1
|
Neto JC, Lucantoni F, González LV, Falomir E, Miravet JF, Galindo F. Introducing TAPY as a Versatile Alternative to TPP for Selective Mitochondrial Targeting in Cancer Cells. Bioconjug Chem 2025; 36:697-706. [PMID: 40162705 DOI: 10.1021/acs.bioconjchem.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The understanding of diseases such as cancer and Alzheimer's, along with natural aging processes, heavily relies on the study of mitochondrial function. Optical techniques like fluorescence imaging microscopy are pivotal for this purpose, enabling precise mapping of subcellular structures, including mitochondria. In this study, we explored TAPY (triarylpyridinium) cations, a novel family of mitochondrial carriers resembling the well-known triphenylphosphonium cation (TPP). Six TAPY-bodipy (BDP) dyads were prepared and chemically characterized. Confocal Laser Scanning Microscopy (CLSM) studies demonstrated that the systems were delivered selectively to the mitochondria of cancer cells (MCF-7, A549, HT-29). Remarkably, these dyads did not target the mitochondria of normal cells (HEK-293, HMEC-1), suggesting their potential use in distinguishing cancerous cells from healthy ones. A model compound comprised of the same bodipy cargo but attached to TPP was also synthesized and tested. Notably, in preliminary comparative assays with MCF-7 cells, the dyad TAPY(OMe)-BDP outperformed the TPP derivative in mitochondrial imaging, achieving twice the final fluorescence intensity. The potential chemical diversity achievable with TAPY cations is considerable, with many derivatives being accessible starting from readily available commercial products. This implies that, based on the strategy outlined in this study, carefully optimized TAPY derivatives for targeted mitochondrial delivery could potentially be developed in the future as alternatives or complements to TPP, with the present work acting as a proof of concept.
Collapse
Affiliation(s)
- Jean C Neto
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Federico Lucantoni
- Laboratory of Cellular Stress and Cell Death Pathways, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Leydy V González
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Eva Falomir
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Juan F Miravet
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Francisco Galindo
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|
2
|
Ijaz M, Hasan I, Aslam B, Yan Y, Zeng W, Gu J, Jin J, Zhang Y, Wang S, Xing L, Guo B. Diagnostics of brain tumor in the early stage: current status and future perspectives. Biomater Sci 2025. [PMID: 40200902 DOI: 10.1039/d4bm01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Early diagnosis of brain tumors is challenging due to their complexity and delicate structure. Conventional imaging techniques like MRI, CT, and PET are unable to provide detailed visualization of early-stage brain tumors. Early-stage detection of brain tumors is vital for enhancing patient outcomes and survival rates. So far, several scientists have dedicated their efforts to innovating advanced diagnostic probes to efficiently cross the BBB and selectively target brain tumors for optimal imaging. The integration of these techniques presents a viable pathway for non-invasive, accurate, and early-stage tumor identification. Herein, we provide a timely update on the various imaging probes and potential challenges for the diagnosis of early-stage brain tumors. Furthermore, this review highlights the significance of integrating advanced imaging probes for improving the early detection of brain tumors, ultimately enhancing treatment outcomes. Hopefully, this review will stimulate the interest of researchers to accelerate the development of new imaging probes and even their clinical translation for improving the early diagnosis of brain tumors.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bilal Aslam
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yuqian Yan
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Wenjun Zeng
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jian Jin
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Shaohua Wang
- Diagnostic Center of Infectious Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Lu Xing
- Department of Sleep Medicine, Shenzhen Kangning Hospital, No. 1080 Cuizhu Road, Guangdong 518020, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| |
Collapse
|
3
|
Zhang Y, Zhang W, Qiu Y, Cui K, Li X, Hao W, Luo A, Xiao Z. Molecular Engineering of a SICTERS Small Molecule with Superior In Vivo Raman Imaging and Photothermal Performance. J Am Chem Soc 2025; 147:10247-10259. [PMID: 40073295 DOI: 10.1021/jacs.4c16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Raman-based theranostics has demonstrated great potential for sensitive real-time imaging and treatment. However, these advanced materials, primarily depending on the SERS technique, encounter clinical concerns regarding substrate biosafety. Herein, we molecularly engineered a de novo substrate-free SICTERS small molecule, namely BTT-TPA (bis-thienyl-substituted benzotriazole selenadiazole derivative structures), possessing both ultrasensitive Raman signals and excellent photothermal effects based on self-stacking. The mechanistic studies confirm that BTT maintains the planar structure with polycyclic distorted vibrations required for SICTERS. TPA enhances the donor-acceptor interaction, yielding a Raman sensitivity of BTT higher than previously reported SICTERS molecules; it also acts as a molecular rotor, increasing the photothermal conversion efficiency to 67.44%, which is superior to most of the existing SERS-based photothermal materials. In the tumor model of mouse orthotopic colon cancer, BTT-TPA NPs demonstrate a great Raman imaging-guided photothermal therapy effect in eliminating primary and metastatic tumors, remarkably decreasing the recurrence rate. This work puts forward substrate-free SICTERS small molecules toward Raman-based theranostic applications in vivo.
Collapse
Affiliation(s)
- Yongming Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenxian Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Qiu
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyi Li
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Hao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aoxiang Luo
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Chang H, Hur W, Kang H, Jun BH. In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications. LIGHT, SCIENCE & APPLICATIONS 2025; 14:79. [PMID: 39934124 DOI: 10.1038/s41377-024-01718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 02/13/2025]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a powerful tool in various biomedical applications, including in vivo imaging, diagnostics, and therapy, largely due to the development of near-infrared (NIR) active SERS substrates. This review provides a comprehensive overview of SERS-based applications in vivo, focusing on key aspects such as the design considerations for SERS nanoprobes and advancements in instrumentation. Topics covered include the development of NIR SERS substrates, Raman label compounds (RLCs), protective coatings, and the conjugation of bioligands for targeted imaging and therapy. The review also discusses microscope-based configurations such as scanning, widefield imaging, and fiber-optic setups. Recent advances in using SERS nanoprobes for in vivo sensing, diagnostics, biomolecule screening, multiplex imaging, intraoperative guidance, and multifunctional cancer therapy are highlighted. The review concludes by addressing challenges in the clinical translation of SERS nanoprobes and outlines future directions, emphasizing opportunities for advancing biomedical research and clinical applications.
Collapse
Affiliation(s)
- Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, 24341, South Korea
| | - Won Hur
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
5
|
Hoyt KW, Block AC, Tung J, Goodman MS, Lednev IK, Heo J. Quick Freezing-Induced Au Nanoparticle Aggregates (QFIAAs) for Near-IR (NIR) Surface-Enhanced Raman Scattering (SERS) Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2300-2311. [PMID: 39818808 DOI: 10.1021/acs.langmuir.4c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Here, we report a simple method to prepare near-IR (NIR) surface-enhanced Raman scattering (SERS) substrates by quickly freezing a citrate-capped Au nanoparticle (AuNP) solution in liquid nitrogen, followed by thawing it at room temperature. This process aggregates AuNPs in a controlled manner by forming ice crystals with smaller grain sizes when compared to a slow freezing process. The resulting smaller AuNP aggregates remain suspended in solution long enough to conduct high-throughput chemical analysis in a microwell plate using the NIR SERS spectroscopy. We named these aggregates quick freezing-induced AuNP aggregates (QFIAAs). The aggregation state of QFIAAs in solution is stable for at least three months when stored at 4 °C. Several QFIAAs were prepared using monodisperse citrate-capped AuNPs of various sizes. QFIAAs prepared from AuNPs with an average diameter of 70 nm (70 nm QFIAAs) showed the best performance, considering both NIR SERS activity and the repeatability of the results. The NIR SERS enhancement factor of the 70 nm QFIAAs measured using 57 nM Rhodamine 6G (R6G) was 5 × 104. The R6G molecules could not displace the citrates present in the hotspots of QFIAAs, indicating that the long-term stability of QFIAAs originates from the tight interparticle binding through the citrates. The limit of detection (LOD) of R6G was 2 × 101 nM using the 70 nm QFIAAs. We anticipate that the QFIAA system can be used not only to screen reporter molecules for the NIR SERS bioimaging but also to detect analytes with background fluorescence that can be suppressed with NIR excitation wavelengths.
