1
|
Kleeblatt E, Lazki-Hagenbach P, Nabet E, Cohen R, Bahri R, Rogers N, Langton A, Bulfone-Paus S, Frenkel D, Sagi-Eisenberg R. p16 Ink4a-induced senescence in cultured mast cells as a model for ageing reveals significant morphological and functional changes. Immun Ageing 2024; 21:77. [PMID: 39529115 PMCID: PMC11552350 DOI: 10.1186/s12979-024-00478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Mast cells (MCs) are tissue resident cells of the immune system, mainly known for their role in allergy. However, mounting evidence indicates their involvement in the pathology of age-related diseases, such as Alzheimer's disease, Parkinson's disease, and cancer. MC numbers increase in aged tissues, but how ageing affects MCs is poorly understood. RESULTS We show that MC ageing is associated with the increased expression of the cell cycle inhibitor p16 Ink4a, a marker and inducer of cellular senescence. Relying on this observation and the tight association of ageing with senescence, we developed a model of inducible senescence based on doxycycline-induced expression of p16Ink4a in cultured bone marrow derived MCs (BMMCs). Using this model, we show that senescent MCs upregulate IL-1β, TNF-α and VEGF-A. We also demonstrate that senescence causes marked morphological changes that impact MC function. Senescent MCs are larger, contain a larger number of secretory granules (SGs) and have less membrane protrusions. Particularly striking are the changes in their SGs, reflected in a significant reduction in the number of electron dense SGs with a concomitant increase in lucent SGs containing intraluminal vesicles. The changes in SG morphology are accompanied by changes in MC degranulation, including a significant increase in receptor-triggered release of CD63-positive extracellular vesicles (EVs) and the exteriorisation of proteoglycans, as opposed to a gradual inhibition of the release of β-hexosaminidase. CONCLUSIONS The inducible expression of p16Ink4a imposes MC senescence, providing a model for tracking the autonomous changes that occur in MCs during ageing. These changes include both morphological and functional alterations. In particular, the increased release of small EVs by senescent MCs suggests an enhanced ability to modulate neighbouring cells.
Collapse
Affiliation(s)
- Elisabeth Kleeblatt
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Pia Lazki-Hagenbach
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ellon Nabet
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Reli Cohen
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Nicholas Rogers
- Department of Environmental Studies, School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Abigail Langton
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Dan Frenkel
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
2
|
Tam IYS, Lee TH, Lau HYA, Tam SY. Combinatorial Genomic Biomarkers Associated with High Response in IgE-Dependent Degranulation in Human Mast Cells. Cells 2024; 13:1237. [PMID: 39120269 PMCID: PMC11311466 DOI: 10.3390/cells13151237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024] Open
Abstract
Mast cells are the major effector cells that mediate IgE-dependent allergic reactions. We sought to use integrated network analysis to identify genomic biomarkers associated with high response in IgE-mediated activation of primary human mast cells. Primary human mast cell cultures derived from 262 normal donors were categorized into High, Average and Low responder groups according to their activation response profiles. Transcriptome analysis was used to identify genes that were differentially expressed in different responder cultures in their baseline conditions, and the data were analyzed by constructing a personalized perturbed profile (PEEP). For upregulated genes, the construction of PEEP for each individual sample of all three responder groups revealed that High responders exhibited a higher percentage of "perturbed" samples whose PEEP values lay outside the normal range of expression. Moreover, the integration of PEEP of four selected upregulated genes into distinct sets of combinatorial profiles demonstrated that the specific pattern of upregulated expression of these four genes, in a tandem combination, was observed exclusively among the High responders. In conclusion, this combinatorial approach was useful in identifying a set of genomic biomarkers that are associated with high degranulation response in human mast cell cultures derived from the blood of a cohort of normal donors.
Collapse
Affiliation(s)
- Issan Yee San Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; (I.Y.S.T.); (H.Y.A.L.)
| | - Tak Hong Lee
- Allergy Centre, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong;
| | - Hang Yung Alaster Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; (I.Y.S.T.); (H.Y.A.L.)
| | - See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Kannen V, Grant DM, Matthews J. The mast cell-T lymphocyte axis impacts cancer: Friend or foe? Cancer Lett 2024; 588:216805. [PMID: 38462035 DOI: 10.1016/j.canlet.2024.216805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Crosstalk between mast cells (MCs) and T lymphocytes (TLs) releases specific signals that create an environment conducive to tumor development. Conversely, they can protect against cancer by targeting tumor cells for destruction. Although their role in immunity and cancer is complex, their potential in anticancer strategies is often underestimated. When peripheral MCs are activated, they can affect cancer development. Tumor-infiltrating TLs may malfunction and contribute to aggressive cancer and poor prognoses. One promising approach for cancer patients is TL-based immunotherapies. Recent reports suggest that MCs modulate TL activity in solid tumors and may be a potential therapeutic layer in multitargeting anticancer strategies. Pharmacologically modulating MC activity can enhance the anticancer cytotoxic TL response in tumors. By identifying tumor-specific targets, it has been possible to genetically alter patients' cells into fully humanized anticancer cellular therapies for autologous transplantation, including the engineering of TLs and MCs to target and kill cancer cells. Hence, recent scientific evidence provides a broader understanding of MC-TL activity in cancer.
Collapse
Affiliation(s)
- Vinicius Kannen
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Denis M Grant
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Jahanbani F, Sing JC, Maynard RD, Jahanbani S, Dafoe J, Dafoe W, Jones N, Wallace KJ, Rastan A, Maecker HT, Röst HL, Snyder MP, Davis RW. Longitudinal cytokine and multi-modal health data of an extremely severe ME/CFS patient with HSD reveals insights into immunopathology, and disease severity. Front Immunol 2024; 15:1369295. [PMID: 38650940 PMCID: PMC11033372 DOI: 10.3389/fimmu.2024.1369295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) presents substantial challenges in patient care due to its intricate multisystem nature, comorbidities, and global prevalence. The heterogeneity among patient populations, coupled with the absence of FDA-approved diagnostics and therapeutics, further complicates research into disease etiology and patient managment. Integrating longitudinal multi-omics data with clinical, health,textual, pharmaceutical, and nutraceutical data offers a promising avenue to address these complexities, aiding in the identification of underlying causes and providing insights into effective therapeutics and diagnostic strategies. Methods This study focused on an exceptionally severe ME/CFS patient with hypermobility spectrum disorder (HSD) during a period of marginal symptom improvements. Longitudinal cytokine profiling was conducted alongside the collection of extensive multi-modal health data to explore the dynamic nature of symptoms, severity, triggers, and modifying factors. Additionally, an updated severity assessment platform and two applications, ME-CFSTrackerApp and LexiTime, were introduced to facilitate real-time symptom tracking and enhance patient-physician/researcher communication, and evaluate response to medical intervention. Results Longitudinal cytokine profiling revealed the significance of Th2-type cytokines and highlighted synergistic activities between mast cells and eosinophils, skewing Th1 toward Th2 immune responses in ME/CFS pathogenesis, particularly in cognitive impairment and sensorial intolerance. This suggests a potentially shared underlying mechanism with major ME/CFS comorbidities such as HSD, Mast cell activation syndrome, postural orthostatic tachycardia syndrome (POTS), and small fiber neuropathy. Additionally, the data identified potential roles of BCL6 and TP53 pathways in ME/CFS etiology and emphasized the importance of investigating adverse reactions to medication and supplements and drug interactions in ME/CFS severity and progression. Discussion Our study advocates for the integration of longitudinal multi-omics with multi-modal health data and artificial intelligence (AI) techniques to better understand ME/CFS and its major comorbidities. These findings highlight the significance of dysregulated Th2-type cytokines in patient stratification and precision medicine strategies. Additionally, our results suggest exploring the use of low-dose drugs with partial agonist activity as a potential avenue for ME/CFS treatment. This comprehensive approach emphasizes the importance of adopting a patient-centered care approach to improve ME/CFS healthcare management, disease severity assessment, and personalized medicine. Overall, these findings contribute to our understanding of ME/CFS and offer avenues for future research and clinical practice.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - Rajan Douglas Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, CA, United States
| | - Janet Dafoe
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Whitney Dafoe
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Nathan Jones
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Kelvin J. Wallace
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Azuravesta Rastan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Holden T. Maecker
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Pulmonary and Critical Care Medicine, Institute of Immunity, Transplantation, and Infectious Diseases, Stanford University, Palo Alto, CA, United States
| | - Hannes L. Röst
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
5
|
Joulia R, Puttur F, Stölting H, Traves WJ, Entwistle LJ, Voitovich A, Garcia Martín M, Al-Sahaf M, Bonner K, Scotney E, Molyneaux PL, Hewitt RJ, Walker SA, Yates L, Saglani S, Lloyd CM. Mast cell activation disrupts interactions between endothelial cells and pericytes during early life allergic asthma. J Clin Invest 2024; 134:e173676. [PMID: 38487999 PMCID: PMC10940085 DOI: 10.1172/jci173676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/23/2024] [Indexed: 03/18/2024] Open
Abstract
Allergic asthma generally starts during early life and is linked to substantial tissue remodeling and lung dysfunction. Although angiogenesis is a feature of the disrupted airway, the impact of allergic asthma on the pulmonary microcirculation during early life is unknown. Here, using quantitative imaging in precision-cut lung slices (PCLSs), we report that exposure of neonatal mice to house dust mite (HDM) extract disrupts endothelial cell/pericyte interactions in adventitial areas. Central to the blood vessel structure, the loss of pericyte coverage was driven by mast cell (MC) proteases, such as tryptase, that can induce pericyte retraction and loss of the critical adhesion molecule N-cadherin. Furthermore, spatial transcriptomics of pediatric asthmatic endobronchial biopsies suggests intense vascular stress and remodeling linked with increased expression of MC activation pathways in regions enriched in blood vessels. These data provide previously unappreciated insights into the pathophysiology of allergic asthma with potential long-term vascular defects.
