1
|
Shi Z, Wen K, Sammudin NH, LoRocco N, Zhuang X. Erasing "bad memories": reversing aberrant synaptic plasticity as therapy for neurological and psychiatric disorders. Mol Psychiatry 2025:10.1038/s41380-025-03013-0. [PMID: 40210977 DOI: 10.1038/s41380-025-03013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Dopamine modulates corticostriatal plasticity in both the direct and indirect pathways of the cortico-striato-thalamo-cortical (CSTC) loops. These gradual changes in corticostriatal synaptic strengths produce long-lasting changes in behavioral responses. Under normal conditions, these mechanisms enable the selection of the most appropriate responses while inhibiting others. However, under dysregulated dopamine conditions, including a lack of dopamine release or dopamine signaling, these mechanisms could lead to the selection of maladaptive responses and/or the inhibition of appropriate responses in an experience-dependent and task-specific manner. In this review, we propose that preventing or reversing such maladaptive synaptic strengths and erasing such aberrant "memories" could be a disease-modifying therapeutic strategy for many neurological and psychiatric disorders. We review evidence from Parkinson's disease, drug-induced parkinsonism, L-DOPA-induced dyskinesia, obsessive-compulsive disorder, substance use disorders, and depression as well as research findings on animal disease models. Altogether, these studies allude to an emerging theme in translational neuroscience and promising new directions for therapy development. Specifically, we propose that combining pharmacotherapy with behavioral therapy or with deep brain stimulation (DBS) could potentially cause desired changes in specific neural circuits. If successful, one important advantage of correcting aberrant synaptic plasticity is long-lasting therapeutic effects even after treatment has ended. We will also discuss the potential molecular targets for these therapeutic approaches, including the cAMP pathway, proteins involved in synaptic plasticity as well as pathways involved in new protein synthesis. We place special emphasis on RNA binding proteins and epitranscriptomic mechanisms, as they represent a new frontier with the distinct advantage of rapidly and simultaneously altering the synthesis of many proteins locally.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Kailong Wen
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nabilah H Sammudin
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas LoRocco
- The Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, The University of Chicago, Chicago, IL, 60637, USA.
- The Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Fiasconaro A, Migliore M. Hippocampal synchronization in a realistic CA1 neuron model. Phys Rev E 2024; 110:044406. [PMID: 39562904 DOI: 10.1103/physreve.110.044406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/02/2024] [Indexed: 11/21/2024]
Abstract
This work delves into studying the synchronization in two realistic neuron models using Hodgkin-Huxley dynamics. Unlike simplistic pointlike models, excitatory synapses are here randomly distributed along the dendrites, introducing strong stochastic contributions into their signal propagation. To focus on the role of different synaptic locations, we use two copies of the same neuron whose synapses are located at different distances from the soma and activated by identical Poisson distributed pulses. The synchronization is investigated through a specifically defined spiking correlation function, and its behavior is analyzed as a function of several parameters: inhibition weight, distance from the soma of one synaptic group, weight and decay time constants of the excitatory synapses.
Collapse
|
3
|
Davies A, Tomas A. Appreciating the potential for GPCR crosstalk with ion channels. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:101-120. [PMID: 36707150 DOI: 10.1016/bs.pmbts.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
G protein-coupled receptors (GPCRs) are expressed by most tissues in the body and are exploited pharmacologically in a variety of pathological conditions including diabetes, cardiovascular disease, neurological diseases, and cancers. Numerous cell signaling pathways can be regulated by GPCR activation, depending on the specific GPCR, ligand and cell type. Ion channels are among the many effector proteins downstream of these signaling pathways. Saliently, ion channels are also recognized as druggable targets, and there is evidence that their activity may regulate GPCR function via membrane potential and cytoplasmic ion concentration. Overall, there appears to be a large potential for crosstalk between ion channels and GPCRs. This might have implications not only for targeting GPCRs for drug development, but also opens the possibility of co-targeting them with ion channels to achieve improved therapeutic outcomes. In this review, we highlight the large variety of possible GPCR-ion channel crosstalk modes.
Collapse
Affiliation(s)
- Amy Davies
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
4
|
Franzoso M, Dokshokova L, Vitiello L, Zaglia T, Mongillo M. Tuning the Consonance of Microscopic Neuro-Cardiac Interactions Allows the Heart Beats to Play Countless Genres. Front Physiol 2022; 13:841740. [PMID: 35273522 PMCID: PMC8902305 DOI: 10.3389/fphys.2022.841740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Different from skeletal muscle, the heart autonomously generates rhythmic contraction independently from neuronal inputs. However, speed and strength of the heartbeats are continuously modulated by environmental, physical or emotional inputs, delivered by cardiac innervating sympathetic neurons, which tune cardiomyocyte (CM) function, through activation of β-adrenoceptors (β-ARs). Given the centrality of such mechanism in heart regulation, β-AR signaling has been subject of intense research, which has reconciled the molecular details of the transduction pathway and the fine architecture of cAMP signaling in subcellular nanodomains, with its final effects on CM function. The importance of mechanisms keeping the elements of β-AR/cAMP signaling in good order emerges in pathology, when the loss of proper organization of the transduction pathway leads to detuned β-AR/cAMP signaling, with detrimental consequences on CM function. Despite the compelling advancements in decoding cardiac β-AR/cAMP signaling, most discoveries on the subject were obtained in isolated cells, somehow neglecting that complexity may encompass the means in which receptors are activated in the intact heart. Here, we outline a set of data indicating that, in the context of the whole myocardium, the heart orchestra (CMs) is directed by a closely interacting and continuously attentive conductor, represented by SNs. After a roundup of literature on CM cAMP regulation, we focus on the unexpected complexity and roles of cardiac sympathetic innervation, and present the recently discovered Neuro-Cardiac Junction, as the election site of "SN-CM" interaction. We further discuss how neuro-cardiac communication is based on the combination of extra- and intra-cellular signaling micro/nano-domains, implicating neuronal neurotransmitter exocytosis, β-ARs and elements of cAMP homeostasis in CMs, and speculate on how their dysregulation may reflect on dysfunctional neurogenic control of the heart in pathology.