Collapse
Affiliation(s)
- Kristopher W Hoyt
- Department of Chemistry, SUNY Buffalo State University, 1300 Elmwood Ave., Buffalo, New York 14222, United States
| | - Ashleigh C Block
- Department of Chemistry, SUNY Buffalo State University, 1300 Elmwood Ave., Buffalo, New York 14222, United States
| | - Jillian Tung
- Department of Chemistry, SUNY Buffalo State University, 1300 Elmwood Ave., Buffalo, New York 14222, United States
| | - M Scott Goodman
- Department of Chemistry, SUNY Buffalo State University, 1300 Elmwood Ave., Buffalo, New York 14222, United States
| | - Igor K Lednev
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, New York 12222, United States
| | - Jinseok Heo
- Department of Chemistry, SUNY Buffalo State University, 1300 Elmwood Ave., Buffalo, New York 14222, United States
| |
Collapse
|
6
|
Song L, Li J. Ultrasensitive NIR-II Surface-Enhanced Resonance Raman Scattering Nanoprobes with Nonlinear Photothermal Effect for Optimized Phototheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407787. [PMID: 39610185 DOI: 10.1002/smll.202407787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/09/2024] [Indexed: 11/30/2024]
Abstract
Surface-enhanced resonance Raman scattering (SERRS) in the second near-infrared (NIR-II) window has great potential for improved phototheranostics, but lacks nonfluorescent, resonant and high-affinity Raman dyes. Herein, it is designed and synthesize a multi-sulfur Raman reporter, NF1064, whose maximum absorption of 1064 nm rigidly resonates with NIR-II excitation laser while possessing absolutely nonfluorescent backgrounds. Ultrafast spectroscopy suggests that the fluorescence quenching mechanism of NF1064 originates from twisted intramolecular charge transfer (TICT) in the excited state. Gold nanorods (AuNRs) decorated with such nonfluorescent NF1064 (AuNR@NF1064) show remarkable SERRS performances, including zero-fluorescence background, femtomolar-level sensitivity as well as superb photostability without fluorescence photobleaching. More importantly, AuNR@NF1064 exhibits a nonlinear photothermal effect upon plasmonic fields of AuNRs by amplifying the non-radiative decay of nonfluorescent NF1064, thus achieving a high photothermal conversion of 68.5% in NIR-II window with potential for further augmentation. With remarkable SERRS and photothermal properties, the NIR-II nanoprobes allow for high-precision intraoperative guided tumor resection within 8 min, and high-efficient hyperthermia combating of drug-resistant bacterial infection within living mouse body. This work not only unlocks the potential of nonfluorescent resonant dyes for NIR-II Raman imaging, but also opens up a new method for boosting photothermal conversion efficiency of nanomaterials.
Collapse
Affiliation(s)
- Laicui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jin Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| |
Collapse
|
7
|
Qi C, Shen L, Li J, Sun X, Song L, Chen J, Wu Y, Choo J, Chen L. Nonfluorescent Near-Infrared Surface-Enhanced Resonance Raman Nanoprobes with Ultrahigh Brightness and Synergistic Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67333-67343. [PMID: 39601767 DOI: 10.1021/acsami.4c15017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Near-infrared (NIR) surface-enhanced resonance Raman (SERRS) nanoprobes have found wide applications in biomedicine; however, almost all of these nanoprobes are fluorescent because the resonant Raman dyes used cannot be fully quenched onto the underlying plasmonic nanoparticles. Therefore, suppressing the fluorescence backgrounds in resonant Raman spectroscopy imaging is extremely important. In this work, we use a black hole quencher, IQ1, as a Raman dye to develop absolutely nonfluorescent NIR resonant SERRS NPs. Ultrafast spectroscopy clarifies that the nonfluorescent mechanism of the dyes is attributed to the ultrafast internal conversion at the subpicosecond scale, which quenches the fluorescence of excited states. The resultant nanoprobes exhibit zero fluorescent background, femtomolar-level sensitivity (100 fM) as well as superb photostability (τ = 10006 s) without fluorescence photobleaching, outperforming that of fluorescent counterparts. More importantly, the SERRS NPs show a synergistic photothermal effect originating from the dye molecule-plasmon interactions, achieving a high photothermal conversion efficiency of 64.94%. Featuring these excellent properties, these SERRS NPs allow for longitudinally photostable cellular imaging and enhanced photothermal elimination of cancer cells. To the best of our knowledge, this is the first example of absolutely nonfluorescent NIR SERRS NPs, opening up promising applications for improved phototheranostics.
Collapse
Affiliation(s)
- Caixia Qi
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, 264005 Yantai, China
| | - Lin Shen
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, 264005 Yantai, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Jin Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Xun Sun
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, 264005 Yantai, China
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, 06974 Seoul, South Korea
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
- Department of Chemistry, Chung-Ang University, 06974 Seoul, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, 06974 Seoul, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
8
|
Deng B, Zhang Y, Qiu G, Li J, Lin LL, Ye J. NIR-II Surface-Enhanced Raman Scattering Nanoprobes in Biomedicine: Current Impact and Future Directions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402235. [PMID: 38845530 DOI: 10.1002/smll.202402235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Indexed: 10/04/2024]
Abstract
The field of second near-infrared (NIR-II) surface-enhanced Raman scattering (SERS) nanoprobes has made commendable progress in biomedicine. This article reviews recent advances and future development of NIR-II SERS nanoprobes. It introduces the fundamental principles of SERS nanoprobes and highlights key advances in the NIR-II window, including reduced tissue attenuation, deep penetration, maximized allowable exposure, and improved photostability. The discussion of future directions includes the refinement of nanoprobe substrates, emphasizing the tailoring of optical properties of metallic SERS-active nanoprobes, and exploring non-metallic alternatives. The intricacies of designing Raman reporters for the NIR-II resonance and the potential of these reporters to advance the field are also discussed. The integration of artificial intelligence (AI) into nanoprobe design represents a cutting-edge approach to overcome current challenges. This article also examines the emergence of deep Raman techniques for through-tissue SERS detection, toward NIR-II SERS tomography. It acknowledges instrumental advancements like improved charge-coupled device sensitivity and accelerated imaging speeds. The article concludes by addressing the critical aspects of biosafety, ease of functionalization, compatibility, and the path to clinical translation. With a comprehensive overview of current achievements and future prospects, this review aims to illuminate the path for NIR-II SERS nanoprobes to innovate diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Binge Deng
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuqing Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Guangyu Qiu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jin Li
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
9
|
Lane LA, Zhang J, Wang Y. AMP coated SERS NanoTags with hydrophobic locking: Maximizing brightness, stability, and cellular targetability. J Colloid Interface Sci 2024; 663:295-308. [PMID: 38402824 DOI: 10.1016/j.jcis.2024.02.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Developing innovative surface-enhanced Raman scattering (SERS) nanotags continues to attract significant attention due to their unparalleled sensitivity and specificity for in vitro diagnostic and in vivo tumor imaging applications. Here, we report a new class of bright and stable SERS nanotags using alkylmercaptan-PEG (AMP) polymers. Due to its amphiphilic structure and a thiol anchoring group, these polymers strongly absorb onto gold nanoparticles, leading to an inner hydrophobic layer and an outer hydrophilic PEG layer. The inner hydrophobic layer serves to "lock in" the Raman reporter molecules adsorbed on the particle surface via favorable hydrophobic interactions that also allow denser PEG coatings, which "lock out" other molecules from competitive binding or adsorbing to the gold surface, thereby providing superior colloidal and signal stability. The higher grafting densities of AMP polymers compared to conventional thiolated PEG also led to dramatic increases in cellular target selectivity, with specific-to-nonspecific binding ratios reaching beyond an order of magnitude difference. Experimental evaluations and theoretical considerations of dielectric polarization and light scattering indicate that the hydrophobic layer provides a more favorable dielectric environment with less plasmon dampening, greater particle scattering efficiency, and increased Raman reporter polarizability. Accordingly, SERS nanotags with AMP polymer coatings are observed to be considerably brighter (∼10-fold). Furthermore, the AMP-coated SERS nanotag's increased intensity and avidity can boost cellular detection sensitivity by nearly two orders of magnitude.
Collapse
Affiliation(s)
- Lucas A Lane
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Jinglei Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Jiangsu Province 210093, China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Jiangsu Province 210093, China.
