1
|
Liu X, Chen S, Liu X, Wu X, Jiang X, Li Y, Yang Z. Enpp1 ameliorates MAFLD by regulating hepatocyte lipid metabolism through the AMPK/PPARα signaling pathway. Cell Biosci 2025; 15:22. [PMID: 39972484 PMCID: PMC11841222 DOI: 10.1186/s13578-025-01364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) has become the leading chronic liver disease globally, and there are no approved pharmacotherapies to treat this disease. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) has been found to be related to insulin resistance and lipid accumulation. However, the role and mechanism of Enpp1 in the development of MAFLD remain unknown. RESULTS Here we discovered that Enpp1 is lowly expressed in the liver of MAFLD patients by clinical investigation. Knocking out Enpp1 in the liver of mice aggravated obesity, insulin resistance and hepatic steatosis, and these effects were reversed by liver-specific Enpp1 overexpression. Through transcriptomic data mining and experimental validation, we demonstrated that Enpp1 deficiency inhibited the expression of AMPK (energy receptor) and PPARα (nuclear transcription factor for lipid metabolism), thereby promoting the transcription of lipid synthesis factors and mediating the progression of MAFLD. Mechanistically, Enpp1 enhanced the activity of AMPK by increasing the AMP-to-ATP ratio, which in turn raised PPARα levels and promoted the transcription of its downstream lipid metabolism factors. Pharmacological inhibition of AMPK activity abolished the promoting effect of Enpp1 on PPARα protein expression. CONCLUSIONS This study indicate that Enpp1 can effectively ameliorate MAFLD through effects on AMPK/PPARα signaling pathway-mediated lipid metabolism, revealing the significance of Enpp1 as a promising therapeutic target against MAFLD.
Collapse
Affiliation(s)
- Xiaohui Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Shuai Chen
- Fuyang People's Hospital affiliated to Anhui Medical University, Fuyang, China
| | - Xing Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Xianxian Wu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Xiaoliang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Yuhan Li
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing, 100021, China.
| |
Collapse
|
2
|
Seki Y, Ishizawa T, Watanabe G, Komatsu T, Nanjo A, Ueno T, Urano Y, Kawaguchi M, Nakagawa H, Hasegawa K. Identification of a pancreatic juice-specific fluorescent probe through 411 probes activated by aminopeptidases/proteases or phosphatases/phosphodiesterases. HPB (Oxford) 2025; 27:150-158. [PMID: 39632145 DOI: 10.1016/j.hpb.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/30/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND This study is a retrospective review aimed to identify pancreatic juice-specific fluorescent probes to visualize pancreatic juice using a library of 381 aminopeptidase/protease-activatable fluorescent probes and 30 phosphatase/phosphodiesterase probes. In 2013, we developed a fluorescence imaging technique using a chymotrypsin probe to visualize pancreatic juice, linked to postoperative pancreatic fistula (POPF). This probe required addition of trypsin to convert pancreatic chymotrypsinogen to chymotrypsin. Recently we accessed libraries of enzyme-activatable fluorescent probes to find probes that facilitated target-specific imaging. METHODS Pancreatic juice and ascitic fluid samples were collected in eight patients undergoing pancreaticoduodenectomy. Reaction rates of pancreatic juice to background ascitic fluids were calculated for these 411 fluorescent probes. RESULTS Forty-four fluorescent probes were screened in terms of high reactivity with pancreatic juice. Only one candidate probe targeting ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) 1 was selected for a pancreatic juice-specific fluorescent probe. Inhibitor experiments and Western blotting supported the presence of ENPP1 in the pancreatic juice. CONCLUSION ENPP1-targeting fluorescent probe may have the potential to visualize pancreatic juice leakage during surgery. This finding may allow surgeons to suture leaking sites and decide the necessity of prophylactic abdominal drains; however, the role of ENPP1 in pancreatic juice remains to be clarified.
Collapse
Affiliation(s)
- Yusuke Seki
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Gastroenterological Surgery, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Takeaki Ishizawa
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Genki Watanabe
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Toru Komatsu
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Aika Nanjo
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tasuku Ueno
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuteru Urano
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
3
|
Gao S, Hou Y, Xu Y, Li J, Zhang C, Jiang S, Yu S, Liu L, Tu W, Yu B, Zhang Y, Li L. Discovery of orally bioavailable phosphonate prodrugs of potent ENPP1 inhibitors for cancer treatment. Eur J Med Chem 2024; 279:116853. [PMID: 39270452 DOI: 10.1016/j.ejmech.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is the dominant hydrolase of 2',3'-cyclic GMP-AMP (cGAMP). Inhibition of ENPP1 contributes to increased cGAMP concentration and stimulator of interferon gene (STING) activation, with the potential to boost immune response against cancer. ENPP1 is a promising therapeutic target in tumor immunotherapy. To date, orally bioavailable ENPP1 inhibitors with highly potent activity under physiological conditions have been rarely reported. Herein, we report our effort in the design and synthesis of two different series of ENPP1 inhibitors, and in the identification of a highly potent ENPP1 inhibitor 27 (IC50 = 1.2 nM at pH 7.5), which significantly enhanced the cGAMP-mediated STING activity in THP-1 cells. Phosphonate compound 27 has good preclinical pharmacokinetic profiles with low plasma clearance rate in mouse, rat, and dog. It has been developed as bis-POM prodrug 36 which successfully improves the oral bioavailability of 27. In the Pan02 syngeneic mouse model of pancreatic cancer, orally administered 36 showed synergistic effect in combination with radiotherapy.
Collapse
Affiliation(s)
- Shanyun Gao
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yingjie Hou
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yanxiao Xu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Jingjing Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Chaobo Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Shujuan Jiang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Songda Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Lei Liu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Wangyang Tu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Bing Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Yixiang Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Leping Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| |
Collapse
|
4
|
Zhao L, Zhang Y, Tian Y, Ding X, Lin R, Xiao L, Peng F, Zhang K, Yang Z. Role of ENPP1 in cancer pathogenesis: Mechanisms and clinical implications (Review). Oncol Lett 2024; 28:590. [PMID: 39411204 PMCID: PMC11474142 DOI: 10.3892/ol.2024.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer is a significant societal, public health and economic challenge in the 21st century, and is the primary cause of death from disease globally. Ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) serves a crucial role in several biochemical processes, including adenosine triphosphate hydrolysis, purine metabolism and regulation of signaling pathways. Specifically, ENPP1, a type II transmembrane glycoprotein and key member of the ENPP family, may be upregulated in tumor cells and implicated in the pathogenesis of multiple human cancers. The present review provides an overview of the structural, pathological and physiological roles of ENPP1 and discusses the potential mechanisms of ENPP1 in the development of cancers such as breast, colon, gallbladder, liver and lung cancers, and also summarizes the four major signaling pathways in tumors. Furthermore, the present review demonstrates that ENPP1 serves a crucial role in cell migration, proliferation and invasion, and that corresponding inhibitors have been developed and associated with clinical characterization.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yu Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yahui Tian
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Xin Ding
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Runling Lin
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
- Weifang Key L2aboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Kai Zhang
- Genetic Testing Centre, Qingdao University Women's and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| |
Collapse
|
5
|
Sui Q, Yang H, Hu Z, Jin X, Chen Z, Jiang W, Sun F. The Research Progress of Metformin Regulation of Metabolic Reprogramming in Malignant Tumors. Pharm Res 2024; 41:2143-2159. [PMID: 39455505 DOI: 10.1007/s11095-024-03783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Metabolism reprogramming is a crucial hallmark of malignant tumors. Tumor cells demonstrate enhanced metabolic efficiency, converting nutrient inputs into glucose, amino acids, and lipids essential for their malignant proliferation and progression. Metformin, a commonly prescribed medication for type 2 diabetes mellitus, has garnered attention for its potential anticancer effects beyond its established hypoglycemic benefits. METHODS This review adopts a comprehensive approach to delineate the mechanisms underlying metabolite abnormalities within the primary metabolic processes of malignant tumors. RESULTS This review examines the abnormal activation of G protein-coupled receptors (GPCRs) in these metabolic pathways, encompassing aerobic glycolysis with increased lactate production in glucose metabolism, heightened lipid synthesis and cholesterol accumulation in lipid metabolism, and glutamine activation alongside abnormal protein post-translational modifications in amino acid and protein metabolism. Furthermore, the intricate metabolic pathways and molecular mechanisms through which metformin exerts its anticancer effects are synthesized and analyzed, particularly its impacts on AMP-activated protein kinase activation and the mTOR pathway. The analysis reveals a multifaceted understanding of how metformin can modulate tumor metabolism, targeting key nodes in metabolic reprogramming essential for tumor growth and progression. The review compiles evidence that supports metformin's potential as an adjuvant therapy for malignant tumors, highlighting its capacity to interfere with critical metabolic pathways. CONCLUSION In conclusion, this review offers a comprehensive overview of the plausible mechanisms mediating metformin's influence on tumor metabolism, fostering a deeper comprehension of its anticancer mechanisms. By expanding the clinical horizons of metformin and providing insight into metabolism-targeted tumor therapies, this review lays the groundwork for future research endeavors aimed at refining and advancing metabolic intervention strategies for cancer treatment.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
6
|
Zhan S, Zhang Y, Cao T, Yang R, Wang Q, Huang L, Cui R, Yu J, Meng H, Wang Y, Zhang S, Zheng M, Wu X. Discovery of Imidazo[1,2- a]pyrazine Derivatives as Potent ENPP1 Inhibitors. J Med Chem 2024; 67:18317-18333. [PMID: 39357030 DOI: 10.1021/acs.jmedchem.4c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
ENPP1 acts as a negative regulator of the cGAS-STING pathway through the hydrolysis of 2'3'-cGAMP. Inhibitors of ENPP1 are regarded as promising agents for stimulating the immune response in cancer immunotherapy. This study describes the identification and optimization of imidazo[1,2-a]pyrazine derivative 7 as a highly potent and selective ENPP1 inhibitor. Compound 7 demonstrated substantial inhibitory activity against ENPP1 with an IC50 value of 5.70 or 9.68 nM while showing weak inhibition against ENPP2 and ENPP3. Furthermore, compound 7 was shown to enhance the mRNA expression of cGAMP-induced STING pathway downstream target genes, such as IFNB1, CXCL10, and IL6. In vivo pharmacokinetic and antitumor studies showed promising results, with 7 not only exhibiting efficient pharmacokinetic properties but also enhancing the antitumor efficacy of the anti-PD-1 antibody. Treatment with 7 (80 mg/kg) combined with anti-PD-1 antibody achieved a tumor growth inhibition rate of 77.7% and improved survival in a murine model.
