anti-retroviral therapy (ART). Memory stem cells (Tscm), one of the major reservoirs, are relatively less studied owing to their presence in lower numbers and inaccessible anatomical locations. We have evaluated the molecular characteristics of Tscms in patients with ART interruption (n = 15) versus patients on uninterrupted ART (n = 12) using flow cytometry. RNA sequencing was done in the sorted Tscms to study the differential gene expression. Patients with ART interruption had significantly lower baseline CD4+T-cell counts and high viral loads as compared to patients on ART. The former group had significantly higher frequency of CD4+ and CD8+Tscms with a higher expression of PD-1 on CD8+Tscms. The transcriptome profile of Tscm was significantly different among the patient groups. The main pathways were cellular and metabolic pathways, cellular development pathways, cell differentiation and negative regulation of cellular migratory pathways. An increased yet dysfunctional CD8+ memory stem cells describe HIV-1-infected patients with break-in ART and a distinct transcriptional signature of CD4+ Tscm as compared to those of patients on ART. A more detailed understanding of the biology and dynamics of Tscm in future studies is warranted. Strategies to improve the functionality of the CD8+ Tscm will help these patients to tackle the outburst of viral replication that occurs after the cessation of therapy.
Collapse
Affiliation(s)
- Meenakshi Sachdeva
- Department of Translational and Regenerative medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sunil K Arora
- Department of Translational and Regenerative medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
11
|
Hsu J, Besien KV, Glesby MJ, Pahwa S, Coletti A, Warshaw MG, Petz L, Moore TB, Chen YH, Pallikkuth S, Dhummakupt A, Cortado R, Golner A, Bone F, Baldo M, Riches M, Mellors JW, Tobin NH, Browning R, Persaud D, Bryson Y. HIV-1 remission and possible cure in a woman after haplo-cord blood transplant. Cell 2023; 186:1115-1126.e8. [PMID: 36931242 PMCID: PMC10616809 DOI: 10.1016/j.cell.2023.02.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/01/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
Previously, two men were cured of HIV-1 through CCR5Δ32 homozygous (CCR5Δ32/Δ32) allogeneic adult stem cell transplant. We report the first remission and possible HIV-1 cure in a mixed-race woman who received a CCR5Δ32/Δ32 haplo-cord transplant (cord blood cells combined with haploidentical stem cells from an adult) to treat acute myeloid leukemia (AML). Peripheral blood chimerism was 100% CCR5Δ32/Δ32 cord blood by week 14 post-transplant and persisted through 4.8 years of follow-up. Immune reconstitution was associated with (1) loss of detectable replication-competent HIV-1 reservoirs, (2) loss of HIV-1-specific immune responses, (3) in vitro resistance to X4 and R5 laboratory variants, including pre-transplant autologous latent reservoir isolates, and (4) 18 months of HIV-1 control with aviremia, off antiretroviral therapy, starting at 37 months post-transplant. CCR5Δ32/Δ32 haplo-cord transplant achieved remission and a possible HIV-1 cure for a person of diverse ancestry, living with HIV-1, who required a stem cell transplant for acute leukemia.
Collapse
Affiliation(s)
- Jingmei Hsu
- Department of Medicine, Division of Hematology& Oncology, Weill Cornell Medicine / New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Koen Van Besien
- Department of Medicine, Division of Hematology& Oncology, Weill Cornell Medicine / New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Marshall J. Glesby
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine / New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, Pediatrics and Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Anne Coletti
- Family Health International 360, Durham, NC, 27761, USA
| | - Meredith G Warshaw
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Larry Petz
- StemCyte International Cord Blood Center, Baldwin Park, California, 91706, USA
| | - Theodore B. Moore
- Department of Pediatrics, Division of Hematology& Oncology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095, USA
| | - Ya Hui Chen
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21025, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Adit Dhummakupt
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21025, USA
| | - Ruth Cortado
- Department of Pediatrics, Division of Infectious Diseases, Mattel Children’s, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Amanda Golner
- Frontier Science & Technology Research Foundation, Inc, Amherst, NY, 14226, USA
| | - Frederic Bone
- Frontier Science & Technology Research Foundation, Inc, Amherst, NY, 14226, USA
| | - Maria Baldo
- Department of Medicine, Division of Hematology& Oncology, Weill Cornell Medicine / New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Marcie Riches
- Center for International Blood and Marrow Transplant Research (CIBMTR), Medical College of Wisconsin Clinical Cancer Center, Milwaukee, WI, 53226, USA
| | - John W. Mellors
- Department of Medicine, Division of Infectious Diseases, University of Pittsburg School of Medicine, Pittsburgh, PA, 15261, USA
| | - Nicole H. Tobin
- Department of Pediatrics, Division of Infectious Diseases, Mattel Children’s, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Renee Browning
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Deborah Persaud
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21025, USA
| | - Yvonne Bryson
- Department of Pediatrics, Division of Infectious Diseases, Mattel Children’s, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | | |
Collapse
|
12
|
Dufour C, Richard C, Pardons M, Massanella M, Ackaoui A, Murrell B, Routy B, Thomas R, Routy JP, Fromentin R, Chomont N. Phenotypic characterization of single CD4+ T cells harboring genetically intact and inducible HIV genomes. Nat Commun 2023; 14:1115. [PMID: 36849523 PMCID: PMC9971253 DOI: 10.1038/s41467-023-36772-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
The phenotype of the rare HIV-infected cells persisting during antiretroviral therapies (ART) remains elusive. We developed a single-cell approach that combines the phenotypic analysis of HIV-infected cells with near full-length sequencing of their associated proviruses to characterize the viral reservoir in 6 male individuals on suppressive ART. We show that individual cells carrying clonally expanded identical proviruses display very diverse phenotypes, indicating that cellular proliferation contributes to the phenotypic diversification of the HIV reservoir. Unlike most viral genomes persisting on ART, inducible and translation-competent proviruses rarely present large deletions but are enriched in defects in the Ψ locus. Interestingly, the few cells harboring genetically intact and inducible viral genomes express higher levels of the integrin VLA-4 compared to uninfected cells or cells with defective proviruses. Viral outgrowth assay confirmed that memory CD4+ T cells expressing high levels of VLA-4 are highly enriched in replication-competent HIV (27-fold enrichment). We conclude that although clonal expansions diversify the phenotype of HIV reservoir cells, CD4+ T cells harboring replication-competent HIV retain VLA-4 expression.
Collapse
Affiliation(s)
- Caroline Dufour
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Corentin Richard
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Marion Pardons
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Marta Massanella
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Antoine Ackaoui
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Bertrand Routy
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Réjean Thomas
- Clinique médicale l'Actuel, Montreal, H2L 4P9, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada.
| |
Collapse
|
13
|
Gunst JD, Pahus MH, Rosás-Umbert M, Lu IN, Benfield T, Nielsen H, Johansen IS, Mohey R, Østergaard L, Klastrup V, Khan M, Schleimann MH, Olesen R, Støvring H, Denton PW, Kinloch NN, Copertino DC, Ward AR, Alberto WDC, Nielsen SD, Puertas MC, Ramos V, Reeves JD, Petropoulos CJ, Martinez-Picado J, Brumme ZL, Jones RB, Fox J, Tolstrup M, Nussenzweig MC, Caskey M, Fidler S, Søgaard OS. Early intervention with 3BNC117 and romidepsin at antiretroviral treatment initiation in people with HIV-1: a phase 1b/2a, randomized trial. Nat Med 2022; 28:2424-2435. [PMID: 36253609 PMCID: PMC10189540 DOI: 10.1038/s41591-022-02023-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Attempts to reduce the human immunodeficiency virus type 1 (HIV-1) reservoir and induce antiretroviral therapy (ART)-free virologic control have largely been unsuccessful. In this phase 1b/2a, open-label, randomized controlled trial using a four-group factorial design, we investigated whether early intervention in newly diagnosed people with HIV-1 with a monoclonal anti-HIV-1 antibody with a CD4-binding site, 3BNC117, followed by a histone deacetylase inhibitor, romidepsin, shortly after ART initiation altered the course of HIV-1 infection ( NCT03041012 ). The trial was undertaken in five hospitals in Denmark and two hospitals in the United Kingdom. The coprimary endpoints were analysis of initial virus decay kinetics and changes in the frequency of CD4+ T cells containing intact HIV-1 provirus from baseline to day 365. Secondary endpoints included changes in the frequency of infected CD4+ T cells and virus-specific CD8+ T cell immunity from baseline to day 365, pre-ART plasma HIV-1 3BNC117 sensitivity, safety and tolerability, and time to loss of virologic control during a 12-week analytical ART interruption that started at day 400. In 55 newly diagnosed people (5 females and 50 males) with HIV-1 who received random allocation treatment, we found that early 3BNC117 treatment with or without romidepsin enhanced plasma HIV-1 RNA decay rates compared to ART only. Furthermore, 3BNC117 treatment accelerated clearance of infected cells compared to ART only. All groups had significant reductions in the frequency of CD4+ T cells containing intact HIV-1 provirus. At day 365, early 3BNC117 + romidepsin was associated with enhanced HIV-1 Gag-specific CD8+ T cell immunity compared to ART only. The observed virological and immunological effects of 3BNC117 were most pronounced in individuals whose pre-ART plasma HIV-1 envelope sequences were antibody sensitive. The results were not disaggregated by sex. Adverse events were mild to moderate and similar between the groups. During a 12-week analytical ART interruption among 20 participants, 3BNC117-treated individuals harboring sensitive viruses were significantly more likely to maintain ART-free virologic control than other participants. We conclude that 3BNC117 at ART initiation enhanced elimination of plasma viruses and infected cells, enhanced HIV-1-specific CD8+ immunity and was associated with sustained ART-free virologic control among persons with 3BNC117-sensitive virus. These findings strongly support interventions administered at the time of ART initiation as a strategy to limit long-term HIV-1 persistence.