Collapse
Affiliation(s)
- Régis Joulia
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
| | - Franz Puttur
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
| | - Helen Stölting
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
| | - William J. Traves
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
| | - Lewis J. Entwistle
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
| | - Anastasia Voitovich
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
| | - Minerva Garcia Martín
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
| | - May Al-Sahaf
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
- Department of Thoracic Surgery, Hammersmith Hospital, London, UK
| | - Katie Bonner
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Elizabeth Scotney
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Philip L. Molyneaux
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Richard J. Hewitt
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Simone A. Walker
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
| | - Laura Yates
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
| | - Sejal Saglani
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom (UK)
| |
Collapse
|
6
|
Castaño N, Chua K, Kaushik A, Kim S, Cordts SC, Nafarzadegan CD, Hofmann GH, Seastedt H, Schuetz JP, Dunham D, Parsons ES, Tsai M, Cao S, Desai M, Sindher SB, Chinthrajah RS, Galli SJ, Nadeau KC, Tang SK. Combining avidin with CD63 improves basophil activation test accuracy in classifying peanut allergy. Allergy 2024; 79:445-455. [PMID: 37916710 PMCID: PMC10842984 DOI: 10.1111/all.15930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Conventional basophil activation tests (BATs) measure basophil activation by the increased expression of CD63. Previously, fluorophore-labeled avidin, a positively-charged molecule, was found to bind to activated basophils, which tend to expose negatively charged granule constituents during degranulation. This study further compares avidin versus CD63 as basophil activation biomarkers in classifying peanut allergy. METHODS Seventy subjects with either a peanut allergy (N = 47), a food allergy other than peanut (N = 6), or no food allergy (N = 17) were evaluated. We conducted BATs in response to seven peanut extract (PE) concentrations (0.01-10,000 ng/mL) and four control conditions (no stimulant, anti-IgE, fMLP (N-formylmethionine-leucyl-phenylalanine), and anti-FcεRI). We measured avidin binding and CD63 expression on basophils with flow cytometry. We evaluated logistic regression and XGBoost models for peanut allergy classification and feature identification. RESULTS Avidin binding was correlated with CD63 expression. Both markers discriminated between subjects with and without a peanut allergy. Although small by percentage, an avidin+ /CD63- cell subset was found in all allergic subjects tested, indicating that the combination of avidin and CD63 could allow a more comprehensive identification of activated basophils. Indeed, we obtained the best classification accuracy (97.8% sensitivity, 96.7% specificity) by combining avidin and CD63 across seven PE doses. Similar accuracy was obtained by combining PE dose of 10,000 ng/mL for avidin and PE doses of 10 and 100 ng/mL for CD63. CONCLUSIONS Avidin and CD63 are reliable BAT activation markers associated with degranulation. Their combination enhances the identification of activated basophils and improves the classification accuracy of peanut allergy.
Collapse
Affiliation(s)
| | - Kaiser Chua
- Department of Mechanical Engineering, Stanford University
| | - Abhinav Kaushik
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Department of Environmental Health, T. H. Chan School of Public Health, Harvard University
| | - Sungu Kim
- Department of Mechanical Engineering, Stanford University
| | - Seth C. Cordts
- Department of Mechanical Engineering, Stanford University
| | - Ceena D. Nafarzadegan
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Department of Microbiology and Immunology, Stanford University
| | | | - Hana Seastedt
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
| | - Jackson P. Schuetz
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
| | - Diane Dunham
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
| | - Ella S. Parsons
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
| | - Mindy Tsai
- Department of Pathology, Stanford University
| | - Shu Cao
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
| | - Manisha Desai
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Department of Medicine, Biomedical Informatics Research, Stanford University
| | - Sayantani B. Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
| | - R. Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
| | - Stephen J. Galli
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Department of Microbiology and Immunology, Stanford University
- Department of Pathology, Stanford University
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Department of Environmental Health, T. H. Chan School of Public Health, Harvard University
| | - Sindy K.Y. Tang
- Department of Mechanical Engineering, Stanford University
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
| |
Collapse
|
7
|
Higashio H, Yokoyama T, Saino T. A convenient fluorimetry-based degranulation assay using RBL-2H3 cells. Biosci Biotechnol Biochem 2024; 88:181-188. [PMID: 37968134 DOI: 10.1093/bbb/zbad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Type I hypersensitivity is triggered by mast cell degranulation, a stimulus-induced exocytosis of preformed secretory granules (SGs) containing various inflammatory mediators. The degree of degranulation is generally expressed as a percentage of secretory granule markers (such as β-hexosaminidase and histamine) released into the external solution, and considerable time and labor are required for the quantification of markers in both the supernatants and cell lysates. In this study, we developed a simple fluorimetry-based degranulation assay using rat basophilic leukemia (RBL-2H3) mast cells. During degranulation, the styryl dye FM1-43 in the external solution fluorescently labeled the newly exocytosed SGs, whose increase in intensity was successively measured using a fluorescence microplate reader. In addition to the rate of β-hexosaminidase secretion, the cellular FM1-43 intensity successfully represented the degree and kinetics of degranulation under various conditions, suggesting that this method facilitates multi-sample and/or multi-time-point analyses required for screening substances regulating mast cell degranulation.
Collapse
Affiliation(s)
- Hironori Higashio
- Department of Chemistry, Center for Liberal Arts and Sciences, Iwate Medical University, Yahaba, Iwate, Japan
| | - Takuya Yokoyama
- Division of Cell Biology, Department of Anatomy, Iwate Medical University, Yahaba, Iwate, Japan
| | - Tomoyuki Saino
- Division of Cell Biology, Department of Anatomy, Iwate Medical University, Yahaba, Iwate, Japan
| |
Collapse
|
8
|
Lei Y, Guo X, Luo Y, Niu X, Xi Y, Xiao L, He D, Bian Y, Zhang Y, Wang L, Peng X, Wang Z, Chen G. Synovial microenvironment-influenced mast cells promote the progression of rheumatoid arthritis. Nat Commun 2024; 15:113. [PMID: 38168103 PMCID: PMC10761862 DOI: 10.1038/s41467-023-44304-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mast cells are phenotypically and functionally heterogeneous, and their state is possibly controlled by local microenvironment. Therefore, specific analyses are needed to understand whether mast cells function as powerful participants or dispensable bystanders in specific diseases. Here, we show that degranulation of mast cells in inflammatory synovial tissues of patients with rheumatoid arthritis (RA) is induced via MAS-related G protein-coupled receptor X2 (MRGPRX2), and the expression of MHC class II and costimulatory molecules on mast cells are upregulated. Collagen-induced arthritis mice treated with a combination of anti-IL-17A and cromolyn sodium, a mast cell membrane stabilizer, show significantly reduced clinical severity and decreased bone erosion. The findings of the present study suggest that synovial microenvironment-influenced mast cells contribute to disease progression and may provide a further mast cell-targeting therapy for RA.
Collapse
Affiliation(s)
- Yunxuan Lei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xin Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yanping Luo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yebin Xi
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Lianbo Xiao
- Department of Joint Surgery, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Li Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.
| |
Collapse
|
9
|
Croote D, Wong JJW, Pecalvel C, Leveque E, Casanovas N, Kamphuis JBJ, Creeks P, Romero J, Sohail S, Bedinger D, Nadeau KC, Chinthrajah RS, Reber LL, Lowman HB. Widespread monoclonal IgE antibody convergence to an immunodominant, proanaphylactic Ara h 2 epitope in peanut allergy. J Allergy Clin Immunol 2024; 153:182-192.e7. [PMID: 37748654 PMCID: PMC10766438 DOI: 10.1016/j.jaci.2023.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Despite their central role in peanut allergy, human monoclonal IgE antibodies have eluded characterization. OBJECTIVE We sought to define the sequences, affinities, clonality, and functional properties of human monoclonal IgE antibodies in peanut allergy. METHODS We applied our single-cell RNA sequencing-based SEQ SIFTER discovery platform to samples from allergic individuals who varied by age, sex, ethnicity, and geographic location in order to understand commonalities in the human IgE response to peanut allergens. Select antibodies were then recombinantly expressed and characterized for their allergen and epitope specificity, affinity, and functional properties. RESULTS We found striking convergent evolution of IgE monoclonal antibodies (mAbs) from several clonal families comprising both memory B cells and plasmablasts. These antibodies bound with subnanomolar affinity to the immunodominant peanut allergen Ara h 2, specifically a linear, repetitive motif. Further characterization of these mAbs revealed their ability to single-handedly cause affinity-dependent degranulation of human mast cells and systemic anaphylaxis on peanut allergen challenge in humanized mice. Finally, we demonstrated that these mAbs, reengineered as IgGs, inhibit significant, but variable, amounts of Ara h 2- and peanut-mediated degranulation of mast cells sensitized with allergic plasma. CONCLUSIONS Convergent evolution of IgE mAbs in peanut allergy is a common phenomenon that can reveal immunodominant epitopes on major allergenic proteins. Understanding the functional properties of these molecules is key to developing therapeutics, such as competitive IgG inhibitors, that are able to stoichiometrically outcompete endogenous IgE for allergen and thereby prevent allergic cascade in cases of accidental allergen exposure.
Collapse
Affiliation(s)
| | | | - Cyprien Pecalvel
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Edouard Leveque
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Natacha Casanovas
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Jasper B J Kamphuis
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | | | | | | | | | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Rebecca S Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | | |
Collapse
|
10
|
Theoharides TC, Kempuraj D. Potential Role of Moesin in Regulating Mast Cell Secretion. Int J Mol Sci 2023; 24:12081. [PMID: 37569454 PMCID: PMC10418457 DOI: 10.3390/ijms241512081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells have existed for millions of years in species that never suffer from allergic reactions. Hence, in addition to allergies, mast cells can play a critical role in homeostasis and inflammation via secretion of numerous vasoactive, pro-inflammatory and neuro-sensitizing mediators. Secretion may utilize different modes that involve the cytoskeleton, but our understanding of the molecular mechanisms regulating secretion is still not well understood. The Ezrin/Radixin/Moesin (ERM) family of proteins is involved in linking cell surface-initiated signaling to the actin cytoskeleton. However, how ERMs may regulate secretion from mast cells is still poorly understood. ERMs contain two functional domains connected through a long α-helix region, the N-terminal FERM (band 4.1 protein-ERM) domain and the C-terminal ERM association domain (C-ERMAD). The FERM domain and the C-ERMAD can bind to each other in a head-to-tail manner, leading to a closed/inactive conformation. Typically, phosphorylation on the C-terminus Thr has been associated with the activation of ERMs, including secretion from macrophages and platelets. It has previously been shown that the ability of the so-called mast cell "stabilizer" disodium cromoglycate (cromolyn) to inhibit secretion from rat mast cells closely paralleled the phosphorylation of a 78 kDa protein, which was subsequently shown to be moesin, a member of ERMs. Interestingly, the phosphorylation of moesin during the inhibition of mast cell secretion was on the N-terminal Ser56/74 and Thr66 residues. This phosphorylation pattern could lock moesin in its inactive state and render it inaccessible to binding to the Soluble NSF attachment protein receptors (SNAREs) and synaptosomal-associated proteins (SNAPs) critical for exocytosis. Using confocal microscopic imaging, we showed moesin was found to colocalize with actin and cluster around secretory granules during inhibition of secretion. In conclusion, the phosphorylation pattern and localization of moesin may be important in the regulation of mast cell secretion and could be targeted for the development of effective inhibitors of secretion of allergic and inflammatory mediators from mast cells.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
11
|
Schneider L, Rabe KS, Domínguez CM, Niemeyer CM. Hapten-Decorated DNA Nanostructures Decipher the Antigen-Mediated Spatial Organization of Antibodies Involved in Mast Cell Activation. ACS NANO 2023; 17:6719-6730. [PMID: 36990450 PMCID: PMC10100567 DOI: 10.1021/acsnano.2c12647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The immunological response of mast cells is controlled by the multivalent binding of antigens to immunoglobulin E (IgE) antibodies bound to the high-affinity receptor FcεRI on the cell membrane surface. However, the spatial organization of antigen-antibody-receptor complexes at the nanometer scale and the structural constraints involved in the initial events at the cell surface are not yet fully understood. For example, it is unclear what influence the affinity and nanoscale distance between the binding partners involved have on the activation of mast cells to degranulate inflammatory mediators from storage granules. We report the use of DNA origami nanostructures (DON) functionalized with different arrangements of the haptenic 2,4-dinitrophenyl (DNP) ligand to generate multivalent artificial antigens with full control over valency and nanoscale ligand architecture. To investigate the spatial requirements for mast cell activation, the DNP-DON complexes were initially used in surface plasmon resonance (SPR) analysis to study the binding kinetics of isolated IgE under physiological conditions. The most stable binding was observed in a narrow window of approximately 16 nm spacing between haptens. In contrast, affinity studies with FcεRI-linked IgE antibodies on the surface of rat basophilic leukemia cells (RBL-2H3) indicated virtually no distance-dependent variations in the binding of the differently structured DNP-DON complexes but suggested a supramolecular oligovalent nature of the interaction. Finally, the use of DNP-DON complexes for mast cell activation revealed that antigen-directed tight assembly of antibody-receptor complexes is the critical factor for triggering degranulation, even more critical than ligand valence. Our study emphasizes the significance of DNA nanostructures for the study of fundamental biological processes.