Collapse
Affiliation(s)
- Shiping Zhan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yingying Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tian Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550014, China
| | - Ruirui Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Lin Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Rongrong Cui
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haifang Meng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yitian Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sulin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingyue Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
7
|
Zhang Y, Wu Y, Liu Z, Yang K, Lin H, Xiong K. Non-coding RNAs as potential targets in metformin therapy for cancer. Cancer Cell Int 2024; 24:333. [PMID: 39354464 PMCID: PMC11445969 DOI: 10.1186/s12935-024-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Metformin, a widely used oral hypoglycemic drug, has emerged as a potential therapeutic agent for cancer treatment. While initially known for its role in managing diabetes, accumulating evidence suggests that metformin exhibits anticancer properties through various mechanisms. Several cellular or animal experiments have attempted to elucidate the role of non-coding RNA molecules, including microRNAs and long non-coding RNAs, in mediating the anticancer effects of metformin. The present review summarized the current understanding of the mechanisms by which non-coding RNAs modulate the response to metformin in cancer cells. The regulatory roles of non-coding RNAs, particularly miRNAs, in key cellular processes such as cell proliferation, cell death, angiogenesis, metabolism and epigenetics, and how metformin affects these processes are discussed. This review also highlights the role of lncRNAs in cancer types such as lung adenocarcinoma, breast cancer, and renal cancer, and points out the need for further exploration of the mechanisms by which metformin regulates lncRNAs. In addition, the present review explores the potential advantages of metformin-based therapies over direct delivery of ncRNAs, and this review highlights the mechanisms of non-coding RNA regulation when metformin is combined with other therapies. Overall, the present review provides insights into the molecular mechanisms underlying the anticancer effects of metformin mediated by non-coding RNAs, offering novel opportunities for the development of personalized treatment strategies in cancer patients.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Yunhao Wu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Zixu Liu
- The First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Kangping Yang
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang, China
| | - Kai Xiong
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
8
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
9
|
Yadav M, Vaishkiar I, Sharma A, Shukla A, Mohan A, Girdhar M, Kumar A, Malik T, Mohan A. Oestrogen receptor positive breast cancer and its embedded mechanism: breast cancer resistance to conventional drugs and related therapies, a review. Open Biol 2024; 14:230272. [PMID: 38889771 DOI: 10.1098/rsob.230272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/14/2024] [Indexed: 06/20/2024] Open
Abstract
Traditional medication and alternative therapies have long been used to treat breast cancer. One of the main problems with current treatments is that there is an increase in drug resistance in the cancer cells owing to genetic differences such as mutational changes, epigenetic changes and miRNA (microRNA) alterations such as miR-1246, miR-298, miR-27b and miR-33a, along with epigenetic modifications, such as Histone3 acetylation and CCCTC-Binding Factor (CTCF) hypermethylation for drug resistance in breast cancer cell lines. Certain forms of conventional drug resistance have been linked to genetic changes in genes such as ABCB1, AKT, S100A8/A9, TAGLN2 and NPM. This review aims to explore the current approaches to counter breast cancer, the action mechanism, along with novel therapeutic methods endowing potential drug resistance. The investigation of novel therapeutic approaches sheds light on the phenomenon of drug resistance including genetic variations that impact distinct forms of oestrogen receptor (ER) cancer, genetic changes, epigenetics-reported resistance and their identification in patients. Long-term effective therapy for breast cancer includes selective oestrogen receptor modulators, selective oestrogen receptor degraders and genetic variations, such as mutations in nuclear genes, epigenetic modifications and miRNA alterations in target proteins. Novel research addressing combinational therapies including maytansine, photodynamic therapy, guajadiol, talazoparib, COX2 inhibitors and miRNA 1246 inhibitors have been developed to improve patient survival rates.
Collapse
Affiliation(s)
- Manu Yadav
- Division of Genetics, ICAR- Indian Agricultural Research Institute , Pusa, New Delhi, India
| | - Ishita Vaishkiar
- Amity Institute of Biotechnology (AIB) University, Amity University Noida , Noida, India
| | - Ananya Sharma
- Department: Botany and Microbiology, Hemwati Nandan Bahuguna Garhwal University , Srinagar, India
| | - Akanksha Shukla
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, Punjab, India
| | - Aradhana Mohan
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University , Phagwara, Punjab, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology , New Delhi, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University , Jimma, Oromia 378, Ethiopia
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, Punjab, India
| |
Collapse
|
10
|
Li L. Stimulating STING for cancer therapy: Taking the extracellular route. Cell Chem Biol 2024; 31:851-861. [PMID: 38723635 DOI: 10.1016/j.chembiol.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Ten years ago, the second messenger cGAMP was discovered as the activator of the anti-cancer STING pathway. The characterization of cGAMP's paracrine action and dominant extracellular hydrolase ENPP1 cemented cGAMP as an intercellular immunotransmitter that coordinates the innate and adaptive immune systems to fight cancer. In this Perspective, I look back at a decade of discovery of extracellular cGAMP biology and drug development aiming to supply or preserve extracellular cGAMP for cancer treatment. Reviewing our understanding of the cell type-specific regulatory mechanisms of STING agonists, including their transporters and degradation enzymes, I explain on a molecular and cellular level the successes and challenges of direct STING agonists for cancer therapy. Based on what we know now, I propose new ways to stimulate the STING pathway in a manner that is not only cancer specific, but also cell type specific to fully harness the anti-cancer effect of cGAMP while avoiding collateral damage.
Collapse
Affiliation(s)
- Lingyin Li
- Arc Institute, Palo Alto, CA, 94304 USA; Department of Biochemistry and Sarafan ChEM-H Institute, Stanford University, Stanford, CA, 94305 USA.
| |
Collapse
|
11
|
Ma XY, Chen MM, Meng LH. Second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP): the cell autonomous and non-autonomous roles in cancer progression. Acta Pharmacol Sin 2024; 45:890-899. [PMID: 38177693 PMCID: PMC11053103 DOI: 10.1038/s41401-023-01210-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Cytosolic double-stranded DNA (dsDNA) is frequently accumulated in cancer cells due to chromosomal instability or exogenous stimulation. Cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, which is activated upon binding to dsDNA to synthesize the crucial second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP) that in turn triggers stimulator of interferon genes (STING) signaling. The canonical role of cGAS-cGAMP-STING pathway is essential for innate immunity and viral defense. Recent emerging evidence indicates that 2'3'-cGAMP plays an important role in cancer progression via cell autonomous and non-autonomous mechanisms. Beyond its role as an intracellular messenger to activate STING signaling in tumor cells, 2'3'-cGAMP also serves as an immunotransmitter produced by cancer cells to modulate the functions of non-tumor cells especially immune cells in the tumor microenvironment by activating STING signaling. In this review, we summarize the synthesis, transmission, and degradation of 2'3'-cGAMP as well as the dual functions of 2'3'-cGAMP in a STING-dependent manner. Additionally, we discuss the potential therapeutic strategies that harness the cGAMP-mediated antitumor response for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Man-Man Chen
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Gholamzad A, Khakpour N, Khosroshahi EM, Asadi S, Koohpar ZK, Matinahmadi A, Jebali A, Rashidi M, Hashemi M, Sadi FH, Gholamzad M. Cancer stem cells: The important role of CD markers, Signaling pathways, and MicroRNAs. Pathol Res Pract 2024; 256:155227. [PMID: 38490099 DOI: 10.1016/j.prp.2024.155227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.