Collapse
Affiliation(s)
- Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Miriam Rosás-Umbert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - I-Na Lu
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Rajesh Mohey
- Department of Internal Medicine, Regional Hospital Herning, Herning, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Vibeke Klastrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maryam Khan
- Department of Infectious Diseases, Imperial College Hospital, London, UK
- The National Institute for Health Research, Imperial Biomedical Research Centre, London, UK
| | - Mariane H Schleimann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Støvring
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Adam R Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Winiffer D Conce Alberto
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Silke D Nielsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maria C Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBERINFEC, Madrid, Spain
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- University of Vic-Central University of Catalonia, Vic, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' National Health Service Trust, London, UK
- Department of Genitourinary Medicine and Infectious Disease, The National Institute for Health Research Biomedical Research Centre, King's College London, London, UK
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Sarah Fidler
- Department of Infectious Diseases, Imperial College Hospital, London, UK
- The National Institute for Health Research, Imperial Biomedical Research Centre, London, UK
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
14
|
Fazeli P, Talepoor AG, Faghih Z, Gholijani N, Ataollahi MR, Ali‐Hassanzadeh M, Moravej H, Kalantar K. The frequency of CD4+ and CD8+ circulating T stem cell memory in type 1 diabetes. Immun Inflamm Dis 2022; 10:e715. [PMID: 36169248 PMCID: PMC9500591 DOI: 10.1002/iid3.715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION The frequencies and functions of T stem cell memory (TSCM) subsets vary in autoimmune diseases. We evaluated the frequencies of CD4+ and CD8+ TSCM subsets as well as their PD-1 expression levels in patients with T1D. METHODS Blood samples were collected from new case (NC) (n = 15), and long-term (LT) (n = 15) groups and healthy controls (n = 15). Five subsets of T cells including TCM(CD4+ /CD8+ CCR7+ CD45RO+ CD95+ ), TCMhi (CD4+ /CD8+ CCR7+ CD45ROhi CD95+ ), TEM(CD4+ /CD8+ CCR7- CD45RO+ CD95+ ), TSCM(CD4+ /CD8+ CCR7+ CD45RO- CD95+ ), and T naive (CD4+ /CD8+ CCR7+ CD45RO- CD95- ) were detected by flow-cytometry. RESULTS The frequency of CD4+ TSCM was higher in NC patients than LT patients and controls (p < .0001 and p = .0086, respectively). A higher percentage of the CD8+ T naive cells was shown in NC patients as compared with LT and healthy individuals (p = .0003 and p = .0002, respectively). An increased level of PD-1 expression was observed on the CD4+ TCM and TCMhi cells in LT patients as compared with healthy controls (p = .0037 and p = .0145, respectively). Also, the higher PD-1 expression was observed on the CD8+ TCM and TCMhi in NC and LT patients as compared with controls (p = .0068 and p < .0001; p = .0012 and p = .0012, respectively). CONCLUSION Considering TSCMs' capacities to generate all memory and effector T cells, our results may suggest a potential association between the increased frequencies of TSCMs and T1D progression.
Collapse
Affiliation(s)
- Pooriya Fazeli
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Atefe Ghamar Talepoor
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Zahra Faghih
- Shiraz Institute for Cancer ResearchSchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Nasser Gholijani
- Autoimmune Diseases Research CenterShiraz University of Medical SciencesShirazIran
| | | | | | - Hossein Moravej
- Department of PediatricsSchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Kurosh Kalantar
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
- Autoimmune Diseases Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
15
|
Yi L, Yang L. Stem-like T cells and niches: Implications in human health and disease. Front Immunol 2022; 13:907172. [PMID: 36059484 PMCID: PMC9428355 DOI: 10.3389/fimmu.2022.907172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, accumulating evidence has elucidated the important role of T cells with stem-like characteristics in long-term maintenance of T cell responses and better patient outcomes after immunotherapy. The fate of TSL cells has been correlated with many physiological and pathological human processes. In this review, we described present advances demonstrating that stem-like T (TSL) cells are central players in human health and disease. We interpreted the evolutionary characteristics, mechanism and functions of TSL cells. Moreover, we discuss the import role of distinct niches and how they affect the stemness of TSL cells. Furthermore, we also outlined currently available strategies to generate TSL cells and associated affecting factors. Moreover, we summarized implication of TSL cells in therapies in two areas: stemness enhancement for vaccines, ICB, and adoptive T cell therapies, and stemness disruption for autoimmune disorders.
Collapse
|
16
|
T-Cell Receptor Repertoire Sequencing and Its Applications: Focus on Infectious Diseases and Cancer. Int J Mol Sci 2022; 23:ijms23158590. [PMID: 35955721 PMCID: PMC9369427 DOI: 10.3390/ijms23158590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The immune system is a dynamic feature of each individual and a footprint of our unique internal and external exposures. Indeed, the type and level of exposure to physical and biological agents shape the development and behavior of this complex and diffuse system. Many pathological conditions depend on how our immune system responds or does not respond to a pathogen or a disease or on how the regulation of immunity is altered by the disease itself. T-cells are important players in adaptive immunity and, together with B-cells, define specificity and monitor the internal and external signals that our organism perceives through its specific receptors, TCRs and BCRs, respectively. Today, high-throughput sequencing (HTS) applied to the TCR repertoire has opened a window of opportunity to disclose T-cell repertoire development and behavior down to the clonal level. Although TCR repertoire sequencing is easily accessible today, it is important to deeply understand the available technologies for choosing the best fit for the specific experimental needs and questions. Here, we provide an updated overview of TCR repertoire sequencing strategies, providers and applications to infectious diseases and cancer to guide researchers’ choice through the multitude of available options. The possibility of extending the TCR repertoire to HLA characterization will be of pivotal importance in the near future to understand how specific HLA genes shape T-cell responses in different pathological contexts and will add a level of comprehension that was unthinkable just a few years ago.
Collapse
|
17
|
La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F, Caccamo N. Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Front Immunol 2022; 13:884148. [PMID: 35784300 PMCID: PMC9247337 DOI: 10.3389/fimmu.2022.884148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system, smartly and surprisingly, saves the exposure of a particular pathogen in its memory and reacts to the pathogen very rapidly, preventing serious diseases.Immunologists have long been fascinated by understanding the ability to recall and respond faster and more vigorously to a pathogen, known as “memory”.T-cell populations can be better described by using more sophisticated techniques to define phenotype, transcriptional and epigenetic signatures and metabolic pathways (single-cell resolution), which uncovered the heterogeneity of the memory T-compartment. Phenotype, effector functions, maintenance, and metabolic pathways help identify these different subsets. Here, we examine recent developments in the characterization of the heterogeneity of the memory T cell compartment. In particular, we focus on the emerging role of CD8+ TRM and TSCM cells, providing evidence on how their immunometabolism or modulation can play a vital role in their generation and maintenance in chronic conditions such as infections or autoimmune diseases.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Nadia Caccamo,
| |
Collapse
|
18
|
Heterogeneity of Latency Establishment in the Different Human CD4
+
T Cell Subsets Stimulated with IL-15. J Virol 2022; 96:e0037922. [PMID: 35499323 PMCID: PMC9131862 DOI: 10.1128/jvi.00379-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
HIV integrates into the host genome, creating a viral reservoir of latently infected cells that persists despite effective antiretroviral treatment. CD4-positive (CD4+) T cells are the main contributors to the HIV reservoir. CD4+ T cells are a heterogeneous population, and the mechanisms of latency establishment in the different subsets, as well as their contribution to the reservoir, are still unclear. In this study, we analyzed HIV latency establishment in different CD4+ T cell subsets stimulated with interleukin 15 (IL-15), a cytokine that increases both susceptibility to infection and reactivation from latency. Using a dual-reporter virus that allows discrimination between latent and productive infection at the single-cell level, we found that IL-15-treated primary human CD4+ T naive and CD4+ T stem cell memory (TSCM) cells are less susceptible to HIV infection than CD4+ central memory (TCM), effector memory (TEM), and transitional memory (TTM) cells but are also more likely to harbor transcriptionally silent provirus. The propensity of these subsets to harbor latent provirus compared to the more differentiated memory subsets was independent of differential expression of pTEFb components. Microscopy analysis of NF-κB suggested that CD4+ T naive cells express smaller amounts of nuclear NF-κB than the other subsets, partially explaining the inefficient long terminal repeat (LTR)-driven transcription. On the other hand, CD4+ TSCM cells display similar levels of nuclear NF-κB to CD4+ TCM, CD4+ TEM, and CD4+ TTM cells, indicating the availability of transcription initiation and elongation factors is not solely responsible for the inefficient HIV gene expression in the CD4+ TSCM subset. IMPORTANCE The formation of a latent reservoir is the main barrier to HIV cure. Here, we investigated how HIV latency is established in different CD4+ T cell subsets in the presence of IL-15, a cytokine that has been shown to efficiently induce latency reversal. We observed that, even in the presence of IL-15, the less differentiated subsets display lower levels of productive HIV infection than the more differentiated subsets. These differences were not related to different expression of pTEFb, and modest differences in NF-κB were observed for CD4+ T naive cells only, implying the involvement of other mechanisms. Understanding the molecular basis of latency establishment in different CD4+ T cell subsets might be important for tailoring specific strategies to reactivate HIV transcription in all the CD4+ T subsets that compose the latent reservoir.
Collapse
|
19
|
Atlas of the HIV-1 Reservoir in Peripheral CD4 T Cells of Individuals on Successful Antiretroviral Therapy. mBio 2021; 12:e0307821. [PMID: 34844430 PMCID: PMC8630536 DOI: 10.1128/mbio.03078-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Knowing the mechanisms that govern the persistence of infected CD4+ subpopulations could help us to design new therapies to cure HIV-1 infection. We evaluated the simultaneous distribution of the HIV-1 reservoir in 13 CD4+ subpopulations from 14 HIV-1-infected individuals on antiretroviral therapy to analyze its relationship with HIV-1 transcription, immune activation, and cell proliferation. A unique large blood donation was used to isolate CD4, CD4 resting (CD4r), CD4 activated (CD4a), T naive (TN), T stem cell memory (TSCM), T central memory (TCM), T transitional memory (TTM), T effector memory (TEM), circulating T follicular helper (cTFH), TCD20, TCD32, and resting memory TCD2high (rmTCD2high) cells. HIV-1 DNA measured by droplet digital PCR ranged from 3,636 copies/106 in TTM to 244 in peripheral blood mononuclear cells (PBMCs), with no subpopulation standing out for provirus enrichment. Importantly, all the subpopulations harbored intact provirus by intact provirus DNA assay (IPDA). TCD32, cTFH, and TTM had the highest levels of HIV-1 transcription measured by fluorescent in situ hybridization with flow cytometry (FISH/flow), but without reaching statistical differences. The subpopulations more enriched in provirus had a memory phenotype, were less activated (measured by CD38+/HLA-DR+), and expressed more programmed cell death 1 (PD-1). Conversely, subpopulations transcribing more HIV-1 RNA were not necessarily enriched in provirus and were more activated (measured by CD38+/HLA-DR+) and more proliferative (measured by Ki-67). In conclusion, the HIV reservoir is composed of a mosaic of subpopulations contributing to the HIV-1 persistence through different mechanisms such as susceptibility to infection, provirus intactness, or transcriptional status. The narrow range of reservoir differences between the different blood cell subsets tested suggests limited efficacy in targeting only specific cell subpopulations during HIV-1 cure strategies. IMPORTANCE The main barrier for HIV-1 cure is the presence of latently infected CD4+ T cells. Although various cell subpopulations have been identified as major HIV-1 reservoir cells, the relative contribution of infected CD4 subpopulations in the HIV-1 reservoir remains largely unknown. Here, we evaluated the simultaneous distribution of the HIV-1 reservoir in 13 CD4+ T-cell subpopulations in peripheral blood from HIV-1-infected individuals under suppressive antiretroviral therapy. We found that the HIV-1 reservoir is composed of a mosaic of cell subpopulations, with heterogeneous proviral DNA, HIV-1 transcription, and activation status. Hence, each cell subpopulation contributes to the HIV-1 persistence through different mechanisms such as susceptibility to infection, rates of intact provirus, transcriptional status or half-life. This research provides new insights into the composition of the HIV-1 reservoir, suggesting that, to be effective, eradication strategies must simultaneously target multiple cell subpopulations.
