1
|
Pandit R, Yurdagul A. The Atherosclerotic Plaque Microenvironment as a Therapeutic Target. Curr Atheroscler Rep 2025; 27:47. [PMID: 40172727 PMCID: PMC11965263 DOI: 10.1007/s11883-025-01294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE OF REVIEW Atherosclerosis is traditionally viewed as a disease triggered by lipid accumulation, but growing evidence underscores the crucial role of the plaque microenvironment in disease progression. This review explores recent advances in understanding how cellular and extracellular components of the plaque milieu drive atherosclerosis, with a focus on leveraging these microenvironmental factors for therapeutic intervention. This review highlights recent advances in cell-cell crosstalk and matrix remodeling, offering insights into innovative therapeutic strategies for atherosclerotic cardiovascular disease. RECENT FINDINGS While atherosclerosis begins with the subendothelial retention of apolipoprotein B (ApoB)-containing lipoproteins, its progression is increasingly recognized as a consequence of complex cellular and extracellular dynamics within the plaque microenvironment. Soluble factors and extracellular matrix proteins shape mechanical properties and the biochemical landscape, directly influencing cell behavior and inflammatory signaling. For instance, the deposition of transitional matrix proteins, such as fibronectin, in regions of disturbed flow primes endothelial cells for inflammation. Likewise, impaired clearance of dead cells and chronic extracellular matrix remodeling contribute to lesion expansion and instability, further exacerbating disease severity. Targeting the plaque microenvironment presents a promising avenue for stabilizing atherosclerotic lesions. Approaches that enhance beneficial cellular interactions, such as boosting macrophage efferocytosis to resolve inflammation while mitigating proatherogenic signals like integrin-mediated endothelial activation, may promote fibrous cap formation and reduce plaque vulnerability. Harnessing these mechanisms may lead to novel therapeutic approaches aimed at modifying the plaque microenvironment to combat atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Rajan Pandit
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, Shreveport, LA, USA.
| |
Collapse
|
2
|
Han JH, Heo JB, Lee HW, Park MH, Choi J, Yun EJ, Lee S, Song GY, Myung CS. Novel carbazole attenuates vascular remodeling through STAT3/CIAPIN1 signaling in vascular smooth muscle cells. Acta Pharm Sin B 2025; 15:1463-1479. [PMID: 40370537 PMCID: PMC12069901 DOI: 10.1016/j.apsb.2024.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 05/16/2025] Open
Abstract
This study investigated the molecular mechanism of phenotypic switching of vascular smooth muscle cells (VSMCs), which play a crucial role in vascular remodeling using 9H-Carbazol-3-yl 4-aminobenzoate (CAB). CAB significantly attenuated platelet-derived growth factor (PDGF)-induced VSMC proliferation and migration. CAB suppressed PDGF-induced STAT3 activation by directly binding to the SH2 domain of STAT3. Downregulation of STAT3 phosphorylation by CAB attenuated CIAPIN1/JAK2/STAT3 axis through a decrease in CIAPIN1 transcription. Furthermore, abrogated CIAPIN1 decreased KLF4-mediated VSMC dedifferentiation and increased CDKN1B-induced cell cycle arrest and MMP9 suppression. CAB inhibited intimal hyperplasia in injury-induced neointima animal models by inhibition of the CIAPIN1/JAK2/STAT3 axis. However, CIAPIN1 overexpression attenuated CAB-mediated suppression of VSMC proliferation, migration, phenotypic switching, and intimal hyperplasia. Our study clarified the molecular mechanism underlying STAT3 inhibition of VSMC phenotypic switching and vascular remodeling and identified novel active CAB. These findings demonstrated that STAT3 can be a major regulator to control CIAPIN1/JAK2/STAT3 axis that may be a therapeutic target for treating vascular proliferative diseases.
