1
|
Lee YB, Park Y, Hamza A, Min JK, Dogsom O, Kim SC, Park JB. Function of a complex of p-Y42 RhoA GTPase and pyruvate kinase M2 in EGF signaling pathway in glioma cells. J Neurochem 2025; 169:e16210. [PMID: 39183510 DOI: 10.1111/jnc.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Epidermal growth factor (EGF) is known to be a critical stimulant for inducing the proliferation of glioma cancer cells. In our study, we observed that GST-RhoA binds to pyruvate kinase M2 (PKM2) in vitro. While EGF reduced the levels of RhoA protein, it significantly increased p-Y42 RhoA, as well as PKM1 and PKM2 in LN18 glioma cell line. We determined that RhoA undergoes degradation through ubiquitination involving SCF1 and Smurf1. Interestingly, we observed that p-Y42 RhoA binds to PKM2, while the dephosphomimetic form, RhoA Y42F, did not. Additionally, our observation revealed that PKM2 stabilized both RhoA and p-Y42 RhoA. Importantly, RhoA, p-Y42 RhoA, and PKM2, but not RhoA-GTP, were localized in the nucleus upon EGF stimulation. Knockdown of RhoA with siRNA resulted in the reduced levels of phosphoglycerate kinase1 (PGK1) and microtubule affinity-regulating kinase 4 (MARK). Furthermore, we found that the promoter of PGK1 was associated with β-catenin and YAP. Notably, p-Y42 RhoA and PKM2 co-immunoprecipitated with β-catenin and YAP. Based on these findings, we proposed a novel mechanism by which p-Y42 RhoA and PKM2, in conjunction with β-catenin and YAP, regulate PGK1 expression, contributing to the progression of glioma upon EGF.
Collapse
Affiliation(s)
- Yoon-Beom Lee
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Yohan Park
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Amir Hamza
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Jung Ki Min
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Oyungerel Dogsom
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Department of Biology, School of bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Sung-Chan Kim
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- ELMED Co. Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| |
Collapse
|
2
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
3
|
Wang X, Hu S, Ouyang S, Pan X, Fu Y, Chen X, Wu S. TsMS combined with EA promotes functional recovery and axonal regeneration via mediating the miR-539-5p/Sema3A/PlexinA1 signalling axis in sciatic nerve-injured rats. Neurosci Lett 2024; 824:137691. [PMID: 38373630 DOI: 10.1016/j.neulet.2024.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Enhancing axonal regeneration is one of the most important processes in treating nerve injuries. Both magnetic and electrical stimulation have the effect of promoting nerve axon regeneration. But few study has investigated the effects of trans-spinal magnetic stimulation (TsMS) combined with electroacupuncture (EA) on nerve regeneration in rats with sciatic nerve injury. In this study, we compared the improvement of neurological function in rats with sciatic nerve crush injuries after 4 weeks of different interventions (EA, TsMS, or TsMS combined with EA). We further explored the morphological and molecular biological alterations following sciatic nerve injury by HE, Masson, RT-PCR, western blotting, immunofluorescence staining and small RNA transcriptome sequencing. The results showed that TsMS combined with EA treatment significantly promoted axonal regeneration, increased the survival rate of neurons, and suppressed denervation atrophy of the gastrocnemius muscle. Subsequent experiments suggested that the combination treatment may play an active role by mediating the miR-539-5p/Sema3A/PlexinA1 signaling axis.
Collapse
Affiliation(s)
- Xianbin Wang
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China; Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shouxing Hu
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shuai Ouyang
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Xiao Pan
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Yingxue Fu
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Xingyu Chen
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shuang Wu
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China; Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Mei H, Li Z, Lv Q, Li X, Wu Y, Feng Q, Jiang Z, Zhou Y, Zheng Y, Gao Z, Zhou J, Jiang C, Huang S, Li J. Sema3A secreted by sensory nerve induces bone formation under mechanical loads. Int J Oral Sci 2024; 16:5. [PMID: 38238300 PMCID: PMC10796360 DOI: 10.1038/s41368-023-00269-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A (Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement (OTM) model. Firstly, bone formation was activated after the 3rd day of OTM, coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor (NGF), highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells (hPDLCs) within 24 hours. Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.
Collapse
Affiliation(s)
- Hongxiang Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengzheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinyi Lv
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingjian Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yumeng Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingchen Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhishen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yimei Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yule Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziqi Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiawei Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Asadi G, Feizollahi P, Rajabinejad M, Falahi S, Rezaei Varmaziar F, Faryadi E, Gorgin Karaji A, Salari F, Rezaiemanesh A. Comparison of the efficacy of combined budesonide and fexofenadine versus combined fluticasone propionate and fexofenadine on the expression of class-4 semaphorins and their receptors in the peripheral blood cells of patients with allergic rhinitis. Heliyon 2024; 10:e22924. [PMID: 38148815 PMCID: PMC10750067 DOI: 10.1016/j.heliyon.2023.e22924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Background Allergic rhinitis (AR) is a common immunoglobulin (Ig) E-mediated disease. This study aimed to evaluate the gene expression levels of class 4 semaphorins and their receptors in AR patients before and after treatment with budesonide and fexofenadine (B/F) compared to fluticasone propionate and fexofenadine (FP/F). Methods In this study, 29 AR patients (age 34.4 ± 1.2 years, 18 men and 11 women) were treated with B/F, and 24 AR patients (age 32.8 ± 1.9 years, 15 men and 9 women) were treated with FP/F for one month. Before and after treatment, peripheral blood samples were taken from patients. The expression levels of SEMA4A, SEMA4C, SEMA4D, Plexin-B2, and Plexin-D1 genes were measured using the qPCR method. In addition, the serum levels of IgE were measured using an enzyme-linked immunosorbent assay (ELISA). Results The expression levels of SEMA4A (P = 0.011), 4C (P = 0.017), Plexin-B2 (P = 0.0005), and Plexin-D1 (P = 0.008) remarkably increased in AR patients treated with B/F. Our results show a significant reduction in the gene expression levels of SEMA4A (P = 0.002), 4C (P = 0.014), 4D (P = 0.003), Plexin-B2 (P = 0.033), and Plexin-D1 (P = 0.035) after treatment with FP/F. The serum levels of IgE increased in FP/F treated group (P = 0.017) and conversely decreased in the treated group with B/F (P = 0.019). Moreover, the percentages of eosinophils were reduced in both FP/F and B/F groups (P = 0.015 and P = 0.0001, respectively). Conclusion In conclusion, concomitant use of fexofenadine and fluticasone propionate reduced SEMA4A, 4C, 4D, Plexin-B2, and Plexin-D1, while the SEMA4A, 4C, Plexin-B2, and Plexin-D1 gene expression levels were increased in the patient group treated with B/F.