Collapse
Affiliation(s)
- Amir Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch,Islamic Azad University, Tonekabon, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus,Torun,Poland
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Deprtment of Medical Nanotechnology,Faculty of Advanced Sciences and Technology,Tehran Medical Sciences,Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | | | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Du B, Ru J, Zhan Z, Lin C, Liu Y, Mao W, Zhang J. Insight into small-molecule inhibitors targeting extracellular nucleotide pyrophosphatase/phosphodiesterase1 for potential multiple human diseases. Eur J Med Chem 2024; 268:116286. [PMID: 38432057 DOI: 10.1016/j.ejmech.2024.116286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Extracellular nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as a type II transmembrane glycoprotein. It plays a crucial role in various biological processes, such as bone mineralization, cancer cell proliferation, and immune regulation. Consequently, ENPP1 has garnered attention as a promising target for pharmacological interventions. Despite its potential, the development of clinical-stage ENPP1 inhibitors for solid tumors, diabetes, and silent rickets remains limited. However, there are encouraging findings from preclinical trials involving small molecules exhibiting favorable therapeutic effects and safety profiles. This perspective aims to shed light on the structural properties, biological functions and the relationship between ENPP1 and diseases. Additionally, it focuses on the structure-activity relationship of ENPP1 inhibitors, with the intention of guiding the future development of new and effective ENPP1 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinxiao Ru
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zixuan Zhan
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Wuyu Mao
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Sun Y, Chen M, Han Y, Li W, Ma X, Shi Z, Zhou Y, Xu L, Yu L, Wang Y, Yu J, Diao X, Meng L, Xu S. Discovery of Pyrido[2,3- d]pyrimidin-7-one Derivatives as Highly Potent and Efficacious Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) Inhibitors for Cancer Treatment. J Med Chem 2024; 67:3986-4006. [PMID: 38387074 DOI: 10.1021/acs.jmedchem.3c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is an extracellular enzyme responsible for hydrolyzing cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), the endogenous agonist for the stimulator of interferon genes (STING) pathway. Inhibition of ENPP1 can trigger STING and promote antitumor immunity, offering an attractive therapeutic target for cancer immunotherapy. Despite progress in the discovery of ENPP1 inhibitors, the diversity in chemical structures and the efficacy of the agents are far from desirable, emphasizing the demand for novel inhibitors. Herein, we describe the design, synthesis, and biological evaluation of a series of ENPP1 inhibitors based on the pyrido[2,3-d]pyrimidin-7-one scaffold. Optimization efforts led to compound 31 with significant potency in both ENPP1 inhibition and STING pathway stimulation in vitro. Notably, 31 demonstrated in vivo efficacy in a syngeneic 4T1 mouse triple negative breast cancer model. These findings provide a promising lead compound with a novel scaffold for further drug development in cancer immunotherapy.
Collapse
Affiliation(s)
- Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Manman Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyan Han
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqiang Li
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Ma
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Shi
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lan Xu
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuxiang Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinghua Yu
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingxing Diao
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linghua Meng
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Guan D, Fang L, Feng M, Guo S, Xie L, Chen C, Sun X, Wu Q, Yuan X, Xie Z, Zhou J, Zhang H. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 inhibitors: Research progress and prospects. Eur J Med Chem 2024; 267:116211. [PMID: 38359537 DOI: 10.1016/j.ejmech.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The cancer immunotherapies involved in cGAS-STING pathway have been made great progress in recent years. STING agonists exhibit broad-spectrum anti-tumor effects with strong immune response. As a negative regulator of the cGAS-STING pathway, ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) can hydrolyze extracellular 2', 3'-cGAMP and reduce extracellular 2', 3'-cGAMP concentration. ENPP1 has been validated to play important roles in diabetes, cancers, and cardiovascular disease and now become a promising target for tumor immunotherapy. Several ENPP1 inhibitors under development have shown good anti-tumor effects alone or in combination with other agents in clinical and preclinical researches. In this review, the biological profiles of ENPP1 were described, and the structures and the structure-activity relationships (SAR) of the known ENPP1 inhibitors were summarized. This review also provided the prospects and challenges in the development of ENPP1 inhibitors.
Collapse
Affiliation(s)
- Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China
| | - Lincheng Fang
- Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mingshun Feng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shi Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lingfeng Xie
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Chao Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xue Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China
| | - Qingyun Wu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zuoquan Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
16
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
17
|
Huang R, Ning Q, Zhao J, Zhao X, Zeng L, Yi Y, Tang S. Targeting ENPP1 for cancer immunotherapy: Killing two birds with one stone. Biochem Pharmacol 2024; 220:116006. [PMID: 38142838 DOI: 10.1016/j.bcp.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Cancer immunotherapy, particularly with immune checkpoint inhibitors, has revolutionized the paradigm of cancer treatment. Nevertheless, the efficacy of cancer immunotherapy remains limited in most clinical settings due to the lack of a preexisting antitumor T-cell response in tumors. Therefore, the clinical outcomes of cancer immunotherapy must be improved crucially. With increased awareness of the importance of the innate immune response in the recruitment of T cells, as well as the onset and maintenance of the T cell response, great interest has been shown in activating the cGAS-STING signaling pathway to awaken the innate immune response, thereby orchestrating both innate and adaptive immune responses to induce tumor clearance. However, tumor cells have evolved to overexpress ectonucleotide pyrophosphate phosphodiesterase 1 (ENPP1), which degrades the immunotransmitter 2',3'-cGAMP and promotes the production of immune-suppressing adenosine, resulting in inhibition of the anticancer immune response in the tumor microenvironment. Clinically, ENPP1 overexpression is closely associated with poor prognosis in patients with cancer. Conversely, depleting or inhibiting ENPP1 has been verified to elevate extracellular 2',3'-cGAMP levels and inhibit the generation of adenosine, thereby reinvigorating the anticancer immune response for tumor elimination. A variety of ENPP1 inhibitors have recently been developed and have demonstrated significant promise for cancer immunotherapy. In this review, we provide an overview of ENPP1, dissect its immunosuppressive mechanisms, and discuss the development of ENPP1 inhibitors with the potential to further improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Ruilei Huang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jihui Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xuhong Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Luting Zeng
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yi Yi
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
18
|
Wang S, Böhnert V, Joseph AJ, Sudaryo V, Skariah G, Swinderman JT, Yu FB, Subramanyam V, Wolf DM, Lyu X, Gilbert LA, van’t Veer LJ, Goodarzi H, Li L. ENPP1 is an innate immune checkpoint of the anticancer cGAMP-STING pathway in breast cancer. Proc Natl Acad Sci U S A 2023; 120:e2313693120. [PMID: 38117852 PMCID: PMC10756298 DOI: 10.1073/pnas.2313693120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 12/22/2023] Open
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer stimulator of interferon genes (STING) pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single-cell RNA-seq, we show that ENPP1 in both cancer and normal tissues drives primary breast tumor growth and metastasis by dampening extracellular 2'3'-cyclic-GMP-AMP (cGAMP)-STING-mediated antitumoral immunity. ENPP1 loss-of-function in both cancer cells and normal tissues slowed primary tumor growth and abolished metastasis. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied ENPP1 knockout in a STING-dependent manner, demonstrating that restoration of paracrine cGAMP-STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Finally, ENPP1 expression in breast tumors deterministically predicated whether patients would remain free of distant metastasis after pembrolizumab (anti-PD-1) treatment followed by surgery. Altogether, ENPP1 blockade represents a strategy to exploit cancer-produced extracellular cGAMP for controlled local activation of STING and is therefore a promising therapeutic approach against breast cancer.
Collapse
Affiliation(s)
- Songnan Wang
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| | - Volker Böhnert
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
| | - Alby J. Joseph
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| | - Valentino Sudaryo
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| | - Gemini Skariah
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
| | - Jason T. Swinderman
- Arc Institute, Palo Alto, CA94304
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | | | - Vishvak Subramanyam
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
- Department of Biophysics & Biochemistry, University of California, San Francisco, CA94143
- Baker Computational Health Science Institute, University of California, San Francisco, CA94143
| | - Denise M. Wolf
- Department of Laboratory Medicine, University of California, San Francisco, CA94115
| | - Xuchao Lyu
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Luke A. Gilbert
- Arc Institute, Palo Alto, CA94304
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | - Laura J. van’t Veer
- Department of Laboratory Medicine, University of California, San Francisco, CA94115
| | - Hani Goodarzi
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
- Department of Biophysics & Biochemistry, University of California, San Francisco, CA94143
- Baker Computational Health Science Institute, University of California, San Francisco, CA94143
| | - Lingyin Li
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| |
Collapse
|
19
|
Gao Q, Zhan Y, Sun L, Zhu W. Cancer Stem Cells and the Tumor Microenvironment in Tumor Drug Resistance. Stem Cell Rev Rep 2023; 19:2141-2154. [PMID: 37477773 DOI: 10.1007/s12015-023-10593-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Although there has been some progress in the efficacy of anti-cancer drugs, drug resistance remains challenging. Cancer stem cells (CSCs) are self-renewing and differentiate into cancer tissues with tumor heterogeneity. CSCs are associated with the progression of breast, colon, and lung cancers. Hence, recent studies have focused on the role of CSCs in resistance to anti-cancer drugs. Increasing evidence suggests that CSCs interact with components of the tumor microenvironment (TME), such as vascular and immune cells, as well as various cytokines, and are regulated by multiple signaling pathways, thereby promoting drug resistance in various cancers. Therefore, it is important to clarify the mechanisms underlying the crosstalk between CSCs and the TME for the development of targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Qiuzhi Gao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Yixiang Zhan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
20
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
21
|
Ruiz-Fernández de Córdoba B, Martínez-Monge R, Lecanda F. ENPP1 Immunobiology as a Therapeutic Target. Clin Cancer Res 2023; 29:2184-2193. [PMID: 36719675 PMCID: PMC10261920 DOI: 10.1158/1078-0432.ccr-22-1681] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023]
Abstract
ENPP1 (ecto-nucleotide pyrophosphatase/phosphodiesterase) participates in the hydrolysis of different purine nucleotides in an array of physiologic processes. However, ENPP1 is frequently overexpressed in local relapses and tumor metastases, which are associated with poor prognosis and survival in a range of solid tumors. ENPP1 promotes an immunosuppressive tumor microenvironment (TME) by tilting the balance of ATP/adenosine (Ado) in conjunction with other components (CD38, CD39/ENTPD1, and CD73/NT5E). Moreover, ENPP1 intersects with the stimulator of interferon genes (STING), impairing its robust immune response through the hydrolysis of the effector 2´,3´-cyclic GMP-AMP. Thus, ENPP1 blockade emerges as a unique target eliciting immune remodeling and leveraging the STING pathway. Several ENPP1 inhibitors have shown an immunostimulatory effect, and their combination with other therapeutic modalities, such as immune-checkpoint blockade, STING activation, DNA damage response (DDR) inhibitors, and radiotherapy (RT), represents a promising avenue to boost antitumor-immune responses and to improve current clinical outcomes in several tumors. This comprehensive review summarizes the current state of the art and opens new perspectives for novel treatment strategies.
