1
|
Kumar S, Kedia R, Bisht A, Soni A, Sharma RK, Yadav S, Patra A, Srivastava SK, Kumar A. Novel Flexible Organic Photoplethysmogram Sensor for Continuous Cardiovascular Monitoring. ACS Sens 2025. [PMID: 40423952 DOI: 10.1021/acssensors.5c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
A flexible organic photodetector (OPD) has been developed for a flexible organic photoplethysmography sensor (FOPS) designed to monitor vital cardiovascular parameters such as pulse rate, respiratory rate, blood pressure, and pulse rate variability. This device is fabricated on a flexible substrate, utilizing a blend of PCDTBT and PC71BM as the active layer. The FOPS demonstrates excellent absorption properties across the visible spectrum, which is essential for capturing high-quality arterial pulse signals, known as photoplethysmogram (PPG). Optoelectronic characterization revealed a high response time and an impressive on/off current ratio, enabling the accurate detection of microfeatures within the PPG signal. We successfully utilized the device to monitor PPG signals in both reflection and transmission modes, employing green (530 nm) and red (630 nm) light sources, respectively. The recorded PPG signals were further analyzed to measure cardiovascular parameters. The device also demonstrates the ability to measure blood pressure using two techniques: a cuff-based method in conjunction with the oscillometric waveform (OMW) and a cuff-less technique utilizing an artificial neural network approach. These results highlight the FOPS's potential for integration into wearable medical technology, offering continuous, real-time cardiovascular monitoring in a user-friendly and noninvasive manner.
Collapse
Affiliation(s)
- Shubham Kumar
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashi Kedia
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arti Bisht
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Amit Soni
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchi K Sharma
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjay Yadav
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asit Patra
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjay K Srivastava
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok Kumar
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Shi D, Chen J, Li M, Zhu L, Ji X. Closing the loop: autonomous intelligent control for hypoxia pre-acclimatization and high-altitude health management. Natl Sci Rev 2025; 12:nwaf071. [PMID: 40309344 PMCID: PMC12042754 DOI: 10.1093/nsr/nwaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 05/02/2025] Open
Abstract
Hypobaric hypoxia at high altitudes threatens the health of high-altitude residents. The development of effective methods to guarantee the safety of frequent human activities in high-altitude locations is therefore needed. Pre-acclimatization at sea level is an effective approach to mitigate subsequent altitude sickness for rapid ascent, which offers a viable substitute to on-site acclimatization, minimizes the associated risks that are linked to prolonged exposure in high-altitude environments and can be personalized to individual hypoxic responses. Another critical aspect to prevent long-term physical damage is personalized health management at high altitudes, which is enabled by the emerging technologies of wearable sensors, the Internet of Medical Things and artificial intelligence. In this review, we outline the progress in pre-acclimatization and high-altitude health management, as well as the understanding of physiological mechanisms under hypoxia, highlighting the important role that is played by wearable sensors and physiological closed-loop control systems in developing intelligent personalized solutions. We also discuss the challenges and prospects of deploying autonomous intelligent monitoring and control in high-altitude health management.
Collapse
Affiliation(s)
- Dawei Shi
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Chen
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Meitong Li
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Lingling Zhu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
3
|
Virole V, Dabke N, Verma S, Kumar A, Pandya R, Husale S, Vanka K, Gonnade R, Kanawade R. Investigating the visible range photoresponse of an organic single-crystal analogue of the green fluorescent protein. NANOSCALE 2025; 17:8614-8623. [PMID: 40080386 DOI: 10.1039/d4nr05252h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The growing demand for lightweight, flexible, semi-transparent and low-cost photodetectors (PDs) in wearable electronics and optical communication systems has prompted studies to investigate organic materials as feasible alternatives to conventional inorganic PDs. However, modern organic PDs often face responsivity, detectivity, and photoresponse speed limitations, particularly in the visible range. Here, we present the photoresponse of an organic single-crystal analogue of the green fluorescent protein (GFP) chromophore photodetector, fabricated on a silicon nitride substrate. A significant increase in photocurrent was detected upon illumination with visible wavelengths (532 nm, 630 nm, and halogen light). A remarkably consistent and repeatable photoresponse was obtained during the ON and OFF illumination cycles. The device showed the dependence of photocurrent on the applied bias voltages. The measured photocurrent, responsivity, detectivity, rise time, decay time, noise equivalent power and external quantum efficiency are studied for different wavelengths. Strikingly, the fabricated device demonstrates excellent performance in the visible region compared to several conventional organic and inorganic PDs. The observed responsivity and detectivity values for the device are 98 mA W-1 and 7.94 × 108 Jones, respectively. Furthermore, the device also exhibits rapid photoresponse dynamics with a rise time of 180 ms and a decay time of 152 ms. The excellent photodetection features indicate that the single crystal GFP could serve as a versatile broadband material for future applications in optoelectronics.
Collapse
Affiliation(s)
- Vishal Virole
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Niteen Dabke
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sahil Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Quantum Nanophotonics Metrology Division, CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi, 110012, India
| | - Ajay Kumar
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rinu Pandya
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudhir Husale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Quantum Nanophotonics Metrology Division, CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi, 110012, India
| | - Kumar Vanka
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajesh Gonnade
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajesh Kanawade
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Min S, An J, Lee JH, Kim JH, Joe DJ, Eom SH, Yoo CD, Ahn HS, Hwang JY, Xu S, Rogers JA, Lee KJ. Wearable blood pressure sensors for cardiovascular monitoring and machine learning algorithms for blood pressure estimation. Nat Rev Cardiol 2025:10.1038/s41569-025-01127-0. [PMID: 39966649 DOI: 10.1038/s41569-025-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 02/20/2025]
Abstract
With advances in materials science and medical technology, wearable sensors have become crucial tools for the early diagnosis and continuous monitoring of numerous cardiovascular diseases, including arrhythmias, hypertension and coronary artery disease. These devices employ various sensing mechanisms, such as mechanoelectric, optoelectronic, ultrasonic and electrophysiological methods, to measure vital biosignals, including pulse rate, blood pressure and changes in heart rhythm. In this Review, we provide a comprehensive overview of the current state of wearable cardiovascular sensors, focusing particularly on those that measure blood pressure. We explore biosignal sensing principles, discuss blood pressure estimation methods (including machine learning algorithms) and summarize the latest advances in cuffless wearable blood pressure sensors. Finally, we highlight the challenges of and offer insights into potential pathways for the practical application of cuffless wearable blood pressure sensors in the medical field from both technical and clinical perspectives.
Collapse
Affiliation(s)
- Seongwook Min
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jaehun An
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jae Hee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Ji Hoon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Daniel J Joe
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Soo Hwan Eom
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang D Yoo
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyo-Suk Ahn
- Department of Internal Medicine, Division of Cardiology, Uijeongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Young Hwang
- Department of Anaesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sheng Xu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Alves R, van Meulen F, Overeem S, Zinger S, Stuijk S. Thermal Cameras for Continuous and Contactless Respiration Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:8118. [PMID: 39771853 PMCID: PMC11679429 DOI: 10.3390/s24248118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Continuous respiration monitoring is an important tool in assessing the patient's health and diagnosing pulmonary, cardiovascular, and sleep-related breathing disorders. Various techniques and devices, both contact and contactless, can be used to monitor respiration. Each of these techniques can provide different types of information with varying accuracy. Thermal cameras have become a focal point in research due to their contactless nature, affordability, and the type of data they provide, i.e., information on respiration motion and respiration flow. Several studies have demonstrated the feasibility of this technology and developed robust algorithms to extract important information from thermal camera videos. This paper describes the current state-of-the-art in respiration monitoring using thermal cameras, dividing the system into acquiring data, defining and tracking the region of interest, and extracting the breathing signal and respiration rate. The approaches taken to address the various challenges, the limitations of these methods, and possible applications are discussed.
Collapse
Affiliation(s)
- Raquel Alves
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Centre for Sleep Medicine Kempenhaeghe, 5590 AB Heeze, The Netherlands
| | - Fokke van Meulen
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Centre for Sleep Medicine Kempenhaeghe, 5590 AB Heeze, The Netherlands
| | - Sebastiaan Overeem
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Centre for Sleep Medicine Kempenhaeghe, 5590 AB Heeze, The Netherlands
| | - Svitlana Zinger
- Centre for Sleep Medicine Kempenhaeghe, 5590 AB Heeze, The Netherlands
| | - Sander Stuijk
- Centre for Sleep Medicine Kempenhaeghe, 5590 AB Heeze, The Netherlands
| |
Collapse
|
6
|
Wolansky J, Hoffmann C, Panhans M, Winkler LC, Talnack F, Hutsch S, Zhang H, Kirch A, Yallum KM, Friedrich H, Kublitski J, Gao F, Spoltore D, Mannsfeld SCB, Ortmann F, Banerji N, Leo K, Benduhn J. Sensitive Self-Driven Single-Component Organic Photodetector Based on Vapor-Deposited Small Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402834. [PMID: 39502007 PMCID: PMC11636095 DOI: 10.1002/adma.202402834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/03/2024] [Indexed: 12/13/2024]
Abstract
Typically, organic solar cells (OSCs) and photodetectors (OPDs) comprise an electron donating and accepting material to facilitate efficient charge carrier generation. This approach has proven successful in achieving high-performance devices but has several drawbacks for upscaling and stability. This study presents a fully vacuum-deposited single-component OPD, employing the neat oligothiophene derivative DCV2-5T in the photoactive layer. Free charge carriers are generated with an internal quantum efficiency of 20 % at zero bias. By optimizing the device structure, a very low dark current of 3.4 · 10-11 A cm-2 at -0.1 V is achieved, comparable to the dark current of state-of-the-art bulk heterojunction OPDs. This optimization results in specific detectivities of 1· 1013 Jones (based on noise measurements), accompanied by a fast photoresponse (f-3dB = 200 kHz) and a broad linear dynamic range (> 150 dB). Ultrafast transient absorption spectroscopy unveils that charge carriers are already formed at very short time scales (< 1 ps). The surprisingly efficient bulk charge generation mechanism is attributed to a strong electronic coupling of the molecular exciton and charge transfer states. This work demonstrates the very high performance of single-component OPDs and proves that this novel device design is a successful strategy for highly efficient, morphological stable and easily manufacturable devices.