Collapse
|
20
|
Dai XP, Wu FY, Cui C, Liao XJ, Jiao YM, Zhang C, Song JW, Fan X, Zhang JY, He Q, Wang FS. Increased Platelet-CD4+ T Cell Aggregates Are Correlated With HIV-1 Permissiveness and CD4+ T Cell Loss. Front Immunol 2021; 12:799124. [PMID: 34987521 PMCID: PMC8720770 DOI: 10.3389/fimmu.2021.799124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic HIV-1 infection is associated with persistent inflammation, which contributes to disease progression. Platelet-T cell aggregates play a critical role in maintaining inflammation. However, the phenotypic characteristics and clinical significance of platelet-CD4+ T cell aggregates remain unclear in different HIV-infected populations. In this study, we quantified and characterized platelet-CD4+ T cell aggregates in the peripheral blood of treatment-naïve HIV-1-infected individuals (TNs), immunological responders to antiretroviral therapy (IRs), immunological non-responders to antiretroviral therapy (INRs), and healthy controls (HCs). Flow cytometry analysis and immunofluorescence microscopy showed increased platelet-CD4+ T cell aggregate formation in TNs compared to HCs during HIV-1 infection. However, the frequencies of platelet-CD4+ T cell aggregates decreased in IRs compared to TNs, but not in INRs, which have shown severe immunological dysfunction. Platelet-CD4+ T cell aggregate frequencies were positively correlated with HIV-1 viral load but negatively correlated with CD4+ T cell counts and CD4/CD8 ratios. Furthermore, we observed a higher expression of CD45RO, HIV co-receptors, HIV activation/exhaustion markers in platelet-CD4+ T cell aggregates, which was associated with HIV-1 permissiveness. High levels of caspase-1 and caspase-3, and low levels of Bcl-2 in platelet-CD4+ T cell aggregates imply the potential role in CD4+ T cell loss during HIV-1 infection. Furthermore, platelet-CD4+ T cell aggregates contained more HIV-1 gag viral protein and HIV-1 DNA than their platelet-free CD4+ T cell counterparts. The platelet-CD4+ T cell aggregate levels were positively correlated with plasma sCD163 and sCD14 levels. Our findings demonstrate that platelet-CD4+ T cell aggregate formation has typical characteristics of HIV-1 permissiveness and is related to immune activation during HIV-1 infection.
Collapse
Affiliation(s)
- Xiao-Peng Dai
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Noncommissioned Officer School, Army Medical University, Shijiazhuang, China
| | - Feng-Ying Wu
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng Cui
- Noncommissioned Officer School, Army Medical University, Shijiazhuang, China
| | - Xue-Jiao Liao
- The Third People’s Hospital of Shenzhen, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| | - Qing He
- The Third People’s Hospital of Shenzhen, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| | - Fu-Sheng Wang
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| |
Collapse
|
21
|
Innis EA, Levinger C, Szaniawski MA, Williams ESCP, Alcamí J, Bosque A, Schiffer JT, Coiras M, Spivak AM, Planelles V. Pharmacologic control of homeostatic and antigen-driven proliferation to target HIV-1 persistence. Biochem Pharmacol 2021; 194:114816. [PMID: 34715067 DOI: 10.1016/j.bcp.2021.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
The presence of latent human immunodeficiency virus 1 (HIV-1) in quiescent memory CD4 + T cells represents a major barrier to viral eradication. Proliferation of memory CD4 + T cells is the primary mechanism that leads to persistence of the latent reservoir, despite effective antiretroviral therapy (ART). Memory CD4 + T cells are long-lived and can proliferate through two mechanisms: homeostatic proliferation via γc-cytokine stimulation or antigen-driven proliferation. Therefore, therapeutic modalities that perturb homeostatic and antigen-driven proliferation, combined with ART, represent promising strategies to reduce the latent reservoir. In this study, we investigated a library of FDA-approved oncology drugs to determine their ability to inhibit homeostatic and/or antigen-driven proliferation. We confirmed potential hits by evaluating their effects on proliferation in memory CD4 + T cells from people living with HIV-1 on ART (PLWH) and interrogated downstream signaling of γc-cytokine stimulation. We found that dasatinib and ponatinib, tyrosine kinase inhibitors, and trametinib, a MEK inhibitor, reduced both homeostatic and antigen-driven proliferationby >65%, with a reduction in viability <45%, ex vivo. In memory CD4 + T cells from PLWH, only dasatinib restricted both homeostatic and antigen-driven proliferation and prevented spontaneous rebound, consistent with promoting a smaller reservoir size. We show that dasatinib restricts IL-7 induced proliferation through STAT5 phosphorylation inhibition. Our results establish that the anti-cancer agent dasatinib is an exciting candidate to be used as an anti-proliferative drug in a clinical trial, since it efficiently blocks proliferation and iswell tolerated in patients with chronic myeloid leukemia (CML).
Collapse
Affiliation(s)
- E A Innis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - C Levinger
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, USA
| | - M A Szaniawski
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - E S C P Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - J Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, USA
| | - J T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA 98109, USA
| | - M Coiras
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A M Spivak
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - V Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
22
|
Simonetti FR, Zhang H, Soroosh GP, Duan J, Rhodehouse K, Hill AL, Beg SA, McCormick K, Raymond HE, Nobles CL, Everett JK, Kwon KJ, White JA, Lai J, Margolick JB, Hoh R, Deeks SG, Bushman FD, Siliciano JD, Siliciano RF. Antigen-driven clonal selection shapes the persistence of HIV-1-infected CD4+ T cells in vivo. J Clin Invest 2021; 131:145254. [PMID: 33301425 DOI: 10.1172/jci145254] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Clonal expansion of infected CD4+ T cells is a major mechanism of HIV-1 persistence and a barrier to achieving a cure. Potential causes are homeostatic proliferation, effects of HIV-1 integration, and interaction with antigens. Here, we show that it is possible to link antigen responsiveness, the full proviral sequence, the integration site, and the T cell receptor β-chain (TCRβ) sequence to examine the role of recurrent antigenic exposure in maintaining the HIV-1 reservoir. We isolated CMV- and Gag-responding CD4+ T cells from 10 treated individuals. Proviral populations in CMV-responding cells were dominated by large clones, including clones harboring replication-competent proviruses. TCRβ repertoires showed high clonality driven by converging adaptive responses. Although some proviruses were in genes linked to HIV-1 persistence (BACH2, STAT5B, MKL1), the proliferation of infected cells under antigenic stimulation occurred regardless of the site of integration. Paired TCRβ and integration site analysis showed that infection could occur early or late in the course of a clone's response to antigen and could generate infected cell populations too large to be explained solely by homeostatic proliferation. Together, these findings implicate antigen-driven clonal selection as a major factor in HIV-1 persistence, a finding that will be a difficult challenge to eradication efforts.
Collapse
Affiliation(s)
- Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Garshasb P Soroosh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayi Duan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyle Rhodehouse
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison L Hill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin McCormick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hayley E Raymond
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher L Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Bricker KM, Chahroudi A, Mavigner M. New Latency Reversing Agents for HIV-1 Cure: Insights from Nonhuman Primate Models. Viruses 2021; 13:1560. [PMID: 34452425 PMCID: PMC8402914 DOI: 10.3390/v13081560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 01/30/2023] Open
Abstract
Antiretroviral therapy (ART) controls human immunodeficiency virus 1 (HIV-1) replication and prevents disease progression but does not eradicate HIV-1. The persistence of a reservoir of latently infected cells represents the main barrier to a cure. "Shock and kill" is a promising strategy involving latency reversing agents (LRAs) to reactivate HIV-1 from latently infected cells, thus exposing the infected cells to killing by the immune system or clearance agents. Here, we review advances to the "shock and kill" strategy made through the nonhuman primate (NHP) model, highlighting recently identified latency reversing agents and approaches such as mimetics of the second mitochondrial activator of caspase (SMACm), experimental CD8+ T cell depletion, immune checkpoint blockade (ICI), and toll-like receptor (TLR) agonists. We also discuss the advantages and limits of the NHP model for HIV cure research and methods developed to evaluate the efficacy of in vivo treatment with LRAs in NHPs.
Collapse
Affiliation(s)
- Katherine M. Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.M.B.); (A.C.)
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.M.B.); (A.C.)
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory + Children’s Center for Childhood Infections and Vaccines, Atlanta, GA 30322, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.M.B.); (A.C.)
| |
Collapse
|
24
|
Ismail SD, Pankrac J, Ndashimye E, Prodger JL, Abrahams MR, Mann JFS, Redd AD, Arts EJ. Addressing an HIV cure in LMIC. Retrovirology 2021; 18:21. [PMID: 34344423 PMCID: PMC8330180 DOI: 10.1186/s12977-021-00565-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
HIV-1 persists in infected individuals despite years of antiretroviral therapy (ART), due to the formation of a stable and long-lived latent viral reservoir. Early ART can reduce the latent reservoir and is associated with post-treatment control in people living with HIV (PLWH). However, even in post-treatment controllers, ART cessation after a period of time inevitably results in rebound of plasma viraemia, thus lifelong treatment for viral suppression is indicated. Due to the difficulties of sustained life-long treatment in the millions of PLWH worldwide, a cure is undeniably necessary. This requires an in-depth understanding of reservoir formation and dynamics. Differences exist in treatment guidelines and accessibility to treatment as well as social stigma between low- and-middle income countries (LMICs) and high-income countries. In addition, demographic differences exist in PLWH from different geographical regions such as infecting viral subtype and host genetics, which can contribute to differences in the viral reservoir between different populations. Here, we review topics relevant to HIV-1 cure research in LMICs, with a focus on sub-Saharan Africa, the region of the world bearing the greatest burden of HIV-1. We present a summary of ART in LMICs, highlighting challenges that may be experienced in implementing a HIV-1 cure therapeutic. Furthermore, we discuss current research on the HIV-1 latent reservoir in different populations, highlighting research in LMIC and gaps in the research that may facilitate a global cure. Finally, we discuss current experimental cure strategies in the context of their potential application in LMICs.
