1
|
Jian B, Zhang H, Fan L, Li Y, Wu N, Wang N, Li L, Li X, Ge P, Niu Y, Liu J. RAD51 expression and prognostic impact in patients with stomach adenocarcinoma. PeerJ 2025; 13:e19179. [PMID: 40231067 PMCID: PMC11995892 DOI: 10.7717/peerj.19179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
Background Stomach adenocarcinoma (STAD) is the most common gastrointestinal cancer. A clear diagnosis and molecular targeted therapy have important implications for prolonging survival of patients. RAD51 is the central catalyst of homologous recombination that plays important role in maintaining genomic integrity. However, the clinical significance of RAD51 expression in STAD patients remains unclear. This study aimed to assess the association of RAD51 expression with clinicopathological characteristics and patient outcomes. Methods In this study, RAD51 mRNA expression in STAD patients was assessed using the UALCAN and GEPIA databases. The diagnostic value of RAD51 was evaluated by analyzing the ROC curve (data from the The Cancer Genome Atlas (TCGA) database). The protein expression level of RAD51 in STAD patients and its relationship with clinicopathological characteristics and prognosis were evaluated by immunohistochemistry. Co-expression analysis of RAD51 in STAD was performed by Coexpedia and Gene Expression Profiling Interactive Analysis (GEPIA) databases. The associations of RAD51 and its co-expression genes with immune infiltrates were analyzed in TIMER database. Results Our bioinformatic analysis revealed that RAD51 demonstrates elevated expression in STAD. The ROC curve analysis yielded an AUC value of 0.9366 (95% CI [0.9075-0.9658]), confirming its potential as a biomarker for STAD. Immunohistochemical assessments validated the up-regulation of RAD51 in STAD, highlighting its significant correlation with TNM stage and T stage, but not with age, sex, grade, N stage, M stage, or P53 expression. Patients exhibiting high RAD51 expression exhibited significantly reduced overall survival. Multivariate analysis identified RAD51 expression may serve as an independent prognostic biomarker of poor prognosis in patients with STAD. Additionally, our bioinformatic analysis identified eight RAD51 co-expression genes (AURKA, CKS1B, NUSAP1, PFDN4, CCNE1, CDCA4, KIF4A, and MCM10) in STAD. Moreover, we discovered that RAD51 and its main co-expressed genes were significantly negatively associated with most or all immune cell infiltration. Conclusions RAD51 overexpression was related to disease progression and poor prognosis, as well as infiltration of immune cells in gastric cancer.
Collapse
Affiliation(s)
- Baiyu Jian
- Qiqihar Medical University, Qiqihar, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hao Zhang
- Qiqihar Medical University, Qiqihar, China
| | - Li Fan
- Qiqihar Medical University, Qiqihar, China
| | - Yang Li
- Qiqihar Medical University, Qiqihar, China
| | - Nan Wu
- Qiqihar Medical University, Qiqihar, China
| | | | - Lingmin Li
- Qiqihar Medical University, Qiqihar, China
| | - Xueyan Li
- Qiqihar Medical University, Qiqihar, China
| | - Pengling Ge
- Heilongjiang University of Chinese Medicine, Harbin, China
| | | | | |
Collapse
|
2
|
Li W, Wang X, Liu J, Liu B, Hao Y. Crosstalk Between Plk1 and PTEN in Mitosis Affects Chromosomal Stability. DNA Cell Biol 2025. [PMID: 40117175 DOI: 10.1089/dna.2024.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
The mitotic phase involves the distribution and regulation of genetic material. Defects in gene regulation can lead to serious errors in genetic transmission, such as increased instability of chromosomes, thereby increasing susceptibility to cancer and promoting its development. The maintenance of chromosome stability depends on several mechanisms, such as efficient DNA repair, proper sister chromatid separation, and timely cytokinesis. The serine/threonine kinase Plk1 is a key molecule in maintaining chromosome stability, participating in multiple stages of precise regulation during mitosis, including promoting entry into mitosis, facilitating centrosome maturation and bipolar spindle formation, promoting sister chromatid separation, and facilitating cytokinesis. Several proteins can regulate the kinase activity of Plk1 through protein-protein interactions, coordinating the genetic stability of the cell, including the kinases Aurora A, c-Abl, and Chk1 as well as the phosphatase phosphatase and tension homolog (PTEN). PTEN has been described as an essential regulator of Plk1 for dephosphorylation and chromosomal stability during cell division, and Plk1 may directly interact with and phosphorylate PTEN at centromeres. Here, we review the bidirectional interplay between Plk1 and PTEN and how it contributes to genomic stability during mitosis.
Collapse
Affiliation(s)
- Wei Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xianning Wang
- College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Jiannan Liu
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bing Liu
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yongjian Hao
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
3
|
Nelson CB, Wells JK, Pickett HA. The Eyes Absent family: At the intersection of DNA repair, mitosis, and replication. DNA Repair (Amst) 2024; 141:103729. [PMID: 39089192 DOI: 10.1016/j.dnarep.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/03/2024]
Abstract
The Eyes Absent family (EYA1-4) are a group of dual function proteins that act as both tyrosine phosphatases and transcriptional co-activators. EYA proteins play a vital role in development, but are also aberrantly overexpressed in cancers, where they often confer an oncogenic effect. Precisely how the EYAs impact cell biology is of growing interest, fuelled by the therapeutic potential of an expanding repertoire of EYA inhibitors. Recent functional studies suggest that the EYAs are important players in the regulation of genome maintenance pathways including DNA repair, mitosis, and DNA replication. While the characterized molecular mechanisms have predominantly been ascribed to EYA phosphatase activities, EYA co-transcriptional activity has also been found to impact the expression of genes that support these pathways. This indicates functional convergence of EYA phosphatase and co-transcriptional activities, highlighting the emerging importance of the EYA protein family at the intersection of genome maintenance mechanisms. In this review, we discuss recent progress in defining EYA protein substrates and transcriptional effects, specifically in the context of genome maintenance. We then outline future directions relevant to the field and discuss the clinical utility of EYA inhibitors.
Collapse
Affiliation(s)
- Christopher B Nelson
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Jadon K Wells
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
4
|
Fu Q, Zheng H, Wang X, Tang F, Yu H, Wang H, Wan Z, Zheng Z, Yang Z, Liu T, Peng J. GINS1 promotes the initiation and progression of bladder cancer by activating the AKT/mTOR/c-Myc signaling pathway. Exp Cell Res 2024; 440:114125. [PMID: 38880324 DOI: 10.1016/j.yexcr.2024.114125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Bladder cancer(BC) is one of the most prevalent cancers in the urinary tract, with high recurrence and fatality rates. Research indicates that go-ichi-ni-san complex subunit 1 (GINS1) crucially influences cancer progression by regulating DNA replication through cell cycle modulation. Thus, suppressing the active proliferation of cells in tumor tissues may require silencing GINS1. However, the consequences of GINS1 in bladder cancer aren't to be determined. In this paper, we examine the role and mechanism of GINS1 in the development of bladder cancer. GINS1 expression levels and prognostic relevance in bladder cancer were validated using Western blotting, immunohistochemistry, and Kaplan-Meier survival analysis. The influence of GINS1 on bladder cancer was investigated using a variety of approaches, including cell transfection, cell counts, transwell migrations, colony formation, and flow cytometry. Immunohistochemistry studies demonstrate that GINS1 expression is increased in bladder cancer tissues. GINS1 silencing resulted in an arrest of the cell cycle at the phase of G0/G1, which inhibited BC cell growth both in vitro and in vivo. GINS1 knockdown also hindered the AKT/mTOR pathway. Furthermore, increased GINS1 expression affects the cell cycle and stimulates the AKT/mTOR pathway, allowing BC to develop more quickly. Consequently, GINS1 occurs as a latent therapeutic target, particularly for individuals with BC.
Collapse
Affiliation(s)
- Qiqi Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hang Zheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xia Wang
- Department of Public Health, Wuhan University Hospital, Wuhan University, Wuhan, China.
| | - Feng Tang
- Department of Urology, Jingzhou Central Hospital, Jingzhou, China.
| | - Hua Yu
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Hao Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Ziyu Wan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhangjie Zheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jianping Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Richard SA. Advances in synthetic lethality modalities for glioblastoma multiforme. Open Med (Wars) 2024; 19:20240981. [PMID: 38868315 PMCID: PMC11167713 DOI: 10.1515/med-2024-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by a high mortality rate, high resistance to cytotoxic chemotherapy, and radiotherapy due to its highly aggressive nature. The pathophysiology of GBM is characterized by multifarious genetic abrasions that deactivate tumor suppressor genes, induce transforming genes, and over-secretion of pro-survival genes, resulting in oncogene sustainability. Synthetic lethality is a destructive process in which the episode of a single genetic consequence is tolerable for cell survival, while co-episodes of multiple genetic consequences lead to cell death. This targeted drug approach, centered on the genetic concept of synthetic lethality, is often selective for DNA repair-deficient GBM cells with restricted toxicity to normal tissues. DNA repair pathways are key modalities in the generation, treatment, and drug resistance of cancers, as DNA damage plays a dual role as a creator of oncogenic mutations and a facilitator of cytotoxic genomic instability. Although several research advances have been made in synthetic lethality modalities for GBM therapy, no review article has summarized these therapeutic modalities. Thus, this review focuses on the innovative advances in synthetic lethality modalities for GBM therapy.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA128, Volta Region, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
6
|
Zhao W, Huang R, Ran D, Zhang Y, Qu Z, Zheng S. Inhibiting HSD17B8 suppresses the cell proliferation caused by PTEN failure. Sci Rep 2024; 14:12280. [PMID: 38811827 PMCID: PMC11137105 DOI: 10.1038/s41598-024-63052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Loss of the tumor suppressor PTEN homolog daf-18 in Caenorhabditis elegans (C. elegans) triggers diapause cell division during L1 arrest. While prior studies have delved into established pathways, our investigation takes an innovative route. Through forward genetic screening in C. elegans, we pinpoint a new player, F12E12.11, regulated by daf-18, impacting cell proliferation independently of PTEN's typical phosphatase activity. F12E12.11 is an ortholog of human estradiol 17-beta-dehydrogenase 8 (HSD17B8), which converts estradiol to estrone through its NAD-dependent 17-beta-hydroxysteroid dehydrogenase activity. We found that PTEN engages in a physical interplay with HSD17B8, introducing a distinctive suppression mechanism. The reduction in estrone levels and accumulation of estradiol may arrest tumor cells in the G2/M phase of the cell cycle through MAPK/ERK. Our study illuminates an unconventional protein interplay, providing insights into how PTEN modulates tumor suppression by restraining cell division through intricate molecular interactions.