Collapse
Affiliation(s)
- Jakob Wolansky
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Cedric Hoffmann
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Michel Panhans
- TUM School of Natural SciencesDepartment of ChemistryTechnische Universität MünchenLichtenbergstr. 485748GarchingGermany
| | - Louis Conrad Winkler
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Felix Talnack
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer EngineeringTechnische Universität DresdenHelmholtzstr. 1801069DresdenGermany
| | - Sebastian Hutsch
- TUM School of Natural SciencesDepartment of ChemistryTechnische Universität MünchenLichtenbergstr. 485748GarchingGermany
| | - Huotian Zhang
- Department of PhysicsChemistry and Biology (IFM)Linköping UniversityLinköpingSE‐58183Sweden
| | - Anton Kirch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
- The Organic Photonics and Electronics GroupDepartment of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Kaila M. Yallum
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Hannes Friedrich
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Jonas Kublitski
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
- Department of PhysicsUniversidade Tecnológica Federal do Paraná (UTFPR)Av. 7 de Setembro 3165Curitiba80230‐901Brazil
| | - Feng Gao
- Department of PhysicsChemistry and Biology (IFM)Linköping UniversityLinköpingSE‐58183Sweden
| | - Donato Spoltore
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
- Department of MathematicalPhysical and Computer SciencesUniversity of ParmaV.le delle Scienze 7/AParma43124Italy
| | - Stefan C. B. Mannsfeld
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer EngineeringTechnische Universität DresdenHelmholtzstr. 1801069DresdenGermany
| | - Frank Ortmann
- TUM School of Natural SciencesDepartment of ChemistryTechnische Universität MünchenLichtenbergstr. 485748GarchingGermany
| | - Natalie Banerji
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| |
Collapse
|
7
|
Jhuma FA, Harada K, Misran MAB, Mo HW, Fujimoto H, Hattori R. A Hybrid Photoplethysmography (PPG) Sensor System Design for Heart Rate Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:7634. [PMID: 39686169 DOI: 10.3390/s24237634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
A photoplethysmography (PPG) sensor is a cost-effective and efficacious way of measuring health conditions such as heart rate, oxygen saturation, and respiration rate. In this work, we present a hybrid PPG sensor system working in a reflective mode with an optoelectronic module, i.e., the combination of an inorganic light-emitting diode (LED) and a circular-shaped organic photodetector (OPD) surrounding the LED for efficient light harvest followed by the proper driving circuit for accurate PPG signal acquisition. The performance of the hybrid sensor system was confirmed by the heart rate detection process from the PPG using fast Fourier transform analysis. The PPG signal obtained with a 50% LED duty cycle and 250 Hz sampling rate resulted in accurate heart rate monitoring with an acceptable range of error. The effects of the LED duty cycle and the LED luminous intensity were found to be crucial to the heart rate accuracy and to the power consumption, i.e., indispensable factors for the hybrid sensor.
Collapse
Affiliation(s)
- Farjana Akter Jhuma
- Major of Device Science and Engineering, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 8160811, Japan
| | - Kentaro Harada
- OPERA Solutions Inc., 5-5 Kyudai-Shimmachi, Nishi-ku, Fukuoka 8190388, Japan
| | - Muhamad Affiq Bin Misran
- Major of Device Science and Engineering, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 8160811, Japan
| | - Hin-Wai Mo
- OPERA Solutions Inc., 5-5 Kyudai-Shimmachi, Nishi-ku, Fukuoka 8190388, Japan
| | - Hiroshi Fujimoto
- OPERA Solutions Inc., 5-5 Kyudai-Shimmachi, Nishi-ku, Fukuoka 8190388, Japan
| | - Reiji Hattori
- Major of Device Science and Engineering, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 8160811, Japan
| |
Collapse
|
8
|
Li C, Bian Y, Zhao Z, Liu Y, Guo Y. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. CYBORG AND BIONIC SYSTEMS 2024; 5:0172. [PMID: 39431246 PMCID: PMC11486891 DOI: 10.34133/cbsystems.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
With the prevalence of cardiovascular disease, it is imperative that medical monitoring and treatment become more instantaneous and comfortable for patients. Recently, wearable and implantable optoelectronic devices can be seamlessly integrated into human body to enable physiological monitoring and treatment in an imperceptible and spatiotemporally unconstrained manner, opening countless possibilities for the intelligent healthcare paradigm. To achieve biointegrated cardiac healthcare, researchers have focused on novel strategies for the construction of flexible/stretchable optoelectronic devices and systems. Here, we overview the progress of biointegrated flexible and stretchable optoelectronics for wearable and implantable cardiac healthcare devices. Firstly, the device design is addressed, including the mechanical design, interface adhesion, and encapsulation strategies. Next, the practical applications of optoelectronic devices for cardiac physiological monitoring, cardiac optogenetics, and nongenetic stimulation are presented. Finally, an outlook on biointegrated flexible and stretchable optoelectronic devices and systems for intelligent cardiac healthcare is discussed.
Collapse
Affiliation(s)
- Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangshuang Bian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Andrey V, Koshevaya E, Mstislav M, Parfait K. Piezoelectric PVDF and its copolymers in biomedicine: innovations and applications. Biomater Sci 2024; 12:5164-5185. [PMID: 39258881 DOI: 10.1039/d4bm00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In recent years, poly(vinylidene fluoride) (PVDF) has emerged as a versatile polymer with a wide range of applications across various fields. PVDF's piezosensitivity, versatility, crystalline structure, and tunable parameters have established it as a highly sought-after material. Furthermore, PVDF and its copolymers exhibit excellent processability and chemical resistance to a diverse array of substances. Of particular significance is its remarkable structural stability in physiological media, which highlights its potential for use in the development of biomedical products. This review offers a comprehensive overview of the latest advancements in PVDF-based biomedical systems. It examines the fabrication of stimulus-responsive delivery systems, bioelectric therapy devices, and tissue-regenerating scaffolds, all of which harness the piezosensitivity of PVDF. Moreover, the potential of PVDF in the fabrication of both invasive and non-invasive diagnostic tools is investigated, with particular emphasis on its flexibility, transparency, and piezoelectric efficiency. The material's high biocompatibility and physiological stability are of paramount importance in the development of implantable sensors for long-term health monitoring, which is crucial for the management of chronic diseases and postoperative care. Additionally, we discuss a novel approach to photoacoustic microscopy that employs a PVDF sensor, thereby eliminating the necessity for external contrast agents. This technique provides a new avenue for non-invasive imaging in biomedical applications. Finally, we explore the challenges and prospects for the development of PVDF-based systems for a range of biomedical applications. This review is distinctive in comparison to other reviews on PVDF due to its concentrated examination of biomedical applications, including pioneering imaging techniques, long-term health monitoring, and a detailed account of advancements in the field. Collectively, these elements illustrate the potential of PVDF to markedly influence biomedical engineering and patient care, distinguishing it from existing literature. By leveraging the distinctive attributes of PVDF and its copolymers, researchers can continue to advance the frontiers of biomedical engineering, with the potential to transform patient care and treatment outcomes.
Collapse
Affiliation(s)
| | - Ekaterina Koshevaya
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, 123182, Russia
| | - Makeev Mstislav
- Bauman Moscow State Technical University, Moscow, 141005, Russia.
| | - Kezimana Parfait
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
10
|
Papadopoulos K, Tselekidou D, Zachariadis A, Laskarakis A, Logothetidis S, Gioti M. The Influence of Thickness and Spectral Properties of Green Color-Emitting Polymer Thin Films on Their Implementation in Wearable PLED Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1608. [PMID: 39404335 PMCID: PMC11478667 DOI: 10.3390/nano14191608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
A systematic investigation of optical, electrochemical, photophysical, and electrooptical properties of printable green color-emitting polymer (poly(9,9-dioctylfluorene-alt-bithiophene)) (F8T2) and spiro-copolymer (SPG-01T) was conducted to explore their potentiality as an emissive layer for wearable polymer light-emitting diode (PLED) applications. We compared the two photoactive polymers in terms of their spectral characteristics and color purity, as these are the most critical factors for wearable lighting sources and optical sensors. Low-cost, solution-based methods and facile architecture were applied to produce rigid and flexible light-emitting devices with high luminance efficiencies. Emission bandwidths, color coordinates, operational characteristics, and luminance were also derived to evaluate the device's stability. The tuning of emission's spectral features by layer thickness variation was realized and was correlated with the interplay between H-aggregates and J-aggregates formations for both conjugated polymers. Finally, we applied the functional green light-emitting PLED devices based on the two studied materials for the detection of Rhodamine 6G. It was determined that the optical detection of the R6G photoluminescence is heavily influenced by the emission spectrum characteristics of the PLED and changes in the thickness of the active layer.
Collapse
Affiliation(s)
- Kyparisis Papadopoulos
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
| | - Despoina Tselekidou
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
| | - Alexandros Zachariadis
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
| | - Argiris Laskarakis
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
| | - Stergios Logothetidis
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
- Organic Electronic Technologies P.C. (OET), 20th km Thessaloniki—Tagarades, 57001 Thermi, Greece
| | - Maria Gioti
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
| |
Collapse
|
11
|
Lupinska K, Kotowicz S, Grabarz A, Siwy M, Sulowska K, Mackowski S, Bu L, Bretonnière Y, Andraud C, Schab-Balcerzak E, Sznitko L. Emission in the Biological Window from AIE-Based Carbazole-Substituted Furan-Based Compounds for Organic Light-Emitting Diodes and Random Lasers. ACS OMEGA 2024; 9:40769-40782. [PMID: 39371987 PMCID: PMC11447741 DOI: 10.1021/acsomega.4c05484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
The emission quenching observed in devices utilizing luminescent materials such as solid thin films is a prevalent issue. Consequently, searching for new organic luminescent compounds exhibiting aggregation-induced emission (AIE) behavior and characterized by relatively simple and cost-effective synthesis is of crucial interest among applications from optoelectronics and organic lasing branches. Herein, we report the optical properties of three furan-based carbazole-substituted compounds, namely, tBuCBzSO2Ph, tBuCBzSPh, and tBuCbzTCF, exhibiting the aforementioned AIE phenomenon. The optical properties of dyes were determined in classical spectroscopic experiments supported by quantum-chemical calculations. The thermal investigations and electrochemical properties of dyes were performed to verify their usefulness in the construction of organic light-emitting diodes (OLEDs). In pursuit of this objective, OLEDs with a different design were fabricated, and their performance was subject to evaluation. In more detail, the different design strategies relying on the utilization of neat-dye films, as well as the preparation of dye-doped poly(9-vinylcarbazole):2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PVK:PBD) matrices were examined. The analysis that was conducted indicated the superior potential of tBuCBzSPh for optoelectronic applications. Notably, the positive impact of the AIE effect on the emission of the OLEDs and the ability to establish the lasing phenomenon in asymmetric, poly(methyl methacrylate) (PMMA)-doped polymeric slab waveguides were verified. The study showed that the combination of the strong intramolecular charge transfer (ICT) effect with dye aggregation enables the tuning of the emission of the OLED toward the first biological window, making examined dyes promising candidates for biomedical purposes. The same optical region can be attained for laser emission at relatively low pumping conditions, reaching as low as 7.3 kW of optical power for the tBuCBzSO2Ph compound.