Collapse
Affiliation(s)
- Sherazaan D Ismail
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Joshua Pankrac
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Emmanuel Ndashimye
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Jamie F S Mann
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Andrew D Redd
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Eric J Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada.
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
25
|
Rausch JW, Le Grice SFJ. Characterizing the Latent HIV-1 Reservoir in Patients with Viremia Suppressed on cART: Progress, Challenges, and Opportunities. Curr HIV Res 2021; 18:99-113. [PMID: 31889490 PMCID: PMC7475929 DOI: 10.2174/1570162x18666191231105438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Modern combination antiretroviral therapy (cART) can bring HIV-1 in blood plasma to level undetectable by standard tests, prevent the onset of acquired immune deficiency syndrome (AIDS), and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, cART is not curative, as within a few weeks of treatment cessation, HIV viremia in most patients rebounds to pre-cART levels. The primary source of this rebound, and the principal barrier to a cure, is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated into the genomic DNA of resting memory CD4+ T cells. In this review, prevailing models for how the latent reservoir is established and maintained, residual viremia and viremic rebound upon withdrawal of cART, and the types and characteristics of cells harboring latent HIV-1 will be discussed. Selected technologies currently being used to advance our understanding of HIV latency will also be presented, as will a perspective on which areas of advancement are most essential for producing the next generation of HIV-1 therapeutics.
Collapse
Affiliation(s)
- Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| |
Collapse
|
26
|
T cell immune discriminants of HIV reservoir size in a pediatric cohort of perinatally infected individuals. PLoS Pathog 2021; 17:e1009533. [PMID: 33901266 PMCID: PMC8112655 DOI: 10.1371/journal.ppat.1009533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/11/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
The size of the latent HIV reservoir is associated with the timing of therapeutic interventions and overall health of the immune system. Here, we demonstrate that T cell phenotypic signatures associate with viral reservoir size in a cohort of HIV vertically infected children and young adults under durable viral control, and who initiated anti-retroviral therapy (ART) <2 years old. Flow cytometry was used to measure expression of immune activation (IA), immune checkpoint (ICP) markers, and intracellular cytokine production after stimulation with GAG peptides in CD4 and CD8 T cells from cross-sectional peripheral blood samples. We also evaluated the expression of 96 genes in sort-purified total CD4 and CD8 T cells along with HIV-specific CD4 and CD8 T cells using a multiplexed RT-PCR approach. As a measure of HIV reservoir, total HIV-DNA quantification by real-time PCR was performed. Poisson regression modeling for predicting reservoir size using phenotypic markers revealed a signature that featured frequencies of PD-1+CD4 T cells, TIGIT+CD4 T cells and HIV-specific (CD40L+) CD4 T cells as important predictors and it also shows that time of ART initiation strongly affects their association with HIV-DNA. Further, gene expression analysis showed that the frequencies of PD-1+CD4 T cells associated with a CD4 T cell molecular profile skewed toward an exhausted Th1 profile. Our data provide a link between immune checkpoint molecules and HIV persistence in a pediatric cohort as has been demonstrated in adults. Frequencies of PD-1+ and TIGIT+CD4 T cells along with the frequency of HIV-specific CD4 T cells could be associated with the mechanism of viral persistence and may provide insight into potential targets for therapeutic intervention. Low HIV reservoir size is associated with positive outcomes of therapeutic approaches and better immune function. Here, we identified a 9-marker T cell immune signature based on phenotypic flow cytometry data that associated with total HIV DNA measurements in a pediatric cohort of 34 perinatally infected participants with sustained viral control. Notably, frequencies of PD-1+ CD4 T cells and TIGIT+ CD4 T cells were positively correlated and HIV-specific (CD40L+) CD4 T cells were negatively correlated with HIV DNA, and were impacted by time of ART initiation. Gene expression analysis by multiplex RT-PCR showed that the frequencies of PD-1+ CD4 T cells associated with an exhausted Th1 molecular profile in CD4 T cells. This signature could inform future therapeutic studies and provide mechanistic insight on HIV persistence in perinatally infected HIV.
Collapse
|
27
|
O’Neil TR, Hu K, Truong NR, Arshad S, Shacklett BL, Cunningham AL, Nasr N. The Role of Tissue Resident Memory CD4 T Cells in Herpes Simplex Viral and HIV Infection. Viruses 2021; 13:359. [PMID: 33668777 PMCID: PMC7996247 DOI: 10.3390/v13030359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue-resident memory T cells (TRM) were first described in 2009. While initially the major focus was on CD8+ TRM, there has recently been increased interest in defining the phenotype and the role of CD4+ TRM in diseases. Circulating CD4+ T cells seed CD4+ TRM, but there also appears to be an equilibrium between CD4+ TRM and blood CD4+ T cells. CD4+ TRM are more mobile than CD8+ TRM, usually localized deeper within the dermis/lamina propria and yet may exhibit synergy with CD8+ TRM in disease control. This has been demonstrated in herpes simplex infections in mice. In human recurrent herpes infections, both CD4+ and CD8+ TRM persisting between lesions may control asymptomatic shedding through interferon-gamma secretion, although this has been more clearly shown for CD8+ T cells. The exact role of the CD4+/CD8+ TRM axis in the trigeminal ganglia and/or cornea in controlling recurrent herpetic keratitis is unknown. In HIV, CD4+ TRM have now been shown to be a major target for productive and latent infection in the cervix. In HSV and HIV co-infections, CD4+ TRM persisting in the dermis support HIV replication. Further understanding of the role of CD4+ TRM and their induction by vaccines may help control sexual transmission by both viruses.
Collapse
Affiliation(s)
- Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sana Arshad
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
28
|
Bacchus-Souffan C, Fitch M, Symons J, Abdel-Mohsen M, Reeves DB, Hoh R, Stone M, Hiatt J, Kim P, Chopra A, Ahn H, York VA, Cameron DL, Hecht FM, Martin JN, Yukl SA, Mallal S, Cameron PU, Deeks SG, Schiffer JT, Lewin SR, Hellerstein MK, McCune JM, Hunt PW. Relationship between CD4 T cell turnover, cellular differentiation and HIV persistence during ART. PLoS Pathog 2021; 17:e1009214. [PMID: 33465157 PMCID: PMC7846027 DOI: 10.1371/journal.ppat.1009214] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/29/2021] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The precise role of CD4 T cell turnover in maintaining HIV persistence during antiretroviral therapy (ART) has not yet been well characterized. In resting CD4 T cell subpopulations from 24 HIV-infected ART-suppressed and 6 HIV-uninfected individuals, we directly measured cellular turnover by heavy water labeling, HIV reservoir size by integrated HIV-DNA (intDNA) and cell-associated HIV-RNA (caRNA), and HIV reservoir clonality by proviral integration site sequencing. Compared to HIV-negatives, ART-suppressed individuals had similar fractional replacement rates in all subpopulations, but lower absolute proliferation rates of all subpopulations other than effector memory (TEM) cells, and lower plasma IL-7 levels (p = 0.0004). Median CD4 T cell half-lives decreased with cell differentiation from naïve to TEM cells (3 years to 3 months, p<0.001). TEM had the fastest replacement rates, were most highly enriched for intDNA and caRNA, and contained the most clonal proviral expansion. Clonal proviruses detected in less mature subpopulations were more expanded in TEM, suggesting that they were maintained through cell differentiation. Earlier ART initiation was associated with lower levels of intDNA, caRNA and fractional replacement rates. In conclusion, circulating integrated HIV proviruses appear to be maintained both by slow turnover of immature CD4 subpopulations, and by clonal expansion as well as cell differentiation into effector cells with faster replacement rates.
Collapse
Affiliation(s)
- Charline Bacchus-Souffan
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jori Symons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | | | - Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Mars Stone
- Vitalant Research Institute and Department of Laboratory Medicine at the University of California, San Francisco, California, United States of America
| | - Joseph Hiatt
- Medical Scientist Training Program & Biomedical Sciences Graduate Program, University of California, San Francisco, California, United States of America
| | - Peggy Kim
- Infectious Diseases Section, Medical Service, San Francisco Veterans Affairs Medical Center, California, United States of America
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Haelee Ahn
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Vanessa A. York
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Daniel L. Cameron
- Division of Bioinformatics, Walter & Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Frederick M. Hecht
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Jeffrey N. Martin
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Steven A. Yukl
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
- Infectious Diseases Section, Medical Service, San Francisco Veterans Affairs Medical Center, California, United States of America
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Paul U. Cameron
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sharon R. Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Marc K. Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Joseph M. McCune
- Global Health Innovative Technology Solutions/HIV Frontiers, Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Peter W. Hunt
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Stem cell-like memory T cells: A perspective from the dark side. Cell Immunol 2021; 361:104273. [PMID: 33422699 DOI: 10.1016/j.cellimm.2020.104273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Much attention has been paid to a newly discovered subset of memory T (TM) cells-stem cell-like memory T (TSCM) cells for their high self-renewal ability, multi-differentiation potential and long-term effector function in adoptive therapy against tumors. Despite their application in cancer therapy, an excess of TSCM cells also contributes to the persistence of autoimmune diseases for their immune memory and HIV infection as a long-lived HIV reservoir. Signaling pathways Wnt, AMPK/mTOR and NF-κB are key determinants for TM cell generation, maintenance and proinflammatory effect. In this review, we focus on the phenotypic and functional characteristics of TSCM cells and discuss their role in autoimmune diseases and HIV-1 chronic infection. Also, we explore the potential mechanism and signaling pathways involved in immune memory and look into the future therapy strategies of targeting long-lived TM cells to suppress pathogenic immune memory.
Collapse
|
30
|
Fromentin R, Chomont N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol 2021; 51:101438. [PMID: 33272901 PMCID: PMC8164644 DOI: 10.1016/j.smim.2020.101438] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Antiretroviral therapy controls HIV replication but does not eliminate the virus from the infected host. The persistence of a small pool of cells harboring integrated and replication-competent HIV genomes impedes viral eradication efforts. The HIV reservoir was originally described as a relatively homogeneous pool of resting memory CD4+ T cells. Over the past 20 years, the identification of multiple cellular subsets of CD4+ T cells endowed with distinct biological properties shed new lights on the heterogeneity of HIV reservoirs. It is now clear that HIV persists in a large variety of CD4+ T cells, which contribute to HIV persistence through different mechanisms. In this review, we summarize recent findings indicating that specific biological features of well-characterized subsets of CD4+ T cells individually contribute to the persistence of HIV. These include an increased sensitivity to HIV infection, specific tissue locations, enhanced survival and heightened capacity to proliferate. We also discuss the relative abilities of these cellular reservoirs to contribute to viral rebound upon ART interruption. Together, these findings reveal that the HIV reservoir is not homogeneous and should be viewed as a mosaic of multiple cell types that all contribute to HIV persistence through different mechanisms.