Collapse
Affiliation(s)
- Borja Ruiz-Fernández de Córdoba
- Solid Tumors Program. Division of Oncology, Center for Applied Medical Research, University of Navarra (CIMA), Navarra, Spain
| | - Rafael Martínez-Monge
- Oncology, Clínica University of Navarra, Navarra, Spain
- Radiation Oncology, Clínica University of Navarra, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Fernando Lecanda
- Solid Tumors Program. Division of Oncology, Center for Applied Medical Research, University of Navarra (CIMA), Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- School of Medicine, Department of Pathology, Anatomy and Physiology, University of Navarra, Navarra, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
22
|
Constanzo J, Bouden Y, Godry L, Kotzki PO, Deshayes E, Pouget JP. Immunomodulatory effects of targeted radionuclide therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:105-136. [PMID: 37438015 DOI: 10.1016/bs.ircmb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
It is now clear that conventional radiation therapy can reinstate cell death immunogenicity. Recent preclinical data indicate that targeted radionuclide therapy that irradiate tumors at continuous low dose rate also can elicit immunostimulatory effects and represents a promising strategy to circumvent immune checkpoint inhibitor resistance. In this perspective, we discuss the accumulating preclinical and clinical data suggesting that activation of the immune system through the cGAS-STING axis and the release of extracellular vesicles by irradiated cells, participate to this antitumor immunity. This should need to be considered for adapting clinical practices to state of the art of the radiobiology and to increase targeted radionuclide therapy effectiveness.
Collapse
Affiliation(s)
- J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
| | - Y Bouden
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - L Godry
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - P-O Kotzki
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - E Deshayes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - J-P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
23
|
Deregulated E2F Activity as a Cancer-Cell Specific Therapeutic Tool. Genes (Basel) 2023; 14:genes14020393. [PMID: 36833320 PMCID: PMC9956157 DOI: 10.3390/genes14020393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The transcription factor E2F, the principal target of the tumor suppressor pRB, plays crucial roles in cell proliferation and tumor suppression. In almost all cancers, pRB function is disabled, and E2F activity is enhanced. To specifically target cancer cells, trials have been undertaken to suppress enhanced E2F activity to restrain cell proliferation or selectively kill cancer cells, utilizing enhanced E2F activity. However, these approaches may also impact normal growing cells, since growth stimulation also inactivates pRB and enhances E2F activity. E2F activated upon the loss of pRB control (deregulated E2F) activates tumor suppressor genes, which are not activated by E2F induced by growth stimulation, inducing cellular senescence or apoptosis to protect cells from tumorigenesis. Deregulated E2F activity is tolerated in cancer cells due to inactivation of the ARF-p53 pathway, thus representing a feature unique to cancer cells. Deregulated E2F activity, which activates tumor suppressor genes, is distinct from enhanced E2F activity, which activates growth-related genes, in that deregulated E2F activity does not depend on the heterodimeric partner DP. Indeed, the ARF promoter, which is specifically activated by deregulated E2F, showed higher cancer-cell specific activity, compared to the E2F1 promoter, which is also activated by E2F induced by growth stimulation. Thus, deregulated E2F activity is an attractive potential therapeutic tool to specifically target cancer cells.
Collapse
|
24
|
Shahin AI, Zaraei SO, AlKubaisi BO, Ullah S, Anbar HS, El-Gamal R, Menon V, Abdel-Maksoud MS, Oh CH, El-Awady R, Gelsleichter NE, Pelletier J, Sévigny J, Iqbal J, Al-Tel TH, El-Gamal MI. Design and synthesis of new adamantyl derivatives as promising antiproliferative agents. Eur J Med Chem 2023; 246:114958. [PMID: 36470105 DOI: 10.1016/j.ejmech.2022.114958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
A series of adamantyl carboxamide derivatives containing sulfonate or sulfonamide moiety were designed as multitargeted inhibitors of ectonucleotide pyrophosphatases/phosphodiesterases (NPPs) and carbonic anhydrases (CAs). The target compounds were investigated for their antiproliferative activity against NCI-60 cancer cell lines panel. Three main series composed of 3- and 4-aminophenol, 4-aminoaniline, and 5-hydroxyindole scaffolds were designed based on a lead compound (A). Compounds 1e (benzenesulfonyl) and 1i (4-fluorobenzenesulfonyl) of 4-aminophenol backbone exhibited the most promising antiproliferative activity. Both compounds exhibited a broad-spectrum and potent inhibition against all the nine tested cancer subtypes. Both compounds showed nanomolar IC50 values over several cancer cell lines that belong to leukemia and colon cancer such as K-562, RPMI-8226, SR, COLO 205, HCT-116, HCT-15, HT29, KM12, and SW-620 cell lines. Compounds 1e and 1i induced apoptosis in K-562 leukemia cells in a dose-dependent manner. Compound 1i showed the highest cytotoxic activity with IC50 value of 200 nM against HT29 cell line. In addition, compounds 1e and 1i were tested against normal breast cells (HME1) and normal skin fibroblast cells (F180) and the results revealed that the compounds are safe toward normal cells compared to cancers cells. Enzymatic assays against NPP1-3 and carbonic anhydrases II, IX, and XII were performed to investigate the possible molecular target(s) of compounds 1e and 1i. Furthermore, a molecular docking study was performed to predict the binding modes of compounds 1e and 1i in the active site of the most sensitive enzymes subtypes.
Collapse
Affiliation(s)
- Afnan I Shahin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Bilal O AlKubaisi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre NRC (ID: 60014618), Dokki, Giza, 12622, Egypt
| | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul, 130-650, Republic of Korea; Department of Biomolecular Science, Korea University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nicolly Espindola Gelsleichter
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
25
|
Chu X, Baek DS, Li W, Shyp T, Mooney B, Hines MG, Morin GB, Sorensen PH, Dimitrov DS. Human antibodies targeting ENPP1 as candidate therapeutics for cancers. Front Immunol 2023; 14:1070492. [PMID: 36761762 PMCID: PMC9905232 DOI: 10.3389/fimmu.2023.1070492] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein expressed in many tissues. High expression levels of ENPP1 have been observed in many cancer types such as lung cancer, ovarian cancer, and breast cancer. Such overexpression has been associated with poor prognosis in these diseases. Hence, ENPP1 is a potential target for immunotherapy across multiple cancers. Here, we isolated and characterized two high-affinity and specific anti-ENPP1 Fab antibody candidates, 17 and 3G12, from large phage-displayed human Fab libraries. After conversion to IgG1, the binding of both antibodies increased significantly due to avidity effects. Based on these antibodies, we generated antibody-drug conjugates (ADCs), IgG-based bispecific T-cell engagers (IbTEs), and CAR T-cells which all exhibited potent killing of ENPP1-expressing cells. Thus, these various antibody-derived modalities are promising therapeutic candidates for cancers expressing human ENPP1.