Collapse
Affiliation(s)
- Kamila Lupinska
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Sonia Kotowicz
- Institute
of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Anna Grabarz
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Mariola Siwy
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
| | - Karolina Sulowska
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun, Poland
| | - Sebastian Mackowski
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun, Poland
| | - Lulu Bu
- Univ
Lyon,
Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
| | - Yann Bretonnière
- Univ
Lyon,
Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
| | - Chantal Andraud
- Univ
Lyon,
Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
| | - Ewa Schab-Balcerzak
- Institute
of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Lech Sznitko
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
12
|
Teng H, Zhang Y, Zhu Z, Song D, Qiao B, Liang Z, Xu Z, Zhao S. Self-Driven Perovskite/Organic Quasi-Tandem Photodetectors Operating in Both Narrowband and Broadband Regimes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51212-51220. [PMID: 39255231 DOI: 10.1021/acsami.4c06953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dual-band photodetectors (PDs) have attracted extensive research attention due to their great potential for diverse and refreshing application scenarios in full-color imaging, optical communication, and imaging detection. Here, a self-driven dual-band PD without filters and other auxiliary equipment to achieve a narrowband response in Mode 1 and a broadband response in Mode 2 was designed based on carrier-selective transmission narrowing (CSTN). The polymer material poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), which has the appropriate energy level, was selected to be the carrier-selective transmission layer. In Mode 1, the dual-band PD exhibits a near-infrared (NIR) narrowband response in 750-900 nm, which indicates a responsivity of 360 mA/W, a full-width at half-maximum (fwhm) of 81 nm, and a specific detectivity (D*) of 7.49 × 1010 Jones at 810 nm. Simultaneously, in Mode 2, the dual-band PD exhibits a UV-visible-NIR broadband responsivity of 180 mA/W and a specific detectivity (D*) of 3.8 × 1010 Jones at 520 nm. Our study provides a reliable idea for the commercial applications of dual-function photodetectors.
Collapse
Affiliation(s)
- Huaxiao Teng
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Yu Zhang
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Ziqi Zhu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Dandan Song
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Bo Qiao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Zhiqin Liang
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Zheng Xu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Suling Zhao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
13
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
14
|
Wang L, Wang H, Liu J, Wang Y, Shao H, Li W, Yi M, Ling H, Xie L, Huang W. Negative Photoconductivity Transistors for Visuomorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403538. [PMID: 39040000 DOI: 10.1002/adma.202403538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Visuomorphic computing aims to simulate and potentially surpass the human retina by mimicking biological visual perception with an artificial retina. Despite significant progress, challenges persist in perceiving complex interactive environments. Negative photoconductivity transistors (NPTs) mimic synaptic behavior by achieving adjustable positive photoconductivity (PPC) and negative photoconductivity (NPC), simulating "excitation" and "inhibition" akin to sensory cell signals. In complex interactive environments, NPTs are desired for visuomorphic computing that can achieve a better sense of information, lower power consumption, and reduce hardware complexity. In this review, it is started by introducing the development process of NPTs, while placing a strong emphasis on the device structures, working mechanisms, and key performance parameters. The common material systems employed in NPTs based on their functions are then summarized. Moreover, it is proceeded to summarize the noteworthy applications of NPTs in optoelectronic devices, including advanced multibit nonvolatile memory, optoelectronic logic gates, optical encryption, and visual perception. Finally, the challenges and prospects that lie ahead in the ongoing development of NPTs are addressed, offering valuable insights into their applications in optoelectronics and a comprehensive understanding of their significance.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Haotian Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Jing Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Yiru Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - He Shao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Wen Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Mingdong Yi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KloFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| |
Collapse
|
15
|
Lee HS, Kong SU, Kwon S, Cho HE, Noh B, Hwang YH, Choi S, Kim D, Han JH, Lee TW, Jeon Y, Choi KC. Quantum-Dot Light-Emitting Fiber Toward All-In-One Clothing-Type Health Monitoring. ACS NANO 2024. [PMID: 39058962 DOI: 10.1021/acsnano.4c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In the Fourth Industrial Revolution, as the connection between objects and people becomes increasingly important, interest in wearable optoelectronic device-based medical diagnosis is on the rise. Pulse oximetry sensors based on a fiber platform, which is the smallest unit of clothing, could be considered an attractive candidate for this application. In this study, red and green quantum-dot light-emitting fibers (QDLEFs) based on a 250 μm-diameter 1-dimensional fiber were successfully implemented, achieving high current efficiencies of approximately 22.46 mW/sr/A and 23.6 mW/sr/A and narrow full-width at half-maximum (FWHM) of about 33 nm, respectively. In addition, its omnidirectional flexibility was confirmed through a vertical and lateral bending test with 0.92% strain. By employing a transparent and flexible elastomer, a wearable pulse oximeter incorporating QDLEFs was successfully demonstrated for oxygen saturation level (SpO2) monitoring on finger and wrist. It was demonstrated to be washable, and could be operated for up to about 18 h. Due to the elastomer and bottom emission, it exhibited excellent wear resistance characteristics in a 50 cycle reciprocating test conducted at about 2180.43 kPa with 220-grit abrasive paper sheet. A theoretical investigation based on modified photon diffusion analysis (MPDA) modeling also determined that using narrow FWHM light sources, such as QDLEFs, improves the resolution and accuracy of SpO2 monitoring. Accordingly, the proposed QDLEF showed distinguished potential as an all-in-one clothing type pulse oximetry.
Collapse
Affiliation(s)
- Ho Seung Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seong Uk Kong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seonil Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ha-Eun Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Byeongju Noh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yong Ha Hwang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungyeop Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dohong Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Hee Han
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Tae-Woo Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yongmin Jeon
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Kyung Cheol Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Li J, Chu H, Chen Z, Yiu CK, Qu Q, Li Z, Yu X. Recent Advances in Materials, Devices and Algorithms Toward Wearable Continuous Blood Pressure Monitoring. ACS NANO 2024; 18:17407-17438. [PMID: 38923501 DOI: 10.1021/acsnano.4c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Continuous blood pressure (BP) tracking provides valuable insights into the health condition and functionality of the heart, arteries, and overall circulatory system of humans. The rapid development in flexible and wearable electronics has significantly accelerated the advancement of wearable BP monitoring technologies. However, several persistent challenges, including limited sensing capabilities and stability of flexible sensors, poor interfacial stability between sensors and skin, and low accuracy in BP estimation, have hindered the progress in wearable BP monitoring. To address these challenges, comprehensive innovations in materials design, device development, system optimization, and modeling have been pursued to improve the overall performance of wearable BP monitoring systems. In this review, we highlight the latest advancements in flexible and wearable systems toward continuous noninvasive BP tracking with a primary focus on materials development, device design, system integration, and theoretical algorithms. Existing challenges, potential solutions, and further research directions are also discussed to provide theoretical and technical guidance for the development of future wearable systems in continuous ambulatory BP measurement with enhanced sensing capability, robustness, and long-term accuracy.
Collapse
Affiliation(s)
- Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Hongwei Chu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Qing'ao Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhiyuan Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
17
|
Cao X, Li Q, Li S, Xu X, Wang L, Wang M, Ding B, Bao S, Wang S, Sun B, Cui J, Wang G, Li H, Su Y. Low-Cost Photoelectric Flow Rate Sensors Based on a Flexible Planar Curved Beam Structure for Clinical Treatments. Adv Healthc Mater 2024; 13:e2304573. [PMID: 38558375 DOI: 10.1002/adhm.202304573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Indexed: 04/04/2024]
Abstract
In clinical treatments, reliable flow rate measurements ensure accurate drug delivery during infusions, precise gas delivery during artificial ventilations, etc., thereby reducing patient morbidity and mortality. However, precise flow rate sensors are costly, so medical devices with limited budgets choose cheaper but unsatisfactory flow rate measurement approaches, leading to increased medical risks. Here, a photoelectric flow rate sensor based on a flexible planar curved beam structure (FPCBS) is proposed. The FPCBS ensures low out-of-plane stiffness of the sensitive sheet and allows large deformation in the elastic range, enabling the flow rate sensor to measure the flow rate with high sensitivity over a wide range. Meanwhile, the flow rate sensor can be mass-produced using mature materials and manufacturing technology at less than $5 each. The flow rate sensors are integrated into a commercial infusion pump to measure drug infusion and a home ventilator to monitor respiration. The results are comparable to those measured by a commercial flow rate sensor, demonstrating the applicability of the sensor. Considering its proven outstanding performance at low cost, the flow rate sensor shows great potential in clinical treatment, medical diagnosis, and other medical fields.