Collapse
Affiliation(s)
- Gelayol Asadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Feizollahi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Misagh Rajabinejad
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Falahi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei Varmaziar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Faryadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
He Y, Tang J, Zhang M, Ying J, Mu D. Human Placenta Derived Mesenchymal Stem Cells Transplantation Reducing Cellular Apoptosis in Hypoxic-Ischemic Neonatal Rats by Down-Regulating Semaphorin 3A/Neuropilin-1. Neuroscience 2024; 536:36-46. [PMID: 37967738 DOI: 10.1016/j.neuroscience.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is an abnormal neurological condition caused by hypoxic-ischemic damage during the perinatal period. Human placenta derived mesenchymal stem cells (hPMSCs) have been shown to have protective and reparative effects in various neurological diseases; however, the research on HIE is insufficient. This study aimed to establish a rat model of HIE and transplant hPMSCs through the lateral ventricle after hypoxic-ishcemic (HI) brain damage to observe its protective effects and mechanisms, with a focus on brain apoptosis compared among groups. Differentially expressed apoptosis-related proteins were screened using a rat cytokine array and subsequent verification. Neuropilin-1 (NRP-1) and Semaphorin 3A (Sema 3A) were selected for further investigation. Western blotting was used to quantify the expression of Sema 3A and the proteins related to PI3K/Akt/mTOR signaling pathway. Exogenous Sema 3A was added to evaluate the effects of Sema 3A/NRP-1 on hPMSCs following HI injury. hPMSCs transplantation ameliorated HI-induced pathological changes, reduced apoptosis, and improved long-term neurological prognosis. Furthermore, Sema 3A/NRP-1 was a key regulator in reducing HI-induced apoptosis after hPMSCs transplantation. hPMSCs inhibited the expression of Sema 3A/NRP-1 and activated the PI3K/Akt/mTOR signaling pathway. Additionally, exogenous Sema 3A abolished the protective effects of hPMSCs against HI. In conclusion, hPMSCs transplantation reduced apoptosis and improved long-term neurological prognosis after HI by downregulating Sema 3A/NRP-1 expression and activating the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610000, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
| | - Jun Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610000, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China.
| | - Meng Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610000, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610000, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610000, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
| |
Collapse
|
7
|
Cagnetta R, Flanagan JG, Sonenberg N. Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease. J Neurosci 2023; 43:7247-7263. [PMID: 37914402 PMCID: PMC10621772 DOI: 10.1523/jneurosci.2240-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
8
|
Alber S, Di Matteo P, Zdradzinski MD, Dalla Costa I, Medzihradszky KF, Kawaguchi R, Di Pizio A, Freund P, Panayotis N, Marvaldi L, Doron-Mandel E, Okladnikov N, Rishal I, Nevo R, Coppola G, Lee SJ, Sahoo PK, Burlingame AL, Twiss JL, Fainzilber M. PTBP1 regulates injury responses and sensory pathways in adult peripheral neurons. SCIENCE ADVANCES 2023; 9:eadi0286. [PMID: 37506203 PMCID: PMC10381954 DOI: 10.1126/sciadv.adi0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin β1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.
Collapse
Affiliation(s)
- Stefanie Alber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Pierluigi Di Matteo
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew D. Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Katalin F. Medzihradszky
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Agostina Di Pizio
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Philip Freund
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nicolas Panayotis
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Letizia Marvaldi
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Neuroscience “Rita Levi Montalcini”, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano 10043, Italy
| | - Ella Doron-Mandel
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nataliya Okladnikov
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ida Rishal
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Giovanni Coppola
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Pabitra K. Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeffery L. Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Mike Fainzilber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
10
|
Dick F, Tysnes OB, Alves GW, Nido GS, Tzoulis C. Altered transcriptome-proteome coupling indicates aberrant proteostasis in Parkinson's disease. iScience 2023; 26:105925. [PMID: 36711240 PMCID: PMC9874017 DOI: 10.1016/j.isci.2023.105925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Aberrant proteostasis is thought to be implicated in Parkinson's disease (PD), but patient-derived evidence is scant. We hypothesized that impaired proteostasis is reflected as altered transcriptome-proteome correlation in the PD brain. We integrated transcriptomic and proteomic data from prefrontal cortex of PD patients and young and aged controls to assess RNA-protein correlations across samples. The aged brain showed a genome-wide decrease in mRNA-protein correlation. Genes encoding synaptic vesicle proteins showed negative correlations, likely reflecting spatial separation of mRNA and protein into soma and synapses. PD showed a broader transcriptome-proteome decoupling, consistent with a proteome-wide decline in proteostasis. Genes showing negative correlation in PD were enriched for proteasome subunits, indicating accentuated spatial separation of transcript and protein in PD neurons. In addition, PD showed positive correlations for mitochondrial respiratory chain genes, suggesting a tighter regulation in the face of mitochondrial dysfunction. Our results support the hypothesis that aberrant proteasomal function is implicated in PD pathogenesis.
Collapse
Affiliation(s)
- Fiona Dick
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases Department of Neurology, Haukeland University Hospital Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s disease, University of Bergen, Bergen, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases Department of Neurology, Haukeland University Hospital Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Guido W. Alves
- The Norwegian Center for Movement Disorders and Department of Neurology, Stavanger University Hospital, Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Gonzalo S. Nido
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases Department of Neurology, Haukeland University Hospital Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s disease, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases Department of Neurology, Haukeland University Hospital Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s disease, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Multiple Copies of microRNA Binding Sites in Long 3'UTR Variants Regulate Axonal Translation. Cells 2023; 12:cells12020233. [PMID: 36672174 PMCID: PMC9856650 DOI: 10.3390/cells12020233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Rapid responses to changes within subcellular compartments of highly polarized cells, such as neuron axons, depend on local translation and post-transcriptional regulation. The mechanism by which microRNAs (miRNAs) regulate this process is not fully understood. Here, using live cell imaging and RNA sequencing analysis, we demonstrated how miRNAs can differentially control hundreds of transcripts at the subcellular level. We demonstrated that the seed match length of the miRNA target-sequence regulates both mRNA stability and protein translation rates. While longer seed matches have an increased inhibitory effect, transcriptome analysis did not reveal differences in seed match length between axonal and somata mRNAs of motor neurons. However, mRNA variants with longer 3'UTR are enriched in axons and contain multiple repeats of specific miRNA target sequences. Finally, we demonstrated that the long 3'UTR mRNA variant of the motor protein Kif5b is enriched explicitly in motor neuron axons and contains multiple sequence repeats for binding miR-129-5p. This subsequently results in the differential post-transcriptional regulation of kif5b and its synthesis in axons. Thus, we suggest that the number of miRNA binding sites at the 3'UTR of the mRNA, rather than the miRNA seed match length, regulates the axonal transcriptome.