Collapse
Affiliation(s)
- Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
31
|
Cohn LB, Chomont N, Deeks SG. The Biology of the HIV-1 Latent Reservoir and Implications for Cure Strategies. Cell Host Microbe 2020; 27:519-530. [PMID: 32272077 DOI: 10.1016/j.chom.2020.03.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antiretroviral therapy (ART) inhibits HIV replication but is not curative. During ART, the integrated HIV genome persists indefinitely within CD4+ T cells and perhaps other cells. Here, we describe the mechanisms thought to contribute to its persistence during treatment and highlight findings from numerous recent studies describing the importance of cell proliferation in that process. Continued progress elucidating the biology will enhance our ability to develop effective curative interventions.
Collapse
Affiliation(s)
- Lillian B Cohn
- Chan Zuckerberg Biohub, San Francisco, CA; Department of Medicine, University of California, San Francisco, CA
| | - Nicolas Chomont
- Centre de recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA.
| |
Collapse
|
32
|
Latency-Reversing Agents Induce Differential Responses in Distinct Memory CD4 T Cell Subsets in Individuals on Antiretroviral Therapy. Cell Rep 2020; 29:2783-2795.e5. [PMID: 31775045 DOI: 10.1016/j.celrep.2019.10.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/11/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Latent proviruses persist in central (TCM), transitional (TTM), and effector (TEM) memory cells. We measured the levels of cellular factors involved in HIV gene expression in these subsets. The highest levels of acetylated H4, active nuclear factor κB (NF-κB), and active positive transcription elongation factor b (P-TEFb) were measured in TEM, TCM, and TTM cells, respectively. Vorinostat and romidepsin display opposite abilities to induce H4 acetylation across subsets. Protein kinase C (PKC) agonists are more efficient at inducing NF-κB phosphorylation in TCM cells but more potent at activating PTEF-b in the TEM subset. We selected the most efficient latency-reversing agents (LRAs) and measured their ability to reverse latency in each subset. While ingenol alone has modest activities in the three subsets, its combination with a histone deacetylase inhibitor (HDACi) dramatically increases latency reversal in TCM cells. Altogether, these results indicate that cellular HIV reservoirs are differentially responsive to common LRAs and suggest that combination of compounds will be required to achieve latency reversal in all subsets.
Collapse
|
33
|
Zerbato JM, McMahon DK, Sobolewski MD, Mellors JW, Sluis-Cremer N. Naive CD4+ T Cells Harbor a Large Inducible Reservoir of Latent, Replication-competent Human Immunodeficiency Virus Type 1. Clin Infect Dis 2020; 69:1919-1925. [PMID: 30753360 DOI: 10.1093/cid/ciz108] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The latent human immunodeficiency virus type 1 (HIV-1) reservoir represents a major barrier to a cure. Based on the levels of HIV-1 DNA in naive (TN) vs resting memory CD4+ T cells, it is widely hypothesized that this reservoir resides primarily within memory cells. Here, we compared virus production from TN and central memory (TCM) CD4+ T cells isolated from HIV-1-infected individuals on suppressive therapy. METHODS CD4+ TN and TCM cells were purified from the blood of 7 HIV-1-infected individuals. We quantified total HIV-1 DNA in the CD4+ TN and TCM cells. Extracellular virion-associated HIV-1 RNA or viral outgrowth assays were used to assess latency reversal following treatment with anti-CD3/CD28 monoclonal antibodies (mAbs), phytohaemagglutinin/interleukin-2, phorbol 12-myristate 13-acetate/ionomycin, prostratin, panobinostat, or romidepsin. RESULTS HIV-1 DNA was significantly higher in TCM compared to TN cells (2179 vs 684 copies/106 cells, respectively). Following exposure to anti-CD3/CD28 mAbs, virion-associated HIV-1 RNA levels were similar between TCM and TN cells (15 135 vs 18 290 copies/mL, respectively). In 4/7 donors, virus production was higher for TN cells independent of the latency reversing agent used. Replication-competent virus was recovered from both TN and TCM cells. CONCLUSIONS Although the frequency of HIV-1 infection is lower in TN compared to TCM cells, as much virus is produced from the TN population after latency reversal. This finding suggests that quantifying HIV-1 DNA alone may not predict the size of the inducible latent reservoir and that TN cells may be an important reservoir of latent HIV-1.
Collapse
Affiliation(s)
- Jennifer M Zerbato
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Deborah K McMahon
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Michelle D Sobolewski
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| |
Collapse
|
34
|
Gartner MJ, Gorry PR, Tumpach C, Zhou J, Dantanarayana A, Chang JJ, Angelovich TA, Ellenberg P, Laumaea AE, Nonyane M, Moore PL, Lewin SR, Churchill MJ, Flynn JK, Roche M. Longitudinal analysis of subtype C envelope tropism for memory CD4 + T cell subsets over the first 3 years of untreated HIV-1 infection. Retrovirology 2020; 17:24. [PMID: 32762760 PMCID: PMC7409430 DOI: 10.1186/s12977-020-00532-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background HIV-1 infects a wide range of CD4+ T cells with different phenotypic properties and differing expression levels of entry coreceptors. We sought to determine the viral tropism of subtype C (C-HIV) Envelope (Env) clones for different CD4+ T cell subsets and whether tropism changes during acute to chronic disease progression. HIV-1 envs were amplified from the plasma of five C-HIV infected women from three untreated time points; less than 2 months, 1-year and 3-years post-infection. Pseudoviruses were generated from Env clones, phenotyped for coreceptor usage and CD4+ T cell subset tropism was measured by flow cytometry. Results A total of 50 C-HIV envs were cloned and screened for functionality in pseudovirus infection assays. Phylogenetic and variable region characteristic analysis demonstrated evolution in envs between time points. We found 45 pseudoviruses were functional and all used CCR5 to mediate entry into NP2/CD4/CCR5 cells. In vitro infection assays showed transitional memory (TM) and effector memory (EM) CD4+ T cells were more frequently infected (median: 46% and 25% of total infected CD4+ T cells respectively) than naïve, stem cell memory, central memory and terminally differentiated cells. This was not due to these subsets contributing a higher proportion of the CD4+ T cell pool, rather these subsets were more susceptible to infection (median: 5.38% EM and 2.15% TM cells infected), consistent with heightened CCR5 expression on EM and TM cells. No inter- or intra-participant changes in CD4+ T cell subset tropism were observed across the three-time points. Conclusions CD4+ T cell subsets that express more CCR5 were more susceptible to infection with C-HIV Envs, suggesting that these may be the major cellular targets during the first 3 years of infection. Moreover, we found that viral tropism for different CD4+ T cell subsets in vitro did not change between Envs cloned from acute to chronic disease stages. Finally, central memory, naïve and stem cell memory CD4+ T cell subsets were susceptible to infection, albeit inefficiently by Envs from all time-points, suggesting that direct infection of these cells may help establish the latent reservoir early in infection.
Collapse
Affiliation(s)
- Matthew J Gartner
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Paul R Gorry
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Carolin Tumpach
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jingling Zhou
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Ashanti Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - J Judy Chang
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Thomas A Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Paula Ellenberg
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Annemarie E Laumaea
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Molati Nonyane
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, Australia
| | - Melissa J Churchill
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Jacqueline K Flynn
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia. .,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia. .,School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia. .,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Modulation of Determinant Factors to Improve Therapeutic Combinations with Immune Checkpoint Inhibitors. Cells 2020; 9:cells9071727. [PMID: 32707692 PMCID: PMC7408477 DOI: 10.3390/cells9071727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 01/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICPi) have shown their superiority over conventional therapies to treat some cancers. ICPi are effective against immunogenic tumors. However, patients with tumors poorly infiltrated with immune cells do not respond to ICPi. Combining ICPi with other anticancer therapies such as chemotherapy, radiation, or vaccines, which can stimulate the immune system and recruit antitumor T cells into the tumor bed, may be a relevant strategy to increase the proportion of responding patients. Such an approach still raises the following questions: What are the immunological features modulated by immunogenic therapies that can be critical to ensure not only immediate but also long-lasting tumor protection? How must the combined treatments be administered to the patients to harness their full potential while limiting adverse immunological events? Here, we address these points by reviewing how immunogenic anticancer therapies can provide novel therapeutic opportunities upon combination with ICPi. We discuss their ability to create a permissive tumor microenvironment through the generation of inflamed tumors and stimulation of memory T cells such as resident (TRM) and stem-cell like (TSCM) cells. We eventually underscore the importance of sequence, dose, and duration of the combined anticancer therapies to design optimal and successful cancer immunotherapy strategies.
Collapse
|
36
|
Abstract
Although antiretroviral therapies (ARTs) potently inhibit HIV replication, they do not eradicate the virus. HIV persists in cellular and anatomical reservoirs that show minimal decay during ART. A large number of studies conducted during the past 20 years have shown that HIV persists in a small pool of cells harboring integrated and replication-competent viral genomes. The majority of these cells do not produce viral particles and constitute what is referred to as the latent reservoir of HIV infection. Therefore, although HIV is not considered as a typical latent virus, it can establish a state of nonproductive infection under rare circumstances, particularly in memory CD4+ T cells, which represent the main barrier to HIV eradication. While it was originally thought that the pool of latently infected cells was largely composed of cells harboring transcriptionally silent genomes, recent evidence indicates that several blocks contribute to the nonproductive state of these cells. Here, we describe the virological and immunological factors that play a role in the establishment and persistence of the pool of latently infected cells and review the current approaches aimed at eliminating the latent HIV reservoir.