Collapse
Affiliation(s)
- Wei Zhao
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan Province, China
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, Henan Province, China
| | - Ruiting Huang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan Province, China
| | - Dongyang Ran
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yutong Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan Province, China
| | - Zhi Qu
- School of Nursing and Health, Henan University, Kaifeng, Henan Province, China.
| | - Shanqing Zheng
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan Province, China.
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, Henan Province, China.
| |
Collapse
|
7
|
Marcon F, Giunta S, Bignami M. Emerging roles of DNA repair factors in the stability of centromeres. Semin Cell Dev Biol 2024; 156:121-129. [PMID: 37852903 DOI: 10.1016/j.semcdb.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Satellite DNA sequences are an integral part of centromeres, regions critical for faithful segregation of chromosomes during cell division. Because of their complex repetitive structure, satellite DNA may act as a barrier to DNA replication and other DNA based transactions ultimately resulting in chromosome breakage. Over the past two decades, several DNA repair proteins have been shown to bind and function at centromeres. While the importance of these repair factors is highlighted by various structural and numerical chromosome aberrations resulting from their inactivation, their roles in helping to maintain genome stability by solving the intrinsic difficulties of satellite DNA replication or promoting their repair are just starting to emerge. In this review, we summarize the current knowledge on the role of DNA repair and DNA damage response proteins in maintaining the structure and function of centromeres in different contexts. We also report the recent connection between the roles of specific DNA repair factors at these genomic loci with age-related increase of chromosomal instability under physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesca Marcon
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185, Italy
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
8
|
He J, Huang C, Guo Y, Deng R, Li L, Chen R, Wang Y, Huang J, Zheng J, Zhao X, Yu J. PTEN-mediated dephosphorylation of 53BP1 confers cellular resistance to DNA damage in cancer cells. Mol Oncol 2024; 18:580-605. [PMID: 38060346 PMCID: PMC10920079 DOI: 10.1002/1878-0261.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Homologous recombination (HR) repair for DNA double-strand breaks (DSBs) is critical for maintaining genome stability and conferring the resistance of tumor cells to chemotherapy. Nuclear PTEN which contains both phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and protein phosphatase plays a key role in HR repair, but the underlying mechanism remains largely elusive. We find that SUMOylated PTEN promotes HR repair but represses nonhomologous end joining (NHEJ) repair by directly dephosphorylating TP53-binding protein 1 (53BP1). During DNA damage responses (DDR), tumor suppressor ARF (p14ARF) was phosphorylated and then interacted efficiently with PTEN, thus promoting PTEN SUMOylation as an atypical SUMO E3 ligase. Interestingly, SUMOylated PTEN was subsequently recruited to the chromatin at DSB sites. This was because SUMO1 that was conjugated to PTEN was recognized and bound by the SUMO-interacting motif (SIM) of breast cancer type 1 susceptibility protein (BRCA1), which has been located to the core of 53BP1 foci on chromatin during S/G2 stage. Furthermore, these chromatin-loaded PTEN directly and specifically dephosphorylated phosphothreonine-543 (pT543) of 53BP1, resulting in the dissociation of the 53BP1 complex, which facilitated DNA end resection and ongoing HR repair. SUMOylation-site-mutated PTENK254R mice also showed decreased DNA damage repair in vivo. Blocking the PTEN SUMOylation pathway with either a SUMOylation inhibitor or a p14ARF(2-13) peptide sensitized tumor cells to chemotherapy. Our study therefore provides a new mechanistic understanding of PTEN in HR repair and clinical intervention of chemoresistant tumors.
Collapse
Affiliation(s)
- Jianfeng He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Yanmin Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
9
|
Liu D, Yehia L, Dhawan A, Ni Y, Eng C. Cell-free DNA fragmentomics and second malignant neoplasm risk in patients with PTEN hamartoma tumor syndrome. Cell Rep Med 2024; 5:101384. [PMID: 38242121 PMCID: PMC10897513 DOI: 10.1016/j.xcrm.2023.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Individuals with PTEN hamartoma tumor syndrome (PHTS) harbor pathogenic germline PTEN variants that confer a significantly increased lifetime risk of various organ-specific cancers including second primary malignant neoplasms (SMNs). Currently, there are no reliable biomarkers that can predict individual-level cancer risk. Despite the highly promising value of cell-free DNA (cfDNA) as a biomarker for underlying sporadic cancers, the utility of cfDNA in individuals with known cancer-associated germline variants and subclinical cancers remains poorly understood. We perform ultra-low-pass whole-genome sequencing (ULP-WGS) of cfDNA from plasma samples from patients with PHTS and cancer as well as those without cancer. Analysis of cfDNA reveals that patients with PHTS and SMNs have distinct cfDNA size distribution, aberrant genome-wide fragmentation, and differential fragment end motif frequencies. Our work provides evidence that cfDNA profiles may be used as a marker for SMN risk in patients with PHTS.
Collapse
Affiliation(s)
- Darren Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew Dhawan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ying Ni
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA; Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA; Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
O'Malley DE, Raspin K, Melton PE, Burdon KP, Dickinson JL, FitzGerald LM. Acquired copy number variation in prostate tumours: a review of common somatic copy number alterations, how they are formed and their clinical utility. Br J Cancer 2024; 130:347-357. [PMID: 37945750 PMCID: PMC10844642 DOI: 10.1038/s41416-023-02485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and unfortunately, disease will progress in up to a third of patients despite primary treatment. Currently, there is a significant lack of prognostic tests that accurately predict disease course; however, the acquisition of somatic chromosomal variation in the form of DNA copy number variants may help understand disease progression. Notably, studies have found that a higher burden of somatic copy number alterations (SCNA) correlates with more aggressive disease, recurrence after surgery and metastasis. Here we will review the literature surrounding SCNA formation, including the roles of key tumour suppressors and oncogenes (PTEN, BRCA2, NKX3.1, ERG and AR), and their potential to inform diagnostic and prognostic clinical testing to improve predictive value. Ultimately, SCNAs, or inherited germline alterations that predispose to SCNAs, could have significant clinical utility in diagnostic and prognostic tests, in addition to guiding therapeutic selection.
Collapse
Affiliation(s)
- Dannielle E O'Malley
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Phillip E Melton
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- School of Population and Global Health, The University of Western Australia, Crawley, WA, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
11
|
Sokhi S, Lewis CW, Bukhari AB, Hadfield J, Xiao EJ, Fung J, Yoon YJ, Hsu WH, Gamper AM, Chan GK. Myt1 overexpression mediates resistance to cell cycle and DNA damage checkpoint kinase inhibitors. Front Cell Dev Biol 2023; 11:1270542. [PMID: 38020882 PMCID: PMC10652759 DOI: 10.3389/fcell.2023.1270542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Cell cycle checkpoint kinases serve as important therapeutic targets for various cancers. When they are inhibited by small molecules, checkpoint abrogation can induce cell death or further sensitize cancer cells to other genotoxic therapies. Particularly aberrant Cdk1 activation at the G2/M checkpoint by kinase inhibitors causing unscheduled mitotic entry and mitotic arrest was found to lead to DNA damage and cell death selectively in cancer cells. Promising drugs inhibiting kinases like Wee1 (Adavosertib), Wee1+Myt1 (PD166285), ATR (AZD6738) and Chk1 (UCN-01) have been developed, but clinical data has shown variable efficacy for them with poorly understood mechanisms of resistance. Our lab recently identified Myt1 as a predictive biomarker of acquired resistance to the Wee1 kinase inhibitor, Adavosertib. Here, we investigate the role of Myt1 overexpression in promoting resistance to inhibitors (PD166285, UCN-01 and AZD6738) of other kinases regulating cell cycle progression. We demonstrate that Myt1 confers resistance by compensating Cdk1 inhibition in the presence of these different kinase inhibitors. Myt1 overexpression leads to reduced premature mitotic entry and decreased length of mitosis eventually leading to increased survival rates in Adavosertib treated cells. Elevated Myt1 levels also conferred resistance to inhibitors of ATR or Chk1 inhibitor. Our data supports that Myt1 overexpression is a common mechanism by which cancer cells can acquire resistance to a variety of drugs entering the clinic that aim to induce mitotic catastrophe by abrogating the G2/M checkpoint.