Collapse
Affiliation(s)
- Xinfang Cao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinlan Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinkai Xu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyang Wang
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research and Development Institute Co., Ltd, Tuoren Health Technology Industrial Park, Changyuan County, Henan, 453000, China
| | - Mengjie Wang
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research and Development Institute Co., Ltd, Tuoren Health Technology Industrial Park, Changyuan County, Henan, 453000, China
| | - Bo Ding
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research and Development Institute Co., Ltd, Tuoren Health Technology Industrial Park, Changyuan County, Henan, 453000, China
| | - Shengwen Bao
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research and Development Institute Co., Ltd, Tuoren Health Technology Industrial Park, Changyuan County, Henan, 453000, China
| | - Shugang Wang
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research and Development Institute Co., Ltd, Tuoren Health Technology Industrial Park, Changyuan County, Henan, 453000, China
| | - Bao Sun
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research and Development Institute Co., Ltd, Tuoren Health Technology Industrial Park, Changyuan County, Henan, 453000, China
| | - Jingqiang Cui
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research and Development Institute Co., Ltd, Tuoren Health Technology Industrial Park, Changyuan County, Henan, 453000, China
| | - Guosheng Wang
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research and Development Institute Co., Ltd, Tuoren Health Technology Industrial Park, Changyuan County, Henan, 453000, China
| | - Huiling Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yewang Su
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Ke Y, Guo J, Kong D, Wang J, Kusch G, Lin C, Liu D, Kuang Z, Qian D, Zhou F, Zhang G, Niu M, Cao Y, Oliver RA, Dai D, Jin Y, Wang N, Huang W, Wang J. Efficient and Bright Deep-Red Light-Emitting Diodes based on a Lateral 0D/3D Perovskite Heterostructure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2207301. [PMID: 36524445 DOI: 10.1002/adma.202207301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Bright and efficient deep-red light-emitting diodes (LEDs) are important for applications in medical therapy and biological imaging due to the high penetration of deep-red photons into human tissues. Metal-halide perovskites have potential to achieve bright and efficient electroluminescence due to their favorable optoelectronic properties. However, efficient and bright perovskite-based deep-red LEDs have not been achieved yet, due to either Auger recombination in low-dimensional perovskites or trap-assisted nonradiative recombination in 3D perovskites. Here, a lateral Cs4PbI6/FAxCs1- xPbI3 (0D/3D) heterostructure that can enable efficient deep-red perovskite LEDs at very high brightness is demonstrated. The Cs4PbI6 can facilitate the growth of low-defect FAxCs1- xPbI3, and act as low-refractive-index grids, which can simultaneously reduce nonradiative recombination and enhance light extraction. This device reaches a peak external quantum efficiency of 21.0% at a photon flux of 1.75 × 1021 m-2 s-1, which is almost two orders of magnitude higher than that of reported high-efficiency deep-red perovskite LEDs. Theses LEDs are suitable for pulse oximeters, showing an error <2% of blood oxygen saturation compared with commercial oximeters.
Collapse
Affiliation(s)
- You Ke
- Shaanxi Institute of Flexible Electronics (SIFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jingshu Guo
- State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Decheng Kong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jingmin Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Gunnar Kusch
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Chen Lin
- Center for Chemistry of High-Performance and Novel Materials, State Key Laboratory of Silicon Materials, and Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Dawei Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhiyuan Kuang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Dongmin Qian
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Fuyi Zhou
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Guangbin Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Meiling Niu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yu Cao
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Rachel A Oliver
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Daoxin Dai
- State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yizheng Jin
- Center for Chemistry of High-Performance and Novel Materials, State Key Laboratory of Silicon Materials, and Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| |
Collapse
|
19
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
20
|
Mathur C, Gupta R, Bansal RK. Organic Donor-Acceptor Complexes As Potential Semiconducting Materials. Chemistry 2024; 30:e202304139. [PMID: 38265160 DOI: 10.1002/chem.202304139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/25/2024]
Abstract
In this review article, the synthesis, characterization and physico-chemical properties of the organic donor-acceptor complexes are highlighted and a special emphasis has been placed on developing them as semiconducting materials. The electron-rich molecules, i. e., donors have been broadly grouped in three categories, namely polycyclic aromatic hydrocarbons, nitrogen heterocycles and sulphur containing aromatic donors. The reactions of these classes of the donors with the acceptors, namely tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), tetracyanobenzene (TCNB), benzoquinone, pyromellitic dianhydride and pyromellitic diimides, fullerenes, phenazine, benzothiadiazole, naphthalimide, DMAD, maleic anhydride, viologens and naphthalene diimide are described. The potential applications of the resulting DA complexes for physico-electronic purposes are also included. The theoretical investigation of many of these products with a view to rationalise their observed physico-chemical properties is also discussed.
Collapse
Affiliation(s)
- Chandani Mathur
- Department of Chemistry, IIS (deemed to be University), Jaipur, Rajasthan, 302020
| | - Raakhi Gupta
- Department of Chemistry, IIS (deemed to be University), Jaipur, Rajasthan, 302020
| | - Raj K Bansal
- Department of Chemistry, IIS (deemed to be University), Jaipur, Rajasthan, 302020
| |
Collapse
|
21
|
Sun L, Wang J, Matsui H, Lee S, Wang W, Guo S, Chen H, Fang K, Ito Y, Inoue D, Hashizume D, Mori K, Takakuwa M, Lee S, Zhou Y, Yokota T, Fukuda K, Someya T. All-solution-processed ultraflexible wearable sensor enabled with universal trilayer structure for organic optoelectronic devices. SCIENCE ADVANCES 2024; 10:eadk9460. [PMID: 38598623 PMCID: PMC11006222 DOI: 10.1126/sciadv.adk9460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
All-solution-processed organic optoelectronic devices can enable the large-scale manufacture of ultrathin wearable electronics with integrated diverse functions. However, the complex multilayer-stacking device structure of organic optoelectronics poses challenges for scalable production. Here, we establish all-solution processes to fabricate a wearable, self-powered photoplethysmogram (PPG) sensor. We achieve comparable performance and improved stability compared to complex reference devices with evaporated electrodes by using a trilayer device structure applicable to organic photovoltaics, photodetectors, and light-emitting diodes. The PPG sensor array based on all-solution-processed organic light-emitting diodes and photodetectors can be fabricated on a large-area ultrathin substrate to achieve long storage stability. We integrate it with a large-area, all-solution-processed organic solar module to realize a self-powered health monitoring system. We fabricate high-throughput wearable electronic devices with complex functions on large-area ultrathin substrates based on organic optoelectronics. Our findings can advance the high-throughput manufacture of ultrathin electronic devices integrating complex functions.
Collapse
Affiliation(s)
- Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jiachen Wang
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Matsui
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shinyoung Lee
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Wenqing Wang
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuyang Guo
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hongting Chen
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kun Fang
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuma Mori
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahito Takakuwa
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sunghoon Lee
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
22
|
Kawabata R, Li K, Araki T, Akiyama M, Sugimachi K, Matsuoka N, Takahashi N, Sakai D, Matsuzaki Y, Koshimizu R, Yamamoto M, Takai L, Odawara R, Abe T, Izumi S, Kurihira N, Uemura T, Kawano Y, Sekitani T. Ultraflexible Wireless Imager Integrated with Organic Circuits for Broadband Infrared Thermal Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309864. [PMID: 38213132 DOI: 10.1002/adma.202309864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Flexible imagers are currently under intensive development as versatile optical sensor arrays, designed to capture images of surfaces and internals, irrespective of their shape. A significant challenge in developing flexible imagers is extending their detection capabilities to encompass a broad spectrum of infrared light, particularly terahertz (THz) light at room temperature. This advancement is crucial for thermal and biochemical applications. In this study, a flexible infrared imager is designed using uncooled carbon nanotube (CNT) sensors and organic circuits. The CNT sensors, fabricated on ultrathin 2.4 µm substrates, demonstrate enhanced sensitivity across a wide infrared range, spanning from near-infrared to THz wavelengths. Moreover, they retain their characteristics under bending and crumpling. The design incorporates light-shielded organic transistors and circuits, functioning reliably under light irradiation, and amplifies THz detection signals by a factor of 10. The integration of both CNT sensors and shielded organic transistors into an 8 × 8 active-sensor matrix within the imager enables sequential infrared imaging and nondestructive assessment for heat sources and in-liquid chemicals through wireless communication systems. The proposed imager, offering unique functionality, shows promise for applications in biochemical analysis and soft robotics.
Collapse
Affiliation(s)
- Rei Kawabata
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kou Li
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Teppei Araki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Mihoko Akiyama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaho Sugimachi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Division of Applied Science, School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nozomi Matsuoka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Division of Applied Science, School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norika Takahashi
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Daiki Sakai
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yuto Matsuzaki
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ryo Koshimizu
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Minami Yamamoto
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Leo Takai
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ryoga Odawara
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Takaaki Abe
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Shintaro Izumi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Naoko Kurihira
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Takafumi Uemura
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yukio Kawano
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
| | - Tsuyoshi Sekitani
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Division of Applied Science, School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
23
|
Yue O, Wang X, Xie L, Bai Z, Zou X, Liu X. Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307369. [PMID: 38196276 PMCID: PMC10953594 DOI: 10.1002/advs.202307369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Implantable bioelectronic devices (IBDs) have gained attention for their capacity to conformably detect physiological and pathological signals and further provide internal therapy. However, traditional power sources integrated into these IBDs possess intricate limitations such as bulkiness, rigidity, and biotoxicity. Recently, artificial "tissue batteries" (ATBs) have diffusely developed as artificial power sources for IBDs manufacturing, enabling comprehensive biological-activity monitoring, diagnosis, and therapy. ATBs are on-demand and designed to accommodate the soft and confining curved placement space of organisms, minimizing interface discrepancies, and providing ample power for clinical applications. This review presents the near-term advancements in ATBs, with a focus on their miniaturization, flexibility, biodegradability, and power density. Furthermore, it delves into material-screening, structural-design, and energy density across three distinct categories of TBs, distinguished by power supply strategies. These types encompass innovative energy storage devices (chemical batteries and supercapacitors), power conversion devices that harness power from human-body (biofuel cells, thermoelectric nanogenerators, bio-potential devices, piezoelectric harvesters, and triboelectric devices), and energy transfer devices that receive and utilize external energy (radiofrequency-ultrasound energy harvesters, ultrasound-induced energy harvesters, and photovoltaic devices). Ultimately, future challenges and prospects emphasize ATBs with the indispensability of bio-safety, flexibility, and high-volume energy density as crucial components in long-term implantable bioelectronic devices.
Collapse
Affiliation(s)
- Ouyang Yue
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Long Xie
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xiaoliang Zou
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xinhua Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| |
Collapse
|
24
|
Du Z, Luong HM, Sabury S, Jones AL, Zhu Z, Panoy P, Chae S, Yi A, Kim HJ, Xiao S, Brus VV, Manjunatha Reddy GN, Reynolds JR, Nguyen TQ. High-Performance Wearable Organic Photodetectors by Molecular Design and Green Solvent Processing for Pulse Oximetry and Photoplethysmography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310478. [PMID: 38054854 DOI: 10.1002/adma.202310478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Indexed: 12/07/2023]
Abstract
White-light detection from the visible to the near-infrared region is central to many applications such as high-speed cameras, autonomous vehicles, and wearable electronics. While organic photodetectors (OPDs) are being developed for such applications, several challenges must be overcome to produce scalable high-detectivity OPDs. This includes issues associated with low responsivity, narrow absorption range, and environmentally friendly device fabrication. Here, an OPD system processed from 2-methyltetrahydrofuran (2-MeTHF) sets a record in light detectivity, which is also comparable with commercially available silicon-based photodiodes is reported. The newly designed OPD is employed in wearable devices to monitor heart rate and blood oxygen saturation using a flexible OPD-based finger pulse oximeter. In achieving this, a framework for a detailed understanding of the structure-processing-property relationship in these OPDs is also developed. The bulk heterojunction (BHJ) thin films processed from 2-MeTHF are characterized at different length scales with advanced techniques. The BHJ morphology exhibits optimal intermixing and phase separation of donor and acceptor moieties, which facilitates the charge generation and collection process. Benefitting from high charge carrier mobilities and a low shunt leakage current, the newly developed OPD exhibits a specific detectivity of above 1012 Jones over 400-900 nm, which is higher than those of reference devices processed from chlorobenzene and ortho-xylene.