Collapse
|
12
|
González B, Cullen PJ. Regulation of Cdc42 protein turnover modulates the filamentous growth MAPK pathway. J Cell Biol 2022; 221:213675. [PMID: 36350310 PMCID: PMC9811999 DOI: 10.1083/jcb.202112100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases are central regulators of cell polarity and signaling. How Rho GTPases are directed to function in certain settings remains unclear. Here, we show the protein levels of the yeast Rho GTPase Cdc42p are regulated, which impacts a subset of its biological functions. Specifically, the active conformation of Cdc42p was ubiquitinated by the NEDD4 ubiquitin ligase Rsp5p and HSP40/HSP70 chaperones and turned over in the proteasome. A GTP-locked (Q61L) turnover-defective (TD) version, Cdc42pQ61L+TD, hyperactivated the MAPK pathway that regulates filamentous growth (fMAPK). Cdc42pQ61L+TD did not influence the activity of the mating pathway, which shares components with the fMAPK pathway. The fMAPK pathway adaptor, Bem4p, stabilized Cdc42p levels, which resulted in elevated fMAPK pathway signaling. Our results identify Cdc42p turnover regulation as being critical for the regulation of a MAPK pathway. The control of Rho GTPase levels by stabilization and turnover may be a general feature of signaling pathway regulation, which can result in the execution of a specific developmental program.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY,Correspondence to Paul J. Cullen:
| |
Collapse
|
13
|
Koppers M, Holt CE. Receptor-Ribosome Coupling: A Link Between Extrinsic Signals and mRNA Translation in Neuronal Compartments. Annu Rev Neurosci 2022; 45:41-61. [DOI: 10.1146/annurev-neuro-083021-110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axons receive extracellular signals that help to guide growth and synapse formation during development and to maintain neuronal function and survival during maturity. These signals relay information via cell surface receptors that can initiate local intracellular signaling at the site of binding, including local messenger RNA (mRNA) translation. Direct coupling of translational machinery to receptors provides an attractive way to activate this local mRNA translation and change the local proteome with high spatiotemporal resolution. Here, we first discuss the increasing evidence that different external stimuli trigger translation of specific subsets of mRNAs in axons via receptors and thus play a prominent role in various processes in both developing and mature neurons. We then discuss the receptor-mediated molecular mechanisms that regulate local mRNA translational with a focus on direct receptor-ribosome coupling. We advance the idea that receptor-ribosome coupling provides several advantages over other translational regulation mechanisms and is a common mechanism in cell communication. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Max Koppers
- Department of Biology, Division of Cell Biology, Neurobiology and Biophysics, Utrecht University, Utrecht, The Netherlands
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Basyuk E, Rage F, Bertrand E. RNA transport from transcription to localized translation: a single molecule perspective. RNA Biol 2021; 18:1221-1237. [PMID: 33111627 PMCID: PMC8354613 DOI: 10.1080/15476286.2020.1842631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Transport of mRNAs is an important step of gene expression, which brings the genetic message from the DNA in the nucleus to a precise cytoplasmic location in a regulated fashion. Perturbation of this process can lead to pathologies such as developmental and neurological disorders. In this review, we discuss recent advances in the field of mRNA transport made using single molecule fluorescent imaging approaches. We present an overview of these approaches in fixed and live cells and their input in understanding the key steps of mRNA journey: transport across the nucleoplasm, export through the nuclear pores and delivery to its final cytoplasmic location. This review puts a particular emphasis on the coupling of mRNA transport with translation, such as localization-dependent translational regulation and translation-dependent mRNA localization. We also highlight the recently discovered translation factories, and how cellular and viral RNAs can hijack membrane transport systems to travel in the cytoplasm.
Collapse
Affiliation(s)
- Eugenia Basyuk
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Present address: Laboratoire de Microbiologie Fondamentale et Pathogénicité, CNRS-UMR 5234, Université de Bordeaux, Bordeaux, France
| | - Florence Rage
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
- Equipe Labélisée Ligue Nationale Contre Le Cancer, Montpellier, France
| |
Collapse
|
15
|
Lei Z, Wang J, Zhang L, Liu CH. Ubiquitination-Dependent Regulation of Small GTPases in Membrane Trafficking: From Cell Biology to Human Diseases. Front Cell Dev Biol 2021; 9:688352. [PMID: 34277632 PMCID: PMC8281112 DOI: 10.3389/fcell.2021.688352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023] Open
Abstract
Membrane trafficking is critical for cellular homeostasis, which is mainly carried out by small GTPases, a class of proteins functioning in vesicle budding, transport, tethering and fusion processes. The accurate and organized membrane trafficking relies on the proper regulation of small GTPases, which involves the conversion between GTP- and GDP-bound small GTPases mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Emerging evidence indicates that post-translational modifications (PTMs) of small GTPases, especially ubiquitination, play an important role in the spatio-temporal regulation of small GTPases, and the dysregulation of small GTPase ubiquitination can result in multiple human diseases. In this review, we introduce small GTPases-mediated membrane trafficking pathways and the biological processes of ubiquitination-dependent regulation of small GTPases, including the regulation of small GTPase stability, activity and localization. We then discuss the dysregulation of small GTPase ubiquitination and the associated human membrane trafficking-related diseases, focusing on the neurological diseases and infections. An in-depth understanding of the molecular mechanisms by which ubiquitination regulates small GTPases can provide novel insights into the membrane trafficking process, which knowledge is valuable for the development of more effective and specific therapeutics for membrane trafficking-related human diseases.
Collapse
Affiliation(s)
- Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
17
|
Abstract
Cellular distribution of biomolecules is important for regulating their function. In this issue of Developmental Cell, Chouaib et al., 2020 employ genetically tagged human cell lines to investigate the subcellular distribution of specific mRNAs and their encoded proteins, revealing several instances of localized translation with distinctive regulatory implications.