Collapse
Affiliation(s)
- Sargun Sokhi
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Cody W. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Amirali B. Bukhari
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Joanne Hadfield
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Edric J. Xiao
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Fung
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Yea Jin Yoon
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Wen-Hsin Hsu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Armin M. Gamper
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Gordon K. Chan
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Scelfo A, Fachinetti D. Centromere: A Trojan horse for genome stability. DNA Repair (Amst) 2023; 130:103569. [PMID: 37708591 DOI: 10.1016/j.dnarep.2023.103569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Centromeres play a key role in the maintenance of genome stability to prevent carcinogenesis and diseases. They are specialized chromosome loci essential to ensure faithful transmission of genomic information across cell generations by mediating the interaction with spindle microtubules. Nonetheless, while fulfilling these essential roles, their distinct repetitive composition and susceptibility to mechanical stresses during cell division render them susceptible to breakage events. In this review, we delve into the present understanding of the underlying causes of centromere fragility, from the mechanisms governing its DNA replication and repair, to the pathways acting to counteract potential challenges. We propose that the centromere represents a "Trojan horse" exerting vital functions that, at the same time, potentially threatens whole genome stability.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| | - Daniele Fachinetti
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
13
|
Weng XT, Lin WL, Pan QM, Chen TF, Li SY, Gu CM. Aggressive variant prostate cancer: A case report and literature review. World J Clin Cases 2023; 11:6213-6222. [PMID: 37731555 PMCID: PMC10507546 DOI: 10.12998/wjcc.v11.i26.6213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Aggressive variant prostate cancer (AVPC) is a rare disease that progresses rapidly. The first-line treatment for AVPC is currently unknown. We examined a rare case of AVPC with rare brain and bladder metastases. A summary review of the mechanism of development, clinicopathological manifestations, associated treatments and prognosis of this disease is presented. CASE SUMMARY The patient was diagnosed with prostate cancer (PCA), and was actively treated with endocrine therapy, radiotherapy, chemotherapy, and traditional Chinese medicine. Unfortunately, he was insensitive to treatment, and the disease progressed rapidly. He died five years after being diagnosed with PCA. CONCLUSION We should reach consensus definitions of the AVPC and other androgen receptor-independent subtypes of PCA and develop new biomarkers to identify groups of high-risk variants. It is crucial to complete a puncture biopsy of the tumor or metastatic lesion as soon as possible in patients with advanced PCA who exhibit clinical features such as low Prostate-specific antigen levels, high carcinoembryonic antigen levels, and insensitivity to hormones to determine the pathological histological type and to create a more aggressive monitoring and treatment regimens.
Collapse
Affiliation(s)
- Xiang-Tao Weng
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Wen-Li Lin
- Department of Urology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Qi-Man Pan
- Department of Urology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Tao-Fen Chen
- Department of Urology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Si-Yi Li
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Chi-Ming Gu
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
14
|
Strauss JD, Pursell ZF. Replication DNA polymerases, genome instability and cancer therapies. NAR Cancer 2023; 5:zcad033. [PMID: 37388540 PMCID: PMC10304742 DOI: 10.1093/narcan/zcad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
It has been over a decade since the initial identification of exonuclease domain mutations in the genes encoding the catalytic subunits of replication DNA polymerases ϵ and δ (POLE and POLD1) in tumors from highly mutated endometrial and colorectal cancers. Interest in studying POLE and POLD1 has increased significantly since then. Prior to those landmark cancer genome sequencing studies, it was well documented that mutations in replication DNA polymerases that reduced their DNA synthesis accuracy, their exonuclease activity or their interactions with other factors could lead to increased mutagenesis, DNA damage and even tumorigenesis in mice. There are several recent, well-written reviews of replication DNA polymerases. The aim of this review is to gather and review in some detail recent studies of DNA polymerases ϵ and δ as they pertain to genome instability, cancer and potential therapeutic treatments. The focus here is primarily on recent informative studies on the significance of mutations in genes encoding their catalytic subunits (POLE and POLD1), mutational signatures, mutations in associated genes, model organisms, and the utility of chemotherapy and immune checkpoint inhibition in polymerase mutant tumors.
Collapse
Affiliation(s)
- Juliet D Strauss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70118 LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70118 LA, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, 70118 LA, USA
| |
Collapse
|
15
|
Zhang X, Barnett E, Smith J, Wilkinson E, Subramaniam RM, Zarrabi A, Rodger EJ, Chatterjee A. Genetic and epigenetic features of neuroendocrine prostate cancer and their emerging applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:41-66. [PMID: 38359970 DOI: 10.1016/bs.ircmb.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Prostate cancer is the second most prevalent cancer in men globally. De novo neuroendocrine prostate cancer (NEPC) is uncommon at initial diagnosis, however, (treatment-induced) t-NEPC emerges in up to 25% of prostate adenocarcinoma (PRAD) cases treated with androgen deprivation, carrying a drastically poor prognosis. The transition from PRAD to t-NEPC is underpinned by several key genetic mutations; TP53, RB1, and MYCN are the main genes implicated, bearing similarities to other neuroendocrine tumours. A broad range of epigenetic alterations, such as aberrations in DNA methylation, histone post-translational modifications, and non-coding RNAs, may drive lineage plasticity from PRAD to t-NEPC. The clinical diagnosis of NEPC is hampered by a lack of accessible biomarkers; recent advances in liquid biopsy techniques assessing circulating tumour cells and ctDNA in NEPC suggest that the advent of non-invasive means of monitoring progression to NEPC is on the horizon. Such techniques are vital for NEPC management; diagnosis of t-NEPC is crucial for implementing effective treatment, and precision medicine will be integral to providing the best outcomes for patients.
Collapse
Affiliation(s)
- Xintong Zhang
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Te Whatu Ora/Health New Zealand, Wellington, New Zealand
| | - Emma Wilkinson
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Faculty of Medicine, Nursing, Midwifery and Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia; Department of Radiology, Duke University, Durham, NC, United States
| | - Amir Zarrabi
- Te Whatu Ora/Health New Zealand, Wellington, New Zealand; Precision Urology, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Honorary Professor, School of Health Sciences and Technology, UPES University, Dehradun, India.
| |
Collapse
|
16
|
Huang Y, Liu C, You L, Li X, Chen G, Fan J. Synergistic effect of PARP inhibitor and BRD4 inhibitor in multiple models of ovarian cancer. J Cell Mol Med 2023; 27:634-649. [PMID: 36753396 PMCID: PMC9983312 DOI: 10.1111/jcmm.17683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Ovarian cancer has the highest facility rate among gynaecological tumours. Current therapies including PARP inhibitors have a defect that ovarian tumour is easy to recurrent and become resistant to therapy. To solve this problem, we found that BRD4 inhibitor AZD5153 and PARP inhibitor olaparib had a widespread synergistic effect in multiple models with different gene backgrounds. AZD5153 sensitizes cells to olaparib and reverses the acquired resistance by down-regulating PTEN expression levels to destabilize hereditary materials. In this study, we used the following multiple ovarian cancer models PDX, PDO and 3D/2D cell lines to elucidate the co-effect of AZD5153 and olaparib in vivo and in vitro. The similar results of these models further proved that the mechanism identified was consistent with the biological process occurring in ovarian cancer patients after drug treatment. This consistency between the results of different models suggests the possibility of translating these laboratory research findings into clinical studies towards developing treatments.
Collapse
Affiliation(s)
- Yuhan Huang
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,Department of Obstetrics and GynecologyShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chen Liu
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,Department of Obstetrics and GynecologyShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lixin You
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xi Li
- Department of Obstetrics and GynecologyShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gang Chen
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Junpeng Fan
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
17
|
Misra S, Chowdhury SG, Ghosh G, Mukherjee A, Karmakar P. Both phosphorylation and phosphatase activity of PTEN are required to prevent replication fork progression during stress by inducing heterochromatin. Mutat Res 2022; 825:111800. [PMID: 36155262 DOI: 10.1016/j.mrfmmm.2022.111800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
PTEN is a tumor suppressor protein frequently altered in various cancers. PTEN-null cells have a characteristic of rapid proliferation with an unstable genome. Replication stress is one of the causes of the accumulation of genomic instability if not sensed by the cellular signaling. Though PTEN-null cells have shown to be impaired in replication progression and stalled fork recovery, the association between the catalytic function of PTEN regulated by posttranslational modulation and cellular response to replication stress has not been studied explicitly. To understand molecular mechanism, we find that PTEN-null cells display unrestrained replication fork progression with accumulation of damaged DNA after treatment with aphidicolin which can be rescued by ectopic expression of full-length PTEN, as evident from DNA fiber assay. Moreover, the C-terminal phosphorylation (Ser 380, Thr 382/383) of PTEN is essential for its chromatin association and sensing replication stress that, in response, induce cell cycle arrest. Further, we observed that PTEN induces HP1α expression and H3K9me3 foci formation in a C-terminal phosphorylation-dependent manner. However, phosphatase dead PTEN cannot sense replication stress though it can be associated with chromatin. Together, our results suggest that DNA replication perturbation by aphidicolin enables chromatin association of PTEN through C-terminal phosphorylation, induces heterochromatin formation by stabilizing and up-regulating H3K9me3 foci and augments CHK1 activation. Thereby, PTEN prevents DNA replication fork elongation and simultaneously causes G1-S phase cell cycle arrest to limit cell proliferation in stress conditions. Thus PTEN act as stress sensing protein during replication arrest to maintain genomic stability.
Collapse
Affiliation(s)
- Sandip Misra
- PG Department of Microbiology, Bidhannagar College, EB-2 Sector-1, Saltlake, Kolkata, India
| | | | - Ginia Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Ananda Mukherjee
- Rajiv Gandhi Centre for Biotechnology,Thiruvananthapuram 695 014, Kerala, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
18
|
The Mechanisms of lncRNA-Mediated Multidrug Resistance and the Clinical Application Prospects of lncRNAs in Breast Cancer. Cancers (Basel) 2022; 14:cancers14092101. [PMID: 35565231 PMCID: PMC9103444 DOI: 10.3390/cancers14092101] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multidrug resistance (MDR) is a major cause of breast cancer (BC) chemotherapy failure. Long noncoding RNAs (lncRNAs) have been shown closely related to the chemoresistance of BC. In this work, the mechanisms of lncRNA-mediated MDR in BC were elaborated from eight sections, including apoptosis, autophagy, DNA repair, cell cycle, drug efflux, epithelial-mesenchymal transition, epigenetic modification and the tumor microenvironment. Additionally, we also discuss the clinical significance of lncRNAs, which may be biomarkers for diagnosis, therapy and prognosis. Abstract Breast cancer (BC) is a highly heterogeneous disease and presents a great threat to female health worldwide. Chemotherapy is one of the predominant strategies for the treatment of BC; however, multidrug resistance (MDR) has seriously affected or hindered the effect of chemotherapy. Recently, a growing number of studies have indicated that lncRNAs play vital and varied roles in BC chemoresistance, including apoptosis, autophagy, DNA repair, cell cycle, drug efflux, epithelial-mesenchymal transition (EMT), epigenetic modification and the tumor microenvironment (TME). Although thousands of lncRNAs have been implicated in the chemoresistance of BC, a systematic review of their regulatory mechanisms remains to be performed. In this review, we systematically summarized the mechanisms of MDR and the functions of lncRNAs mediated in the chemoresistance of BC from the latest literature. These findings significantly enhance the current understanding of lncRNAs and suggest that they may be promising prognostic biomarkers for BC patients receiving chemotherapy, as well as therapeutic targets to prevent or reverse chemoresistance.