Collapse
Affiliation(s)
- Xiaojie Chu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Du-San Baek
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Taras Shyp
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Brian Mooney
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Margaret G Hines
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States.,Abound Bio, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Li Z, He Q, Peng J, Yan Y, Fu C. Identification of Downregulated Exosome-Associated Gene ENPP1 as a Novel Lipid Metabolism and Immune-Associated Biomarker for Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:4834791. [PMID: 36199794 PMCID: PMC9529392 DOI: 10.1155/2022/4834791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Exosome plays an important role in the occurrence and development of tumors, such as hepatocellular carcinoma (LIHC). However, the functions and mechanisms of exosome-associated molecules in LIHC are still underexplored. Here, we investigated the role of the exosome-related gene ENPP1 in LIHC. Comprehensive bioinformatics from multiple databases revealed that ENPP1 was significantly downregulated in LIHC tissues. The patients with downregulated ENPP1 displayed a poor prognosis. Immunohistochemistry (IHC) was used to further confirm the downregulated ENPP1 in LIHC tissues. In addition, the coexpression network of ENPP1 was also explored to understand its roles in the underlying signaling pathways, including fatty acid degradation and the PPAR signaling pathway. Simultaneously, GSEA analysis indicated the potential roles of ENPP1 in the lipid metabolism-associated signaling pathways in the pathogenesis of LIHC, including fatty acid metabolism, fatty acid synthesis, and so on. Finally, immunological analysis indicated that ENPP1 might also be involved in multiple immune-related features, including immunoinhibitors, immunostimulators, and chemokines. Taken together, these findings could enhance our understanding of ENPP1 in LIHC pathogenesis and immune response and provide a new target for ENPP1-related immunotherapy in clinical treatment.
Collapse
Affiliation(s)
- Zhilan. Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qingchun. He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu. Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang. Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Chencheng. Fu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| |
Collapse
|
27
|
Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol 2022; 18:558-572. [PMID: 35732833 PMCID: PMC9214686 DOI: 10.1038/s41581-022-00589-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Cells are equipped with numerous sensors that recognize nucleic acids, which probably evolved for defence against viruses. Once triggered, these sensors stimulate the production of type I interferons and other cytokines that activate immune cells and promote an antiviral state. The evolutionary conserved enzyme cyclic GMP-AMP synthase (cGAS) is one of the most recently identified DNA sensors. Upon ligand engagement, cGAS dimerizes and synthesizes the dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP), which binds to the endoplasmic reticulum protein stimulator of interferon genes (STING) with high affinity, thereby unleashing an inflammatory response. cGAS-binding DNA is not restricted by sequence and must only be >45 nucleotides in length; therefore, cGAS can also be stimulated by self genomic or mitochondrial DNA. This broad specificity probably explains why the cGAS-STING pathway has been implicated in a number of autoinflammatory, autoimmune and neurodegenerative diseases; this pathway might also be activated during acute and chronic kidney injury. Therapeutic manipulation of the cGAS-STING pathway, using synthetic cyclic dinucleotides or inhibitors of cGAMP metabolism, promises to enhance immune responses in cancer or viral infections. By contrast, inhibitors of cGAS or STING might be useful in diseases in which this pro-inflammatory pathway is chronically activated.
Collapse
Affiliation(s)
| | - Jie An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Keith B Elkon
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
28
|
Panoramic view of microRNAs in regulating cancer stem cells. Essays Biochem 2022; 66:345-358. [PMID: 35996948 DOI: 10.1042/ebc20220007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are a subgroup of tumor cells, possessing the abilities of self-renewal and generation of heterogeneous tumor cell lineages. They are believed to be responsible for tumor initiation, metastasis, as well as chemoresistance in human malignancies. MicroRNAs (miRNAs) are small noncoding RNAs that play essential roles in various cellular activities including CSC initiation and CSC-related properties. Mature miRNAs with ∼22 nucleotides in length are generated from primary miRNAs via its precursors by miRNA-processing machinery. Extensive studies have demonstrated that mature miRNAs modulate CSC initiation and stemness features by regulating multiple pathways and targeting stemness-related factors. Meanwhile, both miRNA precursors and miRNA-processing machinery can also affect CSC properties, unveiling a new insight into miRNA function. The present review summarizes the roles of mature miRNAs, miRNA precursors, and miRNA-processing machinery in regulating CSC properties with a specific focus on the related molecular mechanisms, and also outlines the potential application of miRNAs in cancer diagnosis, predicting prognosis, as well as clinical therapy.
Collapse
|
29
|
Xu H, Zhang F, Gao X, Zhou Q, Zhu L. Fate decisions of breast cancer stem cells in cancer progression. Front Oncol 2022; 12:968306. [PMID: 36046046 PMCID: PMC9420991 DOI: 10.3389/fonc.2022.968306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has a marked recurrence and metastatic trait and is one of the most prevalent malignancies affecting women’s health worldwide. Tumor initiation and progression begin after the cell goes from a quiescent to an activated state and requires different mechanisms to act in concert to regulate t a specific set of spectral genes for expression. Cancer stem cells (CSCs) have been proven to initiate and drive tumorigenesis due to their capability of self-renew and differentiate. In addition, CSCs are believed to be capable of causing resistance to anti-tumor drugs, recurrence and metastasis. Therefore, exploring the origin, regulatory mechanisms and ultimate fate decision of CSCs in breast cancer outcomes has far-reaching clinical implications for the development of breast cancer stem cell (BCSC)-targeted therapeutic strategies. In this review, we will highlight the contribution of BCSCs to breast cancer and explore the internal and external factors that regulate the fate of BCSCs.
Collapse
|
30
|
The role of MicroRNA networks in tissue-specific direct and indirect effects of metformin and its application. Biomed Pharmacother 2022; 151:113130. [PMID: 35598373 DOI: 10.1016/j.biopha.2022.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Metformin is a first-line oral antidiabetic agent that results in clear benefits in relation to glucose metabolism and diabetes-related complications. The specific regulatory details and mechanisms underlying these benefits are still unclear and require further investigation. There is recent mounting evidence that metformin has pleiotropic effects on the target tissue development in metabolic organs, including adipose tissue, the gastrointestinal tract and the liver. The mechanism of actions of metformin are divided into direct effects on target tissues and indirect effects via non-targeted tissues. MicroRNAs (miRNAs) are a class of endogenous, noncoding, negative gene regulators that have emerged as important regulators of a number of diseases, including type 2 diabetes mellitus (T2DM). Metformin is involved in many aspects of miRNA regulation, and metformin treatment in T2DM should be associated with other miRNA targets. A large number of miRNAs regulation by metformin in target tissues with either direct or indirect effects has gradually been revealed in the context of numerous diseases and has gradually received increasing attention. This paper thoroughly reviews the current knowledge about the role of miRNA networks in the tissue-specific direct and indirect effects of metformin. Furthermore, this knowledge provides a novel theoretical basis and suggests therapeutic targets for the clinical treatment of metformin and miRNA regulators in the prevention and treatment of cancer, cardiovascular disorders, diabetes and its complications.
Collapse
|
31
|
Effect of Hypoxia-Induced Micro-RNAs Expression on Oncogenesis. Int J Mol Sci 2022; 23:ijms23116294. [PMID: 35682972 PMCID: PMC9181687 DOI: 10.3390/ijms23116294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. An aberrant regulation of gene expression by miRNAs is associated with numerous diseases, including cancer. MiRNAs expression can be influenced by various stimuli, among which hypoxia; however, the effects of different types of continuous hypoxia (moderate or marked) on miRNAs are still poorly studied. Lately, some hypoxia-inducible miRNAs (HRMs, hypoxia-regulated miRNAs) have been identified. These HRMs are often activated in different types of cancers, suggesting their role in tumorigenesis. The aim of this study was to evaluate changes in miRNAs expression both in moderate continuous hypoxia and marked continuous hypoxia to better understand the possible relationship between hypoxia, miRNAs, and colorectal cancer. We used RT-PCR to detect the miRNAs expression in colorectal cancer cell lines in conditions of moderate and marked continuous hypoxia. The expression of miRNAs was analyzed using a two-way ANOVA test to compare the differential expression of miRNAs among groups. The levels of almost all analyzed miRNAs (miR-21, miR-23b, miR-26a, miR-27b, and miR-145) were greater in moderate hypoxia versus marked hypoxia, except for miR-23b and miR-21. This study identified a series of miRNAs involved in the response to different types of continuous hypoxia (moderate and marked), highlighting that they play a role in the development of cancer. To date, there are no other studies that demonstrate how these two types of continuous hypoxia could be able to activate different molecular pathways that lead to a different expression of specific miRNAs involved in tumorigenesis.
Collapse
|
32
|
Abdul Aziz AA, Md Salleh MS, Yahya MM, Zakaria AD, Ankathil R. Down Regulated Expression Levels of miR-27b and miR-451a as a Potential Biomarker for Triple Negative Breast Cancer Patients Undergoing TAC Chemotherapy. Asian Pac J Cancer Prev 2022; 23:1053-1059. [PMID: 35345380 PMCID: PMC9360943 DOI: 10.31557/apjcp.2022.23.3.1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/12/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is associated with poor prognosis, aggressive phenotype(s) of tumours, partial chemotherapy response, and lack of clinically proven therapies. MicroRNAs (miRNAs) can target and modulate key genes that are involved in TNBC chemotherapy. Deregulated miRNA expression is highly involved in anti-cancer drug resistance phenotype and thus, miRNAs tend to be promising candidates for prediction of chemotherapy response and recurrence. AIM This study aimed to investigate the expression levels of selected miRNAs (miR-21, miR-27b, miR-34a, miR-182, miR-200c and miR-451a) in cancerous and normal adjacent tissues of TNBC patients and to correlate with the clinicopathological data. METHODS Forty-one (41) FFPE tissue block of histopathologically confirmed TNBC patients was collected. Total RNA from the cancerous and adjacent non-cancerous tissues were isolated, transcribed, and pre-amplified. The relative expression level of miRNAs in tumour and normal adjacent tissues of TNBC patients was analysed using qRT-PCR. RESULTS Out of six miRNAs studied, the relative expression of miR-27b and miR-451a were found to be significantly lower in cancerous as compared to normal adjacent tissues of TNBC patients. In addition, a significant down regulation of miR-451a was also observed in infiltrating ductal carcinoma subtype, stages I and II, in both grade II and III, premenopausal and postmenopausal as well as in those with positive axillary lymph node metastases. CONCLUSION The results suggest the possible utilization of miR-27b and miR-451a expression levels as potential predictive risk markers for TNBC patients undergoing TAC chemotherapy.