| |
Collapse
|
10
|
Nicolson F, Andreiuk B, Lee E, O’Donnell B, Whitley A, Riepl N, Burkhart DL, Cameron A, Protti A, Rudder S, Yang J, Mabbott S, Haigis KM. In vivo imaging using surface enhanced spatially offset raman spectroscopy (SESORS): balancing sampling frequency to improve overall image acquisition. NPJ IMAGING 2024; 2:7. [PMID: 38939049 PMCID: PMC11210722 DOI: 10.1038/s44303-024-00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/08/2024] [Indexed: 06/29/2024]
Abstract
In the field of optical imaging, the ability to image tumors at depth with high selectivity and specificity remains a challenge. Surface enhanced resonance Raman scattering (SERRS) nanoparticles (NPs) can be employed as image contrast agents to specifically target cells in vivo; however, this technique typically requires time-intensive point-by-point acquisition of Raman spectra. Here, we combine the use of "spatially offset Raman spectroscopy" (SORS) with that of SERRS in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESORRS) to image deep-seated tumors in vivo. Additionally, by accounting for the laser spot size, we report an experimental approach for detecting both the bulk tumor, subsequent delineation of tumor margins at high speed, and the identification of a deeper secondary region of interest with fewer measurements than are typically applied. To enhance light collection efficiency, four modifications were made to a previously described custom-built SORS system. Specifically, the following parameters were increased: (i) the numerical aperture (NA) of the lens, from 0.2 to 0.34; (ii) the working distance of the probe, from 9 mm to 40 mm; (iii) the NA of the fiber, from 0.2 to 0.34; and (iv) the fiber diameter, from 100 μm to 400 μm. To calculate the sampling frequency, which refers to the number of data point spectra obtained for each image, we considered the laser spot size of the elliptical beam (6 × 4 mm). Using SERRS contrast agents, we performed in vivo SESORRS imaging on a GL261-Luc mouse model of glioblastoma at four distinct sampling frequencies: par-sampling frequency (12 data points collected), and over-frequency sampling by factors of 2 (35 data points collected), 5 (176 data points collected), and 10 (651 data points collected). In comparison to the previously reported SORS system, the modified SORS instrument showed a 300% improvement in signal-to-noise ratios (SNR). The results demonstrate the ability to acquire distinct Raman spectra from deep-seated glioblastomas in mice through the skull using a low power density (6.5 mW/mm2) and 30-times shorter integration times than a previous report (0.5 s versus 15 s). The ability to map the whole head of the mouse and determine a specific region of interest using as few as 12 spectra (6 s total acquisition time) is achieved. Subsequent use of a higher sampling frequency demonstrates it is possible to delineate the tumor margins in the region of interest with greater certainty. In addition, SESORRS images indicate the emergence of a secondary tumor region deeper within the brain in agreement with MRI and H&E staining. In comparison to traditional Raman imaging approaches, this approach enables improvements in the detection of deep-seated tumors in vivo through depths of several millimeters due to improvements in SNR, spectral resolution, and depth acquisition. This approach offers an opportunity to navigate larger areas of tissues in shorter time frames than previously reported, identify regions of interest, and then image the same area with greater resolution using a higher sampling frequency. Moreover, using a SESORRS approach, we demonstrate that it is possible to detect secondary, deeper-seated lesions through the intact skull.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
- Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Eunah Lee
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
| | - Bridget O’Donnell
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
- Honeywell International Inc., Fort Washington, PA 19034, USA
| | - Andrew Whitley
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
| | - Nicole Riepl
- College of Science, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Deborah L. Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Amy Cameron
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Andrea Protti
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Scott Rudder
- Innovative Photonic Solutions, Monmouth Junction, Plainsboro Township, NJ 08852, USA
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Samuel Mabbott
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX 77840, USA
- Center for Remote Health Technologies & Systems, Texas A & M Engineering Experiment Station, 600 Discovery Drive, College Station, TX 77840, USA
| | - Kevin M. Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
11
|
Eremina OE, Schaefer S, Czaja AT, Awad S, Lim MA, Zavaleta C. Multiplexing potential of NIR resonant and non-resonant Raman reporters for bio-imaging applications. Analyst 2023; 148:5915-5925. [PMID: 37850265 PMCID: PMC10947999 DOI: 10.1039/d3an01298k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Multiplexed imaging, which allows for the interrogation of multiple molecular features simultaneously, is vital for addressing numerous challenges across biomedicine. Optically unique surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to serve as a vehicle to achieve highly multiplexed imaging in a single acquisition, which is non-destructive, quantitative, and simple to execute. When using laser excitation at 785 nm, which allows for a lower background from biological tissues, near infrared (NIR) dyes can be used as Raman reporters to provide high Raman signal intensity due to the resonance effect. This class of imaging agents are known as surface-enhanced resonance Raman scattering (SERRS) NPs. Investigators have predominantly utilized two classes of Raman reporters in their nanoparticle constructs for use in biomedical applications: NIR-resonant and non-resonant Raman reporters. Herein, we investigate the multiplexing potential of five non-resonant SERS: BPE, 44DP, PTT, PODT, and BMMBP, and five NIR resonant SERRS NP flavors with heptamethine cyanine dyes: DTTC, IR-770, IR-780, IR-792, and IR-797, which have been extensively used for biomedical imaging applications. Although SERRS NPs display high Raman intensities, due to their resonance properties, we observed that non-resonant SERS NP concentrations can be quantitated by the intensity of their unique emissions with higher accuracy. Spectral unmixing of five-plex mixtures revealed that the studied non-resonant SERS NPs maintain their detection limits more robustly as compared to the NIR resonant SERRS NP flavors when introducing more components into a mixture.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Sarah Schaefer
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Alexander T Czaja
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Samer Awad
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Matthew A Lim
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
12
|
Li J, Liu F, Bi X, Ye J. Imaging immune checkpoint networks in cancer tissues with supermultiplexed SERS nanoprobes. Biomaterials 2023; 302:122327. [PMID: 37716283 DOI: 10.1016/j.biomaterials.2023.122327] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Combined immune checkpoint (ICP) inhibitors maximize immune response rates of patients compared to the single-drug treatment strategy in cancer immunotherapy, and prediction of such optimal combinations requires high-throughput imaging techniques and suitable data analysis. In this work, we report a rational strategy for predicting combined drugs of ICP inhibitors based on supermultiplexed surface-enhanced Raman scattering (SERS) imaging and correlation network analysis. To this end, we first built an ultrasensitive and supermultiplexed volume-active SERS (VASERS) nanoprobe platform, where Raman molecules are randomly arranged in 3D volumetric electromagnetic hotspots. By examining various bio-orthogonal Raman molecules with different electronic properties, we developed frequency modulation guidelines and achieved 32 resolvable colors in the Raman-silent region, the largest number of resolvable SERS colors demonstrated to date. We then demonstrated one-shot ten-color imaging of ICPs with high spectral resolution in clinical biopsies of breast cancer tissues, suggesting highly heterogeneous expression patterns of ICPs across tumor subtypes. Through correlation network analysis of these high-throughput Raman data, we investigated co-expression relationships among these ten-panel ICPs in cancer tissues and finally identified a variety of possible ICP combinations for synergistic immunotherapy of breast cancers, which may lead to novel therapeutical insights.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Fugang Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
13
|
Li J, Deng B, Ye J. Fluorescence-free bis(dithiolene)nickel dyes for surface-enhanced resonance Raman imaging in the second near-infrared window. Biomaterials 2023; 300:122211. [PMID: 37379685 DOI: 10.1016/j.biomaterials.2023.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Second near-infrared window (NIR-II, 1000-1700 nm) imaging is one of the foremost optical imaging techniques. However, surface-enhanced Raman scattering (SERS)-based research in this optical region remains in its infancy, mainly because of a lack of suitable NIR-II Raman reporters. Herein, we report the first example of a nickel dithiolene complex as a NIR-II resonance Raman reporter with intense long wavelength absorption (ε = 9.58 × 104 m-1 cm-1 at 1007 nm), fluorescence-free features and ultrahigh affinity to noble metal surfaces with its eight sulfur atoms. Surface-enhanced resonance Raman scattering nanoprobes constructed with such reporters enable high contrast and highly photostable lymph node imaging far superior to that possible with existing NIR-I and NIR-II SERS nanoprobes. The developed NIR-II nanoprobes allow deep optical penetration (8 mm) as well as in vivo SERS detection of deep-seated microtumors in mice.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Binge Deng
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
14
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Deriu C, Thakur S, Tammaro O, Fabris L. Challenges and opportunities for SERS in the infrared: materials and methods. NANOSCALE ADVANCES 2023; 5:2132-2166. [PMID: 37056617 PMCID: PMC10089128 DOI: 10.1039/d2na00930g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
In the wake of a global, heightened interest towards biomarker and disease detection prompted by the SARS-CoV-2 pandemic, surface enhanced Raman spectroscopy (SERS) positions itself again at the forefront of biosensing innovation. But is it ready to move from the laboratory to the clinic? This review presents the challenges associated with the application of SERS to the biomedical field, and thus, to the use of excitation sources in the near infrared, where biological windows allow for cell and through-tissue measurements. Two main tackling strategies will be discussed: (1) acting on the design of the enhancing substrate, which includes manipulation of nanoparticle shape, material, and supramolecular architecture, and (2) acting on the spectral collection set-up. A final perspective highlights the upcoming scientific and technological bets that need to be won in order for SERS to stably transition from benchtop to bedside.
Collapse
Affiliation(s)
- Chiara Deriu
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Shaila Thakur
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Olimpia Tammaro
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
- Department of Materials Science and Engineering, Rutgers University Piscataway NJ 08854 USA
| |
Collapse
|
16
|
Li Q, Huo H, Wu Y, Chen L, Su L, Zhang X, Song J, Yang H. Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202051. [PMID: 36683237 PMCID: PMC10015885 DOI: 10.1002/advs.202202051] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a feasible and ultra-sensitive method for biomedical imaging and disease diagnosis. SERS is widely applied to in vivo imaging due to the development of functional nanoparticles encoded by Raman active molecules (SERS nanoprobes) and improvements in instruments. Herein, the recent developments in SERS active materials and their in vivo imaging and biosensing applications are overviewed. Various SERS substrates that have been successfully used for in vivo imaging are described. Then, the applications of SERS imaging in cancer detection and in vivo intraoperative guidance are summarized. The role of highly sensitive SERS biosensors in guiding the detection and prevention of diseases is discussed in detail. Moreover, its role in the identification and resection of microtumors and as a diagnostic and therapeutic platform is also reviewed. Finally, the progress and challenges associated with SERS active materials, equipment, and clinical translation are described. The present evidence suggests that SERS could be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Hongqi Huo
- Department of Nuclear MedicineHan Dan Central HospitalHandanHebei056001P. R. China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| |
Collapse
|
17
|
Andreou C, Plakas K, Berisha N, Gigoux M, Rosch LE, Mirsafavi R, Oseledchyk A, Pal S, Zamarin D, Merghoub T, Detty MR, Kircher MF. Multiplexed molecular imaging with surface enhanced resonance Raman scattering nanoprobes reveals immunotherapy response in mice via multichannel image segmentation. NANOSCALE HORIZONS 2022; 7:1540-1552. [PMID: 36285605 PMCID: PMC10360075 DOI: 10.1039/d2nh00331g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Visualizing the presence and distribution of multiple specific molecular markers within a tumor can reveal the composition of its microenvironment, inform diagnosis, stratify patients, and guide treatment. Raman imaging with multiple molecularly-targeted surface enhanced Raman scattering (SERS) nanoprobes could help investigate emerging cancer treatments preclinically or enable personalized treatment assessment. Here, we report a comprehensive strategy for multiplexed imaging using SERS nanoprobes and machine learning (ML) to monitor the early effects of immune checkpoint blockade (ICB) in tumor-bearing mice. We used antibody-functionalized SERS nanoprobes to visualize 7 + 1 immunotherapy-related targets simultaneously. The multiplexed images were spectrally resolved and then spatially segmented into superpixels based on the unmixed signals. The superpixels were used to train ML models, leading to the successful classification of mice into treated and untreated groups, and identifying tumor regions with variable responses to treatment. This method may help predict treatment efficacy in tumors and identify areas of tumor variability and therapy resistance.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, 1678 Nicosia, Cyprus.