Collapse
|
19
|
Park VS, Sun MJS, Frey WD, Williams LG, Hodel KP, Strauss JD, Wellens SJ, Jackson JG, Pursell ZF. Mouse model and human patient data reveal critical roles for Pten and p53 in suppressing POLE mutant tumor development. NAR Cancer 2022; 4:zcac004. [PMID: 35252866 PMCID: PMC8892059 DOI: 10.1093/narcan/zcac004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the exonuclease domain of POLE are associated with tumors harboring very high mutation burdens. The mechanisms linking this significant mutation accumulation and tumor development remain poorly understood. Pole+/P286R;Trp53+/– mice showed accelerated cancer mortality compared to Pole+/P286R;Trp53+/+ mice. Cells from Pole+/P286R mice showed increased p53 activation, and subsequent loss of p53 permitted rapid growth, implicating canonical p53 loss of heterozygosity in POLE mutant tumor growth. However, p53 status had no effect on tumor mutation burden or single base substitution signatures in POLE mutant tumors from mice or humans. Pten has important roles in maintaining genome stability. We find that PTEN mutations are highly enriched in human POLE mutant tumors, including many in POLE signature contexts. One such signature mutation, PTEN-F341V, was previously shown in a mouse model to specifically decrease nuclear Pten and lead to increased DNA damage. We found tumors in Pole+/P286R mice that spontaneously acquired PtenF341V mutations and were associated with significantly reduced nuclear Pten and elevated DNA damage. Re-analysis of human TCGA (The Cancer Genome Atlas) data showed that all PTEN-F341V mutations occurred in tumors with mutations in POLE. Taken together with recent published work, our results support the idea that development of POLE mutant tumors may involve disabling surveillance of nuclear DNA damage in addition to POLE-mediated hypermutagenesis.
Collapse
Affiliation(s)
- Vivian S Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Meijuan J S Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wesley D Frey
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Leonard G Williams
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Karl P Hodel
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Juliet D Strauss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sydney J Wellens
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
20
|
Bukhari AB, Chan GK, Gamper AM. Targeting the DNA Damage Response for Cancer Therapy by Inhibiting the Kinase Wee1. Front Oncol 2022; 12:828684. [PMID: 35251998 PMCID: PMC8891215 DOI: 10.3389/fonc.2022.828684] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer cells typically heavily rely on the G2/M checkpoint to survive endogenous and exogenous DNA damage, such as genotoxic stress due to genome instability or radiation and chemotherapy. The key regulator of the G2/M checkpoint, the cyclin-dependent kinase 1 (CDK1), is tightly controlled, including by its phosphorylation state. This posttranslational modification, which is determined by the opposing activities of the phosphatase cdc25 and the kinase Wee1, allows for a more rapid response to cellular stress than via the synthesis or degradation of modulatory interacting proteins, such as p21 or cyclin B. Reducing Wee1 activity results in ectopic activation of CDK1 activity and drives premature entry into mitosis with unrepaired or under-replicated DNA and causing mitotic catastrophe. Here, we review efforts to use small molecule inhibitors of Wee1 for therapeutic purposes, including strategies to combine Wee1 inhibition with genotoxic agents, such as radiation therapy or drugs inducing replication stress, or inhibitors of pathways that show synthetic lethality with Wee1. Furthermore, it become increasingly clear that Wee1 inhibition can also modulate therapeutic immune responses. We will discuss the mechanisms underlying combination treatments identifying both cell intrinsic and systemic anti-tumor activities.
Collapse
|
21
|
Merkens L, Sailer V, Lessel D, Janzen E, Greimeier S, Kirfel J, Perner S, Pantel K, Werner S, von Amsberg G. Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:46. [PMID: 35109899 PMCID: PMC8808994 DOI: 10.1186/s13046-022-02255-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a hormone-driven disease and its tumor cell growth highly relies on increased androgen receptor (AR) signaling. Therefore, targeted therapy directed against androgen synthesis or AR activation is broadly used and continually improved. However, a subset of patients eventually progresses to castration-resistant disease. To date, various mechanisms of resistance have been identified including the development of AR-independent aggressive variant prostate cancer based on neuroendocrine transdifferentiation (NED). Here, we review the highly complex processes contributing to NED. Genetic, epigenetic, transcriptional aberrations and posttranscriptional modifications are highlighted and the potential interplay of the different factors is discussed. Background Aggressive variant prostate cancer (AVPC) with traits of neuroendocrine differentiation emerges in a rising number of patients in recent years. Among others, advanced therapies targeting the androgen receptor axis have been considered causative for this development. Cell growth of AVPC often occurs completely independent of the androgen receptor signal transduction pathway and cells have mostly lost the typical cellular features of prostate adenocarcinoma. This complicates both diagnosis and treatment of this very aggressive disease. We believe that a deeper understanding of the complex molecular pathological mechanisms contributing to transdifferentiation will help to improve diagnostic procedures and develop effective treatment strategies. Indeed, in recent years, many scientists have made important contributions to unravel possible causes and mechanisms in the context of neuroendocrine transdifferentiation. However, the complexity of the diverse molecular pathways has not been captured completely, yet. This narrative review comprehensively highlights the individual steps of neuroendocrine transdifferentiation and makes an important contribution in bringing together the results found so far.
Collapse
Affiliation(s)
- Lina Merkens
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Verena Sailer
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ella Janzen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sarah Greimeier
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jutta Kirfel
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.,Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg HaTRiCs4, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
22
|
Depletion of NK6 Homeobox 3 (NKX6.3) causes gastric carcinogenesis through copy number alterations by inducing impairment of DNA replication and repair regulation. Oncogenesis 2021; 10:85. [PMID: 34893582 PMCID: PMC8664813 DOI: 10.1038/s41389-021-00365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Genomic stability maintenance requires correct DNA replication, chromosome segregation, and DNA repair, while defects of these processes result in tumor development or cell death. Although abnormalities in DNA replication and repair regulation are proposed as underlying causes for genomic instability, the detailed mechanism remains unclear. Here, we investigated whether NKX6.3 plays a role in the maintenance of genomic stability in gastric epithelial cells. NKX6.3 functioned as a transcription factor for CDT1 and RPA1, and its depletion increased replication fork rate, and fork asymmetry. Notably, we showed that abnormal DNA replication by the depletion of NKX6.3 caused DNA damage and induced homologous recombination inhibition. Depletion of NKX6.3 also caused copy number alterations of various genes in the vast chromosomal region. Hence, our findings underscore NKX6.3 might be a crucial factor of DNA replication and repair regulation from genomic instability in gastric epithelial cells.
Collapse
|
23
|
Misra S, Ghosh G, Chowdhury SG, Karmakar P. Non-canonical function of nuclear PTEN and its implication on tumorigenesis. DNA Repair (Amst) 2021; 107:103197. [PMID: 34359000 DOI: 10.1016/j.dnarep.2021.103197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/13/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023]
Abstract
Suppression of genomic instability is the key to prevent tumor development. PTEN is a unique tumor suppressor protein having both lipid and protein phosphatase activities. Interestingly though it is a cytoplasmic protein, but a significant pool of PTEN can also be localized in nucleus. The function of cytoplasmic PTEN is well defined and extensively studied in various literatures focusing mainly on the negative regulation of oncogenic PI-3Kinase-AKT pathway but functional regulation of nuclear PTEN is less defined and therefore it is a fascinating subject of research in cancer biology. Post-translation modulation of PTEN such as phosphorylation, sumorylation, acetylation and methylation also regulates its cellular localization, protein-protein association and catalytic function. Loss or mutation in PTEN is associated with the development of tumors in various tissues from the brain to prostate. Here we have summarized the role of nuclear PTEN and its epigenetic modulation in various DNA metabolic pathways, for example, DNA damage response, DNA repair, DNA replication, DNA segregation etc. Further, pathways involved in nuclear PTEN degradation are also discussed. Additionally, we also emphasize probable potential targets associated with PTEN pathway for chemotherapeutic purpose.
Collapse
Affiliation(s)
- Sandip Misra
- PG Department of Microbiology, Bidhannagar College, EB-2 Sector-1, Saltlake, Kolkata, India
| | - Ginia Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
24
|
Osrodek M, Wozniak M. Targeting Genome Stability in Melanoma-A New Approach to an Old Field. Int J Mol Sci 2021; 22:3485. [PMID: 33800547 PMCID: PMC8036881 DOI: 10.3390/ijms22073485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Despite recent groundbreaking advances in the treatment of cutaneous melanoma, it remains one of the most treatment-resistant malignancies. Due to resistance to conventional chemotherapy, the therapeutic focus has shifted away from aiming at melanoma genome stability in favor of molecularly targeted therapies. Inhibitors of the RAS/RAF/MEK/ERK (MAPK) pathway significantly slow disease progression. However, long-term clinical benefit is rare due to rapid development of drug resistance. In contrast, immune checkpoint inhibitors provide exceptionally durable responses, but only in a limited number of patients. It has been increasingly recognized that melanoma cells rely on efficient DNA repair for survival upon drug treatment, and that genome instability increases the efficacy of both MAPK inhibitors and immunotherapy. In this review, we discuss recent developments in the field of melanoma research which indicate that targeting genome stability of melanoma cells may serve as a powerful strategy to maximize the efficacy of currently available therapeutics.