Collapse
Affiliation(s)
- Mauro Franzoso
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Kocik RA, Gasch AP. Breadth and Specificity in Pleiotropic Protein Kinase A Activity and Environmental Responses. Front Cell Dev Biol 2022; 10:803392. [PMID: 35252178 PMCID: PMC8888911 DOI: 10.3389/fcell.2022.803392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Protein Kinase A (PKA) is an essential kinase that is conserved across eukaryotes and plays fundamental roles in a wide range of organismal processes, including growth control, learning and memory, cardiovascular health, and development. PKA mediates these responses through the direct phosphorylation of hundreds of proteins-however, which proteins are phosphorylated can vary widely across cell types and environmental cues, even within the same organism. A major question is how cells enact specificity and precision in PKA activity to mount the proper response, especially during environmental changes in which only a subset of PKA-controlled processes must respond. Research over the years has uncovered multiple strategies that cells use to modulate PKA activity and specificity. This review highlights recent advances in our understanding of PKA signaling control including subcellular targeting, phase separation, feedback control, and standing waves of allosteric regulation. We discuss how the complex inputs and outputs to the PKA network simultaneously pose challenges and solutions in signaling integration and insulation. PKA serves as a model for how the same regulatory factors can serve broad pleiotropic functions but maintain specificity in localized control.
Collapse
Affiliation(s)
- Rachel A Kocik
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States.,Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Abstract
Transport of intracellular components relies on a variety of active and passive mechanisms, ranging from the diffusive spreading of small molecules over short distances to motor-driven motion across long distances. The cell-scale behavior of these mechanisms is fundamentally dependent on the morphology of the underlying cellular structures. Diffusion-limited reaction times can be qualitatively altered by the presence of occluding barriers or by confinement in complex architectures, such as those of reticulated organelles. Motor-driven transport is modulated by the architecture of cytoskeletal filaments that serve as transport highways. In this review, we discuss the impact of geometry on intracellular transport processes that fulfill a broad range of functional objectives, including delivery, distribution, and sorting of cellular components. By unraveling the interplay between morphology and transport efficiency, we aim to elucidate key structure-function relationships that govern the architecture of transport systems at the cellular scale. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anamika Agrawal
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| | - Zubenelgenubi C Scott
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
7
|
Cellular context shapes cyclic nucleotide signaling in neurons through multiple levels of integration. J Neurosci Methods 2021; 362:109305. [PMID: 34343574 DOI: 10.1016/j.jneumeth.2021.109305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Intracellular signaling with cyclic nucleotides are ubiquitous signaling pathways, yet the dynamics of these signals profoundly differ in different cell types. Biosensor imaging experiments, by providing direct measurements in intact cellular environment, reveal which receptors are activated by neuromodulators and how the coincidence of different neuromodulators is integrated at various levels in the signaling cascade. Phosphodiesterases appear as one important determinant of cross-talk between different signaling pathways. Finally, analysis of signal dynamics reveal that striatal medium-sized spiny neuron obey a different logic than other brain regions such as cortex, probably in relation with the function of this brain region which efficiently detects transient dopamine.
Collapse
|
8
|
Reed JD, Blackwell KT. Prediction of Neural Diameter From Morphology to Enable Accurate Simulation. Front Neuroinform 2021; 15:666695. [PMID: 34149388 PMCID: PMC8209307 DOI: 10.3389/fninf.2021.666695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Accurate neuron morphologies are paramount for computational model simulations of realistic neural responses. Over the last decade, the online repository NeuroMorpho.Org has collected over 140,000 available neuron morphologies to understand brain function and promote interaction between experimental and computational research. Neuron morphologies describe spatial aspects of neural structure; however, many of the available morphologies do not contain accurate diameters that are essential for computational simulations of electrical activity. To best utilize available neuron morphologies, we present a set of equations that predict dendritic diameter from other morphological features. To derive the equations, we used a set of NeuroMorpho.org archives with realistic neuron diameters, representing hippocampal pyramidal, cerebellar Purkinje, and striatal spiny projection neurons. Each morphology is separated into initial, branching children, and continuing nodes. Our analysis reveals that the diameter of preceding nodes, Parent Diameter, is correlated to diameter of subsequent nodes for all cell types. Branching children and initial nodes each required additional morphological features to predict diameter, such as path length to soma, total dendritic length, and longest path to terminal end. Model simulations reveal that membrane potential response with predicted diameters is similar to the original response for several tested morphologies. We provide our open source software to extend the utility of available NeuroMorpho.org morphologies, and suggest predictive equations may supplement morphologies that lack dendritic diameter and improve model simulations with realistic dendritic diameter.
Collapse
Affiliation(s)
- Jonathan D Reed
- Krasnow Institute of Advanced Study, George Mason University, Fairfax, VA, United States.,Department of Biology, George Mason University, Fairfax, VA, United States
| | - Kim T Blackwell
- Krasnow Institute of Advanced Study, George Mason University, Fairfax, VA, United States.,Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, VA, United States
| |
Collapse
|
9
|
Gupta A, Proddutur A, Chang YJ, Raturi V, Guevarra J, Shah Y, Elgammal FS, Santhakumar V. Dendritic morphology and inhibitory regulation distinguish dentate semilunar granule cells from granule cells through distinct stages of postnatal development. Brain Struct Funct 2020; 225:2841-2855. [PMID: 33124674 DOI: 10.1007/s00429-020-02162-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Semilunar granule cells (SGCs) have been proposed as a morpho-functionally distinct class of hippocampal dentate projection neurons contributing to feedback inhibition and memory processing in juvenile rats. However, the structural and physiological features that can reliably classify granule cells (GCs) from SGCs through postnatal development remain unresolved. Focusing on postnatal days 11-13, 28-42, and > 120, corresponding with human infancy, adolescence, and adulthood, we examined the somato-dendritic morphology and inhibitory regulation in SGCs and GCs to determine the cell-type specific features. Unsupervised cluster analysis confirmed that morphological features reliably distinguish SGCs from GCs irrespective of animal age. SGCs maintain higher spontaneous inhibitory postsynaptic current (sIPSC) frequency than GCs from infancy through adulthood. Although sIPSC frequency in SGCs was particularly enhanced during adolescence, sIPSC amplitude and cumulative charge transfer declined from infancy to adulthood and were not different between GCs and SGCs. Extrasynaptic GABA current amplitude peaked in adolescence in both cell types and was significantly greater in SGCs than in GCs only during adolescence. Although GC input resistance was higher than in SGCs during infancy and adolescence, input resistance decreased with developmental age in GCs, while it progressively increased in SGCs. Consequently, GCs' input resistance was significantly lower than SGCs in adults. The data delineate the structural features that can reliably distinguish GCs from SGCs through development. The results reveal developmental differences in passive membrane properties and steady-state inhibition between GCs and SGCs which could confound their use in classifying the cell types.