Collapse
Affiliation(s)
- Ahmad Aizat Abdul Aziz
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Md Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Maya Mazuwin Yahya
- Department of Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Andee Dzulkarnaen Zakaria
- Department of Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
33
|
Tang Y, Chen Y, Zhang Z, Tang B, Zhou Z, Chen H. Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective. Pharmaceutics 2021; 13:pharmaceutics13122116. [PMID: 34959397 PMCID: PMC8708448 DOI: 10.3390/pharmaceutics13122116] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) are characterized by intrinsic self-renewal and tumorigenic properties, and play important roles in tumor initiation, progression, and resistance to diverse forms of anticancer therapy. Accordingly, targeting signaling pathways that are critical for CSC maintenance and biofunctions, including the Wnt, Notch, Hippo, and Hedgehog signaling cascades, remains a promising therapeutic strategy in multiple cancer types. Furthermore, advances in various cancer omics approaches have largely increased our knowledge of the molecular basis of CSCs, and provided numerous novel targets for anticancer therapy. However, the majority of recently identified targets remain ‘undruggable’ through small-molecule agents, whereas the implications of exogenous RNA interference (RNAi, including siRNA and miRNA) may make it possible to translate our knowledge into therapeutics in a timely manner. With the recent advances of nanomedicine, in vivo delivery of RNAi using elaborate nanoparticles can potently overcome the intrinsic limitations of RNAi alone, as it is rapidly degraded and has unpredictable off-target side effects. Herein, we present an update on the development of RNAi-delivering nanoplatforms in CSC-targeted anticancer therapy and discuss their potential implications in clinical trials.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| | - Haining Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| |
Collapse
|
34
|
Cao X, Cordova AF, Li L. Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chem Rev 2021; 122:3414-3458. [PMID: 34870969 DOI: 10.1021/acs.chemrev.1c00716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.
Collapse
|
35
|
Orlandella FM, Auletta L, Greco A, Zannetti A, Salvatore G. Preclinical Imaging Evaluation of miRNAs' Delivery and Effects in Breast Cancer Mouse Models: A Systematic Review. Cancers (Basel) 2021; 13:6020. [PMID: 34885130 PMCID: PMC8656589 DOI: 10.3390/cancers13236020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have conducted a systematic review focusing on the advancements in preclinical molecular imaging to study the delivery and therapeutic efficacy of miRNAs in mouse models of breast cancer. METHODS A systematic review of English articles published in peer-reviewed journals using PubMed, EMBASE, BIOSIS™ and Scopus was performed. Search terms included breast cancer, mouse, mice, microRNA(s) and miRNA(s). RESULTS From a total of 2073 records, our final data extraction was from 114 manuscripts. The most frequently used murine genetic background was Balb/C (46.7%). The most frequently used model was the IV metastatic model (46.8%), which was obtained via intravenous injection (68.9%) in the tail vein. Bioluminescence was the most used frequently used tool (64%), and was used as a surrogate for tumor growth for efficacy treatment or for the evaluation of tumorigenicity in miRNA-transfected cells (29.9%); for tracking, evaluation of engraftment and for response to therapy in metastatic models (50.6%). CONCLUSIONS This review provides a systematic and focused analysis of all the information available and related to the imaging protocols with which to test miRNA therapy in an in vivo mice model of breast cancer, and has the purpose of providing an important tool to suggest the best preclinical imaging protocol based on available evidence.
Collapse
Affiliation(s)
| | - Luigi Auletta
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Adelaide Greco
- InterDepartmental Center of Veterinary Radiology, University of Naples Federico II, 80131 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Giuliana Salvatore
- IRCCS SDN, 80143 Naples, Italy;
- Department of Motor Sciences and Wellness, University of Naples Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate S.C.A.R.L., 80145 Naples, Italy
| |
Collapse
|
36
|
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P. MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 2021; 41:77-105. [PMID: 34524579 PMCID: PMC8924146 DOI: 10.1007/s10555-021-09992-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Collapse
Affiliation(s)
| | | | | | - Ana Lameirinhas
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain
| | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain. .,Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
37
|
Xie D, Pei Q, Li J, Wan X, Ye T. Emerging Role of E2F Family in Cancer Stem Cells. Front Oncol 2021; 11:723137. [PMID: 34476219 PMCID: PMC8406691 DOI: 10.3389/fonc.2021.723137] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The E2F family of transcription factors (E2Fs) consist of eight genes in mammals. These genes encode ten proteins that are usually classified as transcriptional activators or transcriptional repressors. E2Fs are important for many cellular processes, from their canonical role in cell cycle regulation to other roles in angiogenesis, the DNA damage response and apoptosis. A growing body of evidence demonstrates that cancer stem cells (CSCs) are key players in tumor development, metastasis, drug resistance and recurrence. This review focuses on the role of E2Fs in CSCs and notes that many signals can regulate the activities of E2Fs, which in turn can transcriptionally regulate many different targets to contribute to various biological characteristics of CSCs, such as proliferation, self-renewal, metastasis, and drug resistance. Therefore, E2Fs may be promising biomarkers and therapeutic targets associated with CSCs pathologies. Finally, exploring therapeutic strategies for E2Fs may result in disruption of CSCs, which may prevent tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Qin Pei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
38
|
Duan L, Wang Z, Zheng X, Li J, Yin H, Tang W, Deng D, Liu H, Wei J, Jin Y, Liu F, Shen J. Excavating the pathogenic gene of breast cancer based on high throughput data of tumor and somatic reprogramming. Cell Cycle 2021; 20:1708-1722. [PMID: 34384323 DOI: 10.1080/15384101.2021.1961410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignancies in female, and has a high mortality rate. The mechanisms of tumorigenesis and reprogramming of somatic cells have a certain degree of similarity. Here, we focus on the relationship between gene expression, signaling pathways and functions in BC compared to induced pluripotent stem cells (iPSCs). We first identified differentially expressed genes (DEGs) common to BC and iPSCs in datasets from GEO and TCGA. We found 22 DEGs that were significantly associated with clinicopathological features and prognosis by performing Kaplan-Meier survival analysis and one-way ANOVA. The results of protein mass spectrometry of tumor stem cells (Mcfips) demonstrated that the proteins encoded by 8 of these DEGs were also differentially expressed. The functional enrichment analysis showed that most of the 30 DEGs were related to collagen and chromatin functions. Our results might offer targets for future studies into the mechanisms underlying tumor occurrence and progression, and our studies could provide valuable data for both basic research and clinical applications of BC.
Collapse
Affiliation(s)
- Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Zheng
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China
| | - Junjian Li
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China
| | - Huamin Yin
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China
| | - Weibo Tang
- College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Dejian Deng
- College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Hui Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Jiayu Wei
- Clinical Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Medical Genetics, Harbin Medical University, Heilongjiang Higher Education Institutions, Harbin, China
| | - Feng Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingling Shen
- College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China
| |
Collapse
|
39
|
Yones C, Raad J, Bugnon LA, Milone DH, Stegmayer G. High precision in microRNA prediction: A novel genome-wide approach with convolutional deep residual networks. Comput Biol Med 2021; 134:104448. [PMID: 33979731 DOI: 10.1016/j.compbiomed.2021.104448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have a key role in the regulation of gene expression. The importance of miRNAs is widely acknowledged by the community nowadays and computational methods are needed for the precise prediction of novel candidates to miRNA. This task can be done by searching homologous with sequence alignment tools, but results are restricted to sequences that are very similar to the known miRNA precursors (pre-miRNAs). Besides, a very important property of pre-miRNAs, their secondary structure, is not taken into account by these methods. To fill this gap, many machine learning approaches were proposed in the last years. However, the methods are generally tested in very controlled conditions. If these methods were used under real conditions, the false positives increase and the precisions fall quite below those published. This work provides a novel approach for dealing with the computational prediction of pre-miRNAs: a convolutional deep residual neural network (mirDNN). This model was tested with several genomes of animals and plants, the full-genomes, achieving a precision up to 5 times larger than other approaches at the same recall rates. Furthermore, a novel validation methodology was used to ensure that the performance reported in this study can be effectively achieved when using mirDNN in novel species. To provide fast an easy access to mirDNN, a web demo is available at http://sinc.unl.edu.ar/web-demo/mirdnn/. The demo can process FASTA files with multiple sequences to calculate the prediction scores and generates the nucleotide importance plots. FULL SOURCE CODE: http://sourceforge.net/projects/sourcesinc/files/mirdnn and https://github.com/cyones/mirDNN. CONTACT: gstegmayer@sinc.unl.edu.ar.