Collapse
Affiliation(s)
| | - Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 92-215 Lodz, Poland;
| |
Collapse
|
25
|
Abstract
In over two decades since the discovery of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), nearly 18,000 publications have attempted to elucidate its functions and roles in normal physiology and disease. The frequent disruption of PTEN in cancer cells was a strong indication that it had critical roles in tumour suppression. Germline PTEN mutations have been identified in patients with heterogeneous tumour syndromic diseases, known as PTEN hamartoma tumour syndrome (PHTS), and in some individuals with autism spectrum disorders (ASD). Today we know that by limiting oncogenic signalling through the phosphoinositide 3-kinase (PI3K) pathway, PTEN governs a number of processes including survival, proliferation, energy metabolism, and cellular architecture. Some of the most exciting recent advances in the understanding of PTEN biology and signalling have revisited its unappreciated roles as a protein phosphatase, identified non-enzymatic scaffold functions, and unravelled its nuclear function. These discoveries are certain to provide a new perspective on its full tumour suppressor potential, and knowledge from this work will lead to new anti-cancer strategies that exploit PTEN biology. In this review, we will highlight some outstanding questions and some of the very latest advances in the understanding of the tumour suppressor PTEN.
Collapse
Affiliation(s)
- Jonathan Tak-Sum Chow
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Day EK, Zhong Q, Purow B, Lazzara MJ. Data-Driven Computational Modeling Identifies Determinants of Glioblastoma Response to SHP2 Inhibition. Cancer Res 2021; 81:2056-2070. [PMID: 33574084 DOI: 10.1158/0008-5472.can-20-1756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/09/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Oncogenic protein tyrosine phosphatases have long been viewed as drug targets of interest, and recently developed allosteric inhibitors of SH2 domain-containing phosphatase-2 (SHP2) have entered clinical trials. However, the ability of phosphatases to regulate many targets directly or indirectly and to both promote and antagonize oncogenic signaling may make the efficacy of phosphatase inhibition challenging to predict. Here we explore the consequences of antagonizing SHP2 in glioblastoma, a recalcitrant cancer where SHP2 has been proposed as a useful drug target. Measuring protein phosphorylation and expression in glioblastoma cells across 40 signaling pathway nodes in response to different drugs and for different oxygen tensions revealed that SHP2 antagonism has network-level, context-dependent signaling consequences that affect cell phenotypes (e.g., cell death) in unanticipated ways. To map specific signaling consequences of SHP2 antagonism to phenotypes of interest, a data-driven computational model was constructed based on the paired signaling and phenotype data. Model predictions aided in identifying three signaling processes with implications for treating glioblastoma with SHP2 inhibitors. These included PTEN-dependent DNA damage repair in response to SHP2 inhibition, AKT-mediated bypass resistance in response to chronic SHP2 inhibition, and SHP2 control of hypoxia-inducible factor expression through multiple MAPKs. Model-generated hypotheses were validated in multiple glioblastoma cell lines, in mouse tumor xenografts, and through analysis of The Cancer Genome Atlas data. Collectively, these results suggest that in glioblastoma, SHP2 inhibitors antagonize some signaling processes more effectively than existing kinase inhibitors but can also limit the efficacy of other drugs when used in combination. SIGNIFICANCE: These findings demonstrate that allosteric SHP2 inhibitors have multivariate and context-dependent effects in glioblastoma that may make them useful components of some combination therapies, but not others.
Collapse
Affiliation(s)
- Evan K Day
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qing Zhong
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Benjamin Purow
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
27
|
Beyond Kinases: Targeting Replication Stress Proteins in Cancer Therapy. Trends Cancer 2020; 7:430-446. [PMID: 33203609 DOI: 10.1016/j.trecan.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
DNA replication stress describes a state of impaired replication fork progress that triggers a cellular stress response to maintain genome stability and complete DNA synthesis. Replication stress is a common state that must be tolerated in many cancers. One promising therapeutic approach is targeting replication stress response factors such as the ataxia telangiectasia and rad 3-related kinase (ATR) or checkpoint kinase 1 (CHK1) kinases that some cancers depend upon to survive endogenous replication stress. However, research revealing the complexity of the replication stress response suggests new genetic interactions and candidate therapeutic targets. Many of these candidates regulate DNA transactions around reversed replication forks, including helicases, nucleases and alternative polymerases that promote fork stability and restart. Here we review emerging strategies to exploit replication stress for cancer therapy.
Collapse
|
28
|
Fan X, Kraynak J, Knisely JPS, Formenti SC, Shen WH. PTEN as a Guardian of the Genome: Pathways and Targets. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036194. [PMID: 31932469 DOI: 10.1101/cshperspect.a036194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Faithful transmission of genetic information is only possible with the structural and functional integrity of the genome. PTEN has been recognized as a guardian of the genome since the identification of its noncanonical localization and function in the nucleus. Yet, the role of PTEN in guarding the genome relies on integration of diverse mechanisms elicited by its canonical activity in antagonizing PI3K as well as emerging noncanonical functions. In the nucleus, PTEN maintains the structural integrity of chromosomes and the architecture of heterochromatin by physically interacting with chromosomal and nucleosomal components. PTEN also controls the functional integrity of key genetic transmission machineries by promoting proper assembly of the replisome and mitotic spindles. Deregulation of PTEN signaling impairs genome integrity, leading to spontaneous replication/mitotic stress and subsequent stress tolerance. Identification of novel targets of PTEN signaling and illumination of the interplay of diverse PTEN pathways in genome maintenance will help us better understand mechanisms underlying tumor evolution and therapeutic resistance.
Collapse
Affiliation(s)
- Xinyi Fan
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Jeffrey Kraynak
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Jonathan P S Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| |
Collapse
|
29
|
Pennycook BR, Vesela E, Peripolli S, Singh T, Barr AR, Bertoli C, de Bruin RAM. E2F-dependent transcription determines replication capacity and S phase length. Nat Commun 2020; 11:3503. [PMID: 32665547 PMCID: PMC7360579 DOI: 10.1038/s41467-020-17146-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
DNA replication timing is tightly regulated during S-phase. S-phase length is determined by DNA synthesis rate, which depends on the number of active replication forks and their velocity. Here, we show that E2F-dependent transcription, through E2F6, determines the replication capacity of a cell, defined as the maximal amount of DNA a cell can synthesise per unit time during S-phase. Increasing or decreasing E2F-dependent transcription during S-phase increases or decreases replication capacity, and thereby replication rates, thus shortening or lengthening S-phase, respectively. The changes in replication rate occur mainly through changes in fork speed without affecting the number of active forks. An increase in fork speed does not induce replication stress directly, but increases DNA damage over time causing cell cycle arrest. Thus, E2F-dependent transcription determines the DNA replication capacity of a cell, which affects the replication rate, controlling the time it takes to duplicate the genome and complete S-phase.
Collapse
Affiliation(s)
- Betheney R Pennycook
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
- MRC London Institute of Medical Science Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Eva Vesela
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
| | - Silvia Peripolli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
| | - Tanya Singh
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
| | - Alexis R Barr
- MRC London Institute of Medical Science Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK.
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK.
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
30
|
Brunner A, Suryo Rahmanto A, Johansson H, Franco M, Viiliäinen J, Gazi M, Frings O, Fredlund E, Spruck C, Lehtiö J, Rantala JK, Larsson LG, Sangfelt O. PTEN and DNA-PK determine sensitivity and recovery in response to WEE1 inhibition in human breast cancer. eLife 2020; 9:57894. [PMID: 32628111 PMCID: PMC7338058 DOI: 10.7554/elife.57894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Inhibition of WEE1 kinase by AZD1775 has shown promising results in clinical cancer trials, but markers predicting AZD1775 response are lacking. Here we analysed AZD1775 response in a panel of human breast cancer (BC) cell lines by global proteome/transcriptome profiling and identified two groups of basal-like BC (BLBCs): ‘PTEN low’ BLBCs were highly sensitive to AZD1775 and failed to recover following removal of AZD1775, while ‘PTEN high’ BLBCs recovered. AZD1775 induced phosphorylation of DNA-PK, protecting cells from replication-associated DNA damage and promoting cellular recovery. Deletion of DNA-PK or PTEN, or inhibition of DNA-PK sensitized recovering BLBCs to AZD1775 by abrogating replication arrest, allowing replication despite DNA damage. This was linked to reduced CHK1 activation, increased cyclin E levels and apoptosis. In conclusion, we identified PTEN and DNA-PK as essential regulators of replication checkpoint arrest in response to AZD1775 and defined PTEN as a promising biomarker for efficient WEE1 cancer therapy.
Collapse
Affiliation(s)
- Andrä Brunner
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Henrik Johansson
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marcela Franco
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Viiliäinen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mohiuddin Gazi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Frings
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Fredlund
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charles Spruck
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Janne Lehtiö
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Juha K Rantala
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Li J, Jiang D, Zhang Q, Peng S, Liao G, Yang X, Tang J, Xiong H, Pang J. MiR-301a Promotes Cell Proliferation by Repressing PTEN in Renal Cell Carcinoma. Cancer Manag Res 2020; 12:4309-4320. [PMID: 32606927 PMCID: PMC7294045 DOI: 10.2147/cmar.s253533] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022] Open
Abstract
Objective Renal cell carcinoma (RCC) displays an increasing incidence and mortality rate worldwide in recent years. More and more evidence demonstrated microRNAs function as positive or negative regulatory factors in many cancers, while the role of miR-301a in RCC is still unclear. Material and Methods The expression and clinical significance of miR-301a were assessed via bioinformatic software on open microarray datasets of the Cancer Genome Atlas (TCGA) and then confirmed by quantitative real-time PCR (qRT-PCR) in RCC cell lines. Loss of function assays were performed in RCC cell lines both in vitro and in vivo. Cell Counting Kit-8 (CCK-8), flow cytometry, luciferase reporter assays, Western blotting, and immunohistochemistry were employed to explore the mechanisms of the effect of miR-301a on RCC. Results By analyzing RCC clinical specimens and cell lines, we found a uniform increased miR-301a in expression in comparison with normal renal tissue or normal human proximal tubule epithelial cell line (HK-2). In addition, miR-301a upregulation correlated advanced stage and poor prognosis of clear cell RCC (ccRCC). Anti-miR-301a could inhibit growth and cell cycle G1/S transition in RCC cell lines. Moreover, we found that PTEN was identified as a direct target of miR-301a that might partially interrupt miR-301a-induced G1/S transition. Importantly, nude-mouse models revealed that knockdown of miR-301a delayed tumor growth. Conclusion These results indicate that miR-301a functions as a tumor-promoting miRNA through regulating PTEN expression, representing a novel therapeutic target for RCC.