Collapse
Affiliation(s)
- Akshay Gupta
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.,Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Archana Proddutur
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.,Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Vidhatri Raturi
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jenieve Guevarra
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Yash Shah
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Fatima S Elgammal
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA. .,Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
10
|
Zhang X, Mariano CF, Ando Y, Shen K. Bioengineering tools for probing intracellular events in T lymphocytes. WIREs Mech Dis 2020; 13:e1510. [PMID: 33073545 DOI: 10.1002/wsbm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
T lymphocytes are the central coordinator and executor of many immune functions. The activation and function of T lymphocytes are mediated through the engagement of cell surface receptors and regulated by a myriad of intracellular signaling network. Bioengineering tools, including imaging modalities and fluorescent probes, have been developed and employed to elucidate the cellular events throughout the functional lifespan of T cells. A better understanding of these events can broaden our knowledge in the immune systems biology, as well as accelerate the development of effective diagnostics and immunotherapies. Here we review the commonly used and recently developed techniques and probes for monitoring T lymphocyte intracellular events, following the order of intracellular events in T cells from activation, signaling, metabolism to apoptosis. The techniques introduced here can be broadly applied to other immune cells and cell systems. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Immune System Diseases > Biomedical Engineering Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,USC Stem Cell, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Urakubo H, Yagishita S, Kasai H, Ishii S. Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity. PLoS Comput Biol 2020; 16:e1008078. [PMID: 32701987 PMCID: PMC7402527 DOI: 10.1371/journal.pcbi.1008078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 08/04/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Animals remember temporal links between their actions and subsequent rewards. We previously discovered a synaptic mechanism underlying such reward learning in D1 receptor (D1R)-expressing spiny projection neurons (D1 SPN) of the striatum. Dopamine (DA) bursts promote dendritic spine enlargement in a time window of only a few seconds after paired pre- and post-synaptic spiking (pre-post pairing), which is termed as reinforcement plasticity (RP). The previous study has also identified underlying signaling pathways; however, it still remains unclear how the signaling dynamics results in RP. In the present study, we first developed a computational model of signaling dynamics of D1 SPNs. The D1 RP model successfully reproduced experimentally observed protein kinase A (PKA) activity, including its critical time window. In this model, adenylate cyclase type 1 (AC1) in the spines/thin dendrites played a pivotal role as a coincidence detector against pre-post pairing and DA burst. In particular, pre-post pairing (Ca2+ signal) stimulated AC1 with a delay, and the Ca2+-stimulated AC1 was activated by the DA burst for the asymmetric time window. Moreover, the smallness of the spines/thin dendrites is crucial to the short time window for the PKA activity. We then developed a RP model for D2 SPNs, which also predicted the critical time window for RP that depended on the timing of pre-post pairing and phasic DA dip. AC1 worked for the coincidence detector in the D2 RP model as well. We further simulated the signaling pathway leading to Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation and clarified the role of the downstream molecules of AC1 as the integrators that turn transient input signals into persistent spine enlargement. Finally, we discuss how such timing windows guide animals' reward learning.
Collapse
Affiliation(s)
- Hidetoshi Urakubo
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail:
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Shin Ishii
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| |
Collapse
|
12
|
Kerloch T, Clavreul S, Goron A, Abrous DN, Pacary E. Dentate Granule Neurons Generated During Perinatal Life Display Distinct Morphological Features Compared With Later-Born Neurons in the Mouse Hippocampus. Cereb Cortex 2020; 29:3527-3539. [PMID: 30215686 DOI: 10.1093/cercor/bhy224] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
In nonhuman mammals and in particular in rodents, most granule neurons of the dentate gyrus (DG) are generated during development and yet little is known about their properties compared with adult-born neurons. Although it is generally admitted that these populations are morphologically indistinguishable once mature, a detailed analysis of developmentally born neurons is lacking. Here, we used in vivo electroporation to label dentate granule cells (DGCs) generated in mouse embryos (E14.5) or in neonates (P0) and followed their morphological development up to 6 months after birth. By comparison with mature retrovirus-labeled DGCs born at weaning (P21) or young adult (P84) stages, we provide the evidence that perinatally born neurons, especially embryonically born cells, are morphologically distinct from later-born neurons and are thus easily distinguishable. In addition, our data indicate that semilunar and hilar GCs, 2 populations in ectopic location, are generated during the embryonic and the neonatal periods, respectively. Thus, our findings provide new insights into the development of the different populations of GCs in the DG and open new questions regarding their function in the brain.
Collapse
Affiliation(s)
- Thomas Kerloch
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Solène Clavreul
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Adeline Goron
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Djoher Nora Abrous
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Emilie Pacary
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| |
Collapse
|
13
|
Nicholson L, Gervasi N, Falières T, Leroy A, Miremont D, Zala D, Hanus C. Whole-Cell Photobleaching Reveals Time-Dependent Compartmentalization of Soluble Proteins by the Axon Initial Segment. Front Cell Neurosci 2020; 14:180. [PMID: 32754013 PMCID: PMC7366827 DOI: 10.3389/fncel.2020.00180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/27/2020] [Indexed: 01/12/2023] Open
Abstract
By limiting protein exchange between the soma and the axon, the axon initial segment (AIS) enables the segregation of specific proteins and hence the differentiation of the somatodendritic compartment and the axonal compartment. Electron microscopy and super-resolution fluorescence imaging have provided important insights in the ultrastructure of the AIS. Yet, the full extent of its filtering properties is not fully delineated. In particular, it is unclear whether and how the AIS opposes the free exchange of soluble proteins. Here we describe a robust framework to combine whole-cell photobleaching and retrospective high-resolution imaging in developing neurons. With this assay, we found that cytoplasmic soluble proteins that are not excluded from the axon upon expression over tens of hours exhibit a strong mobility reduction at the AIS – i.e., are indeed compartmentalized – when monitored over tens of minutes. This form of compartmentalization is developmentally regulated, requires intact F-actin and may be correlated with the composition and ultrastructure of the submembranous spectrin cytoskeleton. Using computational modeling, we provide evidence that both neuronal morphology and the AIS regulate this compartmentalization but act on distinct time scales, with the AIS having a more pronounced effect on fast exchanges. Our results thus suggest that the rate of protein accumulation in the soma may impact to what extent and over which timescales freely moving molecules can be segregated from the axon. This in turn has important implications for our understanding of compartment-specific signaling in neurons.