Collapse
Affiliation(s)
- Zhifang Du
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Hoang Mai Luong
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sina Sabury
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Austin L Jones
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ziyue Zhu
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Patchareepond Panoy
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sangmin Chae
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Ahra Yi
- Department of Organic Materials Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyo Jung Kim
- Department of Organic Materials Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Steven Xiao
- 1-Material Inc, 2290 Chemin St-Francois, Dorval, Quebec, H9P 1K2, Canada
| | - Viktor V Brus
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan City, 010000, Republic of Kazakhstan
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
25
|
Na Y, Kim C, Kim K, Kim TH, Kwon SH, Kang IS, Jung YW, Kim TW, Cho DH, An J, Lee JK, Park J. Quarter-Annulus Si-Photodetector with Equal Inner and Outer Radii of Curvature for Reflective Photoplethysmography Sensors. BIOSENSORS 2024; 14:109. [PMID: 38392028 PMCID: PMC10886646 DOI: 10.3390/bios14020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Reflection-type photoplethysmography (PPG) pulse sensors used in wearable smart watches, true wireless stereo, etc., have been recently considered a key component for monitoring biological signals such as heart rate, SPO3, and blood pressure. Typically, the optical front end (OFE) of these PPG sensors is heterogeneously configured and packaged with light sources and receiver chips. In this paper, a novel quarter-annulus photodetector (NQAPD) with identical inner and outer radii of curvature has been developed using a plasma dicing process to realize a ring-type OFE receiver, which maximizes manufacturing efficiency and increases the detector collection area by 36.7% compared to the rectangular PD. The fabricated NQAPD exhibits a high quantum efficiency of over 90% in the wavelength of 500 nm to 740 nm and the highest quantum efficiency of 95% with a responsivity of 0.41 A/W at the wavelength of 530 nm. Also, the NQAPD is shown to increase the SNR of the PPG signal by 5 to 7.6 dB compared to the eight rectangular PDs. Thus, reflective PPG sensors constructed with NQAPD can be applied to various wearable devices requiring low power consumption, high performance, and cost-effectiveness.
Collapse
Affiliation(s)
- Yeeun Na
- Nano Convergence Technology Division, National Nano Fab Center, Yuseong-gu, Daejeon 34141, Republic of Korea; (Y.N.); (C.K.); (K.K.); (T.H.K.); (S.H.K.); (I.-S.K.)
| | - Chaehwan Kim
- Nano Convergence Technology Division, National Nano Fab Center, Yuseong-gu, Daejeon 34141, Republic of Korea; (Y.N.); (C.K.); (K.K.); (T.H.K.); (S.H.K.); (I.-S.K.)
| | - Keunhoi Kim
- Nano Convergence Technology Division, National Nano Fab Center, Yuseong-gu, Daejeon 34141, Republic of Korea; (Y.N.); (C.K.); (K.K.); (T.H.K.); (S.H.K.); (I.-S.K.)
| | - Tae Hyun Kim
- Nano Convergence Technology Division, National Nano Fab Center, Yuseong-gu, Daejeon 34141, Republic of Korea; (Y.N.); (C.K.); (K.K.); (T.H.K.); (S.H.K.); (I.-S.K.)
| | - Soo Hyun Kwon
- Nano Convergence Technology Division, National Nano Fab Center, Yuseong-gu, Daejeon 34141, Republic of Korea; (Y.N.); (C.K.); (K.K.); (T.H.K.); (S.H.K.); (I.-S.K.)
| | - Il-Suk Kang
- Nano Convergence Technology Division, National Nano Fab Center, Yuseong-gu, Daejeon 34141, Republic of Korea; (Y.N.); (C.K.); (K.K.); (T.H.K.); (S.H.K.); (I.-S.K.)
| | - Young Woo Jung
- Sensor & Package Business Division, Partron Co., Ltd., Hwaseong-si 18449, Gyeonggi-do, Republic of Korea; (Y.W.J.); (T.W.K.)
| | - Tae Won Kim
- Sensor & Package Business Division, Partron Co., Ltd., Hwaseong-si 18449, Gyeonggi-do, Republic of Korea; (Y.W.J.); (T.W.K.)
| | - Deok-Ho Cho
- Research Department, Sigetronics Inc., Wanju-gun 55314, Jeollabuk-do, Republic of Korea;
| | - Jihwan An
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang-si 37673, Gyeongsangbuk-do, Republic of Korea;
| | - Jong-Kwon Lee
- Department of System Semiconductor Engineering, Cheongju University, Cheongju-si 28503, Chungcheongbuk-do, Republic of Korea
| | - Jongcheol Park
- Nano Convergence Technology Division, National Nano Fab Center, Yuseong-gu, Daejeon 34141, Republic of Korea; (Y.N.); (C.K.); (K.K.); (T.H.K.); (S.H.K.); (I.-S.K.)
| |
Collapse
|
26
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
27
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
28
|
Chen R, Liang N, Zhai T. Dual-color emissive OLED with orthogonal polarization modes. Nat Commun 2024; 15:1331. [PMID: 38351002 PMCID: PMC10864411 DOI: 10.1038/s41467-024-45311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
Linearly polarized organic light-emitting diodes have become appealing functional expansions of polarization optics and optoelectronic applications. However, the current linearly polarized diodes exhibit low polarization performance, cost-prohibitive process, and monochromatic modulation limit. Herein, we develop a switchable dual-color orthogonal linear polarization mode in organic light-emitting diode, based on a dielectric/metal nanograting-waveguide hybrid-microcavity using cost-efficient laser interference lithography and vacuum thermal evaporation. This acquired diode presents a transverse-electric/transverse-magnetic polarization extinction ratio of 15.8 dB with a divergence angle of ±30°, an external quantum efficiency of 2.25%, and orthogonal polarized colors from green to sky-blue. This rasterization of dielectric/metal-cathode further satisfies momentum matching between waveguide and air mode, diffracting both the targeted sky-blue transverse-electric mode and the off-confined green transverse-magnetic mode. Therefore, a polarization-encrypted colorful optical image is proposed, representing a significant step toward the low-cost high-performance linearly polarized light-emitting diodes and electrically-inspired polarization encryption for color images.
Collapse
Affiliation(s)
- Ruixiang Chen
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Ningning Liang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Tianrui Zhai
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
29
|
Jinno H, Shivarudraiah SB, Asbjörn R, Vagli G, Marcato T, Eickemeyer FT, Pfeifer L, Yokota T, Someya T, Shih CJ. Indoor Self-Powered Perovskite Optoelectronics with Ultraflexible Monochromatic Light Source. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304604. [PMID: 37656902 DOI: 10.1002/adma.202304604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/26/2023] [Indexed: 09/03/2023]
Abstract
Self-powered skin optoelectronics fabricated on ultrathin polymer films is emerging as one of the most promising components for the next-generation Internet of Things (IoT) technology. However, a longstanding challenge is the device underperformance owing to the low process temperature of polymer substrates. In addition, broadband electroluminescence (EL) based on organic or polymer semiconductors inevitably suffers from periodic spectral distortion due to Fabry-Pérot (FP) interference upon substrate bending, preventing advanced applications. Here, ultraflexible skin optoelectronics integrating high-performance solar cells and monochromatic light-emitting diodes using solution-processed perovskite semiconductors is presented. n-i-p perovskite solar cells and perovskite nanocrystal light-emitting diodes (PNC-LEDs), with power-conversion and current efficiencies of 18.2% and 15.2 cd A-1 , respectively, are demonstrated on ultrathin polymer substrates with high thermal stability, which is a record-high efficiency for ultraflexible perovskite solar cell. The narrowband EL with a full width at half-maximum of 23 nm successfully eliminates FP interference, yielding bending-insensitive spectra even under 50% of mechanical compression. Photo-plethysmography using the skin optoelectronic device demonstrates a signal selectivity of 98.2% at 87 bpm pulse. The results presented here pave the way to inexpensive and high-performance ultrathin optoelectronics for self-powered applications such as wearable displays and indoor IoT sensors.
Collapse
Affiliation(s)
- Hiroaki Jinno
- Institute for Chemical and Bioengineering, ETH, Zurich, Zurich, 8093, Switzerland
| | | | - Rasmussen Asbjörn
- Institute for Chemical and Bioengineering, ETH, Zurich, Zurich, 8093, Switzerland
| | - Gianluca Vagli
- Institute for Chemical and Bioengineering, ETH, Zurich, Zurich, 8093, Switzerland
| | - Tommaso Marcato
- Institute for Chemical and Bioengineering, ETH, Zurich, Zurich, 8093, Switzerland
| | - Felix Thomas Eickemeyer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, EPFL, Lausanne, 1015, Switzerland
| | - Lukas Pfeifer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, EPFL, Lausanne, 1015, Switzerland
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takao Someya
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH, Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
30
|
Kim J, Lee J, Lee JM, Facchetti A, Marks TJ, Park SK. Recent Advances in Low-Dimensional Nanomaterials for Photodetectors. SMALL METHODS 2024; 8:e2300246. [PMID: 37203281 DOI: 10.1002/smtd.202300246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/21/2023] [Indexed: 05/20/2023]
Abstract
New emerging low-dimensional such as 0D, 1D, and 2D nanomaterials have attracted tremendous research interests in various fields of state-of-the-art electronics, optoelectronics, and photonic applications due to their unique structural features and associated electronic, mechanical, and optical properties as well as high-throughput fabrication for large-area and low-cost production and integration. Particularly, photodetectors which transform light to electrical signals are one of the key components in modern optical communication and developed imaging technologies for whole application spectrum in the daily lives, including X-rays and ultraviolet biomedical imaging, visible light camera, and infrared night vision and spectroscopy. Today, diverse photodetector technologies are growing in terms of functionality and performance beyond the conventional silicon semiconductor, and low-dimensional nanomaterials have been demonstrated as promising potential platforms. In this review, the current states of progress on the development of these nanomaterials and their applications in the field of photodetectors are summarized. From the elemental combination for material design and lattice structure to the essential investigations of hybrid device architectures, various devices and recent developments including wearable photodetectors and neuromorphic applications are fully introduced. Finally, the future perspectives and challenges of the low-dimensional nanomaterials based photodetectors are also discussed.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Junho Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jong-Min Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sung Kyu Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
31
|
Hong W. Advances and Opportunities of Mobile Health in the Postpandemic Era: Smartphonization of Wearable Devices and Wearable Deviceization of Smartphones. JMIR Mhealth Uhealth 2024; 12:e48803. [PMID: 38252596 PMCID: PMC10823426 DOI: 10.2196/48803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Mobile health (mHealth) with continuous real-time monitoring is leading the era of digital medical convergence. Wearable devices and smartphones optimized as personalized health management platforms enable disease prediction, prevention, diagnosis, and even treatment. Ubiquitous and accessible medical services offered through mHealth strengthen universal health coverage to facilitate service use without discrimination. This viewpoint investigates the latest trends in mHealth technology, which are comprehensive in terms of form factors and detection targets according to body attachment location and type. Insights and breakthroughs from the perspective of mHealth sensing through a new form factor and sensor-integrated display overcome the problems of existing mHealth by proposing a solution of smartphonization of wearable devices and the wearable deviceization of smartphones. This approach maximizes the infinite potential of stagnant mHealth technology and will present a new milestone leading to the popularization of mHealth. In the postpandemic era, innovative mHealth solutions through the smartphonization of wearable devices and the wearable deviceization of smartphones could become the standard for a new paradigm in the field of digital medicine.