| | - Konstantinos Plakas
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | - Naxhije Berisha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- Department of Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Mathieu Gigoux
- Department of Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Lauren E Rosch
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | - Rustin Mirsafavi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Anton Oseledchyk
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Suchetan Pal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Dmitriy Zamarin
- Department of Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Taha Merghoub
- Department of Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Michael R Detty
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | - Moritz F Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
18
|
Rosch LE, Crawley MR, O’Donnell RM, Rohrabaugh TN, Ensley TR, Sobiech TA, Cook TR. Shining Light on the Solution- and Excited-State Dynamics of Chalcogenopyrylium Polymethine Dyes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lauren E. Rosch
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Matthew R. Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ryan M. O’Donnell
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | | | - Trenton R. Ensley
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Thomas A. Sobiech
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Timothy R. Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
19
|
Li J, Liu F, Ye J. Boosting the Brightness of Thiolated Surface-Enhanced Raman Scattering Nanoprobes by Maximal Utilization of the Three-Dimensional Volume of Electromagnetic Fields. J Phys Chem Lett 2022; 13:6496-6502. [PMID: 35820179 DOI: 10.1021/acs.jpclett.2c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembled monolayers (SAMs) of thiols on plasmonic nanoparticles constitute one of the most common methods for fabricating surface-enhanced Raman scattering (SERS) nanoprobes with wide applications. However, this method greatly limits the sufficient utilization of electromagnetic fields derived from plasmon excitation of the nanoparticles, because the thickness of SAMs (<1 nm) is usually much smaller than the attenuation length (>10 nm) of the fields. To overcome this, we propose a three-dimensional (3D) volume-active SERS (VASERS) technique to break the SAM limit, which integrates large amounts of thiol reporters into polydopamine shells on silver nanoparticles via Michael addition and allows sufficient utilization of 3D electromagnetic fields, leading to a dramatic increase in the intensity of the signal of the nanoprobes by about one order of magnitude. We demonstrate the universality of this strategy on various thiol reporters and plasmonic substrates. We also show that orthogonal VASERS nanoprobes with alkyne readout allow for high-precision in vivo tumor targeting and margin delineation.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Fugang Liu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Andreou C, Weissleder R, Kircher MF. Multiplexed imaging in oncology. Nat Biomed Eng 2022; 6:527-540. [PMID: 35624151 DOI: 10.1038/s41551-022-00891-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/06/2021] [Indexed: 01/24/2023]
Abstract
In oncology, technologies for clinical molecular imaging are used to diagnose patients, establish the efficacy of treatments and monitor the recurrence of disease. Multiplexed methods increase the number of disease-specific biomarkers that can be detected simultaneously, such as the overexpression of oncogenic proteins, aberrant metabolite uptake and anomalous blood perfusion. The quantitative localization of each biomarker could considerably increase the specificity and the accuracy of technologies for clinical molecular imaging to facilitate granular diagnoses, patient stratification and earlier assessments of the responses to administered therapeutics. In this Review, we discuss established techniques for multiplexed imaging and the most promising emerging multiplexing technologies applied to the imaging of isolated tissues and cells and to non-invasive whole-body imaging. We also highlight advances in radiology that have been made possible by multiplexed imaging.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Moritz F Kircher
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.,Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Li J, Liu F, He C, Shen F, Ye J. Orthogonal gap-enhanced Raman tags for interference-free and ultrastable surface-enhanced Raman scattering. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1549-1560. [PMID: 39635286 PMCID: PMC11501518 DOI: 10.1515/nanoph-2021-0689] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 12/07/2024]
Abstract
Spectral interference from backgrounds is not negligible for surface-enhanced Raman scattering (SERS) tags and often influences the accuracy and reliability of SERS applications. We report the design and synthesis of orthogonal gap-enhanced Raman tags (O-GERTs) by embedding alkyne and deuterium-based reporters in the interior metallic nanogaps of core-shell nanoparticles and explore their signal orthogonality as optical probes against different backgrounds from common substrates and media (e.g., glass and polymer) to related targets (e.g., bacteria, cancer cells, and tissues). Proof-of-concept experiments show that the O-GERT signals in the fingerprint region (200-1800 cm-1) are likely interfered by various backgrounds, leading to difficulty of accurate quantification, while the silent-region (1800-2800 cm-1) signals are completely interference-free. Moreover, O-GERTs show much higher photo and biological stability compared to conventional SERS tags. This work not only demonstrates O-GERTs as universal optical tags for accurate and reliable detection onto various substrates and in complex media, but also opens new opportunities in a variety of frontier applications, such as three-dimensional data storage and security labeling.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P. R. China
| | - Fugang Liu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P. R. China
| | - Chang He
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P. R. China
| | - Feng Shen
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| |
Collapse
|
22
|
Akakuru OU, Zhang Z, Iqbal MZ, Zhu C, Zhang Y, Wu A. Chemotherapeutic nanomaterials in tumor boundary delineation: Prospects for effective tumor treatment. Acta Pharm Sin B 2022; 12:2640-2657. [PMID: 35755279 PMCID: PMC9214073 DOI: 10.1016/j.apsb.2022.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/14/2022] Open
Abstract
Accurately delineating tumor boundaries is key to predicting survival rates of cancer patients and assessing response of tumor microenvironment to various therapeutic techniques such as chemotherapy and radiotherapy. This review discusses various strategies that have been deployed to accurately delineate tumor boundaries with particular emphasis on the potential of chemotherapeutic nanomaterials in tumor boundary delineation. It also compiles the types of tumors that have been successfully delineated by currently available strategies. Finally, the challenges that still abound in accurate tumor boundary delineation are presented alongside possible perspective strategies to either ameliorate or solve the problems. It is expected that the information communicated herein will form the first compendious baseline information on tumor boundary delineation with chemotherapeutic nanomaterials and provide useful insights into future possible paths to advancing current available tumor boundary delineation approaches to achieve efficacious tumor therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Zhoujing Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - M. Zubair Iqbal
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengjie Zhu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Yewei Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Corresponding author.
| |
Collapse
|
23
|
Plakas K, Rosch LE, Clark MD, Adbul-Rashed S, Shaffer TM, Harmsen S, Gambhir SS, Detty MR. Design and evaluation of Raman reporters for the Raman-silent region. Nanotheranostics 2022; 6:1-9. [PMID: 34976577 PMCID: PMC8671958 DOI: 10.7150/ntno.58965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/08/2021] [Indexed: 01/09/2023] Open
Abstract
Rationale: Surface enhanced Raman scattering (SERS) is proving to be a useful tool for biomedical imaging. However, this imaging technique can suffer from poor signal-to-noise ratio, as the complexity of biological tissues can lead to overlapping of Raman bands from tissues and the Raman reporter molecule utilized. Methods: Herein we describe the synthesis of triple bond containing Raman reporters that scatter light in the biological silent window, between 1750 cm-1 and 2750 cm-1. Results: Our SERS nanoprobes are comprised of uniquely designed Raman reporters containing either alkyne- or cyano-functional groups, enabling them to be readily distinguished from background biological tissue. Conclusion: We identify promising candidates that eventually can be moved forward as Raman reporters in SERS nanoparticles for highly specific contrast-enhanced Raman-based disease or analyte detection in biological applications.
Collapse
Affiliation(s)
- Konstantinos Plakas
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lauren E Rosch
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Michael D Clark
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Shukree Adbul-Rashed
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Travis M Shaffer
- Molecular Imaging Program at Stanford University (MIPS), Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan Harmsen
- Molecular Imaging Program at Stanford University (MIPS), Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford University (MIPS), Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.,Department of Material Science & Engineering, Stanford University School of Engineering, Stanford, CA, USA
| | - Michael R Detty
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
24
|
Watson D, Harmsen S. In memory of Michael R. Detty, PhD. Nanotheranostics 2022; 6:118-120. [PMID: 34976585 PMCID: PMC8671963 DOI: 10.7150/ntno.63716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- David Watson
- Department of Chemistry, University at Buffalo, Buffalo, NY, 14260, USA
| | - Stefan Harmsen
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
25
|
Andreiuk B, Nicolson F, Clark LM, Panikkanvalappil SR, Kenry, Rashidian M, Harmsen S, Kircher MF. Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics 2022; 6:10-30. [PMID: 34976578 PMCID: PMC8671966 DOI: 10.7150/ntno.61244] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) nanotags hold a unique place among bioimaging contrast agents due to their fingerprint-like spectra, which provide one of the highest degrees of detection specificity. However, in order to achieve a sufficiently high signal intensity, targeting capabilities, and biocompatibility, all components of nanotags must be rationally designed and tailored to a specific application. Design parameters include fine-tuning the properties of the plasmonic core as well as optimizing the choice of Raman reporter molecule, surface coating, and targeting moieties for the intended application. This review introduces readers to the principles of SERS nanotag design and discusses both established and emerging protocols of their synthesis, with a specific focus on the construction of SERS nanotags in the context of bioimaging and theranostics.