Collapse
Affiliation(s)
- LaShae Nicholson
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Nicolas Gervasi
- Center for Interdisciplinary Research in Biology, College de France, Inserm U1050, CNRS UMR 7241, Labex Memolife, Paris, France
| | - Thibault Falières
- Institute for Psychiatry and Neurosciences of Paris, Inserm UMR 1266, University of Paris, 4 GHU PARIS Psychiatrie & Neurosciences, Paris, France
| | - Adrien Leroy
- Center for Interdisciplinary Research in Biology, College de France, Inserm U1050, CNRS UMR 7241, Labex Memolife, Paris, France
| | - Dorian Miremont
- Institute for Psychiatry and Neurosciences of Paris, Inserm UMR 1266, University of Paris, 4 GHU PARIS Psychiatrie & Neurosciences, Paris, France
| | - Diana Zala
- Institute for Psychiatry and Neurosciences of Paris, Inserm UMR 1266, University of Paris, 4 GHU PARIS Psychiatrie & Neurosciences, Paris, France
| | - Cyril Hanus
- Institute for Psychiatry and Neurosciences of Paris, Inserm UMR 1266, University of Paris, 4 GHU PARIS Psychiatrie & Neurosciences, Paris, France
| |
Collapse
|
14
|
Bers DM, Xiang YK, Zaccolo M. Whole-Cell cAMP and PKA Activity are Epiphenomena, Nanodomain Signaling Matters. Physiology (Bethesda) 2020; 34:240-249. [PMID: 31165682 DOI: 10.1152/physiol.00002.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Novel targeted fluorescent biosensors provide key insights into very local nanodomains of cAMP and PKA activity, and how they respond differently to β-adrenergic activation in cardiac myocytes. This unique spatiotemporal detail in living cells is not available with biochemical measurements of total cellular cAMP and PKA, and provides unique physiological insights.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California , Davis, California
| | - Yang K Xiang
- Department of Pharmacology, University of California , Davis, California
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford , United Kingdom
| |
Collapse
|
15
|
Muntean BS, Zucca S, MacMullen CM, Dao MT, Johnston C, Iwamoto H, Blakely RD, Davis RL, Martemyanov KA. Interrogating the Spatiotemporal Landscape of Neuromodulatory GPCR Signaling by Real-Time Imaging of cAMP in Intact Neurons and Circuits. Cell Rep 2019; 22:255-268. [PMID: 29298426 DOI: 10.1016/j.celrep.2017.12.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022] Open
Abstract
Modulation of neuronal circuits is key to information processing in the brain. The majority of neuromodulators exert their effects by activating G-protein-coupled receptors (GPCRs) that control the production of second messengers directly impacting cellular physiology. How numerous GPCRs integrate neuromodulatory inputs while accommodating diversity of incoming signals is poorly understood. In this study, we develop an in vivo tool and analytical suite for analyzing GPCR responses by monitoring the dynamics of a key second messenger, cyclic AMP (cAMP), with excellent quantitative and spatiotemporal resolution in various neurons. Using this imaging approach in combination with CRISPR/Cas9 editing and optogenetics, we interrogate neuromodulatory mechanisms of defined populations of neurons in an intact mesolimbic reward circuit and describe how individual inputs generate discrete second-messenger signatures in a cell- and receptor-specific fashion. This offers a resource for studying native neuronal GPCR signaling in real time.
Collapse
Affiliation(s)
- Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Stefano Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Courtney M MacMullen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Maria T Dao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Caitlin Johnston
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Hideki Iwamoto
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Randy D Blakely
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA.
| |
Collapse
|
16
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
17
|
Jose R, Santen L, Shaebani MR. Trapping in and Escape from Branched Structures of Neuronal Dendrites. Biophys J 2018; 115:2014-2025. [PMID: 30366628 DOI: 10.1016/j.bpj.2018.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022] Open
Abstract
We present a coarse-grained model for stochastic transport of noninteracting chemical signals inside neuronal dendrites and show how first-passage properties depend on the key structural factors affected by neurodegenerative disorders or aging: the extent of the tree, the topological bias induced by segmental decrease of dendrite diameter, and the trapping probabilities in biochemical cages and growth cones. We derive an exact expression for the distribution of first-passage times, which follows a universal exponential decay in the long-time limit. The asymptotic mean first-passage time exhibits a crossover from power-law to exponential scaling upon reducing the topological bias. We calibrate the coarse-grained model parameters and obtain the variation range of the mean first-passage time when the geometrical characteristics of the dendritic structure evolve during the course of aging or neurodegenerative disease progression (a few disorders for which clear trends for the pathological changes of dendritic structure have been reported in the literature are chosen and studied). We prove the validity of our analytical approach under realistic fluctuations of structural parameters by comparison to the results of Monte Carlo simulations. Moreover, by constructing local structural irregularities, we analyze the resulting influence on transport of chemical signals and formation of heterogeneous density patterns. Because neural functions rely on chemical signal transmission to a large extent, our results open the possibility of establishing a direct link between the disease progression and neural functions.