Collapse
Affiliation(s)
| | - Pierre Gantner
- Department of Microbiology, Infectiology and Immunology and
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology and
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Sannier G, Dubé M, Kaufmann DE. Single-Cell Technologies Applied to HIV-1 Research: Reaching Maturity. Front Microbiol 2020; 11:297. [PMID: 32194526 PMCID: PMC7064469 DOI: 10.3389/fmicb.2020.00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
The need for definitive answers probably explains our natural tendency to seek simplicity. The reductionist “bulk” approach, in which a mean behavior is attributed to a heterogeneous cell population, fulfills this need by considerably helping the conceptualization of complex biological processes. However, the limits of this methodology are becoming increasingly clear as models seek to explain biological events occurring in vivo, where heterogeneity is the rule. Research in the HIV-1 field is no exception: the challenges encountered in the development of preventive and curative anti-HIV-1 strategies may well originate in part from inadequate assumptions built on bulk technologies, highlighting the need for new perspectives. The emergence of diverse single-cell technologies set the stage for potential breakthrough discoveries, as heterogeneous processes can now be investigated with an unprecedented depth in topics as diverse as HIV-1 tropism, dynamics of the replication cycle, latency, viral reservoirs and immune control. In this review, we summarize recent advances in the HIV-1 field made possible by single-cell technologies, and contextualize their importance.
Collapse
Affiliation(s)
- Gérémy Sannier
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Mathieu Dubé
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Consortium for HIV/AIDS Vaccine Development (Scripps CHAVD), La Jolla, CA, United States
| |
Collapse
|
38
|
Genetic Diversity, Compartmentalization, and Age of HIV Proviruses Persisting in CD4 + T Cell Subsets during Long-Term Combination Antiretroviral Therapy. J Virol 2020; 94:JVI.01786-19. [PMID: 31776273 DOI: 10.1128/jvi.01786-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/20/2019] [Indexed: 02/02/2023] Open
Abstract
The HIV reservoir, which comprises diverse proviruses integrated into the genomes of infected, primarily CD4+ T cells, is the main barrier to developing an effective HIV cure. Our understanding of the genetics and dynamics of proviruses persisting within distinct CD4+ T cell subsets, however, remains incomplete. Using single-genome amplification, we characterized subgenomic proviral sequences (nef region) from naive, central memory, transitional memory, and effector memory CD4+ T cells from five HIV-infected individuals on long-term combination antiretroviral therapy (cART) and compared these to HIV RNA sequences isolated longitudinally from archived plasma collected prior to cART initiation, yielding HIV data sets spanning a median of 19.5 years (range, 10 to 20 years) per participant. We inferred a distribution of within-host phylogenies for each participant, from which we characterized proviral ages, phylogenetic diversity, and genetic compartmentalization between CD4+ T cell subsets. While three of five participants exhibited some degree of proviral compartmentalization between CD4+ T cell subsets, combined analyses revealed no evidence that any particular CD4+ T cell subset harbored the longest persisting, most genetically diverse, and/or most genetically distinctive HIV reservoir. In one participant, diverse proviruses archived within naive T cells were significantly younger than those in memory subsets, while for three other participants we observed no significant differences in proviral ages between subsets. In one participant, "old" proviruses were recovered from all subsets, and included one sequence, estimated to be 21.5 years old, that dominated (>93%) their effector memory subset. HIV eradication strategies will need to overcome within- and between-host genetic complexity of proviral landscapes, possibly via personalized approaches.IMPORTANCE The main barrier to HIV cure is the ability of a genetically diverse pool of proviruses, integrated into the genomes of infected CD4+ T cells, to persist despite long-term suppressive combination antiretroviral therapy (cART). CD4+ T cells, however, constitute a heterogeneous population due to their maturation across a developmental continuum, and the genetic "landscapes" of latent proviruses archived within them remains incompletely understood. We applied phylogenetic techniques, largely novel to HIV persistence research, to reconstruct within-host HIV evolutionary history and characterize proviral diversity in CD4+ T cell subsets in five individuals on long-term cART. Participants varied widely in terms of proviral burden, genetic diversity, and age distribution between CD4+ T cell subsets, revealing that proviral landscapes can differ between individuals and between infected cell types within an individual. Our findings expose each within-host latent reservoir as unique in its genetic complexity and support personalized strategies for HIV eradication.
Collapse
|
39
|
Eller MA, Hong T, Creegan M, Nau ME, Sanders-Buell E, Slike BM, Krebs SJ, Ratto-Kim S, McElrath MJ, Katabira ET, Bolton DL, Michael NL, Robb ML, Tovanabutra S, Baeten JM, Sandberg JK. Activated PD-1+ CD4+ T cells represent a short-lived part of the viral reservoir and predict poor immunologic recovery upon initiation of ART. AIDS 2020; 34:197-202. [PMID: 31764072 DOI: 10.1097/qad.0000000000002432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Activated (CD38HLA-DR) PD-1 CD4 T cells are strongly associated with virus replication and disease progression in untreated HIV-1 infection, and viral persistence in individuals on ART. Few studies have examined cell-associated viral load (CAVL) in different activated CD4 T-cell populations to measure relative contributions to viral reservoirs. DESIGN Longitudinal assessment of HIV-1 chronically infected Ugandans initiating ART, to investigate activated CD4 T-cell populations and their contribution to viral reservoirs. METHODS We followed 32 HIV-1 chronically infected individuals from Kampala, Uganda, and determined their CD4 T-cell counts and viral load at baseline, 6, and 12 months after the initiation of ART. T-cell populations were sorted based on activation profiles and gag DNA was measured to determine CAVL within these populations. Soluble factors associated with inflammation were measured in plasma using a multiplexed platform. RESULTS Concomitant with viral load decline and CD4 T-cell count rebound, the activated PD-1 CD4 T-cell population contracted upon initiation of ART. Baseline levels of activated PD-1 CD4 T cells correlated with plasma levels of IP-10 and TNFRII. Interestingly, a higher baseline level of activated PD-1 CD4 T cells was associated with poorer CD4 T-cell recovery after 12 months of ART. This population contributed significantly to the cell-associated HIV DNA load at baseline, whereas their contribution declined on ART, indicating high turnover. CONCLUSION Activated PD-1 CD4 T cells are predictors of poor immunologic recovery on ART and may represent a short-lived component of HIV-1 reservoirs.
Collapse
Affiliation(s)
- Michael A Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Ting Hong
- Departments of Global Health, Medicine, and Epidemiology, University of Washington, Seattle, Washington
| | - Matthew Creegan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Martin E Nau
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Bonnie M Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Silvia Ratto-Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Elly T Katabira
- Faculty of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Diane L Bolton
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Jared M Baeten
- Departments of Global Health, Medicine, and Epidemiology, University of Washington, Seattle, Washington
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Kwon KJ, Timmons AE, Sengupta S, Simonetti FR, Zhang H, Hoh R, Deeks SG, Siliciano JD, Siliciano RF. Different human resting memory CD4 + T cell subsets show similar low inducibility of latent HIV-1 proviruses. Sci Transl Med 2020; 12:eaax6795. [PMID: 31996465 PMCID: PMC7875249 DOI: 10.1126/scitranslmed.aax6795] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
The latent reservoir of HIV-1 in resting CD4+ T cells is a major barrier to cure. It is unclear whether the latent reservoir resides principally in particular subsets of CD4+ T cells, a finding that would have implications for understanding its stability and developing curative therapies. Recent work has shown that proliferation of HIV-1-infected CD4+ T cells is a major factor in the generation and persistence of the latent reservoir and that latently infected T cells that have clonally expanded in vivo can proliferate in vitro without producing virions. In certain CD4+ memory T cell subsets, the provirus may be in a deeper state of latency, allowing the cell to proliferate without producing viral proteins, thus permitting escape from immune clearance. To evaluate this possibility, we used a multiple stimulation viral outgrowth assay to culture resting naïve, central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells from 10 HIV-1-infected individuals on antiretroviral therapy. On average, only 1.7% of intact proviruses across all T cell subsets were induced to transcribe viral genes and release replication-competent virus after stimulation of the cells. We found no consistent enrichment of intact or inducible proviruses in any T cell subset. Furthermore, we observed notable plasticity among the canonical memory T cell subsets after activation in vitro and saw substantial person-to-person variability in the inducibility of infectious virus release. This finding complicates the vision for a targeted approach for HIV-1 cure based on T cell memory subsets.
Collapse
Affiliation(s)
- Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Zhang
- Flow Cytometry and Immunology Core, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
41
|
Moretti S, Cafaro A, Tripiciano A, Picconi O, Buttò S, Ensoli F, Sgadari C, Monini P, Ensoli B. HIV therapeutic vaccines aimed at intensifying combination antiretroviral therapy. Expert Rev Vaccines 2020; 19:71-84. [PMID: 31957513 DOI: 10.1080/14760584.2020.1712199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Although successful at suppressing HIV replication, combination antiretroviral therapy (cART) only partially restores immune functions and fails to reduce the latent HIV reservoir, thus requiring novel interventions for its intensification.Areas covered: Here are reviewed therapeutic vaccine candidates that are being developed to this goal. Among them, the Tat vaccine has been shown to promote immune restoration, including CD4+ T-cell recovery in low immunological responders, and to reduce the virus reservoirs well beyond what achieved with long-term suppressive cART.Expert opinion: The authors propose the Tat vaccine as a promising vaccine candidate for cART intensification toward HIV reservoirs depletion, functional cure, and eradication strategies, suggesting that targeting a key protein in the virus life cycle is pivotal to success.
Collapse
Affiliation(s)
- Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
42
|
Chandrasekar AP, Cummins NW, Badley AD. The Role of the BCL-2 Family of Proteins in HIV-1 Pathogenesis and Persistence. Clin Microbiol Rev 2019; 33:e00107-19. [PMID: 31666279 PMCID: PMC6822993 DOI: 10.1128/cmr.00107-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Advances in HIV-1 therapy have transformed the once fatal infection into a manageable, chronic condition, yet the search for a widely applicable approach to cure remains elusive. The ineffectiveness of antiretroviral therapy (ART) in reducing the size of the HIV-1 latent reservoir has prompted investigation into the mechanisms of HIV-1 latency and immune escape. One of the major regulators of apoptosis, the BCL-2 protein, alongside its homologous family members, is a major target of HIV-1-induced change. Recent studies have now demonstrated the association of this protein with cells that support proviral forms in the setting of latency and have helped identify BCL-2 as a novel and promising therapeutic target for HIV-1 therapy directed at possible cure. This review aims to systematically review the interactions of HIV-1 with BCL-2 and its homologs and to examine the possibility of using BCL-2 inhibitors in the study and elimination of the latent reservoir.