Collapse
Affiliation(s)
- Jun Li
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Donggen Jiang
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Qian Zhang
- Department of Rehabilitation Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Shubin Peng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Guolong Liao
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Xiangwei Yang
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Jiani Tang
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Haiyun Xiong
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Jun Pang
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| |
Collapse
|
32
|
Abstract
The tumor suppressor phosphatase and tension homolog (PTEN) is frequently mutated in human cancers, and it functions in multiple ways to safeguard cells from tumorigenesis. In the cytoplasm, PTEN antagonizes the PI3K/AKT pathway and suppresses cellular proliferation and survival. In the nucleus, PTEN is indispensable for the maintenance of genomic stability. In addition, PTEN loss leads to extensive changes in gene expression at the transcriptional level. The linker histone H1, generally considered as a transcriptional repressor, binds to the nucleosome to form a structure named the chromatosome. The dynamics between H1 and chromatin play an important role in determining gene expression. Here, we summarize the current understanding of roles of PTEN in controlling chromatin dynamics and global gene expression, which is crucial function of nuclear PTEN. We will also introduce the recent discovery of the PTEN family members and their functions.
Collapse
Affiliation(s)
- Jingyi Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
33
|
Primo LMF, Teixeira LK. DNA replication stress: oncogenes in the spotlight. Genet Mol Biol 2019; 43:e20190138. [PMID: 31930281 PMCID: PMC7197996 DOI: 10.1590/1678-4685gmb-2019-0138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/09/2019] [Indexed: 01/21/2023] Open
Abstract
Precise replication of genetic material is essential to maintain genome stability. DNA replication is a tightly regulated process that ensues faithful copies of DNA molecules to daughter cells during each cell cycle. Perturbation of DNA replication may compromise the transmission of genetic information, leading to DNA damage, mutations, and chromosomal rearrangements. DNA replication stress, also referred to as DNA replicative stress, is defined as the slowing or stalling of replication fork progression during DNA synthesis as a result of different insults. Oncogene activation, one hallmark of cancer, is able to disturb numerous cellular processes, including DNA replication. In fact, extensive work has indicated that oncogene-induced replication stress is an important source of genomic instability in human carcinogenesis. In this review, we focus on main oncogenes that induce DNA replication stress, such as RAS, MYC, Cyclin E, MDM2, and BCL-2 among others, and the molecular mechanisms by which these oncogenes interfere with normal DNA replication and promote genomic instability.
Collapse
Affiliation(s)
- Luiza M. F. Primo
- Group of Cell Cycle Control, Program of Immunology and Tumor
Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ,
Brazil
| | - Leonardo K. Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor
Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ,
Brazil
| |
Collapse
|
34
|
Abstract
Precise replication of genetic material is essential to maintain genome stability. DNA replication is a tightly regulated process that ensues faithful copies of DNA molecules to daughter cells during each cell cycle. Perturbation of DNA replication may compromise the transmission of genetic information, leading to DNA damage, mutations, and chromosomal rearrangements. DNA replication stress, also referred to as DNA replicative stress, is defined as the slowing or stalling of replication fork progression during DNA synthesis as a result of different insults. Oncogene activation, one hallmark of cancer, is able to disturb numerous cellular processes, including DNA replication. In fact, extensive work has indicated that oncogene-induced replication stress is an important source of genomic instability in human carcinogenesis. In this review, we focus on main oncogenes that induce DNA replication stress, such as RAS, MYC, Cyclin E, MDM2, and BCL-2 among others, and the molecular mechanisms by which these oncogenes interfere with normal DNA replication and promote genomic instability.
Collapse
Affiliation(s)
- Luiza M F Primo
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Leonardo K Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Pearson SJ, Elswood J, Barhoumi R, Ming-Whitfield B, Rijnkels M, Porter WW. Loss of SIM2s inhibits RAD51 binding and leads to unresolved replication stress. Breast Cancer Res 2019; 21:125. [PMID: 31775907 PMCID: PMC6882179 DOI: 10.1186/s13058-019-1207-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Background Mutations in genes associated with homologous recombination (HR) increase an individual’s risk of developing triple-negative breast cancer (TNBC). Although known for their role in repairing dsDNA breaks, HR repair elements also stabilize and restart stalled replication forks. Essential to these functions are RAD51 and its paralogs, each of which has a unique role in preventing replication fork collapse and restart. However, progress toward understanding the regulation of these factors has been slow. With such a pivotal role in the maintenance of genomic integrity, furthering our understanding of this pathway through the discovery of new factors involved in HR is important. Recently, we showed that singleminded-2s (SIM2s) is stabilized in response to dsDNA breaks and is required for effective HR. Methods Initial analysis of the effect loss of SIM2s has on replication stress resolution was conducted using DNA combing assays in established breast cancer cell lines. Further analysis was conducted via immunostaining to determine the effect loss of SIM2s has on factor recruitment. In vivo confirmation was achieved through the use of a mammary epithelial cell conditional knockout mouse model before SIM2s’ role in RAD51 recruitment was determined by immunoblotting. Results Here, we show loss of SIM2s decreases replication fork stability, leading to fork collapse in response to genotoxic stress. Furthermore, loss of SIM2s results in aberrant separation of sister chromatids during mitosis, which has been previously shown to result in chromosomal fragmentation and aneuploidy. Interestingly, loss of SIM2s was shown to result in failure of RAD51 to localize to sites of replication stress in both breast cancer cell lines and primary mammary epithelial cells. Finally, we observed SIM2 is stabilized in response to genotoxic stress and interacts with RAD51, which is necessary for RAD51-DNA binding. Conclusions Together, these results show a role for SIM2s in the resolution of replication stress and further characterize the necessity of SIM2s for effective RAD51 loading in response to DNA damage or stress, ultimately promoting genomic integrity and thus preventing the accumulation of cancer-promoting mutations.
Collapse
Affiliation(s)
- Scott J Pearson
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Jessica Elswood
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Rola Barhoumi
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Brittini Ming-Whitfield
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Monique Rijnkels
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston W Porter
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA. .,Present Address: Veterinary Integrative Biosciences, Texas A&M University, College of Veterinary Medicine, College Station, TX, 77843, USA.
| |
Collapse
|
36
|
Chebotarev DA, Makhotkin MA, Naboka AV, Tyutyakina MG, Cherkasova EN, Tarasov VA. Involvement of MicroRNAs in Regulation of Radioresistance of HeLa and DU145 Cells. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419090047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Sun Z, Lu J, Wu M, Li M, Bai L, Shi Z, Hao L, Wu Y. Deficiency of PTEN leads to aberrant chromosome segregation through downregulation of MAD2. Mol Med Rep 2019; 20:4235-4243. [PMID: 31545428 PMCID: PMC6797992 DOI: 10.3892/mmr.2019.10668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/20/2019] [Indexed: 11/07/2022] Open
Abstract
Proper spindle formation and accurate chromosome segregation are essential for ensuring mitotic fidelity. Phosphatase and tensin homolog (PTEN) is a multifunctional protein, which is able to maintain the stability of the genome and chromosomes. The present study described an essential role of PTEN in regulating chromosome segregation to prevent gross genomic instability via regulation of mitotic arrest deficient 2 (MAD2). PTEN knockdown induced cell cycle arrest and abnormal chromosome segregation, which manifested as the formation of anaphase bridges, lagging chromosomes and premature chromatid separation. In addition, MAD2 was identified as a potential target of PTEN. Furthermore, the present study revealed that PTEN knockdown resulted in MAD2 degradation via the ubiquitin-proteasomal pathway, while restoration of MAD2 expression partially ameliorated the mitotic defects induced by PTEN loss. The results from the present study proposed a novel mechanism by which PTEN maintains chromosome stability.
Collapse
Affiliation(s)
- Zhuo Sun
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jinqi Lu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Muyu Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mingyan Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Lu Bai
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yongping Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
38
|
Hou B, Xu S, Xu Y, Gao Q, Zhang C, Liu L, Yang H, Jiang X, Che Y. Grb2 binds to PTEN and regulates its nuclear translocation to maintain the genomic stability in DNA damage response. Cell Death Dis 2019; 10:546. [PMID: 31320611 PMCID: PMC6639399 DOI: 10.1038/s41419-019-1762-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/03/2022]
Abstract
Growth factor receptor bound protein 2 (Grb2) is an adaptor protein critical for signal transduction and endocytosis, but its role in DNA damage response (DDR) remains unknown. Here, we report that either knockdown of Grb2 or overexpression of the mutated Grb2 promotes micronuclei formation in response to oxidative stress. Furthermore, Grb2 was demonstrated to interact with phosphatase and tensin homologue (PTEN; a tumor suppressor essential for nuclear stability), and the loss of Grb2 reduced the nuclear-localized PTEN, which was further decreased upon stimulation with hydrogen peroxide (H2O2). Overexpression of the T398A-mutated, nuclear-localized PTEN reduced micronuclei frequency in the cells deficient of functional Grb2 via rescuing the H2O2-dependent expression of Rad51, a protein essential for the homologous recombination (HR) repair process. Moreover, depletion of Grb2 markedly decreased the expression of Rad51 and its interaction with PTEN. Notably, Rad51 showed a preference to immunoprecipation with the T398A-PTEN mutant, and silencing of Rad51 alone accumulated micronuclei concurring with decreased expression of both Grb2 and PTEN. Our findings indicate that Grb2 interacts with PTEN and Rad51 to regulate genomic stability in DDR by mediating the nuclear translocation of PTEN to affect the expression of Rad51.