Collapse
Affiliation(s)
- Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise M. Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Stefan Harmsen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 022115, USA
| |
Collapse
|
26
|
Du J, Li J, Li Y, Wang D, Cao H, He W, Zhou Y. Acridine-based dyes as high-performance near-infrared Raman reporter molecules for cell imaging. RSC Adv 2022; 12:3380-3385. [PMID: 35425341 PMCID: PMC8979271 DOI: 10.1039/d1ra08827k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
A surface-enhanced Raman scattering (SERS) nanoprobe has been proven to be a promising tool for near-infrared (NIR) biomedical imaging and diagnosis because of its high sensitivity and selectivity. However, the development of NIR SERS reporters has been a bottleneck impeding the preparation of ultrasensitive SERS probes. Herein, we report the design and synthesis of a series of SERS reporters in the NIR region based on 10-methylacridine (AD). The AD nanotags (gold nanostar–AD molecules–BSA, AuNS–AD–BSA) exhibit appreciable SERS signals and can be detected at as low as the sub-picomole level. The results of in vitro imaging experiments show that it can be used in live-cell delineation. A surface-enhanced Raman scattering (SERS) nanoprobe has been proven to be a promising tool for near-infrared (NIR) biomedical imaging and diagnosis because of its high sensitivity and selectivity.![]()
Collapse
Affiliation(s)
- Jiasheng Du
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinming Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuzhan Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Cao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wanli He
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Zhou
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
27
|
Yu JH, Steinberg I, Davis RM, Malkovskiy AV, Zlitni A, Radzyminski RK, Jung KO, Chung DT, Curet LD, D'Souza AL, Chang E, Rosenberg J, Campbell J, Frostig H, Park SM, Pratx G, Levin C, Gambhir SS. Noninvasive and Highly Multiplexed Five-Color Tumor Imaging of Multicore Near-Infrared Resonant Surface-Enhanced Raman Nanoparticles In Vivo. ACS NANO 2021; 15:19956-19969. [PMID: 34797988 PMCID: PMC9012519 DOI: 10.1021/acsnano.1c07470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects.
Collapse
Affiliation(s)
- Jung Ho Yu
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Idan Steinberg
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Ryan M Davis
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Andrey V Malkovskiy
- Department of Plant Biology, Carnegie Institute for Science, Stanford, California 94305, United States
| | - Aimen Zlitni
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Rochelle Karina Radzyminski
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Kyung Oh Jung
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Daniel Tan Chung
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Luis Dan Curet
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Aloma L D'Souza
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Edwin Chang
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jos Campbell
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Hadas Frostig
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Seung-Min Park
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Guillem Pratx
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Craig Levin
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
28
|
Lin S, Cheng Z, Li Q, Wang R, Yu F. Toward Sensitive and Reliable Surface-Enhanced Raman Scattering Imaging: From Rational Design to Biomedical Applications. ACS Sens 2021; 6:3912-3932. [PMID: 34726891 DOI: 10.1021/acssensors.1c01858] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early specific detection through indicative biomarkers and precise visualization of lesion sites are urgent requirements for clinical disease diagnosis. However, current detection and optical imaging methods are insufficient for these demands. Molecular imaging technologies are being intensely studied for reliable medical diagnosis. In the past several decades, molecular imaging with surface-enhanced Raman scattering (SERS) has significant advances from analytical chemistry to medical science. SERS is the inelastic scattering generated from the interaction between photons and substances, presenting molecular structure information. The outstanding SERS virtues of high sensitivity, high specificity, and resistance to biointerference are highly advantageous for biomarker detection in a complex biological matrix. In this work, we review recent progress on the applications of SERS imaging in clinical diagnostics. With the assistance of SERS imaging, the detection of disease-related proteins, nucleic acids, small molecules, and pH of the cellular microenvironment can be implemented for adjuvant medical diagnosis. Moreover, multimodal imaging integrates the high penetration and high speed of other imaging modalities and imaging precision of SERS imaging, resulting in final complete and accurate imaging outcomes and exhibiting robust potential in the discrimination of pathological tissues and surgical navigation. As a promising molecular imaging technology, SERS imaging has achieved remarkable performance in clinical diagnostics and the biomedical realm. It is expected that this review will provide insights for further development of SERS imaging and promote the rapid progress and successful translation of advanced molecular imaging with clinical diagnostics.
Collapse
Affiliation(s)
- Shanshan Lin
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Qifu Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
29
|
Abstract
Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) are ideal multiplexing probes for in vivo imaging and tissue staining. Their remarkable sensitivity and unique Raman molecular fingerprint results in minimal background compared to other optical modalities. These characteristics also allow multiplexing down to the attomolar concentration. Here we describe the synthesis and in vivo multiplexing application of a SERS NP library.
Collapse
|
30
|
Zhu R, Feng H, Li Q, Su L, Fu Q, Li J, Song J, Yang H. Asymmetric Core–Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| |
Collapse
|
31
|
Zhu R, Feng H, Li Q, Su L, Fu Q, Li J, Song J, Yang H. Asymmetric Core–Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Angew Chem Int Ed Engl 2021; 60:12560-12568. [DOI: 10.1002/anie.202102893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| |
Collapse
|
32
|
Abstract
Surface-enhanced Raman scattering (SERS) nanotags are widely used in the biomedical field including live-cell imaging due to the high specificity from their fingerprint spectrum and the multiplexing capability from the ultra-narrow linewidth. However, long-term live-cell Raman imaging is limited due to the photodamage from a relatively long exposure time and a high laser power, which are needed for acquiring detectable Raman signals. In this work, we attempt to resolve this issue by developing ultrabright gap-enhanced resonance Raman tags (GERRTs), consisting of a petal-like gold core and a silver shell with the near-infrared resonant reporter of IR-780 embedded in between, for long-term and high-speed live-cell imaging. GERRTs exhibit an ultrahigh Raman intensity down to a single-nanoparticle level in aqueous solution and the solid state upon 785 nm excitation, allowing for high-resolution time-lapse live-cell Raman imaging with an exposure time of 1 ms per pixel and a laser power of 50 μW. Under these measurement conditions, we can possibly capture dynamic cellular processes with a high temporal resolution, and track living cells for long periods of time owing to the reduced photodamage to cells. These nanotags open new opportunities for ultrasensitive, low-phototoxic, and long-term live-cell imaging.
Collapse
Affiliation(s)
- Yuqing Gu
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P. R. China.
| | | | | |
Collapse
|
33
|
Wei Q, Arami H, Santos HA, Zhang H, Li Y, He J, Zhong D, Ling D, Zhou M. Intraoperative Assessment and Photothermal Ablation of the Tumor Margins Using Gold Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002788. [PMID: 33717843 PMCID: PMC7927626 DOI: 10.1002/advs.202002788] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/13/2020] [Indexed: 05/12/2023]
Abstract
Surgical resection is commonly used for therapeutic management of different solid tumors and is regarded as a primary standard of care procedure, but precise localization of tumor margins is a major intraoperative challenge. Herein, a generalized method by optimizing gold nanoparticles for intraoperative detection and photothermal ablation of tumor margins is introduced. These nanoparticles are detectable by highly sensitive surface-enhanced Raman scattering imaging. This non-invasive technique assists in delineating the two surgically challenged tumors in live mice with orthotopic colon or ovarian tumors. Any remaining residual tumors are also ablated by using post-surgical adjuvant photothermaltherapy (aPTT), which results in microscale heat generation due to interaction of these nanoparticles with near-infrared laser. Ablation of these post-operative residual micro-tumors prolongs the survival of mice significantly and delays tumor recurrence by 15 days. To validate clinical translatability of this method, the pharmacokinetics, biodistribution, Raman contrast, aPTT efficiency, and toxicity of these nanoparticles are also investigated. The nanoparticles have long blood circulation time (≈24 h), high tumor accumulation (4.87 ± 1.73%ID g-1) and no toxicity. This high-resolution and sensitive intraoperative approach is versatile and can be potentially used for targeted ablation of residual tumor after resection within different organs.