Collapse
Affiliation(s)
| | - Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
43
|
Mavigner M, Zanoni M, Tharp GK, Habib J, Mattingly CR, Lichterfeld M, Nega MT, Vanderford TH, Bosinger SE, Chahroudi A. Pharmacological Modulation of the Wnt/β-Catenin Pathway Inhibits Proliferation and Promotes Differentiation of Long-Lived Memory CD4 + T Cells in Antiretroviral Therapy-Suppressed Simian Immunodeficiency Virus-Infected Macaques. J Virol 2019; 94:e01094-19. [PMID: 31619550 PMCID: PMC6912121 DOI: 10.1128/jvi.01094-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
The major obstacle to human immunodeficiency type 1 virus (HIV-1) eradication is a reservoir of latently infected cells that persists despite long-term antiretroviral therapy (ART) and is maintained through cellular proliferation. Long-lived memory CD4+ T cells with high self-renewal capacity, such as central memory (CM) T cells and stem cell memory (SCM) T cells, are major contributors to the viral reservoir in HIV-infected individuals on ART. The Wnt/β-catenin signaling pathway regulates the balance between self-renewal and differentiation of SCM and CM T cells, and pharmacological manipulation of this pathway offers an opportunity to interfere with the proliferation of latently infected cells. Here, we evaluated in vivo a novel approach to inhibit self-renewal of SCM and CM CD4+ T cells in the rhesus macaque (RM) model of simian immunodeficiency (SIV) infection. We used an inhibitor of the Wnt/β-catenin pathway, PRI-724, that blocks the interaction between the coactivator CREB-binding protein (CBP) and β-catenin, resulting in the cell fate decision to differentiate rather than proliferate. Our study shows that PRI-724 treatment of ART-suppressed SIVmac251-infected RMs resulted in decreased proliferation of SCM and CM T cells and modified the SCM and CM CD4+ T cell transcriptome toward a profile of more differentiated memory T cells. However, short-term treatment with PRI-724 alone did not significantly reduce the size of the viral reservoir. This work demonstrates for the first time that stemness pathways of long-lived memory CD4+ T cells can be pharmacologically modulated in vivo, thus establishing a novel strategy to target HIV persistence.IMPORTANCE Long-lasting CD4+ T cell subsets, such as central memory and stem cell memory CD4+ T cells, represent critical reservoirs for human immunodeficiency virus (HIV) persistence despite suppressive antiretroviral therapy. These cells possess stem cell-like properties of enhanced self-renewal/proliferation, and proliferation of latently infected memory CD4+ T cells plays a key role in maintaining the reservoir over time. Here, we evaluated an innovative strategy targeting the proliferation of long-lived memory CD4+ T cells to reduce viral reservoir stability. Using the rhesus macaque model, we tested a pharmacological inhibitor of the Wnt/β-catenin signaling pathway that regulates T cell proliferation. Our study shows that administration of the inhibitor PRI-724 decreased the proliferation of SCM and CM CD4+ T cells and promoted a transcriptome enriched in differentiation genes. Although the viral reservoir size was not significantly reduced by PRI-724 treatment alone, we demonstrate the potential to pharmacologically modulate the proliferation of memory CD4+ T cells as a strategy to limit HIV persistence.
Collapse
Affiliation(s)
- M Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - M Zanoni
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - G K Tharp
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - J Habib
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C R Mattingly
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - M Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - M T Nega
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - T H Vanderford
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - S E Bosinger
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory + Children's Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - A Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory + Children's Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
44
|
Salgado M, Martinez-Picado J, Gálvez C, Rodríguez-Mora S, Rivaya B, Urrea V, Mateos E, Alcamí J, Coiras M. Dasatinib protects humanized mice from acute HIV-1 infection. Biochem Pharmacol 2019; 174:113625. [PMID: 31476293 DOI: 10.1016/j.bcp.2019.113625] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
HIV-1 infection remains incurable despite the efficient combined antiretroviral therapy (cART) due to the formation of long-lived viral reservoirs that are mostly settled in CD4+T cells and maintained by homeostatic proliferation. The use of cytostatic drugs such as tyrosine kinase inhibitors (TKIs) as adjuvants to cART could be helpful to avoid the reservoir establishment and replenishment. We determined previously that TKI dasatinib, which is successfully used for treating chronic myeloid leukemia (CML), shows antiviral effect against HIV-1 infection of CD4+ T cells in vitro. HIV-infected subjects that developed CML may safely combine long-term treatment with TKIs and cART but there is no information about the effect of dasatinib on HIV-1 reservoir in vivo. Therefore, we analyzed the ability of dasatinib to protect NSG mice engrafted with human CD34+ hematopoietic stem cells from HIV-1 infection. Mice were randomly assigned to two groups that received dasatinib or placebo daily by oral gavage. After five days, all mice were infected intraperitoneally with HIV-1 and followed up for 21 days in the absence of cART. Daily administration of dasatinib decreased viral and proviral load in all treated mice, showing in 40% of these mice undetectable viral RNA or DNA in blood. Proviral HIV-1 DNA in gut-associated lymphoid tissue (GALT) was also reduced in all dasatinib-treated mice and under the limit of detection in one of these mice. Finally, treatment with dasatinib modified the distribution of CD4+ and CD8+ T-cell subpopulations, delaying their differentiation into memory T-cell subsets that are a major component of the viral reservoir. In conclusion, dasatinib afforded protection of NSG mice from HIV-1 intraperitoneal infection in the absence of cART.
Collapse
Affiliation(s)
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Cristina Gálvez
- IrsiCaixa AIDS Research Institute, Badalona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Sara Rodríguez-Mora
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Rivaya
- Microbiology Department, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Víctor Urrea
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Elena Mateos
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases Unit, IBIDAPS, Hospital Clínic, University of Barcelona, Spain.
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
45
|
Cafaro A, Tripiciano A, Picconi O, Sgadari C, Moretti S, Buttò S, Monini P, Ensoli B. Anti-Tat Immunity in HIV-1 Infection: Effects of Naturally Occurring and Vaccine-Induced Antibodies Against Tat on the Course of the Disease. Vaccines (Basel) 2019; 7:vaccines7030099. [PMID: 31454973 PMCID: PMC6789840 DOI: 10.3390/vaccines7030099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
HIV-1 Tat is an essential protein in the virus life cycle, which is required for virus gene expression and replication. Most Tat that is produced during infection is released extracellularly and it plays a key role in HIV pathogenesis, including residual disease upon combination antiretroviral therapy (cART). Here, we review epidemiological and experimental evidence showing that antibodies against HIV-1 Tat, infrequently occurring in natural infection, play a protective role against disease progression, and that vaccine targeting Tat can intensify cART. In fact, Tat vaccination of subjects on suppressive cART in Italy and South Africa promoted immune restoration, including CD4+ T-cell increase in low immunological responders, and a reduction of proviral DNA even after six years of cART, when both CD4+ T-cell gain and DNA decay have reached a plateau. Of note, DNA decay was predicted by the neutralization of Tat-mediated entry of Env into dendritic cells by anti-Tat antibodies, which were cross-clade binding and neutralizing. Anti-Tat cellular immunity also contributed to the DNA decay. Based on these data, we propose the Tat therapeutic vaccine as a pathogenesis-driven intervention that effectively intensifies cART and it may lead to a functional cure, providing new perspectives and opportunities also for prevention and virus eradication strategies.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The HIV-1 reservoir is composed of infected cells poised to replicate and spread the virus upon treatment interruption. It constitutes the main obstacle toward an HIV-1 cure. Whether marker(s) may allow the detection of cells that form the reservoir is an outstanding question. Here, we present and discuss recent advances and controversies in the identification and characterization of markers of the HIV-1 reservoir. RECENT FINDINGS Latently infected T cells that persist under successful therapy do not express viral antigens, making their identification challenging. HIV is not equally distributed across T cells subsets. For instance, central memory, Th17, and T follicular helper cells largely contribute to viral persistence. Recently, novel markers of the reservoir have been identified. Using various strategies, different teams have reported that surface molecules such as immune checkpoints inhibitors, CD30, or CD32a may be enriched in latently infected cells or in cells harboring viral RNA. SUMMARY Understanding the mechanisms underlying the presence of markers of HIV-1 infected cells will provide new insights into the formation and maintenance of the viral reservoir. These markers should also facilitate the detection of persistently infected cells in patients' samples and in animal models, and represent potential targets for elimination of these cells.
Collapse
|
47
|
Hani L, Chaillon A, Nere ML, Ruffin N, Alameddine J, Salmona M, Lopez Zaragoza JL, Smith DM, Schwartz O, Lelièvre JD, Delaugerre C, Lévy Y, Seddiki N. Proliferative memory SAMHD1low CD4+ T cells harbour high levels of HIV-1 with compartmentalized viral populations. PLoS Pathog 2019; 15:e1007868. [PMID: 31220191 PMCID: PMC6605680 DOI: 10.1371/journal.ppat.1007868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/02/2019] [Accepted: 05/24/2019] [Indexed: 11/24/2022] Open
Abstract
We previously reported the presence of memory CD4+ T cells that express low levels of SAMHD1 (SAMHD1low) in peripheral blood and lymph nodes from both HIV-1 infected and uninfected individuals. These cells are enriched in Th17 and Tfh subsets, two populations known to be preferentially targeted by HIV-1. Here we investigated whether SAMHD1low CD4+ T-cells harbour replication-competent virus and compartimentalized HIV-1 genomes. We sorted memory CD4+CD45RO+SAMHD1low, CD4+CD45RO+SAMHD1+ and naive CD4+CD45RO-SAMHD1+ cells from HIV-1-infected patients on anti-retroviral therapy (c-ART) and performed HIV-1 DNA quantification, ultra-deep-sequencing of partial env (C2/V3) sequences and phenotypic characterization of the cells. We show that SAMHD1low cells include novel Th17 CCR6+ subsets that lack CXCR3 and CCR4 (CCR6+DN). There is a decrease of the % of Th17 in SAMHD1low compartment in infected compared to uninfected individuals (41% vs 55%, p<0.05), whereas the % of CCR6+DN increases (7.95% vs 3.8%, p<0.05). Moreover, in HIV-1 infected patients, memory SAMHD1low cells harbour high levels of HIV-1 DNA compared to memory SAMHD1+ cells (4.5 vs 3.8 log/106cells, respectively, p<0.001), while naïve SAMHD1+ showed significantly lower levels (3.1 log/106cells, p<0.0001). Importantly, we show that SAMHD1low cells contain p24-producing cells. Moreover, phylogenetic analyses revealed well-segregated HIV-1 DNA populations with compartmentalization between SAMHD1low and SAMHD1+ memory cells, and limited viral exchange. As expected, the % of Ki67+ cells was significantly higher in SAMHD1low compared to SAMHD1+ cells. There was positive association between levels of HIV-1 DNA and Ki67+ in memory SAMHD1low cells, but not in memory and naïve SAMHD1+ CD4+ T-cells. Altogether, these data suggest that proliferative memory SAMHD1low cells contribute to viral persistence. In our previous results we reported that memory CD4+ T cells expressing low levels of SAMHD1 (SAMHD1low) are present in peripheral blood and lymph nodes from HIV-1 infected and uninfected individuals. These cells were enriched in Th17 and Tfh, two populations targeted by HIV-1. Here we used purified memory CD4+CD45RO+SAMHD1low, CD4+CD45RO+SAMHD1+ and naive CD4+CD45RO-SAMHD1+ cells from HIV-1-infected and treated patients to perform cell-associated HIV-1 DNA quantification, p24-producing cells detection, ultra-deep-sequencing of partial env (C2/V3) HIV-1 DNA and further phenotypic characterization. Our results demonstrate that (i) Th17 and CCR6+DN-expressing transcriptional signature of early Th17, two major populations that are susceptible to HIV-1 infection, are present in SAMHD1low cells, and while the former decreased significantly in c-ART HIV-1 infected compared to uninfected individuals, the latter significantly increased; (ii) memory SAMHD1low cells from c-ART patients carry high levels of HIV-1 DNA compared to SAMHD1+ cells, and these levels positively and significantly correlated with Ki67 expression; (iii) memory SAMHD1low cells from patients harbour p24-producing cells; (iv) phylogenetic analyses revealed well-segregated HIV-1 DNA populations with significant compartmentalization between SAMHD1low and SAMHD1+ cells and limited viral exchange. Our data demonstrate that memory SAMHD1low cells contribute to HIV-1 persistence.