Collapse
Affiliation(s)
- Bolin Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Shanshan Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Yang Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Quan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Caining Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Huaiyi Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Yongsheng Che
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
39
|
Zhang J, Lee YR, Dang F, Gan W, Menon AV, Katon JM, Hsu CH, Asara JM, Tibarewal P, Leslie NR, Shi Y, Pandolfi PP, Wei W. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov 2019; 9:1306-1323. [PMID: 31217297 DOI: 10.1158/2159-8290.cd-18-0083] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/05/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
The function of PTEN in the cytoplasm largely depends on its lipid-phosphatase activity, though which it antagonizes the PI3K-AKT oncogenic pathway. However, molecular mechanisms underlying the role of PTEN in the nucleus remain largely elusive. Here, we report that DNA double-strand breaks (DSB) promote PTEN interaction with MDC1 upon ATM-dependent phosphorylation of T/S398-PTEN. Importantly, DNA DSBs enhance NSD2 (MMSET/WHSC1)-mediated dimethylation of PTEN at K349, which is recognized by the tudor domain of 53BP1 to recruit PTEN to DNA-damage sites, governing efficient repair of DSBs partly through dephosphorylation of γH2AX. Of note, inhibiting NSD2-mediated methylation of PTEN, either through expressing methylation-deficient PTEN mutants or through inhibiting NSD2, sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor and DNA-damaging agents in both cell culture and in vivo xenograft models. Therefore, our study provides a novel molecular mechanism for PTEN regulation of DSB repair in a methylation- and protein phosphatase-dependent manner. SIGNIFICANCE: NSD2-mediated dimethylation of PTEN is recognized by the 53BP1 tudor domain to facilitate PTEN recruitment into DNA-damage sites, governing efficient repair of DNA DSBs. Importantly, inhibiting PTEN methylation sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor combined with DNA-damaging agents in both cell culture and in vivo xenograft models.This article is highlighted in the In This Issue feature, p. 1143.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.,Medical Research Institute, Wuhan University, Wuhan, P.R. China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yu-Ru Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Archita Venugopal Menon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jesse M Katon
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts
| | - Chih-Hung Hsu
- Department of Public Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.,Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Priyanka Tibarewal
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, United Kingdom.,UCL Cancer Institute, University College London, London, United Kingdom
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, United Kingdom
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts. .,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
40
|
Tatebe K, Chmura SJ, Connell PP. Elevated Radiation Therapy Toxicity in the Setting of Germline PTEN Mutation. Pract Radiat Oncol 2019; 9:492-495. [PMID: 31185301 DOI: 10.1016/j.prro.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Ken Tatebe
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Philip P Connell
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
41
|
Turchick A, Liu Y, Zhao W, Cohen I, Glazer PM. Synthetic lethality of a cell-penetrating anti-RAD51 antibody in PTEN-deficient melanoma and glioma cells. Oncotarget 2019; 10:1272-1283. [PMID: 30863489 PMCID: PMC6407680 DOI: 10.18632/oncotarget.26654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
PTEN is a tumor suppressor that is highly mutated in a variety of human cancers. Recent studies have suggested a link between PTEN loss and deficiency in the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. As a means to achieve synthetic lethality in this context, we tested the effect of 3E10, a cell-penetrating autoantibody that inhibits RAD51, a key factor in the alternative pathway of DSB repair, homology dependent repair (HDR). We report here that treatment of PTEN-deficient glioma cells with 3E10 leads to an accumulation of DNA damage causing decreased proliferation and increased cell death compared to isogenic PTEN proficient controls. Similarly, 3E10 was synthetically lethal to a series of PTEN-deficient, patient-derived primary melanoma cell populations. Further, 3E10 was found to synergize with a small molecule inhibitor of the ataxia telangiectasia and Rad3-related (ATR) protein, a DNA damage checkpoint kinase, in both PTEN-deficient glioma cells and primary melanoma cells. These results point to a targeted synthetic lethal strategy to treat PTEN-deficient cancers through a combination designed to disrupt both DNA repair and DNA damage checkpoint signaling.
Collapse
Affiliation(s)
- Audrey Turchick
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weixi Zhao
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Inessa Cohen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Peter M. Glazer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
Camero S, Ceccarelli S, De Felice F, Marampon F, Mannarino O, Camicia L, Vescarelli E, Pontecorvi P, Pizer B, Shukla R, Schiavetti A, Mollace MG, Pizzuti A, Tombolini V, Marchese C, Megiorni F, Dominici C. PARP inhibitors affect growth, survival and radiation susceptibility of human alveolar and embryonal rhabdomyosarcoma cell lines. J Cancer Res Clin Oncol 2019; 145:137-152. [PMID: 30357520 PMCID: PMC6326011 DOI: 10.1007/s00432-018-2774-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE PARP inhibitors (PARPi) are used in a wide range of human solid tumours but a limited evidence is reported in rhabdomyosarcoma (RMS), the most frequent childhood soft-tissue sarcoma. The cellular and molecular effects of Olaparib, a specific PARP1/2 inhibitor, and AZD2461, a newly synthesized PARP1/2/3 inhibitor, were assessed in alveolar and embryonal RMS cells both as single-agent and in combination with ionizing radiation (IR). METHODS Cell viability was monitored by trypan blue exclusion dye assays. Cell cycle progression and apoptosis were measured by flow cytometry, and alterations of specific molecular markers were investigated by, Real Time PCR, Western blotting and immunofluorescence experiments. Irradiations were carried out at a dose rate of 2 Gy (190 UM/min) or 4 Gy (380 UM/min). Radiosensitivity was assessed by using clonogenic assays. RESULTS Olaparib and AZD2461 dose-dependently reduced growth of both RH30 and RD cells by arresting growth at G2/M phase and by modulating the expression, activation and subcellular localization of specific cell cycle regulators. Downregulation of phospho-AKT levels and accumulation of γH2AX, a specific marker of DNA damage, were significantly and persistently induced by Olaparib and AZD2461 exposure, this leading to apoptosis-related cell death. Both PARPi significantly enhanced the effects of IR by accumulating DNA damage, increasing G2 arrest and drastically reducing the clonogenic capacity of RMS-cotreated cells. CONCLUSIONS This study suggests that the combined exposure to PARPi and IR might display a role in the treatment of RMS tumours compared with single-agent exposure, since stronger cytotoxic effects are induced, and compensatory survival mechanisms are prevented.
Collapse
Affiliation(s)
- Simona Camero
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesca De Felice
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Olga Mannarino
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Lucrezia Camicia
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Barry Pizer
- Department of Oncology, Alder Hey Children’s NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP UK
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Amalia Schiavetti
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Maria Giovanna Mollace
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesca Megiorni
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Carlo Dominici
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
43
|
High-throughput screens identify HSP90 inhibitors as potent therapeutics that target inter-related growth and survival pathways in advanced prostate cancer. Sci Rep 2018; 8:17239. [PMID: 30467317 PMCID: PMC6250716 DOI: 10.1038/s41598-018-35417-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023] Open
Abstract
The development of new treatments for castrate resistant prostate cancer (CRPC) must address such challenges as intrinsic tumor heterogeneity and phenotypic plasticity. Combined PTEN/TP53 alterations represent a major genotype of CRPC (25–30%) and are associated with poor outcomes. Using tumor-derived, castration-resistant Pten/Tp53 null luminal prostate cells for comprehensive, high-throughput, mechanism-based screening, we identified several vulnerabilities among >1900 compounds, including inhibitors of: PI3K/AKT/mTOR, the proteasome, the cell cycle, heat shock proteins, DNA repair, NFκB, MAPK, and epigenetic modifiers. HSP90 inhibitors were one of the most active compound classes in the screen and have clinical potential for use in drug combinations to enhance efficacy and delay the development of resistance. To inform future design of rational drug combinations, we tested ganetespib, a potent second-generation HSP90 inhibitor, as a single agent in multiple CRPC genotypes and phenotypes. Ganetespib decreased growth of endogenous Pten/Tp53 null tumors, confirming therapeutic activity in situ. Fifteen human CRPC LuCaP PDX-derived organoid models were assayed for responses to 110 drugs, and HSP90 inhibitors (ganetespib and onalespib) were among the select group of drugs (<10%) that demonstrated broad activity (>75% of models) at high potency (IC50 <1 µM). Ganetespib inhibits multiple targets, including AR and PI3K pathways, which regulate mutually compensatory growth and survival signals in some forms of CRPC. Combined with castration, ganetespib displayed deeper PDX tumor regressions and delayed castration resistance relative to either monotherapy. In all, comprehensive data from near-patient models presents novel contexts for HSP90 inhibition in multiple CRPC genotypes and phenotypes, expands upon HSP90 inhibitors as simultaneous inhibitors of oncogenic signaling and resistance mechanisms, and suggests utility for combined HSP90/AR inhibition in CRPC.
Collapse
|
44
|
Barra V, Fachinetti D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun 2018; 9:4340. [PMID: 30337534 PMCID: PMC6194107 DOI: 10.1038/s41467-018-06545-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Centromeres are the chromosomal domains required to ensure faithful transmission of the genome during cell division. They have a central role in preventing aneuploidy, by orchestrating the assembly of several components required for chromosome separation. However, centromeres also adopt a complex structure that makes them susceptible to being sites of chromosome rearrangements. Therefore, preservation of centromere integrity is a difficult, but important task for the cell. In this review, we discuss how centromeres could potentially be a source of genome instability and how centromere aberrations and rearrangements are linked with human diseases such as cancer.