Collapse
|
12
|
Chen Y, Griffiths CEM, Bulfone-Paus S. Exploring Mast Cell-CD8 T Cell Interactions in Inflammatory Skin Diseases. Int J Mol Sci 2023; 24:1564. [PMID: 36675078 PMCID: PMC9861959 DOI: 10.3390/ijms24021564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The skin is exposed to environmental challenges and contains skin-resident immune cells, including mast cells (MCs) and CD8 T cells that act as sentinels for pathogens and environmental antigens. Human skin MCs and their mediators participate in the maintenance of tissue homeostasis and regulate the recruitment and activity of immune cells involved in the pathogenesis of skin diseases. The cutaneous CD8 T cell compartment is comprised of long-persisting resident memory T cells (TRM) and migratory or recirculating cells; both populations provide durable site immune surveillance. Several lines of evidence indicate that MC-derived products, such as CCL5 and TNF-α, modulate the migration and function of CD8 T cells. Conversely, activated CD8 T cells induce the upregulation of MC costimulatory molecules. Moreover, the close apposition of MCs and CD8 T cells has been recently identified in the skin of several dermatoses, such as alopecia areata. This review outlines the current knowledge about bidirectional interactions between human MCs and CD8 T cells, analyses the alteration of their communication in the context of three common skin disorders in which these cells have been found altered in number or function-psoriasis, atopic dermatitis, and vitiligo-and discusses the current unanswered questions.
Collapse
Affiliation(s)
| | | | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Dermatology Research Centre, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
13
|
Krysko O, Bourne JH, Kondakova E, Galova EA, Whitworth K, Newby ML, Bachert C, Hill H, Crispin M, Stamataki Z, Cunningham AF, Pugh M, Khan AO, Rayes J, Vedunova M, Krysko DV, Brill A. Severity of SARS-CoV-2 infection is associated with high numbers of alveolar mast cells and their degranulation. Front Immunol 2022; 13:968981. [PMID: 36225927 PMCID: PMC9548604 DOI: 10.3389/fimmu.2022.968981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background The systemic inflammatory response post-SARS-CoV-2 infection increases pro-inflammatory cytokine production, multi-organ damage, and mortality rates. Mast cells (MC) modulate thrombo-inflammatory disease progression (e.g., deep vein thrombosis) and the inflammatory response post-infection. Objective To enhance our understanding of the contribution of MC and their proteases in SARS-CoV-2 infection and the pathogenesis of the disease, which might help to identify novel therapeutic targets. Methods MC proteases chymase (CMA1), carboxypeptidase A3 (CPA3), and tryptase beta 2 (TPSB2), as well as cytokine levels, were measured in the serum of 60 patients with SARS-CoV-2 infection (30 moderate and 30 severe; severity of the disease assessed by chest CT) and 17 healthy controls by ELISA. MC number and degranulation were quantified by immunofluorescent staining for tryptase in lung autopsies of patients deceased from either SARS-CoV-2 infection or unrelated reasons (control). Immortalized human FcεR1+c-Kit+ LUVA MC were infected with SARS-CoV-2, or treated with its viral proteins, to assess direct MC activation by flow cytometry. Results The levels of all three proteases were increased in the serum of patients with COVID-19, and strongly correlated with clinical severity. The density of degranulated MC in COVID-19 lung autopsies was increased compared to control lungs. The total number of released granules and the number of granules per each MC were elevated and positively correlated with von Willebrand factor levels in the lung. SARS-CoV-2 or its viral proteins spike and nucleocapsid did not induce activation or degranulation of LUVA MC in vitro. Conclusion In this study, we demonstrate that SARS-CoV-2 is strongly associated with activation of MC, which likely occurs indirectly, driven by the inflammatory response. The results suggest that plasma MC protease levels could predict the disease course, and that severe COVID-19 patients might benefit from including MC-stabilizing drugs in the treatment scheme.
Collapse
Affiliation(s)
- Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Elena Kondakova
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Elena A. Galova
- University Clinic of Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Katharine Whitworth
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Harriet Hill
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
McKenzie B, Khazen R, Valitutti S. Greek Fire, Poison Arrows, and Scorpion Bombs: How Tumor Cells Defend Against the Siege Weapons of Cytotoxic T Lymphocytes. Front Immunol 2022; 13:894306. [PMID: 35592329 PMCID: PMC9110820 DOI: 10.3389/fimmu.2022.894306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) are the main cellular effectors of the adaptive immune response against cancer cells, which in turn have evolved sophisticated cellular defense mechanisms to withstand CTL attack. Herein we provide a critical review of the pertinent literature on early and late attack/defense events taking place at the CTL/target cell lytic synapse. We examine the earliest steps of CTL-mediated cytotoxicity (“the poison arrows”) elicited within seconds of CTL/target cell encounter, which face commensurately rapid synaptic repair mechanisms on the tumor cell side, providing the first formidable barrier to CTL attack. We examine how breach of this first defensive barrier unleashes the inextinguishable “Greek fire” in the form of granzymes whose broad cytotoxic potential is linked to activation of cell death executioners, injury of vital organelles, and destruction of intracellular homeostasis. Herein tumor cells deploy slower but no less sophisticated defensive mechanisms in the form of enhanced autophagy, increased reparative capacity, and dysregulation of cell death pathways. We discuss how the newly discovered supra-molecular attack particles (SMAPs, the “scorpion bombs”), seek to overcome the robust defensive mechanisms that confer tumor cell resistance. Finally, we discuss the implications of the aforementioned attack/defense mechanisms on the induction of regulated cell death (RCD), and how different contemporary RCD modalities (including apoptosis, pyroptosis, and ferroptosis) may have profound implications for immunotherapy. Thus, we propose that understanding and targeting multiple steps of the attack/defense process will be instrumental to enhance the efficacy of CTL anti-tumor activity and meet the outstanding challenges in clinical immunotherapy.
Collapse
Affiliation(s)
- Brienne McKenzie
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Roxana Khazen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Salvatore Valitutti
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| |
Collapse
|
15
|
Flow-based allergen testing: can mast cells beat basophils? Clin Chim Acta 2022; 532:64-71. [DOI: 10.1016/j.cca.2022.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022]
|
16
|
Rosa RB, da Costa MS, Teixeira SC, de Castro EF, Dantas WM, Ferro EAV, da Silva MV. Calomys callosus: An Experimental Animal Model Applied to Parasitic Diseases Investigations of Public Health Concern. Pathogens 2022; 11:369. [PMID: 35335694 PMCID: PMC8948650 DOI: 10.3390/pathogens11030369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
The appearance and spread of parasitic diseases around the world aroused the interest of the scientific community to discover new animal models for improving the quality and specificity of surveys. Calomys callosus is a rodent native to South America, an easy handling model, with satisfactory longevity and reproducibility. C. callosus is susceptible to toxoplasmosis and can be used as experimental model for the study the pathogenesis, treatment, vertical transmission, and ocular toxoplasmosis. C. callosus can also be used to study cutaneous and visceral leishmaniasis, as the animals present cutaneous lesions, as well as parasites in the organs. C. callosus has epidemiological importance in Chagas disease, and since it is a Trypanosoma cruzi natural host in which rodents show high parasitemia and lethality, they are also effective as a model of congenital transmission. In the study of schistosomiasis, Schistosoma mansoni was proven to be a C. callosus natural host; thus, this rodent is a great model for fibrosis, hepatic granulomatous reaction, and celloma associated with lymphomyeloid tissue (CALT) during S. mansoni infection. In this review, we summarize the leading studies of parasitic diseases that used C. callosus as a rodent experimental model, describing the main uses and characteristics that led them to be considered an effective model.
Collapse
Affiliation(s)
- Rafael Borges Rosa
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlandia 38400-902, Brazil; (R.B.R.); (M.S.d.C.); (E.F.d.C.)
| | - Mylla Spirandelli da Costa
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlandia 38400-902, Brazil; (R.B.R.); (M.S.d.C.); (E.F.d.C.)
| | - Samuel Cota Teixeira
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38405-318, Brazil; (S.C.T.); (E.A.V.F.)
| | - Emilene Ferreira de Castro
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlandia 38400-902, Brazil; (R.B.R.); (M.S.d.C.); (E.F.d.C.)
| | | | - Eloisa Amália Vieira Ferro
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38405-318, Brazil; (S.C.T.); (E.A.V.F.)
| | - Murilo Vieira da Silva
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlandia 38400-902, Brazil; (R.B.R.); (M.S.d.C.); (E.F.d.C.)
| |
Collapse
|
17
|
Starkl P, Gaudenzio N, Marichal T, Reber LL, Sibilano R, Watzenboeck ML, Fontaine F, Mueller AC, Tsai M, Knapp S, Galli SJ. IgE antibodies increase honeybee venom responsiveness and detoxification efficiency of mast cells. Allergy 2022; 77:499-512. [PMID: 33840121 PMCID: PMC8502784 DOI: 10.1111/all.14852] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND In contrast to their clearly defined roles in allergic diseases, the physiologic functions of Immunoglobulin E antibodies (IgEs) and mast cells (MCs) remain enigmatic. Recent research supports the toxin hypothesis, showing that MCs and IgE-related type 2 immune responses can enhance host defense against certain noxious substances, including honeybee venom (BV). However, the mechanisms by which MCs can interfere with BV toxicity are unknown. In this study, we assessed the role of IgE and certain MC products in MC-mediated BV detoxification. METHODS We applied in vitro and in vivo fluorescence microscopyimaging, and flow cytometry, fibroblast-based toxicity assays and mass spectrometry to investigate IgE-mediated detoxification of BV cytotoxicity by mouse and human MCs in vitro. Pharmacologic strategies to interfere with MC-derived heparin and proteases helped to define the importance of specific detoxification mechanisms. RESULTS Venom-specific IgE increased the degranulation and cytokine responses of MCs to BV in vitro. Passive serum sensitization enhanced MC degranulation in vivo. IgE-activated mouse or human MCs exhibited enhanced potential for detoxifying BV by both proteolytic degradation and heparin-related interference with toxicity. Mediators released by IgE-activated human MCs efficiently degraded multiple BV toxins. CONCLUSIONS Our results both reveal that IgE sensitization enhances the MC's ability to detoxify BV and also assign efficient toxin-neutralizing activity to MC-derived heparin and proteases. Our study thus highlights the potential importance of IgE, MCs, and particular MC products in defense against BV.