Collapse
Affiliation(s)
- Robin Jose
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Ludger Santen
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - M Reza Shaebani
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
18
|
Annamdevula NS, Sweat R, Griswold JR, Trinh K, Hoffman C, West S, Deal J, Britain AL, Jalink K, Rich TC, Leavesley SJ. Spectral imaging of FRET-based sensors reveals sustained cAMP gradients in three spatial dimensions. Cytometry A 2018; 93:1029-1038. [PMID: 30176184 DOI: 10.1002/cyto.a.23572] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022]
Abstract
Cyclic AMP is a ubiquitous second messenger that orchestrates a variety of cellular functions over different timescales. The mechanisms underlying specificity within this signaling pathway are still not well understood. Several lines of evidence suggest the existence of spatial cAMP gradients within cells, and that compartmentalization underlies specificity within the cAMP signaling pathway. However, to date, no studies have visualized cAMP gradients in three spatial dimensions (3D: x, y, z).This is in part due to the limitations of FRET-based cAMP sensors, specifically the low signal-to-noise ratio intrinsic to all intracellular FRET probes. Here, we overcome this limitation, at least in part, by implementing spectral imaging approaches to estimate FRET efficiency when multiple fluorescent labels are used and when signals are measured from weakly expressed fluorescent proteins in the presence of background autofluorescence and stray light. Analysis of spectral image stacks in two spatial dimensions (2D) from single confocal slices indicates little or no cAMP gradients formed within pulmonary microvascular endothelial cells (PMVECs) under baseline conditions or following 10 min treatment with the adenylyl cyclase activator forskolin. However, analysis of spectral image stacks in 3D demonstrates marked cAMP gradients from the apical to basolateral face of PMVECs. Results demonstrate that spectral imaging approaches can be used to assess cAMP gradients-and in general gradients in fluorescence and FRET-within intact cells. Results also demonstrate that 2D imaging studies of localized fluorescence signals and, in particular, cAMP signals, whether using epifluorescence or confocal microscopy, may lead to erroneous conclusions about the existence and/or magnitude of gradients in either FRET or the underlying cAMP signals. Thus, with the exception of cellular structures that can be considered in one spatial dimension, such as neuronal processes, 3D measurements are required to assess mechanisms underlying compartmentalization and specificity within intracellular signaling pathways.
Collapse
Affiliation(s)
- Naga S Annamdevula
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Rachel Sweat
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - John R Griswold
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - Kenny Trinh
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - Chase Hoffman
- Medical Sciences, University of South Alabama, Mobile, Alabama
| | - Savannah West
- Department of Biomedical Sciences, University of South Alabama, Mobile, Alabama
| | - Joshua Deal
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Andrea L Britain
- Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Kees Jalink
- The Netherlands Cancer Institute and van Leeuwenhoek Center for Advanced Microscopy, Amsterdam, the Netherlands
| | - Thomas C Rich
- Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama.,College of Engineering, University of South Alabama, Mobile, Alabama
| | - Silas J Leavesley
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
19
|
Watier H. Rituximab mechanisms of action in B-CLL: a new piece of the puzzle. Oncotarget 2018; 9:32732-32733. [PMID: 30214679 PMCID: PMC6132346 DOI: 10.18632/oncotarget.26016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Hervé Watier
- Hervé Watier: Université de Tours, Tours, France
| |
Collapse
|
20
|
Phosphodiesterase Diversity and Signal Processing Within cAMP Signaling Networks. ADVANCES IN NEUROBIOLOGY 2018; 17:3-14. [PMID: 28956327 DOI: 10.1007/978-3-319-58811-7_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A large number of neuromodulators activate G-protein coupled receptors (GPCRs) and mediate their cellular actions via the regulation of intracellular cAMP, the small highly diffusible second messenger. In fact, in the same neuron several different GPCRs can regulate cAMP with seemingly identical timecourses that give rise to distinct signaling outcomes, suggesting that cAMP does not have equivalent access to all its downstream effectors and may exist within defined intracellular pools or domains. cAMP compartmentalization is the process that allows the neuron to differentially interpret these various intracellular cAMP signals into cellular response. The molecular mechanisms that give rise to cAMP compartmentalization are not fully understood, but it is thought that phosphodiesterases (PDEs), the enzymes that degrade cAMP, significantly contribute to this process. PDEs, as the sole mechanism of signal termination for cAMP, hold great promise as therapeutic targets for pathologies that are due to the dysregulation of intracellular cAMP signaling. Due to their diverse catalytic activity, regulation and localization each PDE subtype expressed in a given neuron may have a distinct role on downstream signaling.
Collapse
|
21
|
Yapo C, Nair AG, Hellgren Kotaleski J, Vincent P, Castro LRV. Switch-like PKA responses in the nucleus of striatal neurons. J Cell Sci 2018; 131:jcs.216556. [DOI: 10.1242/jcs.216556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
Although it is known that Protein Kinase A (PKA) in the nucleus regulates gene expression, the specificities of nuclear PKA signaling remain poorly understood. Here, we combined computational modeling and live-cell imaging of PKA-dependent phosphorylation in mouse brain slices to investigate how transient dopamine signals are translated into nuclear PKA activity in cortical pyramidal neurons and striatal medium spiny neurons. We observed that the nuclear PKA signal in striatal neurons featured an ultrasensitive responsiveness, associated with fast, all or none responses, which is not consistent with the commonly accepted theory of a slow and passive diffusion of catalytic PKA in the nucleus. Our numerical model suggests that a positive feed-forward mechanism inhibiting nuclear phosphatase activity - possibly mediated by DARPP-32 - could be responsible for this non-linear pattern of nuclear PKA response, allowing for a better detection of the transient dopamine signals that are often associated with reward-mediated learning.
Collapse
Affiliation(s)
- Cédric Yapo
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| | - Anu G. Nair
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Department of Neuroscience, Karolinska Institutet, Solna, 17177, Sweden
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| | - Liliana R. V. Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| |
Collapse
|
22
|
Yapo C, Nair AG, Clement L, Castro LR, Hellgren Kotaleski J, Vincent P. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons. J Physiol 2017; 595:7451-7475. [PMID: 28782235 PMCID: PMC5730852 DOI: 10.1113/jp274475] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. ABSTRACT The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D1 or D2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D2 than on D1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine. Overall, our results show that D2 MSNs may sense much more complex patterns of dopamine than previously thought.