Collapse
Affiliation(s)
- Qiaolin Wei
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000P. R. China
- Institute of Translational MedicineZhejiang UniversityHangzhou310009P. R. China
- State Key Laboratory of Modern Optical InstrumentationsZhejiang UniversityHangzhou310058P. R. China
| | - Hamed Arami
- Molecular Imaging Program at StanfordDepartment of RadiologyStanford UniversityStanfordCA94305‐5427USA
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| | - Hongbo Zhang
- Pharmaceutical Science LaboratoryÅbo Akademi UniversityTurku20520Finland
| | - Yangyang Li
- Institute of Translational MedicineZhejiang UniversityHangzhou310009P. R. China
| | - Jian He
- Institute of Translational MedicineZhejiang UniversityHangzhou310009P. R. China
| | - Danni Zhong
- Institute of Translational MedicineZhejiang UniversityHangzhou310009P. R. China
| | - Daishun Ling
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Min Zhou
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000P. R. China
- Institute of Translational MedicineZhejiang UniversityHangzhou310009P. R. China
- State Key Laboratory of Modern Optical InstrumentationsZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education Zhejiang UniversityHangzhou310009P. R. China
| |
Collapse
|
34
|
Nicolson F, Kircher MF, Stone N, Matousek P. Spatially offset Raman spectroscopy for biomedical applications. Chem Soc Rev 2021; 50:556-568. [PMID: 33169761 PMCID: PMC8323810 DOI: 10.1039/d0cs00855a] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/24/2022]
Abstract
In recent years, Raman spectroscopy has undergone major advancements in its ability to probe deeply through turbid media such as biological tissues. This progress has been facilitated by the advent of a range of specialist techniques based around spatially offset Raman spectroscopy (SORS) to enable non-invasive probing of living tissue through depths of up to 5 cm. This represents an improvement in depth penetration of up to two orders of magnitude compared to what can be achieved with conventional Raman methods. In combination with the inherently high molecular specificity of Raman spectroscopy, this has therefore opened up entirely new prospects for a range of new analytical applications across multiple fields including medical diagnosis and disease monitoring. This article discusses SORS and related variants of deep Raman spectroscopy such as transmission Raman spectroscopy (TRS), micro-SORS and surface enhanced spatially offset Raman spectroscopy (SESORS), and reviews the progress made in this field during the past 5 years including advances in non-invasive cancer diagnosis, monitoring of neurotransmitters, and assessment of bone disease.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute & Harvard Medical SchoolBostonMA 02215USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute & Harvard Medical SchoolBostonMA 02215USA
- Department of Radiology, Brigham & Women's Hospital & Harvard Medical SchoolBostonMA 022115USA
| | - Nick Stone
- School of Physics and Astronomy, University of ExeterExeterEX4 4QLUK
- Royal Devon and Exeter NHS Foundation TrustBarrack RoadExeterDevonEX2 5DWUK
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRIHarwellOxfordOX11 0QXUK
| |
Collapse
|
35
|
Nicolson F, Kircher MF. Theranostics: Agents for Diagnosis and Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
36
|
Molecular Imaging Using Raman Scattering. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Yin Y, Mei R, Wang Y, Zhao X, Yu Q, Liu W, Chen L. Silica-Coated, Waxberry-like Surface-Enhanced Raman Resonant Scattering Tag-Pair with Near-Infrared Raman Dye Encoding: Toward In Vivo Duplexing Detection. Anal Chem 2020; 92:14814-14821. [PMID: 33045167 DOI: 10.1021/acs.analchem.0c03674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface-enhanced Raman resonant scattering (SERRS) tags encoded with near-infrared (NIR) Raman reporters showed great potential for in vivo detection owing to their ultrasensitivity. However, in vivo signal stability of such tags is a remaining problem due to the lack of suitable silica coating method because the weakly adsorbed NIR reporters tend to detach from traditional gold nanosubstrates in the ethanol-rich and high pH conditions, which are commonly used for silica coating. Herein, we propose a silica coating method for NIR SERRS tags by using waxberry-like gold nanoparticles (NPs) as substrates. The lipid bilayer of the NPs played a crucial role in the coating, which can encapsulate the NIR Raman reporter via hydrophobic interactions and prevent the interference from a harsh medium. Thus, the silica-coated tags well preserved ultrasensitivity of bare tags and simultaneously gained satisfactory signal stability in vivo. Moreover, the coating method is compatible for the encapsulation of a variety of thiol group-free NIR reporters (as exemplified by DTTC, Cy7, IR792, and DIR), relying on which a tag-pair with distinguishable peaks can be screened (labeling with DTTC and Cy7, respectively). In vivo duplexing detection revealed that the tag-pair-labeled liposome was cleared faster in the liver than polydopamine NPs within one mouse. The developed method paves an easy way for gaining high-quality SERRS tags and will promote their in vivo multiplex analysis and diagnostics applications.
Collapse
Affiliation(s)
- Yingchao Yin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Qian Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Wanhui Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
38
|
Keller T, Brem S, Tran V, Sritharan O, Schäfer D, Schlücker S. Rational design of thiolated polyenes as trifunctional Raman reporter molecules in surface-enhanced Raman scattering nanotags for cytokine detection in a lateral flow assay. JOURNAL OF BIOPHOTONICS 2020; 13:e201960126. [PMID: 31957948 DOI: 10.1002/jbio.201960126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The characteristic vibrational spectroscopic fingerprint of Raman reporter molecules adsorbed on noble metal nanoparticles is employed for the identification of target proteins by the corresponding surface-enhanced Raman scattering (SERS) nanotag-labeled antibodies. Here, we present the modular synthesis of thiolated polyenes with two to five C═C double bonds introduced via stepwise Wittig reactions. The experimental characterization of their electronic and vibrational properties is complemented by density functional theory calculations. Highly SERS-active nanotags are generated by using the thiolated polyenes as Raman reporter molecules in Au/Au core/satellite supraparticles with multiple hot spots. The cytokines IL-1β and IFN-γ are detected in a duplex SERS-based lateral flow assay on a nitrocellulose test strip by Raman microscopy. The thiolated polyenes are suitable for use in immuno-SERS applications such as point-of-care testing as well as cellular and tissue imaging.
Collapse
Affiliation(s)
- Thomas Keller
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Svetlana Brem
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Vi Tran
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Oliver Sritharan
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Daniel Schäfer
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
- Zentrum für Medizinische Biotechnologie (ZMB), Essen, Germany
| |
Collapse
|
39
|
Zhang C, Cui X, Yang J, Shao X, Zhang Y, Liu D. Stimulus-responsive surface-enhanced Raman scattering: a "Trojan horse" strategy for precision molecular diagnosis of cancer. Chem Sci 2020; 11:6111-6120. [PMID: 34094100 PMCID: PMC8159367 DOI: 10.1039/d0sc01649g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/15/2020] [Indexed: 11/21/2022] Open
Abstract
Molecular diagnosis has played an increasingly important role in cancer detection. However, it remains challenging to develop an in situ analytical method capable of profiling the molecular phenotype of tumors for precision cancer diagnosis. A "Trojan horse" strategy based on stimulus-responsive surface-enhanced Raman scattering (SR-SERS) is reported here for selectively recording the comprehensive molecular information of tumors in situ, without resorting to destructive sample preparation and complex data analysis. This technique is employed to delineate the margin between tumors and normal tissues with high accuracy, and to further discriminate the molecular fingerprints of tumors in the early and late stages. Based on molecular profiling, we discovered that the signal ratios of fatty acid-to-phenylalanine could serve as promising indicators for identifying the primary tumors in different stages. This simple SR-SERS technique also provides a potential useful means for identifying tumor classifications or distinguishing primary and metastatic tumors.
Collapse
Affiliation(s)
- Cai Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Xiaoyu Cui
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Jie Yang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Xueguang Shao
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Yuying Zhang
- School of Medicine, Nankai University Tianjin 300071 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| |
Collapse
|
40
|
Shi B, Zhang B, Zhang Y, Gu Y, Zheng C, Yan J, Chen W, Yan F, Ye J, Zhang H. Multifunctional gap-enhanced Raman tags for preoperative and intraoperative cancer imaging. Acta Biomater 2020; 104:210-220. [PMID: 31927113 DOI: 10.1016/j.actbio.2020.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
Multi-modality imaging agents are desirable for tumor diagnosis because they can provide more alternative and reliable information for accurate detection and therapy of diseases than single imaging technique. However, most reported conventional imaging agents have not been found to successfully overcome the disadvantages of traditional diagnoses such as sensitivity, spatial resolution, short half-decay time and complexity. Therefore, exploring a multifunctional nanocomposite with the combination of their individual modality characteristics has great impact on preoperative imaging and intraoperative diagnosis of cancer. In our study, mesoporous silica gadolinium-loaded gap-enhanced Raman tags (Gd-GERTs) specifically for preoperative and intraoperative imaging are designed and their imaging capability and biosafety are examined. They exhibit strong attenuation property for computed X-ray tomography (CT) imaging, high T1 relaxivity for magnetic resonance (MR) imaging capability and surface-enhanced Raman spectroscopy (SERS) signal with good dispersity and stability, which presents CT/MR/SERS multi-mode imaging performance of the tumor of mice within a given time. Furthermore, in vivo biodistribution and long-term toxicity studies reveal that the Gd-GERTs have good biocompatibility and bio-safety. Therefore, Gd-GERTs are of great potential as a multifunctional nanoplatform for accurate preoperative CT/MRI diagnosis and intraoperative Raman imaging-guide resection of cancers. STATEMENT OF SIGNIFICANCE: Recent advances in molecular imaging technology have provided a myriad of opportunities to prepare various nanomaterials for accurate diagnosis and response evaluation of cancer via different imaging modalities. However, single bioimaging modality is still challenging to overcome the issues such as sensitivity, spatial resolution, imaging speed and complexity for clinicians. In this work, we designed a kind of unique multifunctional nanoprobes with computed X-ray tomography/magnetic resonance/surface-enhanced Raman spectroscopy (CT/MR/SERS) triple-modal imaging capabilities. Multifunctional nanotags offer the capabilities of preoperative noninvasive CT/MR imaging for identification of tumors as well as intraoperative real-time SERS imaging for guidance of complete resection of tumors. These multifunctional nanoprobes show critical clinical significance on the improvement of tumor diagnosis and therapy.