Collapse
Affiliation(s)
- Ashley Chin
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Division of Experimental Medicine, McGill University, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
18
|
Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020; 143:3181-3213. [PMID: 33020798 PMCID: PMC7719033 DOI: 10.1093/brain/awaa268] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain poses a substantial challenge for the development of models of the CNS. Current animal models lack many essential human characteristics (in addition to raising operational challenges and ethical concerns), and conventional in vitro models, in turn, are limited in their capacity to provide information regarding many functional and systemic responses. Indeed, these challenges may underlie the notoriously low success rates of CNS drug development efforts. During the past 5 years, there has been a leap in the complexity and functionality of in vitro systems of the CNS, which have the potential to overcome many of the limitations of traditional model systems. The availability of human-derived induced pluripotent stem cell technology has further increased the translational potential of these systems. Yet, the adoption of state-of-the-art in vitro platforms within the CNS research community is limited. This may be attributable to the high costs or the immaturity of the systems. Nevertheless, the costs of fabrication have decreased, and there are tremendous ongoing efforts to improve the quality of cell differentiation. Herein, we aim to raise awareness of the capabilities and accessibility of advanced in vitro CNS technologies. We provide an overview of some of the main recent developments (since 2015) in in vitro CNS models. In particular, we focus on engineered in vitro models based on cell culture systems combined with microfluidic platforms (e.g. 'organ-on-a-chip' systems). We delve into the fundamental principles underlying these systems and review several applications of these platforms for the study of the CNS in health and disease. Our discussion further addresses the challenges that hinder the implementation of advanced in vitro platforms in personalized medicine or in large-scale industrial settings, and outlines the existing differentiation protocols and industrial cell sources. We conclude by providing practical guidelines for laboratories that are considering adopting organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Polyxeni Nikolakopoulou
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rossana Rauti
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dimitrios Voulgaris
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Iftach Shlomy
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ben M Maoz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Herland
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
19
|
Wang X, Li B, Wang Z, Wang F, Liang J, Chen C, Zhao L, Zhou B, Guo X, Ren L, Yuan X, Chen X, Wang T. miR-30b Promotes spinal cord sensory function recovery via the Sema3A/NRP-1/PlexinA1/RhoA/ROCK Pathway. J Cell Mol Med 2020; 24:12285-12297. [PMID: 32977360 PMCID: PMC7686968 DOI: 10.1111/jcmm.15591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) induces both motor and sensory dysfunctions. We wondered whether miR-30b could promote primary sensory neuron (PSN) axon growth in inhibitory microenvironment. The neurite growth was promoted by miR-30b agomir and inhibited by antagomir. MiR-30b targeted and degraded sema3A mRNA. MiR-30b regulated the formation of sema3A-NRP-1-PlexinA1 complex via targeting sema3A. The neurite length was induced by the miR-30b agomir, and the application of sema3A protein could reverse the effect of agomir. GTP-RhoA and ROCK expression were down-regulated by miR-30b. Neurite outgrowth that inhibited by sema3A and the miR-30b antagomir was increased by Y-27632. Agomir promoted neurite growth in NogoA inhibitory conditions, which indicated miR-30b could both enhance neuronal intrinsic regenerative ability and promote neurite growth against inhibitory microenvironment via Sema3A/NRP-1/PlexinA1/RhoA/ROCK axis. The agomir could also regulate Sema3A/NRP-1/PlexinA1/RhoA/ROCK axis in vivo and restore spinal cord sensory conductive function. In conclusion, miR-30b could be a novel target for sensation recovery after SCI.
Collapse
Affiliation(s)
- Xin Wang
- Chengde Medical University, Chengde, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Fengyan Wang
- Department of Orthopedics, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Jing Liang
- Department of Nursing, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Chuanjie Chen
- Department of Orthopedics, Chengde Central Hospital, Chengde, China
| | - Lei Zhao
- Department of Education, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Bo Zhou
- Chengde Medical University, Chengde, China.,Department of Neurology, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Xiaoling Guo
- Department of Neurology, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Liqun Ren
- Laboratory of Spinal Cord Injury and Rehabilitation, Chengde Medical University, Chengde, China
| | - Xin Yuan
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xueming Chen
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Tianyi Wang
- Department of Orthopedics, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| |
Collapse
|
20
|
Takabatake M, Goshima Y, Sasaki Y. Semaphorin-3A Promotes Degradation of Fragile X Mental Retardation Protein in Growth Cones via the Ubiquitin-Proteasome Pathway. Front Neural Circuits 2020; 14:5. [PMID: 32184710 PMCID: PMC7059091 DOI: 10.3389/fncir.2020.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/07/2020] [Indexed: 01/07/2023] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates local translation in dendrites and spines for synaptic plasticity. In axons, FMRP is implicated in axonal extension and axon guidance. We previously demonstrated the involvement of FMRP in growth cone collapse via a translation-dependent response to Semaphorin-3A (Sema3A), a repulsive axon guidance factor. In the case of attractive axon guidance factors, RNA-binding proteins such as zipcode binding protein 1 (ZBP1) accumulate towards the stimulated side of growth cones for local translation. However, it remains unclear how Sema3A effects FMRP localization in growth cones. Here, we show that levels of FMRP in growth cones of hippocampal neurons decreased after Sema3A stimulation. This decrease in FMRP was suppressed by the ubiquitin-activating enzyme E1 enzyme inhibitor PYR-41 and proteasome inhibitor MG132, suggesting that the ubiquitin-proteasome pathway is involved in Sema3A-induced FMRP degradation in growth cones. Moreover, the E1 enzyme or proteasome inhibitor suppressed Sema3A-induced increases in microtubule-associated protein 1B (MAP1B) in growth cones, suggesting that the ubiquitin-proteasome pathway promotes local translation of MAP1B, whose translation is mediated by FMRP. These inhibitors also blocked the Sema3A-induced growth cone collapse. Collectively, our results suggest that Sema3A promotes degradation of FMRP in growth cones through the ubiquitin-proteasome pathway, leading to growth cone collapse via local translation of MAP1B. These findings reveal a new mechanism of axon guidance regulation: degradation of the translational suppressor FMRP via the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Masaru Takabatake
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukio Sasaki
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| |
Collapse
|
21
|
Lucci C, Mesquita-Ribeiro R, Rathbone A, Dajas-Bailador F. Spatiotemporal regulation of GSK3β levels by miRNA-26a controls axon development in cortical neurons. Development 2020; 147:dev.180232. [PMID: 31964775 PMCID: PMC7033742 DOI: 10.1242/dev.180232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
Both the establishment of neuronal polarity and axonal growth are crucial steps in the development of the nervous system. The local translation of mRNAs in the axon provides precise regulation of protein expression, and is now known to participate in axon development, pathfinding and synaptic formation and function. We have investigated the role of miR-26a in early stage mouse primary cortical neuron development. We show that micro-RNA-26a-5p (miR-26a) is highly expressed in neuronal cultures, and regulates both neuronal polarity and axon growth. Using compartmentalised microfluidic neuronal cultures, we identified a local role for miR-26a in the axon, where the repression of local synthesis of GSK3β controls axon development and growth. Removal of this repression in the axon triggers local translation of GSK3β protein and subsequent transport to the soma, where it can impact axonal growth. These results demonstrate how the axonal miR-26a can regulate local protein translation in the axon to facilitate retrograde communication to the soma and amplify neuronal responses, in a mechanism that influences axon development. Highlighted Article: Axonal miR-26a can regulate GSK3β translation in the axon to promote retrograde communication to the soma in a mechanism that modulates axon development.