Collapse
Affiliation(s)
- Philipp Starkl
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Toulouse Institute for Infectious and Inflammatory Diseases, INSERM UMR1291, CNRS, UMR5051, University of Toulouse III, Toulouse, France
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Laurent L. Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Toulouse Institute for Infectious and Inflammatory Diseases, INSERM UMR1291, CNRS, UMR5051, University of Toulouse III, Toulouse, France
| | - Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Martin L. Watzenboeck
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Frédéric Fontaine
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André C. Mueller
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Sylvia Knapp
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Elst J, van der Poorten MLM, Van Gasse AL, De Puysseleyr L, Hagendorens MM, Faber MA, Van Houdt M, Passante E, Bahri R, Walschot M, Mertens C, Bridts CH, Sabato V, Ebo DG. Mast cell activation tests by flow cytometry: A new diagnostic asset? Clin Exp Allergy 2021; 51:1482-1500. [PMID: 34233046 DOI: 10.1111/cea.13984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Since the late nineties, evidence has accumulated that flow-assisted basophil activation test (BAT) might be an accessible and reliable method to explore the mechanisms governing basophil degranulation and diagnostic allowing correct prediction of the clinical outcome following exposure to the offending allergen(s) and cross-reactive structures for different IgE-dependent allergies and particular forms of autoimmune urticaria. Although the BAT offers many advantages over mediator release tests, it is left with some weaknesses that hinder a wider application. It is preferable to perform the BAT analysis within 4 h of collection, and the technique does not advance diagnosis in patients with non-responsive cells. Besides, the BAT is difficult to standardize mainly because of the difficulty to perform large batch analyses that might span over several days. This article reviews the status of flow cytometric mast cell activation test (MAT) using passively sensitized mast cells (MCs) with patients' sera or plasma (henceforth indicated as passive MAT; pMAT) using both MC lines and cultured MCs in the diagnosis of IgE-dependent allergies. In addition, this paper provides guidance for generating human MCs from peripheral blood CD34+ progenitor cells (PBCMCs) and correct interpretation of flow cytometric analyses of activated and/or degranulating cells. With the recent recognition of the mas-related G protein-coupled receptor X2 (MRGPRX2) occupation as a putative mechanism of immediate drug hypersensitivity reactions (IDHRs), we also speculate how direct activation of MCs (dMAT)-that is direct activation by MRGPRX2 agonists without prior passive sensitization-could advance paradigms for this novel endotype of IDHRs.
Collapse
Affiliation(s)
- Jessy Elst
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Marie-Line M van der Poorten
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium.,Department of Paediatrics, Faculty of Medicine and Health Science, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Athina L Van Gasse
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium.,Department of Paediatrics, Faculty of Medicine and Health Science, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Leander De Puysseleyr
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Margo M Hagendorens
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium.,Department of Paediatrics, Faculty of Medicine and Health Science, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Margaretha A Faber
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Michel Van Houdt
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | | | - Rajia Bahri
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mark Walschot
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Christel Mertens
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Chris H Bridts
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Vito Sabato
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium.,Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium
| | - Didier G Ebo
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium.,Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium
| |
Collapse
|
19
|
Mok AC, Mody CH, Li SS. Immune Cell Degranulation in Fungal Host Defence. J Fungi (Basel) 2021; 7:484. [PMID: 34208679 PMCID: PMC8234259 DOI: 10.3390/jof7060484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Humans have developed complex immune systems that defend against invading microbes, including fungal pathogens. Many highly specialized cells of the immune system share the ability to store antimicrobial compounds in membrane bound organelles that can be immediately deployed to eradicate or inhibit growth of invading pathogens. These membrane-bound organelles consist of secretory vesicles or granules, which move to the surface of the cell, where they fuse with the plasma membrane to release their contents in the process of degranulation. Lymphocytes, macrophages, neutrophils, mast cells, eosinophils, and basophils all degranulate in fungal host defence. While anti-microbial secretory vesicles are shared among different immune cell types, information about each cell type has emerged independently leading to an uncoordinated and confusing classification of granules and incomplete description of the mechanism by which they are deployed. While there are important differences, there are many similarities in granule morphology, granule content, stimulus for degranulation, granule trafficking, and release of granules against fungal pathogens. In this review, we describe the similarities and differences in an attempt to translate knowledge from one immune cell to another that may facilitate further studies in the context of fungal host defence.
Collapse
Affiliation(s)
- Adley Ch Mok
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher H Mody
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shu Shun Li
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
20
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
21
|
Dual vaccination against IL-4 and IL-13 protects against chronic allergic asthma in mice. Nat Commun 2021; 12:2574. [PMID: 33976140 PMCID: PMC8113315 DOI: 10.1038/s41467-021-22834-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Allergic asthma is characterized by elevated levels of IgE antibodies, type 2 cytokines such as interleukin-4 (IL-4) and IL-13, airway hyperresponsiveness (AHR), mucus hypersecretion and eosinophilia. Approved therapeutic monoclonal antibodies targeting IgE or IL-4/IL-13 reduce asthma symptoms but require costly lifelong administrations. Here, we develop conjugate vaccines against mouse IL-4 and IL-13, and demonstrate their prophylactic and therapeutic efficacy in reducing IgE levels, AHR, eosinophilia and mucus production in mouse models of asthma analyzed up to 15 weeks after initial vaccination. More importantly, we also test similar vaccines specific for human IL-4/IL-13 in mice expressing human IL-4/IL-13 and the related receptor, IL-4Rα, to find efficient neutralization of both cytokines and reduced IgE levels for at least 11 weeks post-vaccination. Our results imply that dual IL-4/IL-13 vaccination may represent a cost-effective, long-term therapeutic strategy for the treatment of allergic asthma as demonstrated in mouse models, although additional studies are warranted to assess its safety and feasibility. Asthma is caused by hyperreactivity to benign antigens, with humoral immunity orchestrated by interleukin-4 (IL-4) and IL-13 being the key etiological factor. Here the authors show, in humanized mouse models, that dual vaccination against IL-4 and IL-13 induces their durable suppression ameliorate experimental asthma, and to hint clinical translation.
Collapse
|
22
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
23
|
Douanne T, Griffiths GM. Cytoskeletal control of the secretory immune synapse. Curr Opin Cell Biol 2021; 71:87-94. [PMID: 33711784 DOI: 10.1016/j.ceb.2021.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 01/10/2023]
Abstract
The immune synapse is a very important but often transient site for secretion between immune cells. How secretion is controlled in a coordinated fashion at the synapse is a subject of much investigation. Two key mechanisms are the polarisation of the centrosome and rapid actin dynamics across the immune synapses that form between interacting immune cells. In recent years it has become clear that different immune cells utilise a diversity of immune synapses that modify these mechanisms in order to optimise specialised modes of secretion. Here we describe some of the latest research, focusing on regulation by centrosomal and actin dynamics in a variety of immune cells.
Collapse
Affiliation(s)
- Tiphaine Douanne
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY UK.
| |
Collapse
|
24
|
Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity 2021; 54:468-483.e5. [PMID: 33484643 DOI: 10.1016/j.immuni.2020.12.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/10/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Tissue resident mast cells (MCs) rapidly initiate neutrophil infiltration upon inflammatory insult, yet the molecular mechanism is still unknown. Here, we demonstrated that MC-derived tumor necrosis factor (TNF) was crucial for neutrophil extravasation to sites of contact hypersensitivity-induced skin inflammation by promoting intraluminal crawling. MC-derived TNF directly primed circulating neutrophils via TNF receptor-1 (TNFR1) while being dispensable for endothelial cell activation. The MC-derived TNF was infused into the bloodstream by directional degranulation of perivascular MCs that were part of the vascular unit with access to the vessel lumen. Consistently, intravenous administration of MC granules boosted neutrophil extravasation. Pronounced and rapid intravascular MC degranulation was also observed upon IgE crosslinking or LPs challenge indicating a universal MC potential. Consequently, the directional MC degranulation of pro-inflammatory mediators into the bloodstream may represent an important target for therapeutic approaches aimed at dampening cytokine storm syndromes or shock symptoms, or intentionally pushing immune defense.
Collapse
|
25
|
Aguilera-Lizarraga J, Florens MV, Viola MF, Jain P, Decraecker L, Appeltans I, Cuende-Estevez M, Fabre N, Van Beek K, Perna E, Balemans D, Stakenborg N, Theofanous S, Bosmans G, Mondelaers SU, Matteoli G, Ibiza Martínez S, Lopez-Lopez C, Jaramillo-Polanco J, Talavera K, Alpizar YA, Feyerabend TB, Rodewald HR, Farre R, Redegeld FA, Si J, Raes J, Breynaert C, Schrijvers R, Bosteels C, Lambrecht BN, Boyd SD, Hoh RA, Cabooter D, Nelis M, Augustijns P, Hendrix S, Strid J, Bisschops R, Reed DE, Vanner SJ, Denadai-Souza A, Wouters MM, Boeckxstaens GE. Local immune response to food antigens drives meal-induced abdominal pain. Nature 2021; 590:151-156. [PMID: 33442055 DOI: 10.1038/s41586-020-03118-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022]
Abstract
Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.