Collapse
|
41
|
Ly NH, Joo SW. Recent advances in cancer bioimaging using a rationally designed Raman reporter in combination with plasmonic gold. J Mater Chem B 2020; 8:186-198. [DOI: 10.1039/c9tb01598a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanomaterials (AuNMs) have been widely implemented for the purpose of bioimaging of cancer and tumor cells in combination with Raman spectral markers.
Collapse
Affiliation(s)
| | - Sang-Woo Joo
- Department of Chemistry
- Soongsil University
- Seoul 06978
- Korea
- Department of Information Communication, Materials
| |
Collapse
|
42
|
Rogalla S, Flisikowski K, Gorpas D, Mayer AT, Flisikowska T, Mandella MJ, Ma X, Casey KM, Felt SA, Saur D, Ntziachristos V, Schnieke A, Contag CH, Gambhir SS, Harmsen S. Biodegradable fluorescent nanoparticles for endoscopic detection of colorectal carcinogenesis. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1904992. [PMID: 33041743 PMCID: PMC7546531 DOI: 10.1002/adfm.201904992] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Early and comprehensive endoscopic detection of colonic dysplasia - the most clinically significant precursor lesion to colorectal adenocarcinoma - provides an opportunity for timely, minimally-invasive intervention to prevent malignant transformation. Here, the development and evaluation of biodegradable near-infrared fluorescent silica nanoparticles (FSN) is described that have the potential to improve adenoma detection during fluorescence-assisted white-light colonoscopic surveillance in rodent and human-scale models of colorectal carcinogenesis. FSNs are biodegradable (t1/2 of 2.7 weeks), well-tolerated, and enable detection and delineation of adenomas as small as 0.5 mm2 with high tumor-to-background ratios. Furthermore, in the human-scale, APC 1311/+ porcine model, the clinical feasibility and benefit of using FSN-guided detection of colorectal adenomas using video-rate fluorescence-assisted white-light endoscopy is demonstrated. Since nanoparticles of similar size (e.g., 100-150-nm) or composition (i.e., silica, silica/gold hybrid) have already been successfully translated to the clinic, and, clinical fluorescent/white light endoscopy systems are becoming more readily available, there is a viable path towards clinical translation of the proposed strategy for early colorectal cancer detection and prevention in high-risk patients.
Collapse
Affiliation(s)
- Stephan Rogalla
- Molecular Imaging Program at Stanford University (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine (Gastroenterology & Hepatology), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technische Universität München, Liesel-Beckmann Str. 1, D-85354 Freising, Germany
| | - Dimitris Gorpas
- Helmholtz Zentrum München, German Researcg Center for Environmental Health, Institute of Biological and Medical Imaging, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Einsteinstr. 25, 81675, München, Germany
| | - Aaron T. Mayer
- Molecular Imaging Program at Stanford University (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technische Universität München, Liesel-Beckmann Str. 1, D-85354 Freising, Germany
| | - Michael J. Mandella
- Molecular Imaging Program at Stanford University (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, MI 48824, USA
| | - Xiaopeng Ma
- Helmholtz Zentrum München, German Researcg Center for Environmental Health, Institute of Biological and Medical Imaging, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Einsteinstr. 25, 81675, München, Germany
| | - Kerriann M. Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen A. Felt
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Vasilis Ntziachristos
- Helmholtz Zentrum München, German Researcg Center for Environmental Health, Institute of Biological and Medical Imaging, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Einsteinstr. 25, 81675, München, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, Technische Universität München, Liesel-Beckmann Str. 1, D-85354 Freising, Germany
| | - Christopher H. Contag
- Corresponding Authors: Prof. C. H. Contag , Prof. S. S. Gambhir , and Dr. S. Harmsen
| | - Sanjiv S. Gambhir
- Corresponding Authors: Prof. C. H. Contag , Prof. S. S. Gambhir , and Dr. S. Harmsen
| | - Stefan Harmsen
- Corresponding Authors: Prof. C. H. Contag , Prof. S. S. Gambhir , and Dr. S. Harmsen
| |
Collapse
|
43
|
Piontkowski Z, Mark DJ, Bedics MA, Sabatini RP, Mark MF, Detty MR, McCamant DW. Excited State Torsional Processes in Chalcogenopyrylium Monomethine Dyes. J Phys Chem A 2019; 123:8807-8822. [PMID: 31591891 DOI: 10.1021/acs.jpca.9b07268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chalcogenopyrylium monomethine (CGPM) dyes represent a class of environmentally activated singlet oxygen generators with applications in photodynamic therapy (PDT) and photoassisted chemotherapy (PACT). Upon binding to genomic material, the dyes are presumed to rigidify, allowing for intersystem crossing to outcompete excited state deactivation by internal conversion. This results in large triplet yields and hence large singlet oxygen yields. To understand the nature of the internal conversion process that controls the activity of the dyes, femtosecond transient absorption experiments were performed on a series of S-, Se-, and Te-substituted CGPM dyes. For S- and Se-substituted species in methanol, rapid internal conversion from the singlet excited state, S1, occurs in ∼5 ps, deactivating the optically active excited state. The internal conversion produces a distorted ground-state species that returns to its equilibrium structure in ∼20 ps. For Te-substituted species, the internal conversion competes with rapid intersystem crossing to the lowest triplet state, T1, which occurs with a ∼ 100 ps time constant in methanol. In more viscous methanol/glycerol mixtures, the internal conversion to the ground state slows by 2 orders of magnitude, occurring in 500-600 ps. For Se- and Te-substituted species in viscous environments, the slower internal conversion rate allows a larger triplet yield. Using femtosecond stimulated Raman spectroscopy (FSRS) and time-dependent density functional theory (TD-DFT), the internal conversion is determined to occur by twisting of the pyrylium rings about the monomethine bridge. Evolution from the distorted ground state occurs by twisting back to the S0 equilibrium structure. The environmentally dependent photoactivity of CGPM dyes is discussed in the context of PDT and PACT applications.
Collapse
Affiliation(s)
- Zachary Piontkowski
- Department of Chemistry , University of Rochester , Rochester , New York 14627 United States
| | - Daniel J Mark
- Department of Chemistry , University of Rochester , Rochester , New York 14627 United States
| | - Matthew A Bedics
- Department of Chemistry, University at Buffalo , The State University of New York , Buffalo , New York 14260 United States
| | - Randy Pat Sabatini
- Department of Chemistry , University of Rochester , Rochester , New York 14627 United States
| | - Michael F Mark
- Department of Chemistry , University of Rochester , Rochester , New York 14627 United States
| | - Michael R Detty
- Department of Chemistry, University at Buffalo , The State University of New York , Buffalo , New York 14260 United States
| | - David W McCamant
- Department of Chemistry , University of Rochester , Rochester , New York 14627 United States
| |
Collapse
|
44
|
Grodzinski P, Kircher M, Goldberg M, Gabizon A. Integrating Nanotechnology into Cancer Care. ACS NANO 2019; 13:7370-7376. [PMID: 31240914 DOI: 10.1021/acsnano.9b04266] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Research activity in medical and cancer nanotechnology has grown dramatically over the past 15 years. The field has become a cradle of multidisciplinary investigations bringing together physicists, chemists, and engineers working with clinicians and biologists to address paramount problems in cancer care and treatment. Some have argued that the explosion in the number of research papers has not been followed by sufficient clinical activity in nanomedicine. However, three new nanodrugs have now been approved by the U.S. Food and Drug Administration (FDA) in the past three years, confirming the validity of nanotechnology approaches in cancer. Excitingly, translational pipelines contain several additional intriguing candidates. In this Nano Focus article, we discuss potential barriers inhibiting further incorporation of nanomedicines into patient care, possible strategies to overcome these barriers, and promising new directions in cancer interventions based on nanotechnology. Insights presented herein are outcomes of discussions held at a recent strategic workshop hosted by the National Cancer Institute (NCI), which brought together research, clinical, and commercial leaders of the nanomedicine field.
Collapse
Affiliation(s)
- Piotr Grodzinski
- National Cancer Institute , National Institutes of Health , Rockville , Maryland 20814 , United States
| | - Moritz Kircher
- Dana Farber Cancer Institute , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Michael Goldberg
- Dana Farber Cancer Institute , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Alberto Gabizon
- Shaare Zedek Medical Center and Hebrew University-School of Medicine , Jerusalem , Israel
| |
Collapse
|
45
|
Wu D, Chen Y, Hou S, Fang W, Duan H. Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures. Chembiochem 2019; 20:2432-2441. [PMID: 30957950 DOI: 10.1002/cbic.201900191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS), with greatly amplified fingerprint spectra, holds great promise in biochemical and biomedical research. In particular, the possibility of exciting a library of SERS probes and differentially detecting them simultaneously has stimulated widespread interest in multiplexed biodetection. Herein, recent progress in developing SERS-active plasmonic nanostructures for cellular and intracellular detection is summarized. The development of nanosensors with tailored plasmonic and multifunctional properties for profiling molecular and pathological processes is highlighted. Future challenges towards the routine use of SERS technology in quantitative bioanalysis and clinical diagnostics are further discussed.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P.R. China.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Yonghao Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
46
|
Rong G, Tuttle EE, Neal Reilly A, Clark HA. Recent Developments in Nanosensors for Imaging Applications in Biological Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:109-128. [PMID: 30857408 PMCID: PMC6958676 DOI: 10.1146/annurev-anchem-061417-125747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sensors are key tools for monitoring the dynamic changes of biomolecules and biofunctions that encode valuable information that helps us understand underlying biological processes of fundamental importance. Because of their distinctive size-dependent physicochemical properties, materials with nanometer scales have recently emerged as promising candidates for biological sensing applications by offering unique insights into real-time changes of key physiological parameters. This review focuses on recent advances in imaging-based nanosensor developments and applications categorized by their signal transduction mechanisms, namely, fluorescence, plasmonics, MRI, and photoacoustics. We further discuss the synergy created by multimodal nanosensors in which sensor components work based on two or more signal transduction mechanisms.