Collapse
Affiliation(s)
- Cristiano Lucci
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| | - Raquel Mesquita-Ribeiro
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| | - Alex Rathbone
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| | - Federico Dajas-Bailador
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| |
Collapse
|
22
|
Local translation in neurons: visualization and function. Nat Struct Mol Biol 2019; 26:557-566. [PMID: 31270476 DOI: 10.1038/s41594-019-0263-5] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 01/01/2023]
Abstract
Neurons are among the most compartmentalized and interactive of all cell types. Like all cells, neurons use proteins as the main sensors and effectors. The modification of the proteome in axons and dendrites is used to guide the formation of synaptic connections and to store information. In this Review, we discuss the data indicating that an important source of protein for dendrites, axons and their associated elements is provided by the local synthesis of proteins. We review the data indicating the presence of the machinery required for protein synthesis, the direct visualization and demonstration of protein synthesis, and the established functional roles for local translation for many different neuronal functions. Finally, we consider the open questions and future directions in this field.
Collapse
|
23
|
Ubiquitination and Long Non-coding RNAs Regulate Actin Cytoskeleton Regulators in Cancer Progression. Int J Mol Sci 2019; 20:ijms20122997. [PMID: 31248165 PMCID: PMC6627692 DOI: 10.3390/ijms20122997] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Actin filaments are a major component of the cytoskeleton in eukaryotic cells and play an important role in cancer metastasis. Dynamics and reorganization of actin filaments are regulated by numerous regulators, including Rho GTPases, PAKs (p21-activated kinases), ROCKs (Rho-associated coiled-coil containing kinases), LIMKs (LIM domain kinases), and SSH1 (slingshot family protein phosphate 1). Ubiquitination, as a ubiquitous post-transcriptional modification, deceases protein levels of actin cytoskeleton regulatory factors and thereby modulates the actin cytoskeleton. There is increasing evidence showing cytoskeleton regulation by long noncoding RNAs (lncRNAs) in cancer metastasis. However, which E3 ligases are activated for the ubiquitination of actin-cytoskeleton regulators involved in tumor metastasis remains to be fully elucidated. Moreover, it is not clear how lncRNAs influence the expression of actin cytoskeleton regulators. Here, we summarize physiological and pathological mechanisms of lncRNAs and ubiquitination control mediators of actin cytoskeleton regulators which that are involved in tumorigenesis and tumor progression. Finally, we briefly discuss crosstalk between ubiquitination and lncRNA control mediators of actin-cytoskeleton regulators in cancer.
Collapse
|
24
|
Xiang R, Xu Y, Zhang W, Kong Y, Tan L, Chen S, Deng Y, Tao Z. Semaphorin 3A inhibits allergic inflammation by regulating immune responses in a mouse model of allergic rhinitis. Int Forum Allergy Rhinol 2018; 9:528-537. [PMID: 30597767 DOI: 10.1002/alr.22274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Rong Xiang
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Yu Xu
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Wei Zhang
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Yong‐Gang Kong
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Lu Tan
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Shi‐Ming Chen
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Yu‐Qin Deng
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Ze‐Zhang Tao
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
25
|
Gouveia Roque C, Holt CE. Growth Cone Tctp Is Dynamically Regulated by Guidance Cues. Front Mol Neurosci 2018; 11:399. [PMID: 30459552 PMCID: PMC6232380 DOI: 10.3389/fnmol.2018.00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Translationally controlled tumor protein (Tctp) contributes to retinal circuitry formation by promoting axon growth and guidance, but it remains unknown to what extent axonal Tctp specifically influences axon development programs. Various genome-wide profiling studies have ranked tctp transcripts among the most enriched in the axonal compartment of distinct neuronal populations, including embryonic retinal ganglion cells (RGCs), suggesting its expression can be regulated locally and that this may be important during development. Here, we report that growth cone Tctp levels change rapidly in response to Netrin-1 and Ephrin-A1, two guidance cues encountered by navigating RGC growth cones. This regulation is opposite in effect, as we observed protein synthesis- and mTORC1-dependent increases in growth cone Tctp levels after acute treatment with Netrin-1, but a decline upon exposure to Ephrin-A1, an inhibitor of mTORC1. Live imaging with translation reporters further showed that Netrin-1-induced synthesis of Tctp in growth cones is driven by a short 3'untranslated region (3'UTR) tctp mRNA isoform. However, acute inhibition of de novo Tctp synthesis in axons did not perturb the advance of retinal projections through the optic tract in vivo, indicating that locally produced Tctp is not necessary for normal axon growth and guidance.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochem Int 2018; 120:191-199. [PMID: 30176269 DOI: 10.1016/j.neuint.2018.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/01/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022]
Abstract
Neurodegenerative disorders have an enormous impact on society and healthcare budgets. There has been a high degree of failure in many recent clinical trials for disease-modifying therapeutics. A major factor in this failure is the difficulty of translating findings from animal-based cell models to human patients. The majority of non-animal neurodegenerative disease research has been conducted in 2 dimensional models of rodent neonatal neurons and glia. While these systems have provided valuable insights into neural cell function and dysfunction, they have largely reached the end of their useful life, as human stem cell technologies combined with major advances in microfluidic technologies have opened the door to development of patient-derived 3D brain cell models. These have major advantages in providing a micro-physiological system more closely reflecting the in vivo brain environment, and promote the interaction between different patient-derived brain cell-types. However, major challenges remain before these model systems will replace the 2D rodent models as the workhorse for neurodegenerative disease studies. Despite these challenges, we are likely to experience a rapid transition of research from old models to new patient derived 3D brain cell systems, which will likely improve translational outcomes for disease therapeutics.