Collapse
Affiliation(s)
- Wonki Hong
- Department of Digital Healthcare, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
32
|
Kaur D, Purwar R. Nanotechnological advancement in artificial intelligence for wound care. NANOTECHNOLOGICAL ASPECTS FOR NEXT-GENERATION WOUND MANAGEMENT 2024:281-318. [DOI: 10.1016/b978-0-323-99165-0.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Han Y, Fang X, Li H, Zha L, Guo J, Zhang X. Sweat Sensor Based on Wearable Janus Textiles for Sweat Collection and Microstructured Optical Fiber for Surface-Enhanced Raman Scattering Analysis. ACS Sens 2023; 8:4774-4781. [PMID: 38051949 DOI: 10.1021/acssensors.3c01863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Wearable sweat sensors provide real-time monitoring of biomarkers, enabling individuals to gain real-time insight into their health status. Current sensors primarily rely on electrochemical mechanisms, limiting their capacity for the concurrent detection of multiple analytes. Surface-enhanced Raman scattering spectroscopy offers an alternative approach by providing molecular fingerprint information to facilitate the identification of intricate analytes. In this study, we combine a wearable Janus fabric for efficient sweat collection and a grapefruit optical fiber embedded with Ag nanoparticles as a sensitive SERS probe. The Janus fabric features a superhydrophobic side in contact with the skin and patterned superhydrophilic regions on the opposite surface, facilitating the unidirectional flow of sweat toward these hydrophilic zones. Grapefruit optical fibers feature sharp tips with the ability to penetrate transparent dressings. Its microchannels extract sweat through capillary force, and nanoliter-scale volumes of sweat are sufficient to completely fill them. The Raman signal of sweat components is greatly enhanced by the plasmonic hot spots and accumulates along the fiber length. We demonstrate sensitive detection of sodium lactate and urea in sweat with a detection limit much lower than the physiological concentration levels. Moreover, the platform shows its capability for multicomponent detection and extends to the analysis of real human sweat.
Collapse
Affiliation(s)
- Yu Han
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaohui Fang
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Hanlin Li
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Lei Zha
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Jinxin Guo
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xinping Zhang
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
34
|
Lin R, Lei M, Ding S, Cheng Q, Ma Z, Wang L, Tang Z, Zhou B, Zhou Y. Applications of flexible electronics related to cardiocerebral vascular system. Mater Today Bio 2023; 23:100787. [PMID: 37766895 PMCID: PMC10519834 DOI: 10.1016/j.mtbio.2023.100787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Ensuring accessible and high-quality healthcare worldwide requires field-deployable and affordable clinical diagnostic tools with high performance. In recent years, flexible electronics with wearable and implantable capabilities have garnered significant attention from researchers, which functioned as vital clinical diagnostic-assisted tools by real-time signal transmission from interested targets in vivo. As the most crucial and complex system of human body, cardiocerebral vascular system together with heart-brain network attracts researchers inputting profuse and indefatigable efforts on proper flexible electronics design and materials selection, trying to overcome the impassable gulf between vivid organisms and rigid inorganic units. This article reviews recent breakthroughs in flexible electronics specifically applied to cardiocerebral vascular system and heart-brain network. Relevant sensor types and working principles, electronics materials selection and treatment methods are expounded. Applications of flexible electronics related to these interested organs and systems are specially highlighted. Through precedent great working studies, we conclude their merits and point out some limitations in this emerging field, thus will help to pave the way for revolutionary flexible electronics and diagnosis assisted tools development.
Collapse
Affiliation(s)
- Runxing Lin
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Lei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Liping Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
35
|
Xu C, Solomon SA, Gao W. Artificial Intelligence-Powered Electronic Skin. NAT MACH INTELL 2023; 5:1344-1355. [PMID: 38370145 PMCID: PMC10868719 DOI: 10.1038/s42256-023-00760-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024]
Abstract
Skin-interfaced electronics is gradually changing medical practices by enabling continuous and noninvasive tracking of physiological and biochemical information. With the rise of big data and digital medicine, next-generation electronic skin (e-skin) will be able to use artificial intelligence (AI) to optimize its design as well as uncover user-personalized health profiles. Recent multimodal e-skin platforms have already employed machine learning (ML) algorithms for autonomous data analytics. Unfortunately, there is a lack of appropriate AI protocols and guidelines for e-skin devices, resulting in overly complex models and non-reproducible conclusions for simple applications. This review aims to present AI technologies in e-skin hardware and assess their potential for new inspired integrated platform solutions. We outline recent breakthroughs in AI strategies and their applications in engineering e-skins as well as understanding health information collected by e-skins, highlighting the transformative deployment of AI in robotics, prosthetics, virtual reality, and personalized healthcare. We also discuss the challenges and prospects of AI-powered e-skins as well as predictions for the future trajectory of smart e-skins.
Collapse
Affiliation(s)
- Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
36
|
Charlton PH, Allen J, Bailón R, Baker S, Behar JA, Chen F, Clifford GD, Clifton DA, Davies HJ, Ding C, Ding X, Dunn J, Elgendi M, Ferdoushi M, Franklin D, Gil E, Hassan MF, Hernesniemi J, Hu X, Ji N, Khan Y, Kontaxis S, Korhonen I, Kyriacou PA, Laguna P, Lázaro J, Lee C, Levy J, Li Y, Liu C, Liu J, Lu L, Mandic DP, Marozas V, Mejía-Mejía E, Mukkamala R, Nitzan M, Pereira T, Poon CCY, Ramella-Roman JC, Saarinen H, Shandhi MMH, Shin H, Stansby G, Tamura T, Vehkaoja A, Wang WK, Zhang YT, Zhao N, Zheng D, Zhu T. The 2023 wearable photoplethysmography roadmap. Physiol Meas 2023; 44:111001. [PMID: 37494945 PMCID: PMC10686289 DOI: 10.1088/1361-6579/acead2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.
Collapse
Affiliation(s)
- Peter H Charlton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - John Allen
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5RW, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Stephanie Baker
- College of Science and Engineering, James Cook University, Cairns, 4878 Queensland, Australia
| | - Joachim A Behar
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guandong, People’s Republic of China
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - David A Clifton
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Harry J Davies
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Cheng Ding
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaorong Ding
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People’s Republic of China
| | - Jessilyn Dunn
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC 27708-0187, United States of America
- Duke Clinical Research Institute, Durham, NC 27705-3976, United States of America
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8008, Switzerland
| | - Munia Ferdoushi
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Daniel Franklin
- Institute of Biomedical Engineering, Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, M5G 1M1, Canada
| | - Eduardo Gil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Md Farhad Hassan
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Jussi Hernesniemi
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
- Tampere Heart Hospital, Wellbeing Services County of Pirkanmaa, Tampere, 33520, Finland
| | - Xiao Hu
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, 30322, Georgia, United States of America
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, 30322, Georgia, United States of America
- Department of Computer Sciences, College of Arts and Sciences, Emory University, Atlanta, GA 30322, United States of America
| | - Nan Ji
- Hong Kong Center for Cerebrocardiovascular Health Engineering (COCHE), Hong Kong Science and Technology Park, Hong Kong, 999077, People’s Republic of China
| | - Yasser Khan
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Spyridon Kontaxis
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Ilkka Korhonen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
| | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Jesús Lázaro
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Chungkeun Lee
- Digital Health Devices Division, Medical Device Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea
| | - Jeremy Levy
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
- Faculty of Electrical and Computer Engineering, Technion Institute of Technology, Haifa, 3200003, Israel
| | - Yumin Li
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China
| | - Chengyu Liu
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China
| | - Jing Liu
- Analog Devices Inc, San Jose, CA 95124, United States of America
| | - Lei Lu
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Danilo P Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vaidotas Marozas
- Department of Electronics Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
- Biomedical Engineering Institute, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Elisa Mejía-Mejía
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - Ramakrishna Mukkamala
- Department of Bioengineering and Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Meir Nitzan
- Department of Physics/Electro-Optic Engineering, Lev Academic Center, 91160 Jerusalem, Israel
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Porto, 4200-465, Portugal
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | | | - Jessica C Ramella-Roman
- Department of Biomedical Engineering and Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33174, United States of America
| | - Harri Saarinen
- Tampere Heart Hospital, Wellbeing Services County of Pirkanmaa, Tampere, 33520, Finland
| | - Md Mobashir Hasan Shandhi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
| | - Hangsik Shin
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Gerard Stansby
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
- Northern Vascular Centre, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, United Kingdom
| | - Toshiyo Tamura
- Future Robotics Organization, Waseda University, Tokyo, 1698050, Japan
| | - Antti Vehkaoja
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
- PulseOn Ltd, Espoo, 02150, Finland
| | - Will Ke Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
| | - Yuan-Ting Zhang
- Hong Kong Center for Cerebrocardiovascular Health Engineering (COCHE), Hong Kong Science and Technology Park, Hong Kong, 999077, People’s Republic of China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People’s Republic of China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5RW, United Kingdom
| | - Tingting Zhu
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
37
|
Kim J, Kweon H, Lee M, Kang M, Lee S, An S, Lee W, Choi S, Choi H, Seong Y, Ham H, Cha H, Lim J, Kim DH, Kim B, Chung DS. Exciton-Scissoring Perfluoroarenes Trigger Photomultiplication in Full Color Organic Image Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302786. [PMID: 37421369 DOI: 10.1002/adma.202302786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
An unprecedented but useful functionality of perfluoroarenes to enable exciton scissoring in photomultiplication-type organic photodiodes (PM-OPDs) is reported. Perfluoroarenes that are covalently connected to polymer donors via a photochemical reaction enable the demonstration of high external quantum efficiency and B-/G-/R-selective PM-OPDs without the use of conventional acceptor molecules. The operation mechanism of the suggested perfluoroarene-driven PM-OPDs, how covalently bonded polymer donor:perfluoroarene PM-OPDs can perform as effectively as polymer donor:fullerene blend-based PM-OPDs, is investigated. By employing a series of arenes and conducting steady-state/time-resolved photoluminescence and transient absorption spectroscopy analyses, it is found that interfacial band bending between the perfluoroaryl group and polymer donor is responsible for exciton scissoring and subsequent electron trapping, which induces photomultiplication. Owing to the acceptor-free and covalently interconnected photoactive layer in the suggested PM-OPDs, superior operational and thermal stabilities are observed. Finally, finely patterned B-/G-/R-selective PM-OPD arrays that enable the construction of highly sensitive passive matrix-type organic image sensors are demonstrated.