Collapse
Affiliation(s)
- Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea
| | - Jong-Beom Heo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyung-Won Lee
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Min-Ho Park
- Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jangmi Choi
- Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Joo Yun
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongpyo Lee
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Lu Y, Liang X, Song J, Guan Y, Yang L, Shen R, Niu Y, Guo Z, Zhu N. Niclosamide modulates phenotypic switch and inflammatory responses in human pulmonary arterial smooth muscle cells. Mol Cell Biochem 2025; 480:1583-1593. [PMID: 38980591 DOI: 10.1007/s11010-024-05061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) represent key steps of pulmonary vascular remodeling, leading to the development of pulmonary arterial hypertension (PAH) and right ventricular failure. Niclosamide (NCL), an FDA-approved anthelmintic, has been shown to regulate cell proliferation, migration, invasion, and apoptosis through a variety of signaling pathways. However, its role on modulating the phenotypic switch and inflammatory responses in PASMCs remains unclear. In this study, cell proliferation assay showed that NCL inhibited PDGF-BB induced proliferation of human PASMCs in a dose-dependent manner. Western blot analysis further confirmed a notable reduction in the expression of cyclin D1 and PCNA proteins. Subsequently, flow cytometry analysis demonstrated that NCL induced an increased percentage of cells in the G1 phase while promoting apoptosis in PASMCs. Moreover, both scratch wound assay and transwell assay confirmed that NCL decreased PDGF-BB-induced migration of PASMCs. Mechanistically, western blot revealed that pretreatment of PASMCs with NCL markedly restored the protein levels of SMA, SM22, and calponin, while reducing phosphorylation of P38/STAT3 signaling in the presence of PDGF-BB. Interestingly, macrophages adhesion assay showed that NCL markedly reduced recruitment of Calcein-AM labeled RAW264.7 by TNFα-stimulated PASMCs. Western blot revealed that NCL suppressed TNFα-induced expression of both of VCAM-1 and ICAM-1 proteins. Furthermore, pretreatment of PASMCs with NCL significantly inhibited NLRP3 inflammasome activity through reducing NLRP3, AIM2, mature interleukin-1β (IL-β), and cleaved Caspase-1 proteins expression. Together, these results suggested versatile effects of NCL on controlling of proliferation, migration, and inflammatory responses in PASMCs through modulating different pathways, indicating that repurposing of NCL may emerge as a highly effective drug for PAH treatment.
Collapse
Affiliation(s)
- Yuwen Lu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiaogan Liang
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jingwen Song
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yugen Guan
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Liang Yang
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Rongrong Shen
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yunpu Niu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Ni Zhu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
4
|
Gong S, Li Y, Yan K, Shi Z, Leng J, Bao Y, Ning K. The Crosstalk Between Endothelial Cells, Smooth Muscle Cells, and Macrophages in Atherosclerosis. Int J Mol Sci 2025; 26:1457. [PMID: 40003923 PMCID: PMC11855868 DOI: 10.3390/ijms26041457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease closely tied to cellular metabolism. Recent genome-wide association study data have suggested the significant roles of endothelial cells, smooth muscle cells, and macrophages in the regression and exacerbation of AS. However, the impact of cellular crosstalk and cellular metabolic derangements on disease progression in AS is vaguely understood. In this review, we analyze the roles of the three cell types in AS. We also summarize the crosstalk between the two of them, and the associated molecules and consequences involved. In addition, we emphasize potential therapeutic targets and highlight the importance of the three-cell co-culture model and extracellular vesicles in AS-related research, providing ideas for future studies.
Collapse
Affiliation(s)
- Sihe Gong
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yanni Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Kaijie Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Zhonghong Shi
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Jing Leng
- Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China;
| | - Yimin Bao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
5
|
McAvoy M, Ratner B, Ferreira MJ, Levitt MR. Gene therapy for intracranial aneurysms: systemic review. J Neurointerv Surg 2025:jnis-2024-021843. [PMID: 39357890 DOI: 10.1136/jnis-2024-021843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Treatment of intracranial aneurysms is currently limited to invasive surgical and endovascular modalities, and some aneurysms are not treatable with these methods. Identification and targeting of specific molecular pathways involved in the pathogenesis of aneurysms may improve outcomes. Low frequency somatic variants found in cancer related genes have been linked to intracranial aneurysm development. In particular, mutations in the PDGFRB gene lead to constitutively activated ERK and nuclear factor κB signaling pathways, which can be targeted with tyrosine kinase inhibitors. In this review, we describe how low frequency somatic variants in oncogenic and other genes affect the pathogenesis of aneurysm development, with a focus on gene therapy applications, such as endovascular in situ delivery of chemotherapeutics.