Collapse
Affiliation(s)
- Cedric Yapo
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| | - Anu G. Nair
- Science for Life Laboratory, School of Computer Science and CommunicationKTH Royal Institute of Technology10044StockholmSweden
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangalore560065KarnatakaIndia
- Manipal UniversityManipal576104KarnatakaIndia
| | - Lorna Clement
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
| | - Liliana R. Castro
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and CommunicationKTH Royal Institute of Technology10044StockholmSweden
- Department of NeuroscienceKarolinska Institutet17177SolnaSweden
| | - Pierre Vincent
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| |
Collapse
|
23
|
Neuronal Glutamate Transporters Control Dopaminergic Signaling and Compulsive Behaviors. J Neurosci 2017; 38:937-961. [PMID: 29229708 DOI: 10.1523/jneurosci.1906-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/24/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
There is an ongoing debate on the contribution of the neuronal glutamate transporter EAAC1 to the onset of compulsive behaviors. Here, we used behavioral, electrophysiological, molecular, and viral approaches in male and female mice to identify the molecular and cellular mechanisms by which EAAC1 controls the execution of repeated motor behaviors. Our findings show that, in the striatum, a brain region implicated with movement execution, EAAC1 limits group I metabotropic glutamate receptor (mGluRI) activation, facilitates D1 dopamine receptor (D1R) expression, and ensures long-term synaptic plasticity. Blocking mGluRI in slices from mice lacking EAAC1 restores D1R expression and synaptic plasticity. Conversely, activation of intracellular signaling pathways coupled to mGluRI in D1R-containing striatal neurons of mice expressing EAAC1 leads to reduced D1R protein level and increased stereotyped movement execution. These findings identify new molecular mechanisms by which EAAC1 can shape glutamatergic and dopaminergic signals and control repeated movement execution.SIGNIFICANCE STATEMENT Genetic studies implicate Slc1a1, a gene encoding the neuronal glutamate transporter EAAC1, with obsessive-compulsive disorder (OCD). EAAC1 is abundantly expressed in the striatum, a brain region that is hyperactive in OCD. What remains unknown is how EAAC1 shapes synaptic function in the striatum. Our findings show that EAAC1 limits activation of metabotropic glutamate receptors (mGluRIs) in the striatum and, by doing so, promotes D1 dopamine receptor (D1R) expression. Targeted activation of signaling cascades coupled to mGluRIs in mice expressing EAAC1 reduces D1R expression and triggers repeated motor behaviors. These findings provide new information on the molecular basis of OCD and suggest new avenues for its treatment.
Collapse
|
24
|
Maiellaro I, Lohse MJ, Kittel RJ, Calebiro D. cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons. Cell Rep 2017; 17:1238-1246. [PMID: 27783939 PMCID: PMC5098120 DOI: 10.1016/j.celrep.2016.09.090] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/29/2016] [Accepted: 09/27/2016] [Indexed: 11/03/2022] Open
Abstract
The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons. Boutons, axon, and cell body are independent cAMP signaling compartments Receptors and PDEs are responsible for the compartmentalization of cAMP cAMP does not propagate from the bouton to the cell body Local cAMP increases provides a basis for site-specific control of synaptic plasticity
Collapse
Affiliation(s)
- Isabella Maiellaro
- Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany.
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| |
Collapse
|
25
|
FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nat Commun 2017; 8:15031. [PMID: 28425435 PMCID: PMC5411486 DOI: 10.1038/ncomms15031] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 02/21/2017] [Indexed: 12/18/2022] Open
Abstract
Compartmentalized cAMP/PKA signalling is now recognized as important for physiology and pathophysiology, yet a detailed understanding of the properties, regulation and function of local cAMP/PKA signals is lacking. Here we present a fluorescence resonance energy transfer (FRET)-based sensor, CUTie, which detects compartmentalized cAMP with unprecedented accuracy. CUTie, targeted to specific multiprotein complexes at discrete plasmalemmal, sarcoplasmic reticular and myofilament sites, reveals differential kinetics and amplitudes of localized cAMP signals. This nanoscopic heterogeneity of cAMP signals is necessary to optimize cardiac contractility upon adrenergic activation. At low adrenergic levels, and those mimicking heart failure, differential local cAMP responses are exacerbated, with near abolition of cAMP signalling at certain locations. This work provides tools and fundamental mechanistic insights into subcellular adrenergic signalling in normal and pathological cardiac function.
Collapse
|
26
|
Castro L, Yapo C, Vincent P. [Physiopathology of cAMP/PKA signaling in neurons]. Biol Aujourdhui 2017; 210:191-203. [PMID: 28327278 DOI: 10.1051/jbio/2017005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/15/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases.
Collapse
|
27
|
Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc Natl Acad Sci U S A 2017; 114:2586-2591. [PMID: 28223513 DOI: 10.1073/pnas.1615557114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The use of single-cell assays has emerged as a cutting-edge technique during the past decade. Although single-cell mass spectrometry (MS) has recently achieved remarkable results, deep biological insights have not yet been obtained, probably because of various technical issues, including the unavoidable use of matrices, the inability to maintain cell viability, low throughput because of sample pretreatment, and the lack of recordings of cell physiological activities from the same cell. In this study, we describe a patch clamp/MS-based platform that enables the sensitive, rapid, and in situ chemical profiling of single living neurons. This approach integrates modified patch clamp technique and modified MS measurements to directly collect and detect nanoliter-scale samples from the cytoplasm of single neurons in mice brain slices. Abundant possible cytoplasmic constituents were detected in a single neuron at a relatively fast rate, and over 50 metabolites were identified in this study. The advantages of direct, rapid, and in situ sampling and analysis enabled us to measure the biological activities of the cytoplasmic constituents in a single neuron, including comparing neuron types by cytoplasmic chemical constituents; observing changes in constituent concentrations as the physiological conditions, such as age, vary; and identifying the metabolic pathways of small molecules.
Collapse
|
28
|
Gorshkov K, Mehta S, Ramamurthy S, Ronnett GV, Zhou FQ, Zhang J. AKAP-mediated feedback control of cAMP gradients in developing hippocampal neurons. Nat Chem Biol 2017; 13:425-431. [PMID: 28192412 PMCID: PMC5362298 DOI: 10.1038/nchembio.2298] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 01/06/2023]
Abstract
Cyclic AMP (cAMP) and protein kinase A (PKA), classical examples of spatially compartmentalized signaling molecules, are critical axon determinants that regulate neuronal polarity and axon formation, yet little is known about micro-compartmentalization of cAMP and PKA signaling and its role in developing neurons. Here, we revealed that cAMP forms a gradient in developing hippocampal neurons, with higher cAMP levels in more distal regions of the axon compared to other regions of the cell. Interestingly, this cAMP gradient changed according to the developmental stage and depended on proper anchoring of PKA by A-kinase anchoring proteins (AKAPs). Disrupting PKA anchoring to AKAPs increased the cAMP gradient in early-stage neurons and led to enhanced axon elongation. Our results provide new evidence for a local negative feedback loop, assembled by AKAPs, for the precise control of a growth-stage-dependent cAMP gradient to ensure proper axon growth.