Collapse
Affiliation(s)
- Juhee Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyukmin Kweon
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myeongjae Lee
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Mingyun Kang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sangjun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sanghyeok An
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Wonjong Lee
- Graduate School of Energy Science & Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seokran Choi
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hanbin Choi
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yujin Seong
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hyobin Ham
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jongchul Lim
- Graduate School of Energy Science & Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - BongSoo Kim
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Device Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
38
|
Dcosta JV, Ochoa D, Sanaur S. Recent Progress in Flexible and Wearable All Organic Photoplethysmography Sensors for SpO 2 Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302752. [PMID: 37740697 PMCID: PMC10625116 DOI: 10.1002/advs.202302752] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/09/2023] [Indexed: 09/25/2023]
Abstract
Flexible and wearable biosensors are the next-generation healthcare devices that can efficiently monitor human health conditions in day-to-day life. Moreover, the rapid growth and technological advancements in wearable optoelectronics have promoted the development of flexible organic photoplethysmography (PPG) biosensor systems that can be implanted directly onto the human body without any additional interface for efficient bio-signal monitoring. As an example, the pulse oximeter utilizes PPG signals to monitor the oxygen saturation (SpO2 ) in the blood volume using two distinct wavelengths with organic light emitting diode (OLED) as light source and an organic photodiode (OPD) as light sensor. Utilizing the flexible and soft properties of organic semiconductors, pulse oximeter can be both flexible and conformal when fabricated on thin polymeric substrates. It can also provide highly efficient human-machine interface systems that can allow for long-time biological integration and flawless measurement of signal data. In this work, a clear and systematic overview of the latest progress and updates in flexible and wearable all-organic pulse oximetry sensors for SpO2 monitoring, including design and geometry, processing techniques and materials, encapsulation and various factors affecting the device performance, and limitations are provided. Finally, some of the research challenges and future opportunities in the field are mentioned.
Collapse
Affiliation(s)
- Jostin Vinroy Dcosta
- Mines Saint‐ÉtienneCentre Microélectronique de ProvenceDepartment of Flexible Electronics880, Avenue de MimetGardanne13541France
| | - Daniel Ochoa
- Mines Saint‐ÉtienneCentre Microélectronique de ProvenceDepartment of Flexible Electronics880, Avenue de MimetGardanne13541France
| | - Sébastien Sanaur
- Mines Saint‐ÉtienneCentre Microélectronique de ProvenceDepartment of Flexible Electronics880, Avenue de MimetGardanne13541France
| |
Collapse
|
39
|
Shinar R, Shinar J. Organic Electronics-Microfluidics/Lab on a Chip Integration in Analytical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:8488. [PMID: 37896581 PMCID: PMC10611406 DOI: 10.3390/s23208488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Organic electronics (OE) technology has matured in displays and is advancing in solid-state lighting applications. Other promising and growing uses of this technology are in (bio)chemical sensing, imaging, in vitro cell monitoring, and other biomedical diagnostics that can benefit from low-cost, efficient small devices, including wearable designs that can be fabricated on glass or flexible plastic. OE devices such as organic LEDs, organic and hybrid perovskite-based photodetectors, and organic thin-film transistors, notably organic electrochemical transistors, are utilized in such sensing and (bio)medical applications. The integration of compact and sensitive OE devices with microfluidic channels and lab-on-a-chip (LOC) structures is very promising. This survey focuses on studies that utilize this integration for a variety of OE tools. It is not intended to encompass all studies in the area, but to present examples of the advances and the potential of such OE technology, with a focus on microfluidics/LOC integration for efficient wide-ranging sensing and biomedical applications.
Collapse
Affiliation(s)
- Ruth Shinar
- Electrical & Computer Engineering Department, Iowa State University, Ames, IA 50011, USA
| | - Joseph Shinar
- Physics & Astronomy Department and Ames National Laboratory—USDOE, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
40
|
Huang S, Gao Y, Hu Y, Shen F, Jin Z, Cho Y. Recent development of piezoelectric biosensors for physiological signal detection and machine learning assisted cardiovascular disease diagnosis. RSC Adv 2023; 13:29174-29194. [PMID: 37818271 PMCID: PMC10561672 DOI: 10.1039/d3ra05932d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
As cardiovascular disease stands as a global primary cause of mortality, there has been an urgent need for continuous and real-time heart monitoring to effectively identify irregular heart rhythms and to offer timely patient alerts. However, conventional cardiac monitoring systems encounter challenges due to inflexible interfaces and discomfort during prolonged monitoring. In this review article, we address these issues by emphasizing the recent development of the flexible, wearable, and comfortable piezoelectric passive sensor assisted by machine learning technology for diagnosis. This innovative device not only harmonizes with the dynamic mechanical properties of human skin but also facilitates continuous and real-time collection of physiological signals. Addressing identified challenges and constraints, this review provides insights into recent advances in piezoelectric cardiac sensors, from devices to circuit systems. Furthermore, this review delves into the integration of machine learning technologies, showcasing their pivotal role in facilitating continuous and real-time assessment of cardiac status. The synergistic combination of flexible piezoelectric sensor design and machine learning holds substantial potential in automating the detection of cardiac irregularities with minimal human intervention. This transformative approach has the power to revolutionize patient care paradigms.
Collapse
Affiliation(s)
- Shunyao Huang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Yujia Gao
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Yian Hu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Fengyi Shen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Zhangsiyuan Jin
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Yuljae Cho
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| |
Collapse
|
41
|
Mascia A, Spanu A, Bonfiglio A, Cosseddu P. Multimodal force and temperature tactile sensor based on a short-channel organic transistor with high sensitivity. Sci Rep 2023; 13:16232. [PMID: 37758843 PMCID: PMC10533849 DOI: 10.1038/s41598-023-43360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
In this manuscript, we report on a novel architecture for the fabrication of highly sensitive multimodal tactile transducers, for the simultaneous detection of temperature and force. Such devices are based on a flexible Organic Charge Modulated Field Effect Transistor (OCMFET) coupled with a pyro/piezoelectric element, namely a commercial film of poly-vinylene difluoride (PVDF). The reduction of the channel length, obtained by employing a low-resolution vertical channel architecture, allowed to maximize the ratio between the sensing area and the transistor's channel area, a technological approach that allows to considerably enhance both temperature and force sensitivity, while at the same time minimize the sensor's dimensions. Thanks to the employment of a straightforward, up-scalable, and highly reproducible fabrication process, this solution represents an interesting alternative for all those applications requiring high-density, high-sensitivity sensors such as robotics and biomedical applications.
Collapse
Affiliation(s)
- Antonello Mascia
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo, Cagliari, 09123, Italy
| | - Andrea Spanu
- Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS, Palazzo del Broletto, Piazza della Vittoria 15, Pavia, 27100, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo, Cagliari, 09123, Italy
- Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS, Palazzo del Broletto, Piazza della Vittoria 15, Pavia, 27100, Italy
| | - Piero Cosseddu
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo, Cagliari, 09123, Italy.
| |
Collapse
|
42
|
Yao Y, Huang W, Chen J, Liu X, Bai L, Chen W, Cheng Y, Ping J, Marks TJ, Facchetti A. Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209906. [PMID: 36808773 DOI: 10.1002/adma.202209906] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.
Collapse
Affiliation(s)
- Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Wei Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
43
|
Jin H, Zheng Z, Cui Z, Jiang Y, Chen G, Li W, Wang Z, Wang J, Yang C, Song W, Chen X, Zheng Y. A flexible optoacoustic blood 'stethoscope' for noninvasive multiparametric cardiovascular monitoring. Nat Commun 2023; 14:4692. [PMID: 37542045 PMCID: PMC10403590 DOI: 10.1038/s41467-023-40181-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023] Open
Abstract
Quantitative and multiparametric blood analysis is of great clinical importance in cardiovascular disease diagnosis. Although there are various methods to extract blood information, they often require invasive procedures, lack continuity, involve bulky instruments, or have complicated testing procedures. Flexible sensors can realize on-skin assessment of several vital signals, but generally exhibit limited function to monitor blood characteristics. Here, we report a flexible optoacoustic blood 'stethoscope' for noninvasive, multiparametric, and continuous cardiovascular monitoring, without requiring complicated procedures. The optoacoustic blood 'stethoscope' features the light delivery elements to illuminate blood and the piezoelectric acoustic elements to capture light-induced acoustic waves. We show that the optoacoustic blood 'stethoscope' can adhere to the skin for continuous and non-invasive in-situ monitoring of multiple cardiovascular biomarkers, including hypoxia, intravascular exogenous agent concentration decay, and hemodynamics, which can be further visualized with a tailored 3D algorithm. Demonstrations on both in-vivo animal trials and human subjects highlight the optoacoustic blood 'stethoscope''s potential for cardiovascular disease diagnosis and prediction.