Collapse
Affiliation(s)
- Javier Aguilera-Lizarraga
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Morgane V Florens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Maria Francesca Viola
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Piyush Jain
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Lisse Decraecker
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Iris Appeltans
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Maria Cuende-Estevez
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Naomi Fabre
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Kim Van Beek
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Eluisa Perna
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Dafne Balemans
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Nathalie Stakenborg
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Stavroula Theofanous
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Goele Bosmans
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Stéphanie U Mondelaers
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Gianluca Matteoli
- Laboratory for Mucosal Immunology, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Sales Ibiza Martínez
- Laboratory for Mucosal Immunology, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium.,Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Cintya Lopez-Lopez
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | - Karel Talavera
- Laboratory for Ion Channel Research, VIB Center for Brain and Disease Research, KU Leuven Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Yeranddy A Alpizar
- Neuroscience Research group, BIOMED, Hasselt University, Hasselt, Belgium
| | | | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Ricard Farre
- Mucosal Permeability Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Jiyeon Si
- KU Leuven Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium.,VIB KU Leuven Center for Microbiology, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium.,VIB KU Leuven Center for Microbiology, Leuven, Belgium
| | - Christine Breynaert
- Allergy and Clinical Immunology Research Group, KU Leuven Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, KU Leuven Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Cédric Bosteels
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramona A Hoh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deirdre Cabooter
- KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Maxim Nelis
- KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Patrick Augustijns
- KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Medical School Hamburg, Hamburg, Germany
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Raf Bisschops
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Alexandre Denadai-Souza
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Mira M Wouters
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Guy E Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium.
| |
Collapse
|
26
|
Smith JR, Ashander LM, Arruda SL, Cordeiro CA, Lie S, Rochet E, Belfort R, Furtado JM. Pathogenesis of ocular toxoplasmosis. Prog Retin Eye Res 2020; 81:100882. [PMID: 32717377 DOI: 10.1016/j.preteyeres.2020.100882] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Ocular toxoplasmosis is a retinitis -almost always accompanied by vitritis and choroiditis- caused by intraocular infection with Toxoplasma gondii. Depending on retinal location, this condition may cause substantial vision impairment. T. gondii is an obligate intracellular protozoan parasite, with both sexual and asexual life cycles, and infection is typically contracted orally by consuming encysted bradyzoites in undercooked meat, or oocysts on unwashed garden produce or in contaminated water. Presently available anti-parasitic drugs cannot eliminate T. gondii from the body. In vitro studies using T. gondii tachyzoites, and human retinal cells and tissue have provided important insights into the pathogenesis of ocular toxoplasmosis. T. gondii may cross the vascular endothelium to access human retina by at least three routes: in leukocyte taxis; as a transmigrating tachyzoite; and after infecting endothelial cells. The parasite is capable of navigating the human neuroretina, gaining access to a range of cell populations. Retinal Müller glial cells are preferred initial host cells. T. gondii infection of the retinal pigment epithelial cells alters the secretion of growth factors and induces proliferation of adjacent uninfected epithelial cells. This increases susceptibility of the cells to parasite infection, and may be the basis of the characteristic hyperpigmented toxoplasmic retinal lesion. Infected epithelial cells also generate a vigorous immunologic response, and influence the activity of leukocytes that infiltrate the retina. A range of T. gondii genotypes are associated with human ocular toxoplasmosis, and individual immunogenetics -including polymorphisms in genes encoding innate immune receptors, human leukocyte antigens and cytokines- impacts the clinical manifestations. Research into basic pathogenic mechanisms of ocular toxoplasmosis highlights the importance of prevention and suggests new biological drug targets for established disease.
Collapse
Affiliation(s)
- Justine R Smith
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia; Formerly of Casey Eye Institute, Oregon Health & Science University, USA.
| | - Liam M Ashander
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia; Formerly of Casey Eye Institute, Oregon Health & Science University, USA
| | - Sigrid L Arruda
- Department of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cynthia A Cordeiro
- Cordeiro et Costa Ophtalmologie, Campos dos Goytacazes, Brazil; Formerly of Department of Ophthalmology, Federal University of Minas Gerais School of Medicine, Belo Horizonte, Brazil
| | - Shervi Lie
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia
| | - Elise Rochet
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia
| | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - João M Furtado
- Department of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Formerly of Casey Eye Institute, Oregon Health & Science University, USA
| |
Collapse
|
27
|
Folkerts J, Gaudenzio N, Maurer M, Hendriks RW, Stadhouders R, Tam SY, Galli SJ. Rapid identification of human mast cell degranulation regulators using functional genomics coupled to high-resolution confocal microscopy. Nat Protoc 2020; 15:1285-1310. [PMID: 32060492 PMCID: PMC7197894 DOI: 10.1038/s41596-019-0288-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Targeted functional genomics represents a powerful approach for studying gene function in vivo and in vitro. However, its application to gene expression studies in human mast cells has been hampered by low yields of human mast cell cultures and their poor transfection efficiency. We developed an imaging system in which mast cell degranulation can be visualized in single cells subjected to shRNA knockdown or CRISPR-Cas 9 gene editing. By using high resolution confocal microscopy and a fluorochrome-labeled avidin probe, one can directly assess the suppression of functional responses, i.e. degranulation, in single human mast cells. The elimination of a drug or marker selection step avoids the use of potentially toxic treatment procedures and the short hands-on time of the functional analysis step enables the high-throughput screening of shRNA or CRISPR-Cas9 constructs to identify genes that regulate human mast cell degranulation. The ability to analyse single cells significantly reduces the total number of cells required, and allows for the parallel visualization of the degranulation profile of both edited and non-edited mast cells, offering a consistent internal control not found in other protocols. Moreover, our protocol offers a flexible choice between RNA interference and CRISPR-Cas9 genome editing for perturbation of gene expression using our human mast cell single-cell imaging system. Perturbation of gene expression, acquisition of microscopy data, and image analysis can be completed within 5 days, requiring only standard laboratory equipment and expertise. This protocol presents an an imaging system in which mast cell degranulation can be visualized in single cells subjected to shRNA knockdown or CRISPR-Cas 9 gene editing using high resolution confocal microscopy with a fluorochrome-labeled avidin probe.
Collapse
Affiliation(s)
- Jelle Folkerts
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM, Université de Toulouse, Toulouse, France
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands.,Department of Cell Biology, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. .,Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
28
|
Plum T, Wang X, Rettel M, Krijgsveld J, Feyerabend TB, Rodewald HR. Human Mast Cell Proteome Reveals Unique Lineage, Putative Functions, and Structural Basis for Cell Ablation. Immunity 2020; 52:404-416.e5. [DOI: 10.1016/j.immuni.2020.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/13/2019] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
|
29
|
Abstract
The mast cell (MC) activation assay is a robust in vitro tool for exploring MC reactivity in allergy. Here we describe the use of the mast cell activation test (MAT) that makes use of human primary MCs generated from peripheral blood progenitors, sensitized overnight with patients' sera and activated with allergens. Flow cytometry is used to assess the changes in expression of the activation marker CD63, and the percentage of cell degranulation is defined as the percentage of CD63+-positive MCs.
Collapse
Affiliation(s)
- Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences & Manchester Collaborative Centre for Inflammation Research (MCCIR), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences & Manchester Collaborative Centre for Inflammation Research (MCCIR), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
30
|
Colin-York H, Li D, Korobchevskaya K, Chang VT, Betzig E, Eggeling C, Fritzsche M. Cytoskeletal actin patterns shape mast cell activation. Commun Biol 2019; 2:93. [PMID: 30854485 PMCID: PMC6405992 DOI: 10.1038/s42003-019-0322-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 01/05/2023] Open
Abstract
Activation of immune cells relies on a dynamic actin cytoskeleton. Despite detailed knowledge of molecular actin assembly, the exact processes governing actin organization during activation remain elusive. Using advanced microscopy, we here show that Rat Basophilic Leukemia (RBL) cells, a model mast cell line, employ an orchestrated series of reorganization events within the cortical actin network during activation. In response to IgE antigen-stimulation of FCε receptors (FCεR) at the RBL cell surface, we observed symmetry breaking of the F-actin network and subsequent rapid disassembly of the actin cortex. This was followed by a reassembly process that may be driven by the coordinated transformation of distinct nanoscale F-actin architectures, reminiscent of self-organizing actin patterns. Actin patterns co-localized with zones of Arp2/3 nucleation, while network reassembly was accompanied by myosin-II activity. Strikingly, cortical actin disassembly coincided with zones of granule secretion, suggesting that cytoskeletal actin patterns contribute to orchestrate RBL cell activation. Huw Colin-York et al. use advanced microscopy techniques to show that the cortical actin network within a model mast cell line undergoes a series of reorganizational events at the basal interface during activation. They find that actin patterns co-localize with zones of Arp2/3 nucleation and myosin-II activity accompanies network reassembly.
Collapse
Affiliation(s)
- Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Dong Li
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kseniya Korobchevskaya
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7LF, UK
| | - Veronica T Chang
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, CB2 0QH, UK
| | - Eric Betzig
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK. .,Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7LF, UK.
| |
Collapse
|
31
|
Jansen C, Tobita C, Umemoto EU, Starkus J, Rysavy NM, Shimoda LMN, Sung C, Stokes AJ, Turner H. Calcium-dependent, non-apoptotic, large plasma membrane bleb formation in physiologically stimulated mast cells and basophils. J Extracell Vesicles 2019; 8:1578589. [PMID: 30815238 PMCID: PMC6383620 DOI: 10.1080/20013078.2019.1578589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Abstract
Large membrane derangements in the form of non-detaching blebs or membrane protrusions occur in a variety of cell stress and physiological situations and do not always reflect apoptotic processes. They have been studied in model mast cells under conditions of cell stress, but their potential physiological relevance to mast cell function and formation in primary mast cells or basophils have not been addressed. In the current study, we examine the large, non-detaching, non-apoptotic, membrane structures that form in model and primary mast cells under conditions of stimulation that are relevant to allergy, atopy and Type IV delayed hypersensitivity reactions. We characterized the inflation kinetics, dependency of formation upon external free calcium and striking geometric consistency of formation for large plasma membrane blebs (LPMBs). We describe that immunologically stimulated LPMBs in mast cells are constrained to form in locations where dissociation of the membrane-associated cytoskeleton occurs. Mast cell LPMBs decorate with wheat germ agglutinin, suggesting that they contain plasma membrane (PM) lectins. Electrophysiological capacitance measurements support a model where LPMBs are not being formed from internal membranes newly fused into the PM, but rather arise from stretching of the existing membrane, or inflation and smoothing of a micro-ruffled PM. This study provides new insights into the physiological manifestations of LPMB in response to immunologically relevant stimuli and in the absence of cell stress, death or apoptotic pathways.
Collapse
Affiliation(s)
- C Jansen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - C Tobita
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i.,Undergraduate Program in Biology, Chaminade University, Honolulu, Hawai'i
| | - E U Umemoto
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - J Starkus
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - N M Rysavy
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - L M N Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - C Sung
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - A J Stokes
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i
| | - H Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| |
Collapse
|
32
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
33
|
Felce JH, Sezgin E, Wane M, Brouwer H, Dustin ML, Eggeling C, Davis SJ. CD45 exclusion- and cross-linking-based receptor signaling together broaden FcεRI reactivity. Sci Signal 2018; 11:11/561/eaat0756. [PMID: 30563863 DOI: 10.1126/scisignal.aat0756] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For many years, the high-affinity receptor for immunoglobulin E (IgE) FcεRI, which is expressed by mast cells and basophils, has been widely held to be the exemplar of cross-linking (that is, aggregation dependent) signaling receptors. We found, however, that FcεRI signaling could occur in the presence or absence of receptor cross-linking. Using both cell and cell-free systems, we showed that FcεRI signaling was stimulated by surface-associated monovalent ligands through the passive, size-dependent exclusion of the receptor-type tyrosine phosphatase CD45 from plasma membrane regions of FcεRI-ligand engagement. Similarly to the T cell receptor, FcεRI signaling could also be initiated in a ligand-independent manner. These data suggest that a simple mechanism of CD45 exclusion-based receptor triggering could function together with cross-linking-based FcεRI signaling, broadening mast cell and basophil reactivity by enabling these cells to respond to both multivalent and surface-presented monovalent antigens. These findings also strengthen the case that a size-dependent, phosphatase exclusion-based receptor triggering mechanism might serve generally to facilitate signaling by noncatalytic immune receptors.