Collapse
Affiliation(s)
- Kirill Gorshkov
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Santosh Ramamurthy
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabriele V Ronnett
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Neurology and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Feng-Quan Zhou
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
29
|
Rich TC, Annamdevula N, Trinh K, Britain AL, Mayes SA, Griswold JR, Deal J, Hoffman C, West S, Leavesley SJ. 5D imaging approaches reveal the formation of distinct intracellular cAMP spatial gradients. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10070:100700R. [PMID: 34054188 PMCID: PMC8157067 DOI: 10.1117/12.2253164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger known to differentially regulate many cellular functions. Several lines of evidence suggest that the distribution of cAMP within cells is not uniform. However, to date, no studies have measured the kinetics of 3D cAMP distributions within cells. This is largely due to the low signal-to-noise ratio of FRET-based probes. We previously reported that hyperspectral imaging improves the signal-to-noise ratio of FRET measurements. Here we utilized hyperspectral imaging approaches to measure FRET signals in five dimensions (5D) - three spatial (x, y, z), wavelength (λ), and time (t) - allowing us to visualize cAMP gradients in pulmonary endothelial cells. cAMP levels were measured using a FRET-based sensor (H188) comprised of a cAMP binding domain sandwiched between FRET donor and acceptor - Turquoise and Venus fluorescent proteins. We observed cAMP gradients in response to 0.1 or 1 μM isoproterenol, 0.1 or 1 μM PGE1, or 50 μM forskolin. Forskolin- and isoproterenol-induced cAMP gradients formed from the apical (high cAMP) to basolateral (low cAMP) face of cells. In contrast, PGE1-induced cAMP gradients originated from both the basolateral and apical faces of cells. Data suggest that 2D (x,y) studies of cAMP compartmentalization may lead to erroneous conclusions about the existence of cAMP gradients, and that 3D (x,y,z) studies are required to assess mechanisms of signaling specificity. Results demonstrate that 5D imaging technologies are powerful tools for measuring biochemical processes in discrete subcellular domains. This work was supported by NIH P01HL066299, R01HL058506, S10RR027535, AHA 16PRE27130004 and the Abraham Mitchell Cancer Research Fund.
Collapse
Affiliation(s)
- Thomas C Rich
- Pharmacology, University of South Alabama, AL 36688
- Center for Lung Biology, University of South Alabama, AL 36688
- Basic Medical Sciences Graduate Program, University of South Alabama, AL 36688
| | - Naga Annamdevula
- Center for Lung Biology, University of South Alabama, AL 36688
- Basic Medical Sciences Graduate Program, University of South Alabama, AL 36688
| | - Kenny Trinh
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688
| | - Andrea L Britain
- Pharmacology, University of South Alabama, AL 36688
- Center for Lung Biology, University of South Alabama, AL 36688
| | - Samuel A Mayes
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688
| | - John R Griswold
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688
| | - Joshua Deal
- Center for Lung Biology, University of South Alabama, AL 36688
- Basic Medical Sciences Graduate Program, University of South Alabama, AL 36688
| | | | - Savannah West
- Biomedical Sciences, University of South Alabama, AL 36688
| | - Silas J Leavesley
- Pharmacology, University of South Alabama, AL 36688
- Center for Lung Biology, University of South Alabama, AL 36688
- Basic Medical Sciences Graduate Program, University of South Alabama, AL 36688
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688
| |
Collapse
|
30
|
Nishi A, Matamales M, Musante V, Valjent E, Kuroiwa M, Kitahara Y, Rebholz H, Greengard P, Girault JA, Nairn AC. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution. J Biol Chem 2016; 292:1462-1476. [PMID: 27998980 DOI: 10.1074/jbc.m116.752402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/06/2016] [Indexed: 01/17/2023] Open
Abstract
The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca2+-regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels.
Collapse
Affiliation(s)
- Akinori Nishi
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan,
| | - Miriam Matamales
- Institut du Fer à Moulin, INSERM, UPMC UMR-S839, 75005 Paris, France
| | - Veronica Musante
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, Inserm U1191, UMR 5203 CNRS, Montpellier University, 34094 Montpellier, France, and
| | - Mahomi Kuroiwa
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yosuke Kitahara
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Heike Rebholz
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065
| | | | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| |
Collapse
|
31
|
Luczak V, Blackwell KT, Abel T, Girault JA, Gervasi N. Dendritic diameter influences the rate and magnitude of hippocampal cAMP and PKA transients during β-adrenergic receptor activation. Neurobiol Learn Mem 2016; 138:10-20. [PMID: 27523748 DOI: 10.1016/j.nlm.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/15/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Abstract
In the hippocampus, cyclic-adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) form a critical signaling cascade required for long-lasting synaptic plasticity, learning and memory. Plasticity and memory are known to occur following pathway-specific changes in synaptic strength that are thought to result from spatially and temporally coordinated intracellular signaling events. To better understand how cAMP and PKA dynamically operate within the structural complexity of hippocampal neurons, we used live two-photon imaging and genetically-encoded fluorescent biosensors to monitor cAMP levels or PKA activity in CA1 neurons of acute hippocampal slices. Stimulation of β-adrenergic receptors (isoproterenol) or combined activation of adenylyl cyclase (forskolin) and inhibition of phosphodiesterase (IBMX) produced cAMP transients with greater amplitude and rapid on-rates in intermediate and distal dendrites compared to somata and proximal dendrites. In contrast, isoproterenol produced greater PKA activity in somata and proximal dendrites compared to intermediate and distal dendrites, and the on-rate of PKA activity did not differ between compartments. Computational models show that our observed compartmental difference in cAMP can be reproduced by a uniform distribution of PDE4 and a variable density of adenylyl cyclase that scales with compartment size to compensate for changes in surface to volume ratios. However, reproducing our observed compartmental difference in PKA activity required enrichment of protein phosphatase in small compartments; neither reduced PKA subunits nor increased PKA substrates were sufficient. Together, our imaging and computational results show that compartment diameter interacts with rate-limiting components like adenylyl cyclase, phosphodiesterase and protein phosphatase to shape the spatial and temporal components of cAMP and PKA signaling in CA1 neurons and suggests that small neuronal compartments are most sensitive to cAMP signals whereas large neuronal compartments accommodate a greater dynamic range in PKA activity.