Collapse
Affiliation(s)
- Lylia Hani
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Antoine Chaillon
- Vaccine Research Institute (VRI), Créteil, France
- Department of Medicine, University of California San Diego, CA, United States of America
| | - Marie-Laure Nere
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - Nicolas Ruffin
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Joudy Alameddine
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Maud Salmona
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - José-Luiz Lopez Zaragoza
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, CA, United States of America
| | - Olivier Schwartz
- Vaccine Research Institute (VRI), Créteil, France
- Unité Virus et Immunité, Département de Virologie, Institut Pasteur, Paris, France
| | - Jean-Daniel Lelièvre
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Constance Delaugerre
- Vaccine Research Institute (VRI), Créteil, France
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - Yves Lévy
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Nabila Seddiki
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- * E-mail:
| |
Collapse
|
48
|
Cat and Mouse: HIV Transcription in Latency, Immune Evasion and Cure/Remission Strategies. Viruses 2019; 11:v11030269. [PMID: 30889861 PMCID: PMC6466452 DOI: 10.3390/v11030269] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
There is broad scientific and societal consensus that finding a cure for HIV infection must be pursued. The major barrier to achieving a cure for HIV/AIDS is the capacity of the HIV virus to avoid both immune surveillance and current antiretroviral therapy (ART) by rapidly establishing latently infected cell populations, termed latent reservoirs. Here, we provide an overview of the rapidly evolving field of HIV cure/remission research, highlighting recent progress and ongoing challenges in the understanding of HIV reservoirs, the role of HIV transcription in latency and immune evasion. We review the major approaches towards a cure that are currently being explored and further argue that small molecules that inhibit HIV transcription, and therefore uncouple HIV gene expression from signals sent by the host immune response, might be a particularly promising approach to attain a cure or remission. We emphasize that a better understanding of the game of "cat and mouse" between the host immune system and the HIV virus is a crucial knowledge gap to be filled in both cure and vaccine research.
Collapse
|
49
|
Pardons M, Baxter AE, Massanella M, Pagliuzza A, Fromentin R, Dufour C, Leyre L, Routy JP, Kaufmann DE, Chomont N. Single-cell characterization and quantification of translation-competent viral reservoirs in treated and untreated HIV infection. PLoS Pathog 2019; 15:e1007619. [PMID: 30811499 PMCID: PMC6411230 DOI: 10.1371/journal.ppat.1007619] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/11/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
The phenotypic characterization of the cells in which HIV persists during antiretroviral therapy (ART) remains technically challenging. We developed a simple flow cytometry-based assay to quantify and characterize infected cells producing HIV proteins during untreated and treated HIV infection. By combining two antibodies targeting the HIV capsid in a standard intracellular staining protocol, we demonstrate that p24-producing cells can be detected with high specificity and sensitivity in the blood from people living with HIV. In untreated individuals, the frequency of productively infected cells strongly correlated with plasma viral load. Infected cells preferentially displayed a transitional memory phenotype and were enriched in Th17, peripheral Tfh and regulatory T cells subsets. These cells also preferentially expressed activation markers (CD25, HLA-DR, Ki67), immune checkpoint molecules (PD-1, LAG-3, TIGIT, Tim-3) as well as the integrins α4β7 and α4β1. In virally suppressed individuals on ART, p24-producing cells were only detected upon stimulation (median frequency of 4.3 p24+ cells/106 cells). These measures correlated with other assays assessing the size of the persistent reservoir including total and integrated HIV DNA, Tat/rev Induced Limiting Dilution Assay (TILDA) and quantitative viral outgrowth assay (QVOA). In ART-suppressed individuals, p24-producing cells preferentially displayed a transitional and effector memory phenotype, and expressed immune checkpoint molecules (PD-1, TIGIT) as well as the integrin α4β1. Remarkably, α4β1 was expressed by more than 70% of infected cells both in untreated and ART-suppressed individuals. Altogether, these results highlight a broad diversity in the phenotypes of HIV-infected cells in treated and untreated infection and suggest that strategies targeting multiple and phenotypically distinct cellular reservoirs will be needed to exert a significant impact on the size of the reservoir. HIV persists in a small pool of infected CD4+ T cells during ART. A better characterization of these cells is a pre-requisite to the development of HIV eradication strategies. We developed a novel assay, named HIV-Flow, to simultaneously quantify and characterize reservoir cells in individuals receiving ART. With this assay, we found that a median of only 5 cells/million have the ability to produce the HIV protein Gag in individuals on suppressive ART. These frequencies correlated with other assays aimed at measuring HIV reservoirs. Importantly, we show that the HIV reservoir is phenotypically diverse, with numerous cell subsets contributing to the pool of persistently infected cells. Nonetheless, we identified several markers preferentially expressed at the surface or these rare reservoir cells, including immune checkpoint molecules and homing receptors. By combining these markers, we identified discrete cellular subsets highly enriched in HIV-infected cells. This novel assay will facilitate the identification of markers expressed by cellular HIV reservoirs.
Collapse
Affiliation(s)
- Marion Pardons
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Amy E. Baxter
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Marta Massanella
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Dufour
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Louise Leyre
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University Heath Centre, Montreal, Quebec, Canada
| | - Daniel E. Kaufmann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
50
|
Sgadari C, Monini P, Tripiciano A, Picconi O, Casabianca A, Orlandi C, Moretti S, Francavilla V, Arancio A, Paniccia G, Campagna M, Bellino S, Meschiari M, Nozza S, Sighinolfi L, Latini A, Muscatello A, Saracino A, Di Pietro M, Galli M, Cafaro A, Magnani M, Ensoli F, Ensoli B. Continued Decay of HIV Proviral DNA Upon Vaccination With HIV-1 Tat of Subjects on Long-Term ART: An 8-Year Follow-Up Study. Front Immunol 2019; 10:233. [PMID: 30815001 PMCID: PMC6381398 DOI: 10.3389/fimmu.2019.00233] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/28/2019] [Indexed: 02/02/2023] Open
Abstract
Introduction: Tat, a key HIV virulence protein, has been targeted for the development of a therapeutic vaccine aimed at cART intensification. Results from phase II clinical trials in Italy (ISS T-002) and South Africa (ISS T-003) indicated that Tat vaccination promotes increases of CD4+ T-cells and return to immune homeostasis while reducing the virus reservoir in chronically cART-treated patients. Here we present data of 92 vaccinees (59% of total vaccinees) enrolled in the ISS T-002 8-year extended follow-up study (ISS T-002 EF-UP, ClinicalTrials.gov NCT02118168). Results: Anti-Tat antibodies (Abs) induced upon vaccination persisted for the entire follow-up in 34/92 (37%) vaccinees, particularly when all 3 Ab classes (A/G/M) were present (66% of vaccinees), as most frequently observed with Tat 30 μg regimens. CD4+ T cells increased above study-entry levels reaching a stable plateau at year 5 post-vaccination, with the highest increase (165 cells/μL) in the Tat 30 μg, 3 × regimen. CD4+ T-cell increase occurred even in subjects with CD4+ nadir ≤ 250 cells/uL and in poor immunological responders and was associated with a concomitant increase of the CD4+/CD8+ T-cell ratio, a prognostic marker of morbidity/mortality inversely related to HIV reservoir size. Proviral DNA load decreased over time, with a half-life of 2 years and an estimated 90% reduction at year 8 in the Tat 30 μg, 3 × group. In multivariate analysis the kinetic and amplitude of both CD4+ T-cell increase and proviral DNA reduction were fastest and highest in subjects with all 3 anti-Tat Ab classes and in the 30 μg, 3 × group, irrespective of drug regimens (NNRTI/NRTI vs. PI). HIV proviral DNA changes from baseline were inversely related to CD4+/CD8+ T-cell ratio and CD4+ T-cell changes, and directly related to the changes of CD8+ T cells. Further, HIV DNA decay kinetics were inversely related to the frequency and levels of intermittent viremia. Finally, Tat vaccination was similarly effective irrespective of the individual immunological status or HIV reservoir size at study entry. Conclusions: Tat immunization induces progressive immune restoration and reduction of virus reservoirs above levels reached with long-term cART, and may represent an optimal vaccine candidate for cART intensification toward HIV reservoirs depletion, functional cure, and eradication strategies.
Collapse
Affiliation(s)
- Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Casabianca
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Chiara Orlandi
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Angela Arancio
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Paniccia
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Campagna
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Bellino
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Marianna Meschiari
- Division of Infectious Diseases, University Policlinic of Modena, Modena, Italy
| | - Silvia Nozza
- Division of Infectious Diseases, San Raffaele Hospital, Milan, Italy
| | - Laura Sighinolfi
- Unit of Infectious Diseases, University Hospital of Ferrara, Ferrara, Italy
| | - Alessandra Latini
- Unit of Dermatology and Sexually Transmitted Diseases, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, University of Milan, Milan, Italy
| | - Annalisa Saracino
- Division of Infectious Diseases, University of Bari, Policlinic Hospital, Bari, Italy
| | - Massimo Di Pietro
- Unit of Infectious Diseases, Santa Maria Annunziata Hospital, Florence, Italy
| | - Massimo Galli
- Institute of Tropical and Infectious Diseases, L. Sacco Hospital, University of Milan, Milan, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|