Collapse
Affiliation(s)
- C Yones
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
| | - J Raad
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
| | - L A Bugnon
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
| | - D H Milone
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
| | - G Stegmayer
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina.
| |
Collapse
|
40
|
Alimoradi N, Firouzabadi N, Fatehi R. How metformin affects various malignancies by means of microRNAs: a brief review. Cancer Cell Int 2021; 21:207. [PMID: 33849540 PMCID: PMC8045276 DOI: 10.1186/s12935-021-01921-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin known as the first-line orally prescribed drug for lowering blood glucose in type II diabetes (T2DM) has recently found various therapeutic applications including in cancer. Metformin has been studied for its influences in prevention and treatment of cancer through multiple mechanisms such as microRNA (miR) regulation. Alteration in the expression of miRs by metformin may play an important role in the treatment of various cancers. MiRs are single-stranded RNAs that are involved in gene regulation. By binding to the 3'UTR of target mRNAs, miRs influence protein levels. Irregularities in the expression of miRs that control the expression of oncogenes and tumor suppressor genes are associated with the onset and progression of cancer. Metformin may possess an effect on tumor prevention and progression by modifying miR expression and downstream pathways. Here, we summarize the effect of metformin on different types of cancer by regulating the expression of various miRs and the associated downstream molecules.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
41
|
Merino GA, Raad J, Bugnon LA, Yones C, Kamenetzky L, Claus J, Ariel F, Milone DH, Stegmayer G. Novel SARS-CoV-2 encoded small RNAs in the passage to humans. Bioinformatics 2021; 36:5571-5581. [PMID: 33244583 PMCID: PMC7717134 DOI: 10.1093/bioinformatics/btaa1002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/15/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Motivation The Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) has recently emerged as the responsible for the pandemic outbreak of the coronavirus disease (COVID-19). This virus is closely related to coronaviruses infecting bats and Malayan pangolins, species suspected to be an intermediate host in the passage to humans. Several genomic mutations affecting viral proteins have been identified, contributing to the understanding of the recent animal-to-human transmission. However, the capacity of SARS-CoV-2 to encode functional putative microRNAs (miRNAs) remains largely unexplored. Results We have used deep learning to discover 12 candidate stem-loop structures hidden in the viral protein-coding genome. Among the precursors, the expression of eight mature miRNAs-like sequences was confirmed in small RNA-seq data from SARS-CoV-2 infected human cells. Predicted miRNAs are likely to target a subset of human genes of which 109 are transcriptionally deregulated upon infection. Remarkably, 28 of those genes potentially targeted by SARS-CoV-2 miRNAs are down-regulated in infected human cells. Interestingly, most of them have been related to respiratory diseases and viral infection, including several afflictions previously associated with SARS-CoV-1 and SARS-CoV-2. The comparison of SARS-CoV-2 pre-miRNA sequences with those from bat and pangolin coronaviruses suggests that single nucleotide mutations could have helped its progenitors jumping inter-species boundaries, allowing the gain of novel mature miRNAs targeting human mRNAs. Our results suggest that the recent acquisition of novel miRNAs-like sequences in the SARS-CoV-2 genome may have contributed to modulate the transcriptional reprogramming of the new host upon infection.
Collapse
Affiliation(s)
- Gabriela A Merino
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina.,Bioengineering and Bioinformatics Research and Development Institute (IBB), FI-UNER, CONICET, Entre Ríos 3100, Argentina.,European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridgeshire CB101SD, UK
| | - Jonathan Raad
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Leandro A Bugnon
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Cristian Yones
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Laura Kamenetzky
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires 1121, Argentina.,Laboratorio de Genómica y Bioinformática de Patógenos, iB3, Instituto de Biociencias, Biotecnología y Biología traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Juan Claus
- Laboratorio de Virología, FBCB, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral (IAL), CONICET, FBCB, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Diego H Milone
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Georgina Stegmayer
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| |
Collapse
|
42
|
Ullah S, El-Gamal MI, El-Gamal R, Pelletier J, Sévigny J, Shehata MK, Anbar HS, Iqbal J. Synthesis, biological evaluation, and docking studies of novel pyrrolo[2,3-b]pyridine derivatives as both ectonucleotide pyrophosphatase/phosphodiesterase inhibitors and antiproliferative agents. Eur J Med Chem 2021; 217:113339. [PMID: 33744686 DOI: 10.1016/j.ejmech.2021.113339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
Ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) together with nucleoside triphosphate diphosphohydrolases (NTPDases) and alkaline phosphatases (APs) are nucleotidases located at the surface of the cells. NPP1 and NPP3 are important members of NPP family that are known as druggable targets for a number of disorders such as impaired calcification, type 2 diabetes, and cancer. Sulfonylurea derivatives have been reported as antidiabetic and anticancer agents, therefore, we synthesized and investigated series of sulfonylurea derivatives 1a-m possessing pyrrolo[2,3-b]pyridine core as inhibitors of NPP1 and NPP3 isozymes that are over-expressed in cancer and diabetes. The enzymatic evaluation highlighted compound 1a as selective NPP1 inhibitor, however, 1c was observed as the most potent inhibitor of NPP1 with an IC50 value of 0.80 ± 0.04 μM. Compound 1l was found to be the most potent and moderately selective inhibitor of NPP3 (IC50 = 0.55 ± 0.01 μM). Furthermore, in vitro cytotoxicity assays of compounds 1a-m against MCF-7 and HT-29 cancer cell lines exhibited compound 1c (IC50 = 4.70 ± 0.67 μM), and 1h (IC50 = 1.58 ± 0.20 μM) as the most cytotoxic compounds against MCF-7 and HT-29 cancer cell lines, respectively. Both of the investigated compounds showed high degree of selectivity towards cancer cells than normal cells (WI-38). Molecular docking studies of selective and potent enzyme inhibitors revealed promising mode of interactions with important binding sites residues of both isozymes i.e., Thr256, His380, Lys255, Asn277 residues of NPP1 and His329, Thr205, and Leu239 residues of NPP3. In addition, the most potent antiproliferative agent, compound 1h, doesn't produce hypoglycemia as a side effect when injected to mice. This is an additional merit of the promising compound 1h.
Collapse
Affiliation(s)
- Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Mahmoud K Shehata
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates.
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
43
|
Wang H, Ye F, Zhou C, Cheng Q, Chen H. High expression of ENPP1 in high-grade serous ovarian carcinoma predicts poor prognosis and as a molecular therapy target. PLoS One 2021; 16:e0245733. [PMID: 33635867 PMCID: PMC7909685 DOI: 10.1371/journal.pone.0245733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/06/2021] [Indexed: 01/06/2023] Open
Abstract
Recent studies have shown that the expression of ENPP1 is related to differentiation, death, dissemination and chemosensitivity of tumor cells. So far, there is no research in ovarian carcinoma. This study aimed at exploring the role of ENPP1 gene in ovarian carcinoma, the relationship with prognostic indicators and chemotherapy resistance, and investigates the possibility of molecular targeted therapy. The expression of ENPP1 in 41 normal ovarian epithelial tissues, 97 ovarian serous cystadenoma and 103 HGSOC tissues was detected by IHC. In ovarian cancer tissues and ovarian cancer cell lines, mRNA and protein expression of ENPP1 was determined by qRT-PCR and Western blot. The ENPP1 expression was knockdowned by siRNA. Cell proliferation was measured with the BrdU Cell Proliferation ELISA. Cell migration and invasion were detected by Wound-Healing, Transwell migration and Matrigel invasion assay. Caspase 3 activity was determined by the CaspACE. The expression of EMT markers such as E-cadherin, N-cadherin, and Vimentin was measured, and the expression of PCNA and MMP9 was also be detected. The results showed that the expression of ENPP1 was significantly increased in high-grade ovarian serous carcinoma, the number of strong expression was 85.4% (22.3%+63.1%) and only 1.03% (1.03%+0.0%) in serous cystadenoma, but no in normal ovarian epithelium (P< 0.05). And the stronger the expression of ENPP1, the later the FIGO stage and the poorer differentiation of cells (P = 0.001 or <0.001, respectively). However, no correlation was found between the expression of ENPP1 and chemosensitivity. ENPP1 was also highly expressed in ovarian cancer tissues and in epithelial ovarian cancer cell lines (A2780, CaoV3, OVCAR3, SKOV3 and 3ao). After down-regulation of ENPP1 expression by RNA interference, the cell proliferation, migration and invasion of ovarian cancer cell decreased significantly, the expression of apoptosis related gene caspase 3 increased significantly, while the expression of PCNA and MMP9 was significantly down regulated. In addition, EMT biological characteristics of A2780 and SKOV3 cells were also inhibited. In summary, the increased expression of ENPP1 may be related to the occurrence of HGSOC, and indicate that the disease progresses rapidly and the prognosis is poor. ENPP1 may be considered as a potential molecular therapeutic target.