Collapse
Affiliation(s)
- James H Felce
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Madina Wane
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Heather Brouwer
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Simon J Davis
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK. .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
34
|
De Zuani M, Paolicelli G, Zelante T, Renga G, Romani L, Arzese A, Pucillo CEM, Frossi B. Mast Cells Respond to Candida albicans Infections and Modulate Macrophages Phagocytosis of the Fungus. Front Immunol 2018; 9:2829. [PMID: 30555491 PMCID: PMC6284040 DOI: 10.3389/fimmu.2018.02829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are long-lived immune cells widely distributed at mucosal surfaces and are among the first immune cell type that can get in contact with the external environment. This study aims to unravel the mechanisms of reciprocal influence between mucosal MCs and Candida albicans as commensal/opportunistic pathogen species in humans. Stimulation of bone marrow-derived mast cells (BMMCs) with live forms of C. albicans induced the release of TNF-α, IL-6, IL-13, and IL-4. Quite interestingly, BMMCs were able to engulf C. albicans hyphae, rearranging their α-tubulin cytoskeleton and accumulating LAMP1+ vesicles at the phagocytic synapse with the fungus. Candida-infected MCs increased macrophage crawling ability and promoted their chemotaxis against the infection. On the other side, resting MCs inhibited macrophage phagocytosis of C. albicans in a contact-dependent manner. Taken together, these results indicate that MCs play a key role in the maintenance of the equilibrium between the host and the commensal fungus C. albicans, limiting pathological fungal growth and modulating the response of resident macrophages during infections.
Collapse
Affiliation(s)
- Marco De Zuani
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | - Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
35
|
Andersson CK, Shikhagaie M, Mori M, Al-Garawi A, Reed JL, Humbles AA, Welliver R, Mauad T, Bjermer L, Jordana M, Erjefält JS. Distal respiratory tract viral infections in young children trigger a marked increase in alveolar mast cells. ERJ Open Res 2018; 4:00038-2018. [PMID: 30480000 PMCID: PMC6250563 DOI: 10.1183/23120541.00038-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/05/2018] [Indexed: 01/28/2023] Open
Abstract
Viral infections predispose to the development of childhood asthma, a disease associated with increased lung mast cells (MCs). This study investigated whether viral lower respiratory tract infections (LRTIs) can already evoke a MC response during childhood. Lung tissue from young children who died following LRTIs were processed for immunohistochemical identification of MCs. Children who died from nonrespiratory causes served as controls. MCs were examined in relation to sensitisation in infant mice exposed to allergen during influenza A infection. Increased numbers of MCs were observed in the alveolar parenchyma of children infected with LRTIs (median (range) 12.5 (0–78) MCs per mm2) compared to controls (0.63 (0–4) MCs per mm2, p=0.0005). The alveolar MC expansion was associated with a higher proportion of CD34+ tryptase+ progenitors (controls: 0% (0–1%); LRTIs: 0.9% (0–3%) CD34+ MCs (p=0.01)) and an increased expression of the vascular cell adhesion molecule (VCAM)-1 (controls: 0.2 (0.07–0.3); LRTIs: 0.3 (0.02–2) VCAM-1 per mm2 (p=0.04)). Similarly, infant mice infected with H1N1 alone or together with house dust mite (HDM) developed an increase in alveolar MCs (saline: 0.4 (0.3–0.5); HDM: 0.6 (0.4–0.9); H1N1: 1.4 (0.4–2.0); HDM+H1N1: 2.2 (1.2–4.4) MCs per mm2 (p<0.0001)). Alveolar MCs continued to increase and remained significantly higher into adulthood when exposed to H1N1+HDM (day 36: 2.2 (1.2–4.4); day 57: 4.6 (1.6–15) MCs per mm2 (p=0.01)) but not when infected with H1N1 alone. Our data demonstrate that distal viral infections in young children evoke a rapid accumulation of alveolar MCs. Apart from revealing a novel immune response to distal infections, our data may have important implications for the link between viral infections during early childhood and subsequent asthma development. Viral infections in children evokes a rapid recruitment and accumulation of mast cells in the alveolar parenchymahttp://ow.ly/i9eN30meNM7
Collapse
Affiliation(s)
- Cecilia K Andersson
- Dept of Respiratory Medicine and Allergology, Lund University, Lund, Sweden.,Unit of Airway Inflammation, Lund University, Lund, Sweden
| | | | - Michiko Mori
- Unit of Airway Inflammation, Lund University, Lund, Sweden
| | - Amal Al-Garawi
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jennifer L Reed
- Laboratory of Plasma Derivatives, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD, USA
| | - Alison A Humbles
- Dept of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Robert Welliver
- Dept of Pediatrics, University of Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Thais Mauad
- Dept of Pathology, São Paulo University, São Paulo, Brazil
| | - Leif Bjermer
- Dept of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Manel Jordana
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
36
|
Paupert J, Espinosa E, Cenac N, Robert V, Laharrague P, Evrard SM, Casteilla L, Lorsignol A, Cousin B. Rapid and Efficient Production of Human Functional Mast Cells through a Three-Dimensional Culture of Adipose Tissue-Derived Stromal Vascular Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:3815-3821. [PMID: 30446570 DOI: 10.4049/jimmunol.1701751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
Mast cells (MC) are innate immune cells involved in many physiological and pathological processes. However, studies of MC function and biology are hampered by the difficulties to obtain human primary MC. To solve this problem, we established a new method to produce easily and rapidly high numbers of MC for in vitro studies using human adipose tissue, which is an abundant and easy access tissue. Stromal vascular fraction of adipose tissue, obtained from human abdominal dermolipectomy, was cultured as spheroids in serum free medium supplemented in stem cell factor. Using this method, we generated, within 3 wk, a highly pure population of connective tissue-type MC expressing MC typical peptidases (tryptase, chymase, and carboxypeptidase-A3) with a yield increasing over time. Stem cell factor was required for this culture, but unlike MC derived from CD34+ cells, this culture did not depend on IL-3 and -6. MC obtained with this method degranulated following FcεRI cross-linking or stimulation by C5a, compound 48/80, and substance P. Interestingly, activation by anti-IgE of both white adipose tissue-MC and MC obtained from peripheral blood-derived CD34+ pluripotent progenitor cells induced the production of PGs as well as proinflammatory cytokines (TNF-α, Il-6, and GM-CSF). In conclusion, we developed a new time saving and reproducible method to produce highly pure and functional human MC in 3 wk from human adipose tissue.
Collapse
Affiliation(s)
- Jenny Paupert
- STROMALab, Université de Toulouse, CNRS 11 Équipe de Recherche Labellisée 5311, Établissement Français du Sang, École Nationale Vétérinaire de Toulouse, INSERM U1031, Université Paul Sabatier, 31100 Toulouse, France.,Université Toulouse III-Université Paul Sabatier, F-31062 Toulouse
| | - Eric Espinosa
- Université Toulouse III-Université Paul Sabatier, F-31062 Toulouse.,INSERM, U1037, Centre de Recherche en Cancérologie de Toulouse, F-31037 Toulouse, France
| | - Nicolas Cenac
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, 31062 Toulouse, France
| | - Virginie Robert
- STROMALab, Université de Toulouse, CNRS 11 Équipe de Recherche Labellisée 5311, Établissement Français du Sang, École Nationale Vétérinaire de Toulouse, INSERM U1031, Université Paul Sabatier, 31100 Toulouse, France.,Université Toulouse III-Université Paul Sabatier, F-31062 Toulouse
| | - Patrick Laharrague
- STROMALab, Université de Toulouse, CNRS 11 Équipe de Recherche Labellisée 5311, Établissement Français du Sang, École Nationale Vétérinaire de Toulouse, INSERM U1031, Université Paul Sabatier, 31100 Toulouse, France.,Université Toulouse III-Université Paul Sabatier, F-31062 Toulouse
| | - Solène M Evrard
- Département d'Histologie et d'Embryologie, École de Médecine de Rangueil, Université Toulouse III-Université Paul Sabatier, 31059 Toulouse Cedex 9, France; and.,Département de Pathologie et Cytologie, Centre Hospitalier Universitaire Toulouse, l'Institut Universitaire du Cancer de Toulouse Oncopole, 31100 Toulouse Cedex 9, France
| | - Louis Casteilla
- STROMALab, Université de Toulouse, CNRS 11 Équipe de Recherche Labellisée 5311, Établissement Français du Sang, École Nationale Vétérinaire de Toulouse, INSERM U1031, Université Paul Sabatier, 31100 Toulouse, France.,Université Toulouse III-Université Paul Sabatier, F-31062 Toulouse
| | - Anne Lorsignol
- STROMALab, Université de Toulouse, CNRS 11 Équipe de Recherche Labellisée 5311, Établissement Français du Sang, École Nationale Vétérinaire de Toulouse, INSERM U1031, Université Paul Sabatier, 31100 Toulouse, France.,Université Toulouse III-Université Paul Sabatier, F-31062 Toulouse
| | - Béatrice Cousin
- STROMALab, Université de Toulouse, CNRS 11 Équipe de Recherche Labellisée 5311, Établissement Français du Sang, École Nationale Vétérinaire de Toulouse, INSERM U1031, Université Paul Sabatier, 31100 Toulouse, France; .,Université Toulouse III-Université Paul Sabatier, F-31062 Toulouse
| |
Collapse
|
37
|
Dudeck J, Froebel J, Kotrba J, Lehmann CHK, Dudziak D, Speier S, Nedospasov SA, Schraven B, Dudeck A. Engulfment of mast cell secretory granules on skin inflammation boosts dendritic cell migration and priming efficiency. J Allergy Clin Immunol 2018; 143:1849-1864.e4. [PMID: 30339853 DOI: 10.1016/j.jaci.2018.08.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/13/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mast cells (MCs) are best known as key effector cells of allergic reactions, but they also play an important role in host defense against pathogens. Despite increasing evidence for a critical effect of MCs on adaptive immunity, the underlying mechanisms are poorly understood. OBJECTIVE Here we monitored MC intercellular communication with dendritic cells (DCs), MC activation, and degranulation and tracked the fate of exocytosed mast cell granules (MCGs) during skin inflammation. METHODS Using a strategy to stain intracellular MCGs in vivo, we tracked the MCG fate after skin inflammation-induced MC degranulation. Furthermore, exogenous MCGs were applied to MC-deficient mice by means of intradermal injection. MCG effects on DC functionality and adaptive immune responses in vivo were assessed by combining intravital multiphoton microscopy with flow cytometry and functional assays. RESULTS We demonstrate that dermal DCs engulf the intact granules exocytosed by MCs on skin inflammation. Subsequently, the engulfed MCGs are actively shuttled to skin-draining lymph nodes and finally degraded inside DCs within the lymphoid tissue. Most importantly, MCG uptake promotes DC maturation and migration to skin-draining lymph nodes, partially through MC-derived TNF, and boosts their T-cell priming efficiency. Surprisingly, exogenous MCGs alone are sufficient to induce a prominent DC activation and T-cell response. CONCLUSION Our study highlights a unique feature of peripheral MCs to affect lymphoid tissue-borne adaptive immunity over distance by modifying DC functionality through delivery of granule-stored mediators.