Collapse
Affiliation(s)
- Vincent Luczak
- University of Pennsylvania, Department of Biology, 10-133 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
| | - Kim T Blackwell
- George Mason University, The Krasnow Institute for Advanced Studies, MS 2A1, Rockfish Creek Lane, Fairfax, VA 22030, USA
| | - Ted Abel
- University of Pennsylvania, Department of Biology, 10-133 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA.
| | - Jean-Antoine Girault
- INSERM, UMR-S 839, 75005 Paris, France; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités, 75005 Paris, France; Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005 Paris, France
| | - Nicolas Gervasi
- INSERM, UMR-S 839, 75005 Paris, France; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités, 75005 Paris, France; Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005 Paris, France.
| |
Collapse
|
32
|
Abstract
The most striking structure in the nervous system is the complex yet stereotyped morphology of the neuronal dendritic tree. Dendritic morphologies and the connections they make govern information flow and integration in the brain. The fundamental mechanisms that regulate dendritic outgrowth and branching are subjects of extensive study. In this review, we summarize recent advances in the molecular and cellular mechanisms for routing dendrites in layers and columns, prevalent organizational structures in the brain. We highlight how dendritic patterning influences the formation of synaptic circuits.
Collapse
Affiliation(s)
- Jiangnan Luo
- a Section on Neuronal Connectivity, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| | - Philip G McQueen
- b Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology , National Institutes of Health , Bethesda , MD , USA
| | - Bo Shi
- a Section on Neuronal Connectivity, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA ;,c Biological Sciences Graduate Program, College of Computer, Mathematical, and Natural Sciences , University of Maryland , College Park , MD , USA
| | - Chi-Hon Lee
- a Section on Neuronal Connectivity, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| | - Chun-Yuan Ting
- a Section on Neuronal Connectivity, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| |
Collapse
|
33
|
Rich TC, Annamdevula N, Britain AL, Mayes S, Favreau PF, Leavelsey SJ. Three dimensional measurement of cAMP gradients using hyperspectral confocal microscopy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9713:97130O. [PMID: 34045789 PMCID: PMC8152120 DOI: 10.1117/12.2213273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger known to differentially regulate many cellular functions over a wide range of timescales. Several lines of evidence have suggested that the distribution of cAMP within cells is not uniform, and that cAMP compartmentalization is largely responsible for signaling specificity within the cAMP signaling pathway. However, to date, no studies have experimentally measured three dimensional (3D) cAMP distributions within cells. Here we use both 2D and 3D hyperspectral microscopy to visualize cAMP gradients in endothelial cells from the pulmonary microvasculature (PMVECs). cAMP levels were measured using a FRET-based cAMP sensor comprised of a cAMP binding domain from EPAC sandwiched between FRET donors and acceptors - Turquoise and Venus fluorescent proteins. Data were acquired using either a Nikon A1R spectral confocal microscope or custom spectral microscopy system. Analysis of hyperspectral image stacks from a single confocal slice or from summed images of all slices (2D analysis) indicated little or no cAMP gradients were formed within PMVECs under basal conditions or following agonist treatment. However, analysis of hyperspectral image stacks from 3D cellular geometries (z stacks) demonstrate marked cAMP gradients from the apical to basolateral membrane of PMVECs. These results strongly suggest that 2D imaging studies of cAMP compartmentalization - whether epifluorescence or confocal microscopy - may lead to erroneous conclusions about the existence of cAMP gradients, and that 3D studies are required to assess mechanisms of signaling specificity.
Collapse
Affiliation(s)
- Thomas C Rich
- Pharmacology, University of South Alabama, AL 36688
- Center for Lung Biology, University of South Alabama, AL 36688
| | | | - Andrea L Britain
- Pharmacology, University of South Alabama, AL 36688
- Center for Lung Biology, University of South Alabama, AL 36688
| | - Samuel Mayes
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688
| | - Peter F Favreau
- Pharmacology, University of South Alabama, AL 36688
- Center for Lung Biology, University of South Alabama, AL 36688
| | - Silas J Leavelsey
- Pharmacology, University of South Alabama, AL 36688
- Center for Lung Biology, University of South Alabama, AL 36688
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688
| |
Collapse
|
34
|
Patel N, Gold MG. The genetically encoded tool set for investigating cAMP: more than the sum of its parts. Front Pharmacol 2015; 6:164. [PMID: 26300778 PMCID: PMC4526808 DOI: 10.3389/fphar.2015.00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/24/2015] [Indexed: 11/13/2022] Open
Abstract
Intracellular fluctuations of the second messenger cyclic AMP (cAMP) are regulated with spatial and temporal precision. This regulation is supported by the sophisticated arrangement of cyclases, phosphodiesterases, anchoring proteins, and receptors for cAMP. Discovery of these nuances to cAMP signaling has been facilitated by the development of genetically encodable tools for monitoring and manipulating cAMP and the proteins that support cAMP signaling. In this review, we discuss the state-of-the-art in development of different genetically encoded tools for sensing cAMP and the activity of its primary intracellular receptor protein kinase A (PKA). We introduce sequences for encoding adenylyl cyclases that enable cAMP levels to be artificially elevated within cells. We chart the evolution of sequences for selectively modifying protein-protein interactions that support cAMP signaling, and for driving cAMP sensors and manipulators to different subcellular locations. Importantly, these different genetically encoded tools can be applied synergistically, and we highlight notable instances that take advantage of this property. Finally, we consider prospects for extending the utility of the tool set to support further insights into the role of cAMP in health and disease.
Collapse
Affiliation(s)
- Neha Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| |
Collapse
|