Collapse
Affiliation(s)
- V Barra
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - D Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
45
|
Menghi F, Barthel FP, Yadav V, Tang M, Ji B, Tang Z, Carter GW, Ruan Y, Scully R, Verhaak RGW, Jonkers J, Liu ET. The Tandem Duplicator Phenotype Is a Prevalent Genome-Wide Cancer Configuration Driven by Distinct Gene Mutations. Cancer Cell 2018; 34:197-210.e5. [PMID: 30017478 PMCID: PMC6481635 DOI: 10.1016/j.ccell.2018.06.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/04/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Abstract
The tandem duplicator phenotype (TDP) is a genome-wide instability configuration primarily observed in breast, ovarian, and endometrial carcinomas. Here, we stratify TDP tumors by classifying their tandem duplications (TDs) into three span intervals, with modal values of 11 kb, 231 kb, and 1.7 Mb, respectively. TDPs with ∼11 kb TDs feature loss of TP53 and BRCA1. TDPs with ∼231 kb and ∼1.7 Mb TDs associate with CCNE1 pathway activation and CDK12 disruptions, respectively. We demonstrate that p53 and BRCA1 conjoint abrogation drives TDP induction by generating short-span TDP mammary tumors in genetically modified mice lacking them. Lastly, we show how TDs in TDP tumors disrupt heterogeneous combinations of tumor suppressors and chromatin topologically associating domains while duplicating oncogenes and super-enhancers.
Collapse
Affiliation(s)
- Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Vinod Yadav
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Ming Tang
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bo Ji
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Zhonghui Tang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | | | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Ralph Scully
- Division of Hematology Oncology, Department of Medicine, and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Jos Jonkers
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands
| | - Edison T Liu
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
| |
Collapse
|
46
|
Mukherjee A, Patterson AL, George JW, Carpenter TJ, Madaj ZB, Hostetter G, Risinger JI, Teixeira JM. Nuclear PTEN Localization Contributes to DNA Damage Response in Endometrial Adenocarcinoma and Could Have a Diagnostic Benefit for Therapeutic Management of the Disease. Mol Cancer Ther 2018; 17:1995-2003. [DOI: 10.1158/1535-7163.mct-17-1255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/30/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
|
47
|
Malaney P, Palumbo E, Semidey-Hurtado J, Hardee J, Stanford K, Kathiriya JJ, Patel D, Tian Z, Allen-Gipson D, Davé V. PTEN Physically Interacts with and Regulates E2F1-mediated Transcription in Lung Cancer. Cell Cycle 2018; 17:947-962. [PMID: 29108454 PMCID: PMC6103743 DOI: 10.1080/15384101.2017.1388970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
PTEN phosphorylation at its C-terminal (C-tail) serine/threonine cluster negatively regulates its tumor suppressor function. However, the consequence of such inhibition and its downstream effects in driving lung cancer remain unexplored. Herein, we ascertain the molecular mechanisms by which phosphorylation compromises PTEN function, contributing to lung cancer. Replacement of the serine/threonine residues with alanine generated PTEN-4A, a phosphorylation-deficient PTEN mutant, which suppressed lung cancer cell proliferation and migration. PTEN-4A preferentially localized to the nucleus where it suppressed E2F1-mediated transcription of cell cycle genes. PTEN-4A physically interacted with the transcription factor E2F1 and associated with chromatin at gene promoters with E2F1 DNA-binding sites, a likely mechanism for its transcriptional suppression function. Deletion analysis revealed that the C2 domain of PTEN was indispensable for suppression of E2F1-mediated transcription. Further, we uncovered cancer-associated C2 domain mutant proteins that had lost their ability to suppress E2F1-mediated transcription, supporting the concept that these mutations are oncogenic in patients. Consistent with these findings, we observed increased PTEN phosphorylation and reduced nuclear PTEN levels in lung cancer patient samples establishing phosphorylation as a bona fide inactivation mechanism for PTEN in lung cancer. Thus, use of small molecule inhibitors that hinder PTEN phosphorylation is a plausible approach to activate PTEN function in the treatment of lung cancer. Abbreviations AKT V-Akt Murine Thymoma Viral Oncogene CA Cancer adjacent CDK1 Cyclin dependent kinase 1 CENPC-C Centromere Protein C ChIP Chromatin Immunoprecipitation co-IP Co-immunoprecipitation COSMIC Catalog of Somatic Mutations In Cancer CREB cAMP Responsive Element Binding Protein C-tail Carboxy terminal tail E2F1 E2F Transcription Factor 1 ECIS Electric Cell-substrate Impedance Sensing EGFR Epidermal Growth Factor Receptor GSI Gamma Secretase Inhibitor HDAC1 Histone Deacetylase 1 HP1 Heterochromatin protein 1 KAP1/TRIM28 KRAB-Associated Protein 1/Tripartite Motif Containing 28 MAF1 Repressor of RNA polymerase III transcription MAF1 homolog MCM2 Minichromosome Maintenance Complex Component 2 miRNA micro RNA MTF1 Metal-Regulatory Transcription Factor 1 PARP Poly(ADP-Ribose) Polymerase PD-1 Programmed Cell Death 1 PD-L1 Programmed Cell Death 1 Ligand 1 PI3K Phosphatidylinositol-4,5-Bisphosphate 3-Kinase PLK Polo-like Kinase pPTEN Phosphorylated PTEN PTEN Phosphatase and Tensin Homolog deleted on chromosome ten PTM Post Translational Modification Rad51 RAD51 Recombinase Rad52 RAD52 Recombinase RPA1 Replication protein A SILAC Stable Isotope Labeling with Amino Acids in Cell Culture SRF Serum Response Factor TKI Tyrosine Kinase inhbitors TMA Tissue Microarray TOP2A DNA Topoisomerase 2A.
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | - Emily Palumbo
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | | | - Jamaal Hardee
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | | | | | - Deepal Patel
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | - Zhi Tian
- College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Diane Allen-Gipson
- College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine
- Lung Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| |
Collapse
|
48
|
Roy S, Luzwick JW, Schlacher K. SIRF: Quantitative in situ analysis of protein interactions at DNA replication forks. J Cell Biol 2018; 217:1521-1536. [PMID: 29475976 PMCID: PMC5881507 DOI: 10.1083/jcb.201709121] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/17/2018] [Accepted: 02/09/2018] [Indexed: 02/07/2023] Open
Abstract
DNA replication reactions are central to diverse cellular processes including development, cancer etiology, drug treatment, and resistance. Many proteins and pathways exist to ensure DNA replication fidelity and protection of stalled or damaged replication forks. Consistently, mutations in proteins involved in DNA replication are implicated in diverse diseases that include defects during embryonic development and immunity, accelerated aging, increased inflammation, blood disease, and cancer. Thus, tools for efficient quantitative analysis of protein interactions at active and stalled replication forks are key for advanced and accurate biological understanding. Here we describe a sensitive single-cell-level assay system for the quantitative analysis of protein interactions with nascent DNA. Specifically, we achieve robust in situ analysis of protein interactions at DNA replication forks (SIRF) using proximity ligation coupled with 5'-ethylene-2'-deoxyuridine click chemistry suitable for multiparameter analysis in heterogeneous cell populations. We provide validation data for sensitivity, accuracy, proximity, and quantitation. Using SIRF, we obtained new insight on the regulation of pathway choice by 53BP1 at transiently stalled replication forks.
Collapse
Affiliation(s)
- Sunetra Roy
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jessica W Luzwick
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katharina Schlacher
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
49
|
Hou SQ, Ouyang M, Brandmaier A, Hao H, Shen WH. PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation. Bioessays 2017; 39. [PMID: 28891157 DOI: 10.1002/bies.201700082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Faithful DNA replication and accurate chromosome segregation are the key machineries of genetic transmission. Disruption of these processes represents a hallmark of cancer and often results from loss of tumor suppressors. PTEN is an important tumor suppressor that is frequently mutated or deleted in human cancer. Loss of PTEN has been associated with aneuploidy and poor prognosis in cancer patients. In mice, Pten deletion or mutation drives genomic instability and tumor development. PTEN deficiency induces DNA replication stress, confers stress tolerance, and disrupts mitotic spindle architecture, leading to accumulation of structural and numerical chromosome instability. Therefore, PTEN guards the genome by controlling multiple processes of chromosome inheritance. Here, we summarize current understanding of the PTEN function in promoting high-fidelity transmission of genetic information. We also discuss the PTEN pathways of genome maintenance and highlight potential targets for cancer treatment.
Collapse
Affiliation(s)
- Sheng-Qi Hou
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Meng Ouyang
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Andrew Brandmaier
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hongbo Hao
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
50
|
Yan S, Liu L, Ren F, Gao Q, Xu S, Hou B, Wang Y, Jiang X, Che Y. Sunitinib induces genomic instability of renal carcinoma cells through affecting the interaction of LC3-II and PARP-1. Cell Death Dis 2017; 8:e2988. [PMID: 28796254 PMCID: PMC5596573 DOI: 10.1038/cddis.2017.387] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 12/12/2022]
Abstract
Deficiency of autophagy has been linked to increase in nuclear instability, but the role of autophagy in regulating the formation and elimination of micronuclei, a diagnostic marker for genomic instability, is limited in mammalian cells. Utilizing immunostaining and subcellular fractionation, we found that either LC3-II or the phosphorylated Ulk1 localized in nuclei, and immunoprecipitation results showed that both LC3 and Unc-51-like kinase 1 (Ulk1) interacted with γ-H2AX, a marker for the DNA double-strand breaks (DSB). Sunitinib, a multi-targeted receptor tyrosine kinase inhibitor, was found to enhance the autophagic flux concurring with increase in the frequency of micronuclei accrued upon inhibition of autophagy, and similar results were also obtained in the rasfonin-treated cells. Moreover, the punctate LC3 staining colocalized with micronuclei. Unexpectedly, deprivation of SQSTM1/p62 alone accumulated micronuclei, which was not further increased upon challenge with ST. Rad51 is a protein central to repairing DSB by homologous recombination and treatment with ST or rasfonin decreased its expression. In several cell lines, p62 appeared in the immunoprecipites of Rad51, whereas LC3, Ulk1 and p62 interacted with PARP-1, another protein involved in DNA repair and genomic stability. In addition, knockdown of either Rad51 or PARP-1 completely inhibited the ST-induced autophagic flux. Taken together, the data presented here demonstrated that both LC3-II and the phosphorylated Ulk1 localized in nuclei and interacted with the proteins essential for nuclear stability, thereby revealing a more intimate relationship between autophagy and genomic stability.
Collapse
Affiliation(s)
- Siyuan Yan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fengxia Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Quan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bolin Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yange Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yongsheng Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|