Collapse
Affiliation(s)
- Jan Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Julia Froebel
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian H K Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
38
|
Hydroxychloroquine as a novel therapeutic approach in mast cell activation diseases. Clin Immunol 2018; 194:75-79. [DOI: 10.1016/j.clim.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 11/15/2022]
|
39
|
Yokawa S, Suzuki T, Hayashi A, Inouye S, Inoh Y, Furuno T. Video-Rate Bioluminescence Imaging of Degranulation of Mast Cells Attached to the Extracellular Matrix. Front Cell Dev Biol 2018; 6:74. [PMID: 30042943 PMCID: PMC6048188 DOI: 10.3389/fcell.2018.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
Degranulation refers to the secretion of inflammatory mediators, such as histamine, serotonin, and proteases, that are stored within the granules of mast cells and that trigger allergic reactions. The amount of these released mediators has been measured biochemically using cell mass. To investigate degranulation in living single cells, fluorescence microscopy has traditionally been used to observe the disappearance of granules and the appearance of these discharged granules within the plasma membrane by membrane fusion and the movement of granules inside the cells. Here, we developed a method of video-rate bioluminescence imaging to directly detect degranulation from a single mast cell by measuring luminescence activity derived from the enzymatic reaction between Gaussia luciferase (GLase) and its substrate coelenterazine. The neuropeptide Y (NPY), which was reported to colocalize with serotonin in the secretory granules, fused to GLase (NPY-GLase) was efficiently expressed in rat basophilic leukemia (RBL-2H3) cells, a mast-cell line, using a preferred human codon-optimized gene. Bioluminescence imaging analysis of RBL-2H3 cells expressing NPY-GLase and adhered on a glass-bottomed dish showed that the luminescence signals from the resting cells were negligible, while the luminescence signals of the secreted NPY-GLase were repeatedly detected after the addition of an antigen. In addition, this imaging method was applicable for observing degranulation in RBL-2H3 cells that adhered to the extracellular matrix (ECM). These results indicated that video-rate bioluminescence imaging using GLase will be a useful tool for detecting degranulation in single mast cells adhered to a variety of ECM proteins.
Collapse
Affiliation(s)
- Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | | | - Ayumi Hayashi
- School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Satoshi Inouye
- Yokohama Research Center, JNC Corporation, Yokohama, Japan
| | - Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | | |
Collapse
|
40
|
Gaudenzio N, Marichal T, Galli SJ, Reber LL. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity. Front Immunol 2018; 9:1275. [PMID: 29922295 PMCID: PMC5996070 DOI: 10.3389/fimmu.2018.01275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
Contact hypersensitivity (CHS) is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs) are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo. Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation) and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM, Université de Toulouse, Toulouse, France
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liège, Belgium
- Faculty of Veterinary Medicine, Liege University, Liège, Belgium
- WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Immunology and Microbiology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Laurent L. Reber
- Unit of Antibodies in Therapy and Pathology, INSERM Unit 1222, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
41
|
L'Italien L, Orozco O, Abrams T, Cantagallo L, Connor A, Desai J, Ebersbach H, Gelderblom H, Hoffmaster K, Lees E, Maacke H, Schleyer S, Skegro D, Lee-Hoeflich ST. Mechanistic Insights of an Immunological Adverse Event Induced by an Anti-KIT Antibody Drug Conjugate and Mitigation Strategies. Clin Cancer Res 2018; 24:3465-3474. [PMID: 29615457 DOI: 10.1158/1078-0432.ccr-17-3786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Hypersensitivity reactions (HSRs) were observed in three patients dosed in a phase I clinical trial treated with LOP628, a KIT targeted antibody drug conjugate. Mast cell degranulation was implicated as the root cause for the HSR. Underlying mechanism of this reported HSR was investigated with an aim to identifying potential mitigation strategies.Experimental Design: Biomarkers for mast cell degranulation were evaluated in patient samples and in human peripheral blood cell-derived mast cell (PBC-MC) cultures treated with LOP628. Mitigation strategies interrogated include pretreatment of mast cells with small molecule inhibitors that target KIT or signaling pathways downstream of FcεR1, FcγR, and treatment with Fc silencing antibody formats.Results: Transient elevation of serum tryptase was observed in patients 1-hour posttreatment of LOP628. In agreement with the clinical observation, LOP628 and its parental antibody LMJ729 induced degranulation of human PBC-MCs. Unexpectedly, KIT small molecule inhibitors did not abrogate mast cell degranulation. By contrast, small molecule inhibitors that targeted pathways downstream of Fc receptors blunted degranulation. Furthermore, interference of the KIT antibody to engage Fc receptors by pre-incubation with IgG or using engineered Fc silencing mutations reduced or prevented degranulation. Characterization of Fcγ receptors revealed human PBC-MCs expressed both FcγRII and low levels of FcγRI. Interestingly, increasing the level of FcγRI upon addition of IFNγ, significantly enhanced LOP628-mediated mast cell degranulation.Conclusions: Our data suggest LOP628-mediated mast cell degranulation is the likely cause of HSR observed in the clinic due to co-engagement of the FcγR and KIT, resulting in mast cell activation. Clin Cancer Res; 24(14); 3465-74. ©2018 AACR.
Collapse
Affiliation(s)
| | - Olivia Orozco
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Tinya Abrams
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Lisa Cantagallo
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Anu Connor
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jayesh Desai
- Royal Melbourne Hospital, Parkville VIC, Australia
| | - Hilmar Ebersbach
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | | | - Keith Hoffmaster
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Emma Lees
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Heiko Maacke
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Siew Schleyer
- Novartis Institutes for Biomedical Research, Shanghai, China
| | - Darko Skegro
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | | |
Collapse
|
42
|
Bahri R, Custovic A, Korosec P, Tsoumani M, Barron M, Wu J, Sayers R, Weimann A, Ruiz-Garcia M, Patel N, Robb A, Shamji MH, Fontanella S, Silar M, Mills ENC, Simpson A, Turner PJ, Bulfone-Paus S. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J Allergy Clin Immunol 2018. [PMID: 29518421 PMCID: PMC6075471 DOI: 10.1016/j.jaci.2018.01.043] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Food allergy is an increasing public health issue and the most common cause of life-threatening anaphylactic reactions. Conventional allergy tests assess for the presence of allergen-specific IgE, significantly overestimating the rate of true clinical allergy and resulting in overdiagnosis and adverse effect on health-related quality of life. Objective To undertake initial validation and assessment of a novel diagnostic tool, we used the mast cell activation test (MAT). Methods Primary human blood-derived mast cells (MCs) were generated from peripheral blood precursors, sensitized with patients' sera, and then incubated with allergen. MC degranulation was assessed by means of flow cytometry and mediator release. We compared the diagnostic performance of MATs with that of existing diagnostic tools to assess in a cohort of peanut-sensitized subjects undergoing double-blind, placebo-controlled challenge. Results Human blood-derived MCs sensitized with sera from patients with peanut, grass pollen, and Hymenoptera (wasp venom) allergy demonstrated allergen-specific and dose-dependent degranulation, as determined based on both expression of surface activation markers (CD63 and CD107a) and functional assays (prostaglandin D2 and β-hexosaminidase release). In this cohort of peanut-sensitized subjects, the MAT was found to have superior discrimination performance compared with other testing modalities, including component-resolved diagnostics and basophil activation tests. Using functional principle component analysis, we identified 5 clusters or patterns of reactivity in the resulting dose-response curves, which at preliminary analysis corresponded to the reaction phenotypes seen at challenge. Conclusion The MAT is a robust tool that can confer superior diagnostic performance compared with existing allergy diagnostics and might be useful to explore differences in effector cell function between basophils and MCs during allergic reactions.
Collapse
Affiliation(s)
- Rajia Bahri
- Division of Musculoskeletal and Dermatological Sciences & Manchester Collaborative Centre for Inflammation Research (MCCIR), School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Adnan Custovic
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Peter Korosec
- Laboratory for Clinical Immunology & Molecular Genetics, University Hospital for Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Marina Tsoumani
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Martin Barron
- Division of Musculoskeletal and Dermatological Sciences & Manchester Collaborative Centre for Inflammation Research (MCCIR), School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Jiakai Wu
- Division of Musculoskeletal and Dermatological Sciences & Manchester Collaborative Centre for Inflammation Research (MCCIR), School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Rebekah Sayers
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Monica Ruiz-Garcia
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Nandinee Patel
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Abigail Robb
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mohamed H Shamji
- Section of Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sara Fontanella
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mira Silar
- Laboratory for Clinical Immunology & Molecular Genetics, University Hospital for Respiratory and Allergic Diseases, Golnik, Slovenia
| | - E N Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul J Turner
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom.
| | - Silvia Bulfone-Paus
- Division of Musculoskeletal and Dermatological Sciences & Manchester Collaborative Centre for Inflammation Research (MCCIR), School of Biological Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
43
|
Wang H, Do DC, Liu J, Wang B, Qu J, Ke X, Luo X, Tang HM, Tang HL, Hu C, Anderson ME, Liu Z, Gao P. Functional role of kynurenine and aryl hydrocarbon receptor axis in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2018; 141:586-600.e6. [PMID: 28689792 PMCID: PMC5937692 DOI: 10.1016/j.jaci.2017.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is associated with mast cell-mediated inflammation and heightened oxidant stress. Kynurenine (KYN), an endogenous tryptophan metabolite, can promote allergen-induced mast cell activation through the aryl hydrocarbon receptor (AhR). OBJECTIVES We sought to determine the role of the KYN/AhR axis and oxidant stress in mast cell activation and the development of CRSwNP. METHODS We measured the expression of indoleamine 2,3-dioxygenase 1, tryptophan 2,3-dioxygenase, KYN, and oxidized calmodulin-dependent protein kinase II (ox-CaMKII) in nasal polyps and controls. KYN-potentiated ovalbumin (OVA)-induced ROS generation, cell activation, and ox-CaMKII expression were investigated in wild-type and AhR-deficient (AhR-/-) mast cells. The role of ox-CaMKII in mast cell activation was further investigated. RESULTS Nasal polyps in CRSwNP showed an increased expression of indoleamine 2,3-dioxygenase 1, tryptophan2,3-dioxygenase, and KYN compared with controls. AhR was predominantly expressed in mast cells in nasal polyps. Activated mast cells and local IgE levels were substantially increased in eosinophilic polyps compared with noneosinophilic polyps and controls. Furthermore, KYN potentiated OVA-induced ROS generation, intracellular Ca2+ levels, cell activation, and expression of ox-CaMKII in wild-type, but not in AhR-/- mast cells. Compared with noneosinophilic polyps and controls, eosinophilic polyps showed increased expression of ox-CaMKII in mast cells. Mast cells from ROS-resistant CaMKII MMVVδ mice or pretreated with CaMKII inhibitor showed protection against KYN-promoted OVA-induced mast cell activation. CONCLUSIONS These studies support a potentially critical but previously unidentified function of the KYN/AhR axis in regulating IgE-mediated mast cell activation through ROS and ox-CaMKII in CRSwNP.