Collapse
Affiliation(s)
- Guoxin Rong
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - Erin E Tuttle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ashlyn Neal Reilly
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - Heather A Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
47
|
Han L, Duan W, Li X, Wang C, Jin Z, Zhai Y, Cao C, Chen L, Xu W, Liu Y, Bi YY, Feng J, Mao Y, Yue Q, Zhang XY, Li C. Surface-Enhanced Resonance Raman Scattering-Guided Brain Tumor Surgery Showing Prognostic Benefit in Rat Models. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15241-15250. [PMID: 30896915 DOI: 10.1021/acsami.9b00227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glioma is the most frequent form of malignant brain tumors. Surgical debulking is a major strategy for glioma treatment. However, there is a great challenge for the neurosurgeons to intraoperatively identify the true margins of glioma because of its infiltrative nature. Tumor residues or microscopic satellite foci left in the resection bed are the main reasons leading to early recurrence as well as poor prognosis. In this study, a surface-enhanced resonance Raman scattering (SERRS) probe was developed to intraoperatively guide glioma resection. In this probe, molecular reporters with absorptive maxima at the near-infrared wavelength range were covalently functionalized on the surface of gold nanostars. This SERRS probe demonstrated an ultrahigh sensitivity with a detection limit of 5.0 pM in aqueous solution. By the development of glioma xenografts in a mouse dorsal skin window chamber, extravasation of this probe from leaky tumor vasculature as functions of time and distance to tumor boundary was investigated. Importantly, the invasive margin of the tumor xenograft was demarcated by this probe with a high signal-to-background ratio. Preoperative magnetic resonance imaging (MRI) first defined the position of orthotopic glioma xenografts in the brain of rat models, and the craniotomy plan was designed. The brain tumor was then excised intraoperatively step-by-step with the assistance of a handheld Raman scanner till the Raman signals of the probe completely disappeared in the resection bed. Notably, longitudinal MRI showed that SERRS-guided surgery significantly reduced the tumor recurrence rate and improved the overall survival of rat models compared with the white light-guided surgery. Overall, this work demonstrates the prognostic benefit of SERRS-guided glioma surgery in animal models. Because delineation of tumor-invasive margins is a common challenge faced by the surgeons, this SERRS probe with a picomolar detection limit holds the promise in improving the surgical outcome of different types of infiltrated tumors.
Collapse
Affiliation(s)
- Limei Han
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Wenjia Duan
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Xinwei Li
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Cong Wang
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Ziyi Jin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | | | - Chong Cao
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Luo Chen
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | | | | | - Yong-Yan Bi
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | | | - Ying Mao
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science , Fudan University , Shanghai 200032 , China
| | | | | | - Cong Li
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| |
Collapse
|
48
|
Pal S, Ray A, Andreou C, Zhou Y, Rakshit T, Wlodarczyk M, Maeda M, Toledo-Crow R, Berisha N, Yang J, Hsu HT, Oseledchyk A, Mondal J, Zou S, Kircher MF. DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy. Nat Commun 2019; 10:1926. [PMID: 31028250 PMCID: PMC6486596 DOI: 10.1038/s41467-019-09173-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, surface-enhanced Raman scattering nanoprobes have shown tremendous potential in oncological imaging owing to the high sensitivity and specificity of their fingerprint-like spectra. As current Raman scanners rely on a slow, point-by-point spectrum acquisition, there is an unmet need for faster imaging to cover a clinically relevant area in real-time. Herein, we report the rational design and optimization of fluorescence-Raman bimodal nanoparticles (FRNPs) that synergistically combine the specificity of Raman spectroscopy with the versatility and speed of fluorescence imaging. DNA-enabled molecular engineering allows the rational design of FRNPs with a detection limit as low as 5 × 10−15 M. FRNPs selectively accumulate in tumor tissue mouse cancer models and enable real-time fluorescence imaging for tumor detection, resection, and subsequent Raman-based verification of clean margins. Furthermore, FRNPs enable highly efficient image-guided photothermal ablation of tumors, widening the scope of the NPs into the therapeutic realm. Currently available Raman scanners are limited in speed to acquire images of clinically relevant sizes in cancer imaging. Here, the authors developed a DNA based design principle for Raman-Fluorescence bimodal nanoparticles and demonstrate real-time, high precision image-guided tumor resections and photothermal ablation of cancer.
Collapse
Affiliation(s)
- Suchetan Pal
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, Chhattisgarh, 492015, India
| | - Angana Ray
- Tata Institute of Fundamental Research, Hyderabad, Telangana, 500107, India
| | - Chrysafis Andreou
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yadong Zhou
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Tatini Rakshit
- Department of Bioengineering, New York University, New York, NY, 10010, USA
| | - Marek Wlodarczyk
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Masatomo Maeda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ricardo Toledo-Crow
- Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Naxhije Berisha
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Jiang Yang
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hsiao-Ting Hsu
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anton Oseledchyk
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Hyderabad, Telangana, 500107, India
| | - Shengli Zou
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Moritz F Kircher
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, 10065, USA. .,Department of Radiology, Weill Cornell Medical College, New York, NY, 10021, USA. .,Department of Imaging, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
49
|
Watts KE, Blackburn TJ, Pemberton JE. Optical Spectroscopy of Surfaces, Interfaces, and Thin Films: A Status Report. Anal Chem 2019; 91:4235-4265. [PMID: 30790520 DOI: 10.1021/acs.analchem.9b00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kristen E Watts
- Department of Chemistry and Biochemistry University of Arizona 1306 East University Boulevard , Tucson , Arizona 85721 , United States
| | - Thomas J Blackburn
- Department of Chemistry and Biochemistry University of Arizona 1306 East University Boulevard , Tucson , Arizona 85721 , United States
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry University of Arizona 1306 East University Boulevard , Tucson , Arizona 85721 , United States
| |
Collapse
|
50
|
Andreou C, Oseledchyk A, Nicolson F, Berisha N, Pal S, Kircher MF. Surface-enhanced Resonance Raman Scattering Nanoprobe Ratiometry for Detecting Microscopic Ovarian Cancer via Folate Receptor Targeting. J Vis Exp 2019. [PMID: 30958459 DOI: 10.3791/58389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer represents the deadliest gynecologic malignancy. Most patients present at an advanced stage (FIGO stage III or IV), when local metastatic spread has already occurred. However, ovarian cancer has a unique pattern of metastatic spread, in that tumor implants are initially contained within the peritoneal cavity. This feature could enable, in principle, the complete resection of tumor implants with curative intent. Many of these metastatic lesions are microscopic, making them hard to identify and treat. Neutralizing such micrometastases is believed to be a major goal towards eliminating tumor recurrence and achieving long-term survival. Raman imaging with surface enhanced resonance Raman scattering nanoprobes can be used to delineate microscopic tumors with high sensitivity, due to their bright and bioorthogonal spectral signatures. Here, we describe the synthesis of two 'flavors' of such nanoprobes: an antibody-functionalized one that targets the folate receptor - overexpressed in many ovarian cancers - and a non-targeted control nanoprobe, with distinct spectra. The nanoprobes are co-administered intraperitoneally to mouse models of metastatic human ovarian adenocarcinoma. All animal studies were approved by the Institutional Animal Care and Use Committee of Memorial Sloan Kettering Cancer Center. The peritoneal cavity of the animals is surgically exposed, washed, and scanned with a Raman microphotospectrometer. Subsequently, the Raman signatures of the two nanoprobes are decoupled using a Classical Least Squares fitting algorithm, and their respective scores divided to provide a ratiometric signal of folate-targeted over untargeted probes. In this way, microscopic metastases are visualized with high specificity. The main benefit of this approach is that the local application into the peritoneal cavity - which can be done conveniently during the surgical procedure - can tag tumors without subjecting the patient to systemic nanoparticle exposure. False positive signals stemming from non-specific binding of the nanoprobes onto visceral surfaces can be eliminated by following a ratiometric approach where targeted and non-targeted nanoprobes with distinct Raman signatures are applied as a mixture. The procedure is currently still limited by the lack of a commercial wide-field Raman imaging camera system, which once available will allow for the application of this technique in the operating theater.
Collapse
Affiliation(s)
| | | | - Fay Nicolson
- Department of Radiology, Memorial Sloan Kettering Cancer Center
| | - Naxhije Berisha
- Department of Radiology, Memorial Sloan Kettering Cancer Center; Department of Chemistry, The Graduate Center of the City University of New York
| | - Suchetan Pal
- Department of Radiology, Memorial Sloan Kettering Cancer Center
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center; Gerstner Sloan Kettering Graduate School of Biomedical Sciences; Department of Radiology, Weill Cornell Medical College of Cornell University; Dana-Farber Cancer Institute and Harvard Medical Center;
| |
Collapse
|