Collapse
|
27
|
Khalil B, Morderer D, Price PL, Liu F, Rossoll W. mRNP assembly, axonal transport, and local translation in neurodegenerative diseases. Brain Res 2018; 1693:75-91. [PMID: 29462608 PMCID: PMC5997521 DOI: 10.1016/j.brainres.2018.02.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
The development, maturation, and maintenance of the mammalian nervous system rely on complex spatiotemporal patterns of gene expression. In neurons, this is achieved by the expression of differentially localized isoforms and specific sets of mRNA-binding proteins (mRBPs) that regulate RNA processing, mRNA trafficking, and local protein synthesis at remote sites within dendrites and axons. There is growing evidence that axons contain a specialized transcriptome and are endowed with the machinery that allows them to rapidly alter their local proteome via local translation and protein degradation. This enables axons to quickly respond to changes in their environment during development, and to facilitate axon regeneration and maintenance in adult organisms. Aside from providing autonomy to neuronal processes, local translation allows axons to send retrograde injury signals to the cell soma. In this review, we discuss evidence that disturbances in mRNP transport, granule assembly, axonal localization, and local translation contribute to pathology in various neurodegenerative diseases, including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Phillip L Price
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA; Department of Cell Biology, Emory University, Atlanta, GA 30322 USA
| | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA; Eye Center, The Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA.
| |
Collapse
|
28
|
Ramachandran KV, Fu JM, Schaffer TB, Na CH, Delannoy M, Margolis SS. Activity-Dependent Degradation of the Nascentome by the Neuronal Membrane Proteasome. Mol Cell 2018; 71:169-177.e6. [PMID: 29979964 PMCID: PMC6070390 DOI: 10.1016/j.molcel.2018.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Activity-dependent changes in neuronal function require coordinated regulation of the protein synthesis and protein degradation machinery to maintain protein homeostasis, critical for proper neuronal function. However, the biochemical evidence for this balance and coordination is largely lacking. Leveraging our recent discovery of a neuronal-specific 20S membrane proteasome complex (NMP), we began exploring how neuronal activity regulates its function. Here, we found that the NMP degrades exclusively a large fraction of ribosome-associated nascent polypeptides that are being newly synthesized during neuronal stimulation. Using deep-coverage and global mass spectrometry, we identified the nascent protein substrates of the NMP, which included products encoding immediate-early genes, such as c-Fos and Npas4. Intriguingly, we found that turnover of nascent polypeptides and not full-length proteins through the NMP occurred independent of canonical ubiquitylation pathways. We propose that these findings generally define a neuronal activity-induced protein homeostasis program of coordinated protein synthesis and degradation through the NMP.
Collapse
Affiliation(s)
- Kapil V Ramachandran
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Jack M Fu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Thomas B Schaffer
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Delannoy
- The Johns Hopkins University School of Medicine Microscope Facility, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Cagnetta R, Frese CK, Shigeoka T, Krijgsveld J, Holt CE. Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome. Neuron 2018; 99:29-46.e4. [PMID: 30008298 PMCID: PMC6048689 DOI: 10.1016/j.neuron.2018.06.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/24/2017] [Accepted: 05/31/2018] [Indexed: 01/13/2023]
Abstract
Axonal protein synthesis and degradation are rapidly regulated by extrinsic signals during neural wiring, but the full landscape of proteomic changes remains unknown due to limitations in axon sampling and sensitivity. By combining pulsed stable isotope labeling of amino acids in cell culture with single-pot solid-phase-enhanced sample preparation, we characterized the nascent proteome of isolated retinal axons on an unparalleled rapid timescale (5 min). Our analysis detects 350 basally translated axonal proteins on average, including several linked to neurological disease. Axons stimulated by different cues (Netrin-1, BDNF, Sema3A) show distinct signatures with more than 100 different nascent protein species up- or downregulated within the first 5 min followed by further dynamic remodeling. Switching repulsion to attraction triggers opposite regulation of a subset of common nascent proteins. Our findings thus reveal the rapid remodeling of the axonal proteomic landscape by extrinsic cues and uncover a logic underlying attraction versus repulsion.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christian K Frese
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany; CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany
| | - Toshiaki Shigeoka
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany; Excellence Cluster CellNetworks, University of Heidelberg, Im Neuenheimer Feld 581, Heidelberg 69120, Germany.
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
30
|
Laumonnerie C, Solecki DJ. Regulation of Polarity Protein Levels in the Developing Central Nervous System. J Mol Biol 2018; 430:3472-3480. [PMID: 29864442 DOI: 10.1016/j.jmb.2018.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
In the course of their development from neuroepithelial cells to mature neurons, neuronal progenitors proliferate, delaminate, differentiate, migrate, and extend processes to form a complex neuronal network. In addition to supporting the morphology of the neuroepithelium and radial glia, polarity proteins contribute to the remodeling of processes and support the architectural reorganizations that result in axon extension and dendrite formation. While a good amount of evidence highlights a rheostat-like regulation by signaling events leading to local activation and/or redistribution of polarity proteins, recent studies demonstrate a new paradigm involving a switch-like regulation directly controlling the availability of polarity protein at specific stage by transcriptional regulation and/or targeted ubiquitin proteasome degradation. During the process of differentiation, most neurons will adopt a morphology with reduced polarity which suggests that polarity complex proteins are strongly repressed during key step of development. Here we review the different mechanisms that directly impact the levels of polarity complex proteins in neurons in relation to the polarization context and discuss why this transient loss of polarity is essential to understand neural development and how this knowledge could be relevant for some neuropathy.
Collapse
Affiliation(s)
- Christophe Laumonnerie
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Blvd, Memphis, TN 38105, USA
| | - David J Solecki
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Blvd, Memphis, TN 38105, USA.
| |
Collapse
|
31
|
Jin EJ, Kiral FR, Hiesinger PR. The where, what, and when of membrane protein degradation in neurons. Dev Neurobiol 2018; 78:283-297. [PMID: 28884504 PMCID: PMC5816708 DOI: 10.1002/dneu.22534] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/20/2022]
Abstract
Membrane protein turnover and degradation are required for the function and health of all cells. Neurons may live for the entire lifetime of an organism and are highly polarized cells with spatially segregated axonal and dendritic compartments. Both longevity and morphological complexity represent challenges for regulated membrane protein degradation. To investigate how neurons cope with these challenges, an increasing number of recent studies investigated local, cargo-specific protein sorting, and degradation at axon terminals and in dendritic processes. In this review, we explore the current answers to the ensuing questions of where, what, and when membrane proteins are degraded in neurons. © 2017 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 283-297, 2018.