Collapse
Affiliation(s)
- Heng Wang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danh C Do
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Jinxin Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baofeng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Qu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Ke
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Xiaoyan Luo
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Ho Lam Tang
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Mark E Anderson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
44
|
New roles and controls of mast cells. Curr Opin Immunol 2018; 50:39-47. [DOI: 10.1016/j.coi.2017.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/14/2022]
|
45
|
Zhang D, Whitaker B, Derebe MG, Chiu ML. FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody. MAbs 2018; 10:463-475. [PMID: 29359992 PMCID: PMC5916553 DOI: 10.1080/19420862.2018.1424611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities.
Collapse
Affiliation(s)
- Di Zhang
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| | - Brian Whitaker
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| | - Mehabaw G Derebe
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| | - Mark L Chiu
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| |
Collapse
|
46
|
Dudeck J, Medyukhina A, Fröbel J, Svensson CM, Kotrba J, Gerlach M, Gradtke AC, Schröder B, Speier S, Figge MT, Dudeck A. Mast cells acquire MHCII from dendritic cells during skin inflammation. J Exp Med 2017; 214:3791-3811. [PMID: 29084819 PMCID: PMC5716026 DOI: 10.1084/jem.20160783] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Dudeck et al. demonstrate that inflammatory conditions induce dynamic interactions between mast cells (MCs) and dendritic cells (DCs) culminating in protein exchange. Resident MCs are equipped with DC MHCII and empowered to initiate T cell–driven inflammation during migration-based DC absence. Mast cells (MCs) and dendritic cells (DCs) are essential innate sentinels populating host-environment interfaces. Using longitudinal intravital multiphoton microscopy of DCGFP/MCRFP reporter mice, we herein provide in vivo evidence that migratory DCs execute targeted cell-to-cell interactions with stationary MCs before leaving the inflamed skin to draining lymph nodes. During initial stages of skin inflammation, DCs dynamically scan MCs, whereas at a later stage, long-lasting interactions predominate. These innate-to-innate synapse-like contacts ultimately culminate in DC-to-MC molecule transfers including major histocompatibility complex class II (MHCII) proteins enabling subsequent ex vivo priming of allogeneic T cells with a specific cytokine signature. The extent of MHCII transfer to MCs correlates with their T cell priming efficiency. Importantly, preventing the cross talk by preceding DC depletion decreases MC antigen presenting capacity and T cell–driven inflammation. Consequently, we identify an innate intercellular communication arming resident MCs with key DC functions that might contribute to the acute defense potential during critical periods of migration-based DC absence.
Collapse
Affiliation(s)
- Jan Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute for Immunology, Medical Faculty Carl-Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Medyukhina
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Julia Fröbel
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Gerlach
- DFG-Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of the Technische Universität Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Centre for Diabetes Research, Dresden, Germany
| | | | - Bernd Schröder
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stephan Speier
- DFG-Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of the Technische Universität Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Centre for Diabetes Research, Dresden, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany .,Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany .,Institute for Immunology, Medical Faculty Carl-Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
47
|
Wakefield DL, Holowka D, Baird B. The FcεRI Signaling Cascade and Integrin Trafficking Converge at Patterned Ligand Surfaces. Mol Biol Cell 2017; 28:mbc.E17-03-0208. [PMID: 28794269 PMCID: PMC5687038 DOI: 10.1091/mbc.e17-03-0208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
We examined the spatial targeting of early and downstream signaling mediated by the IgE receptor (FcεRI) in RBL mast cells utilizing surface-patterned 2,4 dinitrophenyl (DNP) ligands. Micron-sized features of DNP are presented as densely immobilized conjugates of bovine serum albumin (DNP-BSA) or mobile in a supported lipid bilayer (DNP-SLB). Although soluble anti-DNP IgE binds uniformly across features for both pattern types, IgE bound to FcεRI on cells shows distinctive distributions: uniform for DNP-SLB and edge-concentrated for DNP-BSA. These distributions of IgE-FcεRI propagate to the spatial recruitment of early signaling proteins, including spleen tyrosine kinase (Syk), linker for activation of T cells (LAT), and activated phospholipase C gamma 1 (PLCγ1), which all localize with engaged receptors. We found stimulated polymerization of F-actin is not required for Syk recruitment but is progressively involved in the recruitment of LAT and PLCγ1. We further found β1- and β3-integrins colocalize with IgE-FcεRI at patterned ligand surfaces as cells spread. This recruitment corresponds to directed exocytosis of recycling endosomes (REs) containing these integrins and their fibronectin ligand. Together, our results show targeting of signaling components, including integrins, to regions of clustered IgE-FcεRI in processes that depend on stimulated actin polymerization and outward trafficking of REs.
Collapse
Affiliation(s)
- Devin L Wakefield
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
- Current address: Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, California, 91010
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
48
|
Lopes DM, Denk F, Chisholm KI, Suddason T, Durrieux C, Thakur M, Gentry C, McMahon SB. Peripheral inflammatory pain sensitisation is independent of mast cell activation in male mice. Pain 2017; 158:1314-1322. [PMID: 28394852 PMCID: PMC5472008 DOI: 10.1097/j.pain.0000000000000917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/06/2023]
Abstract
The immune and sensory systems are known for their close proximity and interaction. Indeed, in a variety of pain states, a myriad of different immune cells are activated and recruited, playing a key role in neuronal sensitisation. During inflammatory pain it is thought that mast cells (MC) are one of the immune cell types involved in this process, but so far the evidence outlining their direct effect on neuronal cells remains unclear. To clarify whether MC are involved in inflammatory pain states, we used a transgenic mouse line (Mctp5Cre-iDTR) in which MC could be depleted in an inducible manner by administration of diphtheria toxin. Our results show that ablation of MC in male mice did not result in any change in mechanical and thermal hypersensitivity in the CFA model of inflammatory pain. Similarly, edema and temperature triggered by CFA inflammation at the injection site remained identical in MC depleted mice compared with their littermate controls. In addition, we show that Mctp5Cre-iDTR mice display normal levels of mechanical hypersensitivity after local injection of nerve growth factor (NGF), a factor well characterised to produce peripheral sensitisation and for being upregulated upon injury and inflammation. We also demonstrate that NGF treatment in vitro does not lead to an increased level of tumor necrosis factor-α in bone marrow-derived MC. Furthermore, our qRT-PCR data reveal that MC express negligible levels of NGF receptors, thereby explaining the lack of response to NGF. Together, our data suggest that MC do not play a direct role in peripheral sensitisation during inflammatory conditions.
Collapse
Affiliation(s)
- Douglas M. Lopes
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Kim I. Chisholm
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Tesha Suddason
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Camille Durrieux
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Matthew Thakur
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Clive Gentry
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Stephen B. McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| |
Collapse
|
49
|
Yin Y, Bai Y, Olivera A, Desai A, Metcalfe DD. An optimized protocol for the generation and functional analysis of human mast cells from CD34 + enriched cell populations. J Immunol Methods 2017. [PMID: 28629733 DOI: 10.1016/j.jim.2017.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The culture of mast cells from human tissues such a cord blood, peripheral blood or bone marrow aspirates has advanced our understanding of human mast cells (huMC) degranulation, mediator production and response to pharmacologic agents. However, existing methods for huMC culture tend to be laborious and expensive. Combining technical approaches from several of these protocols, we designed a simplified and more cost effective approach to the culture of mast cells from human cell populations including peripheral blood and cryopreserved cells from lymphocytapheresis. On average, we reduced by 30-50 fold the amount of culture media compared to our previously reported method, while the total MC number generated by this method (2.46±0.63×106 vs. 2.4±0.28×106, respectively, from 1.0×108 lymphocytapheresis or peripheral blood mononuclear blood cells [PBMCs]) was similar to our previous method (2.36±0.70×106), resulting in significant budgetary savings. In addition, we compared the yield of huMCs with or without IL-3 added to early cultures in the presence of stem cell factor (SCF) and interlukin-6 (IL-6) and found that the total MC number generated, while higher with IL-3 in the culture, did not reach statistical significance, suggesting that IL-3, often recommended in the culture of huMCs, is not absolutely required. We then performed a functional analysis by flow cytometry using standard methods and which maximized the data we could obtain from cultured cells. We believe these approaches will allow more laboratories to culture and examine huMC behavior going forward.
Collapse
Affiliation(s)
- Yuzhi Yin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yun Bai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA
| | - Avanti Desai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Kikuchi-Ueda T, Kamoshida G, Ubagai T, Nakano R, Nakano A, Akuta T, Hikosaka K, Tansho-Nagakawa S, Kikuchi H, Ono Y. The TNF-α of mast cells induces pro-inflammatory responses during infection with Acinetobacter baumannii. Immunobiology 2017; 222:1025-1034. [PMID: 28595750 DOI: 10.1016/j.imbio.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/18/2017] [Accepted: 05/23/2017] [Indexed: 01/12/2023]
Abstract
Mast cells serve important roles as sentinels against bacterial infection by secreting mediators stored in granules. Much of their effectiveness depends upon recruiting and/or modulating other immune cells. The location of mast cells implies that they recognize pathogens invading tissues or mucosal tissues. Acinetobacter baumannii is a gram-negative bacterium that is considered an emerging nosocomial pathogen and causes a wide range of infections associated with high morbidity and mortality. To date, the interaction of A. baumannii with mast cells remains unclear. In this study, we demonstrated an interaction between human LAD2 mast cells and A. baumannii in vitro. When LAD2 cells were co-cultured with live A. baumannii or Pseudomonas aeruginosa PAO1 in vitro for 4h, TNF-α and IL-8 were produced in the culture supernatant. These inflammatory cytokines were not detected in the supernatant after the cells were treated with live bacteria without serum. Gene expression analysis showed that TNF-α and IL-8 mRNA expression increased in A. baumannii- and P. aeruginosa-infected LAD2 cells. Scanning electron microscopy showed that A. baumannii was tightly attached to the surface of LAD2 cells and suggested that A. baumannii may bind to FcγRII (CD32) on LAD2 cells. TNF-α in the culture supernatant from A. baumannii-infected LAD2 cells, showed that PMN activation and migration increased in Boyden chamber assays. These results suggest that mast cells recognize and initiate immune responses toward A. baumannii by releasing the preformed mediator TNF-α to activate effector neutrophils.
Collapse
Affiliation(s)
- Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Go Kamoshida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara 634-8521, Japan.
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara 634-8521, Japan.
| | - Teruo Akuta
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shigeru Tansho-Nagakawa
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Hirotoshi Kikuchi
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|