Collapse
Affiliation(s)
- Hanzhi Wang
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Feng Ye
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Caiyun Zhou
- Department of Pathology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Qi Cheng
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Huaizeng Chen
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
- * E-mail:
| |
Collapse
|
44
|
Lv L, Shi Y, Wu J, Li G. Nanosized Drug Delivery Systems for Breast Cancer Stem Cell Targeting. Int J Nanomedicine 2021; 16:1487-1508. [PMID: 33654398 PMCID: PMC7914063 DOI: 10.2147/ijn.s282110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/10/2021] [Indexed: 01/15/2023] Open
Abstract
Breast cancer stem cells (BCSCs), also known as breast cancer initiating cells, are reported to be responsible for the initiation, progression, therapeutic resistance, and relapse of breast cancer. Conventional therapeutic agents mainly kill the bulk of breast tumor cells and fail to eliminate BCSCs, even enhancing the fraction of BCSCs in breast tumors sometimes. Therefore, it is essential to develop specific and effective methods of eliminating BCSCs that will enhance the efficacy of killing breast tumor cells and thereby, increase the survival rates and quality of life of breast cancer patients. Despite the availability of an increasing number of anti-BCSC agents, their clinical translations are hindered by many issues, such as instability, low bioavailability, and off-target effects. Nanosized drug delivery systems (NDDSs) have the potential to overcome the drawbacks of anti-BCSC agents by providing site-specific delivery and enhancing of the stability and bioavailability of the delivered agents. In this review, we first briefly introduce the strategies and agents used against BCSCs and then highlight the mechanism of action and therapeutic efficacy of several state-of-the-art NDDSs that can be used to treat breast cancer by eliminating BCSCs.
Collapse
Affiliation(s)
- Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Department of Pharmacy, Zengcheng District People's Hospital of Guangzhou, Guangzhou, 511300, Guangdong, People's Republic of China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| |
Collapse
|
45
|
Dong B, Li S, Zhu S, Yi M, Luo S, Wu K. MiRNA-mediated EMT and CSCs in cancer chemoresistance. Exp Hematol Oncol 2021; 10:12. [PMID: 33579377 PMCID: PMC7881653 DOI: 10.1186/s40164-021-00206-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a small group of cancer cells, which contribute to tumorigenesis and cancer progression. Cancer cells undergoing epithelial-to-mesenchymal transition (EMT) acquire the chemoresistant ability, which is regarded as an important feature of CSCs. Thus, there emerges an opinion that the generation of CSCs is considered to be driven by EMT. In this complex process, microRNAs (miRNAs) are found to play a key role. In order to overcome the drug resistance, inhibiting EMT as well as CSCs phenotype seem feasible. Thereinto, regulating the EMT- or CSCs-associated miRNAs is a crucial approach. Herein, we conduct this review to elaborate on the complicated interplay between EMT and CSCs in cancer chemoresistance, which is modulated by miRNAs. In addition, we elucidate the therapeutic strategy to overcome drug resistance through targeting EMT and CSCs.
Collapse
Affiliation(s)
- Bing Dong
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
46
|
Salem S, Mosaad R. Crosstalk between miR-203 and PKCθ regulates breast cancer stem cell markers. Ann Hum Genet 2021; 85:105-114. [PMID: 33576006 DOI: 10.1111/ahg.12415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/25/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Protein kinase C theta (PKCθ) is expressed in ER-negative breast cancer and promotes cancer stem cells (CSCs) phenotype. PKCθ gene (PRKCQ) is predicted to be a target for tumor suppressor miR-203. Herein, we aim to validate this prediction and evaluate the ability of miR-203 to inhibit migration of breast cancer cell line enriched with CSCs, MDA-MB-231, via PRKCQ targeting. METHODS Cells were transfected with miR-203 mimic, PRKCQ siRNA and negative control; then real-time PCR, migration assay, western blotting, reporter assay, and chromatin accessibility assay were performed. RESULTS Our findings displayed significant decrease in PRKCQ mRNA level and luciferase signals in cells with restored miR-203 expression, therefore, validated PRKCQ as a direct target of miR-203. Additionally, inhibiting PRKCQ by siRNA led to significant inhibition of miR-203 expression and significant decrease of chromatin accessibility at miR-203 promoter region 466-291 upstream TSS. Both of miR-203 re-expression and PRKCQ suppression resulted in altering migration ability of MDA-MB-231 through regulating AKT pathway and genes involved in breast cancer stem cells, CD44 and ALDH1A3. Expression of CDK5, GIV, and NANOG was significantly downregulated in miR-203 mimic-transfected cells, while PRKCQ siRNA-transfected cells displayed downregulation of OCT3/4, SOX2, and NANOG. Furthermore, we found that miR-224 expression was enhanced while miR-150 was downregulated after ectopic expression of miR-203. CONCLUSION The study highlighted the negative feedback loop between miR-203 and its target PRKCQ and the interplay between them in regulating genes involved in BCSCs. The study also concluded "microRNA-mediated microRNA regulation" as an event in breast cancer cells.
Collapse
Affiliation(s)
- Sohair Salem
- Molecular Genetics and Enzymology Department, National Research Centre, Giza, Egypt
| | - Rehab Mosaad
- Molecular Genetics and Enzymology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
47
|
Das PK, Siddika MA, Asha SY, Aktar S, Rakib MA, Khanam JA, Pillai S, Islam F. MicroRNAs, a Promising Target for Breast Cancer Stem Cells. Mol Diagn Ther 2021; 24:69-83. [PMID: 31758333 DOI: 10.1007/s40291-019-00439-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactivation of the stem cell programme in breast cancer is significantly associated with persistent cancer progression and therapeutic failure. Breast cancer stem cells (BCSCs) are involved in the process of breast cancer initiation, metastasis and cancer relapse. Among the various important cues found in the formation and progression of BCSCs, microRNAs (miRNAs or miRs) play a pivotal role by regulating the expression of various tumour suppressor genes or oncogenes. Accordingly, there is evidence that miRNAs are associated with BCSC self-renewal, differentiation, invasion, metastasis and therapy resistance, and therefore cancer recurrence. miRNAs execute their roles by regulating the expression of stemness markers, activation of signalling pathways or their components and regulation of transcription networks in BCSCs. Therefore, a better understanding of the association between BCSCs and miRNAs has the potential to help design more effective and safer therapeutic solutions against breast cancer. Thus, an miRNA-based therapeutic strategy may open up new horizons for the treatment of breast cancer in the future. In view of this, we present the progress to date of miRNA research associated with stemness marker expression, signalling pathways and activation of transcription networks to regulate the self-renewal, differentiation and therapy resistance properties of BCSCs.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mst Ayesha Siddika
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Suraiya Aktar
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abdur Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Jahan Ara Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh. .,Institute for Glycomics, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
48
|
Prajapati KS, Shuaib M, Kushwaha PP, Singh AK, Sharma R, Kumar S. miRNAs as Therapeutic Target in Obesity and Cancer. OBESITY AND CANCER 2021:235-255. [DOI: 10.1007/978-981-16-1846-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
49
|
Am Mucke H. Patent highlights August-September 2020. Pharm Pat Anal 2021; 10:1-7. [PMID: 33441018 DOI: 10.4155/ppa-2020-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
50
|
MSI1 Promotes the Expression of the GBM Stem Cell Marker CD44 by Impairing miRNA-Dependent Degradation. Cancers (Basel) 2020; 12:cancers12123654. [PMID: 33291443 PMCID: PMC7762192 DOI: 10.3390/cancers12123654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most lethal brain tumor with a median survival rate of approximately 14 months. GBM patients commonly suffer from tumor recurrence, indicating that populations of chemo/radio-resistant stem cell-like tumor cells survive treatments. Here we reveal that the neuronal stem cell marker Musashi1 (MSI1) is highly expressed in primary GBM and recurrences. We identify a novel regulatory role of MSI1 in GBM-derived cell lines and patient-derived tumorspheres, the enhancement of stemness marker expression, here demonstrated for CD44. Furthermore, we provide a rationale for MSI1-centered therapeutic targeting strategies to improve treatment options of this chemo/radio-resistant malignancy. Abstract The stem cell marker Musashi1 (MSI1) is highly expressed during neurogenesis and in glioblastoma (GBM). MSI1 promotes self-renewal and impairs differentiation in cancer and non-malignant progenitor cells. However, a comprehensive understanding of its role in promoting GBM-driving networks remains to be deciphered. We demonstrate that MSI1 is highly expressed in GBM recurrences, an oncologist’s major defiance. For the first time, we provide evidence that MSI1 promotes the expression of stem cell markers like CD44, co-expressed with MSI1 within recurrence-promoting cells at the migrating front of primary GBM samples. With GBM cell models of pediatric and adult origin, including isolated primary tumorspheres, we show that MSI1 promotes stem cell-like characteristics. Importantly, it impairs CD44 downregulation in a 3′UTR- and miRNA-dependent manner by controlling mRNA turnover. This regulation is disturbed by the previously reported MSI1 inhibitor luteolin, providing further evidence for a therapeutic target potential of MSI1 in GBM treatment.
Collapse
|