Collapse
Affiliation(s)
- Haoran Jin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zesheng Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Zequn Cui
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ying Jiang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Geng Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wenlong Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhimin Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jilei Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chuanshi Yang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Weitao Song
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
44
|
Ma B, Ding Z, Liu D, Zhou Z, Zhang K, Dang D, Zhang S, Su SJ, Zhu W, Liu Y. A Feasible Strategy for a Highly Efficient Thermally Activated Delayed Fluorescence Emitter Over 900 nm Based on Phenalenone Derivatives. Chemistry 2023; 29:e202301197. [PMID: 37154226 DOI: 10.1002/chem.202301197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Near-infrared (NIR) organic light-emitting diodes (OLEDs) suffer from the low external electroluminescence (EL) quantum efficiency (EQE), which is a critical obstacle for potential applications. Herein, 1-oxo-1-phenalene-2,3-dicarbonitrile (OPDC) is employed as an electron-withdrawing aromatic ring, and by incorporating with triphenylamine (TPA) and biphenylphenylamine (BBPA) donors, two novel NIR emitters with thermally activated delayed fluorescence (TADF) characteristics, namely OPDC-DTPA and OPDC-DBBPA, are first developed and compared in parallel. Intense NIR emission peaks at 962 and 1003 nm are observed in their pure films, respectively. Contributed by the local excited (LE) characteristics in the triplet (T1 ) state in synergy with the charge transfer (CT) characteristics for the singlet (S1 ) state to activate TADF emission, the solution processable doped NIR OLEDs based on OPDC-DTPA and OPDC-DBBPA yield EL peaks at 834 and 906 nm, accompanied with maximum EQEs of 0.457 and 0.103 %, respectively, representing the state-of-the-art EL performances in the TADF emitter-based NIR-OLEDs in the similar EL emission regions so far. This work manifests a simple and effective strategy for the development of NIR TADF emitters with long wavelength and efficiency synchronously.
Collapse
Affiliation(s)
- Bin Ma
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhenming Ding
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhongxin Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Kai Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Dongfeng Dang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shiyue Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yu Liu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
45
|
Mao P, Li H, Shan X, Davis M, Tang T, Zhang Y, Tong X, Xin Y, Cheng J, Li L, Yu Z. Stretchable Photodiodes with Polymer-Engineered Semiconductor Nanowires for Wearable Photoplethysmography. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37406185 DOI: 10.1021/acsami.3c04494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Healthcare systems worldwide have been stressed to provide sufficient resources to serve the increasing and aging population in our society. The situation became more challenging at the time of pandemic. Technology advancement, especially the adoption of wearable health monitoring devices, has provided an important supplement to current clinical equipment. Most health monitoring devices are rigid, however, human tissues are soft. Such a difference has prohibited intimate contact between the two and jeopardized wearing comfortableness, which hurdles measurement accuracy especially during longtime usage. Here, we report a soft and stretchable photodiode that can conformally adhere onto the human body without any pressure and measure cardiovascular variables for an extended period with higher reliability than commercial devices. The photodiode used a composite light absorber consisting of an organic bulk heterojunction embedded into an elastic polymer matrix. It is discovered that the elastic polymer matrix not only improves the morphology of the bulk heterojunction for obtaining the desired mechanical properties but also alters its electronic band structure and improves the electrical properties that lead to a reduced dark current and enhanced photovoltage in the stretchable photodiode. The work has demonstrated high fidelity measurements and longtime monitoring of heat rate variability and oxygen saturation, potentially enabling next-generation wearable photoplethysmography devices for point-of-care diagnosis of cardiovascular diseases in a more accessible and affordable way.
Collapse
Affiliation(s)
- Pengsu Mao
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High-Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| | - Haoran Li
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High-Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| | - Xin Shan
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High-Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| | - Melissa Davis
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High-Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| | - Te Tang
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, Florida 32306, United States
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratories, 735 Brookhaven Avenue, Upton, New York 11973, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratories, 735 Brookhaven Avenue, Upton, New York 11973, United States
| | - Yan Xin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Jiang Cheng
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Lu Li
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Zhibin Yu
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High-Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
46
|
Yan L, Jin Z, Lin R, Lu X, Shan X, Zhu S, Fang Z, Cui X, Tian P. InGaN micro-LED array with integrated emission and detection functions for color detection application. OPTICS LETTERS 2023; 48:2861-2864. [PMID: 37262229 DOI: 10.1364/ol.485939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023]
Abstract
InGaN-based micro-LEDs can detect and emit optical signals simultaneously, owing to their overlapping emission and absorption spectra, enabling color detection. In this paper, we fabricated a green InGaN-based micro-LED array with integrated emission and detection functions. On the back side of the integrated device, when the 80 μm micro-LED emitted light, the 200 μm LED could receive reflected light to accomplish color detection. The spacing between the 80 μm and the 200 μm micro-LEDs was optimized to be 1 mm to reduce the effect of the direct light transmitted through the n-GaN layer without reflection. The integrated device shows good detection performance for different colors and skin colors, even in a dark environment. In addition, light can be emitted from the top side of the device. Utilization of light from both sides of the integrated device provides the possibility of its application in display, communication, and detection on the different sides.
Collapse
|
47
|
Xu X, Zhao Y, Liu Y. Wearable Electronics Based on Stretchable Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206309. [PMID: 36794301 DOI: 10.1002/smll.202206309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/25/2022] [Indexed: 05/18/2023]
Abstract
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.
Collapse
Affiliation(s)
- Xinzhao Xu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
48
|
Wu H, Li Z, Xu Z, Huang X, Guo W, Zhao J, Zhang J, Liu S, Tang M, Qiu Y, Yang G, Zhu J, Liu L, Wu Y, Lei W, Zhou P, Yin Z, Chen Z, Liu Y. On-skin biosensors for noninvasive monitoring of postoperative free flaps and replanted digits. Sci Transl Med 2023; 15:eabq1634. [PMID: 37099631 DOI: 10.1126/scitranslmed.abq1634] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Severe soft tissue defects and amputated digits are clinically common injuries. Primary treatments include surgical free flap transfer and digit replantation, but these can fail because of vascular compromise. Postoperative monitoring is therefore crucial for timely detection of vessel obstruction and survival of replanted digits and free flaps. However, current postoperative clinical monitoring methods are labor intensive and highly dependent on the experience of nurses and surgeons. Here, we developed on-skin biosensors for noninvasive and wireless postoperative monitoring based on pulse oximetry. The on-skin biosensor was made of polydimethylsiloxane with gradient cross-linking to create a self-adhesive and mechanically robust substrate that interfaces with skin. The substrate was shown to exhibit appropriate adhesion on one side for both high-fidelity measurements of the sensor and low risk of peeling injury to delicate tissues. The other side demonstrated mechanical integrity to facilitate flexible hybrid integration of the sensor. Validation studies using a model of vascular obstruction in rats demonstrated the effectiveness of the sensor in vivo. Clinical studies indicated that the on-skin biosensor was accurate and more responsive than current clinical monitoring methods in identifying microvascular conditions. Comparisons with existing monitoring techniques, including laser Doppler flowmetry and micro-lightguide spectrophotometry, further verified the sensor's accuracy and ability to identify both arterial and venous insufficiency. These findings suggest that this on-skin biosensor may improve postoperative outcomes in free flap and replanted digit surgeries by providing sensitive and unbiased data directly from the surgical site that can be remotely monitored.
Collapse
Affiliation(s)
- Hao Wu
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhuo Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Zhao Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xin Huang
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Guo
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jun Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Jinwen Zhang
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaoyu Liu
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Miao Tang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yuqi Qiu
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ganguang Yang
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Juntong Zhu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lili Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yingjie Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Wei Lei
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Pan Zhou
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhouping Yin
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
49
|
Zheng T, Zhu M, Luo X, Ye F, Wang M, He Y, Zhang Y, Lin Z, Zhang Z, Ping X, Zhou H, Lu L, Li G. Multifunctional and Multicolor Perovskite-CdSe Quantum Dots Diodes for Pulse Oximetry. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20753-20760. [PMID: 37074082 DOI: 10.1021/acsami.3c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A conventional pulse oximeter system is composed of two light sources with different peak emission wavelengths and a photodetector. Integrating these three independent components into one single device will absolutely simplify the system design and create a miniaturized size of the product. Here, we demonstrate a bilayer perovskite-CdSe quantum dot (hereafter perovskite-QD) diode capable of voltage-tunable green/red emission and photodetection. The proposed diode also presents an intriguing feature of simultaneous light emission and detection, which is explored as regards the diode being used as a photoconductor when the positive bias is larger than the built-in voltage. The multifunctional and multicolor diode is further employed in a reflective pulse oximeter system, as either the multicolor light sources or the sensing unit in the system provide accepted and trustful results for heart rate and arterial blood oxygenation. Our work provides a possible avenue for the simplification of the pulse oximetry with a compact and miniaturized design in the future.
Collapse
Affiliation(s)
- Ting Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingchao Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi Luo
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Fanghao Ye
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ming Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yitong Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenwei Lin
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiqing Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xu Ping
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hang Zhou
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Lei Lu
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Guijun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
50
|
Mao P, Li H, Yu Z. A Review of Skin-Wearable Sensors for Non-Invasive Health Monitoring Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:3673. [PMID: 37050733 PMCID: PMC10099362 DOI: 10.3390/s23073673] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The early detection of fatal diseases is crucial for medical diagnostics and treatment, both of which benefit the individual and society. Portable devices, such as thermometers and blood pressure monitors, and large instruments, such as computed tomography (CT) and X-ray scanners, have already been implemented to collect health-related information. However, collecting health information using conventional medical equipment at home or in a hospital can be inefficient and can potentially affect the timeliness of treatment. Therefore, on-time vital signal collection via healthcare monitoring has received increasing attention. As the largest organ of the human body, skin delivers significant signals reflecting our health condition; thus, receiving vital signals directly from the skin offers the opportunity for accessible and versatile non-invasive monitoring. In particular, emerging flexible and stretchable electronics demonstrate the capability of skin-like devices for on-time and continuous long-term health monitoring. Compared to traditional electronic devices, this type of device has better mechanical properties, such as skin conformal attachment, and maintains compatible detectability. This review divides the health information that can be obtained from skin using the sensor aspect's input energy forms into five categories: thermoelectrical signals, neural electrical signals, photoelectrical signals, electrochemical signals, and mechanical pressure signals. We then summarize current skin-wearable health monitoring devices and provide outlooks on future development.
Collapse
Affiliation(s)
- Pengsu Mao
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Haoran Li
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Zhibin Yu
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|