Collapse
Affiliation(s)
- Eugene Jennifer Jin
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
- Graduate School of Biomedical SciencesUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Ferdi Ridvan Kiral
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
| | - Peter Robin Hiesinger
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
| |
Collapse
|
32
|
Kim JY, Deglincerti A, Jaffrey SR. A Staufen1-mediated decay pathway influences the local transcriptome in axons. ACTA ACUST UNITED AC 2017; 5:e1414016. [PMID: 29416957 DOI: 10.1080/21690731.2017.1414016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
Local translation is critical for diverse aspects of neuronal function, including mediating responses of elongating axons to guidance cues and other signaling molecules. A major determinant of the protein synthetic capacity of axons and growth cones is the specific set of mRNAs that are trafficked to these sites. However, recently it has become clear that the axonal transcriptome can also be shaped by local RNA degradation mechanisms, such as nonsense-mediated decay. Here we show that Staufen1-mediated decay can also occur within axons and mediate degradation of specific axonal transcripts. We show that Staufen1 and Upf1, which function together in Staufen1-mediated decay, are localized in growth cones. Selective depletion of Staufen1 from neurons results in a complex pattern of transcriptional alterations, with a subset of transcripts showing increased expression and increased RNA half-life consistent with their regulation by Staufen1-mediated decay. Additionally, we show certain transcripts, such as Rac1, are regulated by Staufen1 within axons and growth cones. The functional significance of Staufen1 in growth cones is supported by morphological alterations in growth cones following Staufen1 knockdown. Together these data point to Staufen1-mediated decay as a novel mechanism to control mRNA expression levels in axons and growth cones through local RNA degradation.
Collapse
Affiliation(s)
- Ju Youn Kim
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Alessia Deglincerti
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
33
|
Terenzio M, Schiavo G, Fainzilber M. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron 2017; 96:667-679. [PMID: 29096079 DOI: 10.1016/j.neuron.2017.10.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells.
Collapse
Affiliation(s)
- Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK; Discoveries Centre for Regenerative and Precision Medicine at UCL, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
34
|
Abstract
Human development requires intricate cell specification and communication pathways that allow an embryo to generate and appropriately connect more than 200 different cell types. Key to the successful completion of this differentiation programme is the quantitative and reversible regulation of core signalling networks, and post-translational modification with ubiquitin provides embryos with an essential tool to accomplish this task. Instigated by E3 ligases and reversed by deubiquitylases, ubiquitylation controls many processes that are fundamental for development, such as cell division, fate specification and migration. As aberrant function or regulation of ubiquitylation enzymes is at the roots of developmental disorders, cancer, and neurodegeneration, modulating the activity of ubiquitylation enzymes is likely to provide strategies for therapeutic intervention.
Collapse
|
35
|
Compartmentalized Microfluidic Platforms: The Unrivaled Breakthrough of In Vitro Tools for Neurobiological Research. J Neurosci 2017; 36:11573-11584. [PMID: 27852766 DOI: 10.1523/jneurosci.1748-16.2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/08/2016] [Accepted: 09/28/2016] [Indexed: 12/15/2022] Open
Abstract
Microfluidic technology has become a valuable tool to the scientific community, allowing researchers to study fine cellular mechanisms with higher variable control compared with conventional systems. It has evolved tremendously, and its applicability and flexibility made its usage grow exponentially and transversely to several research fields. This has been particularly noticeable in neuroscience research, where microfluidic platforms made it possible to address specific questions extending from axonal guidance, synapse formation, or axonal transport to the development of 3D models of the CNS to allow pharmacological testing and drug screening. Furthermore, the continuous upgrade of microfluidic platforms has allowed a deeper study of the communication occurring between different neuronal and glial cells or between neurons and other peripheral tissues, both in physiological and pathological conditions. Importantly, the evolution of microfluidic technology has always been accompanied by the development of new computational tools addressing data acquisition, analysis, and modeling.
Collapse
|
36
|
Rangaraju V, Tom Dieck S, Schuman EM. Local translation in neuronal compartments: how local is local? EMBO Rep 2017; 18:693-711. [PMID: 28404606 DOI: 10.15252/embr.201744045] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Efficient neuronal function depends on the continued modulation of the local neuronal proteome. Local protein synthesis plays a central role in tuning the neuronal proteome at specific neuronal regions. Various aspects of translation such as the localization of translational machinery, spatial spread of the newly translated proteins, and their site of action are carried out in specialized neuronal subcompartments to result in a localized functional outcome. In this review, we focus on the various aspects of these local translation compartments such as size, biochemical and organelle composition, structural boundaries, and temporal dynamics. We also discuss the apparent absence of definitive components of translation in these local compartments and the emerging state-of-the-art tools that could help dissecting these conundrums in greater detail in the future.
Collapse
Affiliation(s)
- Vidhya Rangaraju
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
37
|
Cornejo VH, Luarte A, Couve A. Global and local mechanisms sustain axonal proteostasis of transmembrane proteins. Traffic 2017; 18:255-266. [PMID: 28220989 DOI: 10.1111/tra.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/02/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
The control of neuronal protein homeostasis or proteostasis is tightly regulated both spatially and temporally, assuring accurate and integrated responses to external or intrinsic stimuli. Local or autonomous responses in dendritic and axonal compartments are crucial to sustain function during development, physiology and in response to damage or disease. Axons are responsible for generating and propagating electrical impulses in neurons, and the establishment and maintenance of their molecular composition are subject to extreme constraints exerted by length and size. Proteins that require the secretory pathway, such as receptors, transporters, ion channels or cell adhesion molecules, are fundamental for axonal function, but whether axons regulate their abundance autonomously and how they achieve this is not clear. Evidence supports the role of three complementary mechanisms to maintain proteostasis of these axonal proteins, namely vesicular transport, local translation and trafficking and transfer from supporting cells. Here, we review these mechanisms, their molecular machineries and contribution to neuronal function. We also examine the signaling pathways involved in local translation and their role during development and nerve injury. We discuss the relative contributions of a transport-controlled proteome directed by the soma (global regulation) versus a local-controlled proteome based on local translation or cell transfer (local regulation).
Collapse
Affiliation(s)
- Víctor Hugo Cornejo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Alejandro Luarte
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Andrés Couve
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
38
|
Ohtsuki T, Kanzaki S, Nishimura S, Kunihiro Y, Sisido M, Watanabe K. Phototriggered protein syntheses by using (7-diethylaminocoumarin-4-yl)methoxycarbonyl-caged aminoacyl tRNAs. Nat Commun 2016; 7:12501. [PMID: 27530762 PMCID: PMC4992060 DOI: 10.1038/ncomms12501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/08/2016] [Indexed: 01/29/2023] Open
Abstract
The possibility of spatiotemporally photocontrolling translation holds considerable promise for studies on the biological roles of local translation in cells and tissues. Here we report caged aminoacyl-tRNAs (aa-tRNAs) synthesized using a (7-diethylaminocoumarin-4-yl)methoxycarbonyl (DEACM)-cage compound. DEACM-caged aa-tRNA does not spontaneously deacylate for at least 4 h in neutral aqueous solution, and does not bind to the elongation factor Tu. On irradiation at ∼405 nm at 125 mW cm−2, DEACM-aa-tRNA is converted into active aa-tRNA with a half-life of 19 s. Notably, this rapid uncaging induced by visible light does not impair the translation system. Translation is photoinduced when DEACM-aa-tRNA carrying a CCCG or a CUA anticodon is uncaged in the presence of mRNAs harbouring a CGGG four-base codon or a UAG amber codon, respectively. Protein synthesis is phototriggered in several model systems, including an in vitro translation system, an agarose gel, in liposomes and in mammalian cells. Spatiotemporal regulation of protein synthesis would advance studies into the consequences of localised protein translation in cells and tissues. Here, Ohtsuki et al. improve on an earlier caged-tRNA design to provide caged aminoacyl-tRNAs that are rapidly uncaged by visible light.
Collapse
Affiliation(s)
- Takashi Ohtsuki
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Shigeto Kanzaki
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Sae Nishimura
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Yoshio Kunihiro
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Masahiko Sisido
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Kazunori Watanabe
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
39
|
Abstract
Rho GTPases regulate cytoskeletal and cell adhesion dynamics and thereby coordinate a wide range of cellular processes, including cell migration, cell polarity and cell cycle progression. Most Rho GTPases cycle between a GTP-bound active conformation and a GDP-bound inactive conformation to regulate their ability to activate effector proteins and to elicit cellular responses. However, it has become apparent that Rho GTPases are regulated by post-translational modifications and the formation of specific protein complexes, in addition to GTP-GDP cycling. The canonical regulators of Rho GTPases - guanine nucleotide exchange factors, GTPase-activating proteins and guanine nucleotide dissociation inhibitors - are regulated similarly, creating a complex network of interactions to determine the precise spatiotemporal activation of Rho GTPases.
Collapse
Affiliation(s)
- Richard G Hodge
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
40
|
Groen EJN, Gillingwater TH. UBA1: At the Crossroads of Ubiquitin Homeostasis and Neurodegeneration. Trends Mol Med 2016; 21:622-632. [PMID: 26432019 PMCID: PMC4596250 DOI: 10.1016/j.molmed.2015.08.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are a leading cause of disability and early death. A common feature of these conditions is disruption of protein homeostasis. Ubiquitin-like modifier activating enzyme 1 (UBA1), the E1 ubiquitin-activating enzyme, sits at the apex of the ubiquitin cascade and represents an important regulator of cellular protein homeostasis. Critical contributions of UBA1-dependent pathways to the regulation of homeostasis and degeneration in the nervous system are emerging, including specific disruption of UBA1 in spinal muscular atrophy (SMA) and Huntington's disease (HD). In this review we discuss recent findings that put UBA1 at the centre of cellular homeostasis and neurodegeneration, highlighting the potential for UBA1 to act as a promising therapeutic target for a range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ewout J N Groen
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
41
|
Catlett TS, Gomez TM. Division of labor in the growth cone by DSCR1. J Cell Biol 2016; 213:407-9. [PMID: 27216257 PMCID: PMC4878096 DOI: 10.1083/jcb.201605012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 01/04/2023] Open
Abstract
Local protein synthesis directs growth cone turning of nascent axons, but mechanisms governing this process within compact, largely autonomous microenvironments remain poorly understood. In this issue, Wang et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201510107) demonstrate that the calcineurin regulator Down syndrome critical region 1 protein modulates both basal neurite outgrowth and growth cone turning.
Collapse
Affiliation(s)
- Timothy S Catlett
- Department of Neuroscience, University of Wisconsin, Madison, WI 53706 Cell and Molecular Biology Training Program, University of Wisconsin, Madison, WI 53706
| | - Timothy M Gomez
- Department of Neuroscience, University of Wisconsin, Madison, WI 53706 Cell and Molecular Biology Training Program, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
42
|
Kim JY, Jaffrey SR. Separating neuronal compartments gives clues as to local effect of ubiquitin conjugates in synaptogenesis. J Cell Biol 2016; 212:751-3. [PMID: 27022088 PMCID: PMC4810311 DOI: 10.1083/jcb.201603028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 01/24/2023] Open
Abstract
Presynaptic differentiation is a critical and poorly understood step in synapse formation. Using compartmentalized culture systems that isolate axons and nascent synapses, Pinto et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509039) show that the axonal ubiquitin-proteasome system locally regulates the accumulation of ubiquitinated substrates, triggering presynaptic differentiation.
Collapse
Affiliation(s)
- Ju Youn Kim
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065
| |
Collapse
|
43
|
Chitsaz D, Morales D, Law C, Kania A. An Automated Strategy for Unbiased Morphometric Analyses and Classifications of Growth Cones In Vitro. PLoS One 2015; 10:e0140959. [PMID: 26496644 PMCID: PMC4619750 DOI: 10.1371/journal.pone.0140959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/02/2015] [Indexed: 11/19/2022] Open
Abstract
During neural circuit development, attractive or repulsive guidance cue molecules direct growth cones (GCs) to their targets by eliciting cytoskeletal remodeling, which is reflected in their morphology. The experimental power of in vitro neuronal cultures to assay this process and its molecular mechanisms is well established, however, a method to rapidly find and quantify multiple morphological aspects of GCs is lacking. To this end, we have developed a free, easy to use, and fully automated Fiji macro, Conographer, which accurately identifies and measures many morphological parameters of GCs in 2D explant culture images. These measurements are then subjected to principle component analysis and k-means clustering to mathematically classify the GCs as “collapsed” or “extended”. The morphological parameters measured for each GC are found to be significantly different between collapsed and extended GCs, and are sufficient to classify GCs as such with the same level of accuracy as human observers. Application of a known collapse-inducing ligand results in significant changes in all parameters, resulting in an increase in ‘collapsed’ GCs determined by k-means clustering, as expected. Our strategy provides a powerful tool for exploring the relationship between GC morphology and guidance cue signaling, which in particular will greatly facilitate high-throughput studies of the effects of drugs, gene silencing or overexpression, or any other experimental manipulation in the context of an in vitro axon guidance assay.
Collapse
Affiliation(s)
- Daryan Chitsaz
- Institut de recherches cliniques de Montréal, Montréal, Canada
| | - Daniel Morales
- Institut de recherches cliniques de Montréal, Montréal, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | - Chris Law
- Institut de recherches cliniques de Montréal, Montréal, Canada
- * E-mail: (CL); (AK)
| | - Artur Kania
- Institut de recherches cliniques de Montréal, Montréal, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Canada
- Division of Experimental Medicine, Department of Anatomy and Cell Biology and Department of Biology, McGill University, Montréal, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Canada
- * E-mail: (CL); (AK)
| |
Collapse
|