Collapse
Affiliation(s)
- Malia McAvoy
- Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Buddy Ratner
- Chemical Engineering, Bioengineering, Materials Science, and Engineering, University of Washington, Seattle, Washington, USA
| | - Manuel J Ferreira
- Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Michael R Levitt
- Neurological Surgery, Radiology, Mechanical Engineering, Neurology, Stroke & Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Strell C, Rodríguez-Tomàs E, Östman A. Functional and clinical roles of stromal PDGF receptors in tumor biology. Cancer Metastasis Rev 2024; 43:1593-1609. [PMID: 38980580 PMCID: PMC11554757 DOI: 10.1007/s10555-024-10194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
PDGF receptors play pivotal roles in both developmental and physiological processes through the regulation of mesenchymal cells involved in paracrine instructive interactions with epithelial or endothelial cells. Tumor biology studies, alongside analyses of patient tissue samples, provide strong indications that the PDGF signaling pathways are also critical in various types of human cancer. This review summarizes experimental findings and correlative studies, which have explored the biological mechanisms and clinical relevance of PDGFRs in mesenchymal cells of the tumor microenvironment. Collectively, these studies support the overall concept that the PDGF system is a critical regulator of tumor growth, metastasis, and drug efficacy, suggesting yet unexploited targeting opportunities. The inter-patient variability in stromal PDGFR expression, as being linked to prognosis and treatment responses, not only indicates the need for stratified approaches in upcoming therapeutic investigations but also implies the potential for the development of PDGFRs as biomarkers of clinical utility, interestingly also in settings outside PDGFR-directed treatments.
Collapse
Affiliation(s)
- Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Bergen University, Bergen, Norway
| | | | - Arne Östman
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Bergen University, Bergen, Norway.
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Benvie AM, Berry DC. Reversing Pdgfrβ signaling restores metabolically active beige adipocytes by alleviating ILC2 suppression in aged and obese mice. Mol Metab 2024; 89:102028. [PMID: 39278546 PMCID: PMC11458544 DOI: 10.1016/j.molmet.2024.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE Platelet Derived Growth Factor Receptor Beta (Pdgfrβ) suppresses the formation of cold temperature-induced beige adipocytes in aged mammals. We aimed to determine if deleting Pdgfrβ in aged mice could rejuvenate metabolically active beige adipocytes by activating group 2 innate lymphoid cells (ILC2), and whether this effect could counteract diet-induced obesity-associated beige fat decline. METHODS We employed Pdgfrβ gain-of-function and loss-of-function mouse models targeting beige adipocyte progenitor cells (APCs). Our approach included cold exposure, metabolic cage analysis, and age and diet-induced obesity models to examine beige fat development and metabolic function under varied Pdgfrβ activity. RESULTS Acute cold exposure alone enhanced metabolic benefits in aged mice, irrespective of beige fat generation. However, Pdgfrβ deletion in aged mice reestablished the formation of metabolically functional beige adipocytes, enhancing metabolism. Conversely, constitutive Pdgfrβ activation in young mice stymied beige fat development. Mechanistically, Pdgfrβ deletion upregulated IL-33, promoting ILC2 recruitment and activation, whereas Pdgfrβ activation reduced IL-33 levels and suppressed ILC2 activity. Notably, diet-induced obesity markedly increased Pdgfrβ expression and Stat1 signaling, which inhibited IL-33 induction and ILC2 activation. Genetic deletion of Pdgfrβ restored beige fat formation in obese mice, improving whole-body metabolism. CONCLUSIONS This study reveals that cold temperature exposure alone can trigger metabolic activation in aged mammals. However, reversing Pdgfrβ signaling in aged and obese mice not only restores beige fat formation but also renews metabolic function and enhances the immunological environment of white adipose tissue (WAT). These findings highlight Pdgfrβ as a crucial target for therapeutic strategies aimed at combating age- and obesity-related metabolic decline.
Collapse
Affiliation(s)
- Abigail M Benvie
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Zhang X, Xu R, Wang T, Li J, Sun Y, Cui S, Xing Z, Lyu X, Yang G, Jiao L, Li W. PTP1B Modulates Carotid Plaque Vulnerability in Atherosclerosis Through Rab5-PDGFRβ-Mediated Endocytosis Disruption and Apoptosis. CNS Neurosci Ther 2024; 30:e70071. [PMID: 39517122 PMCID: PMC11549062 DOI: 10.1111/cns.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Protein tyrosine phosphatase 1B (PTP1B) is a protein tyrosine phosphatase and modulates platelet-derived growth factor (PDGF)/platelet-derived growth factor receptor (PDGFR) signaling in vascular smooth muscle cells (VSMCs) via endocytosis. However, the related molecular pathways that participated in the interaction of endo-lysosome and the trafficking of PDGFR are largely unknown. This study aims to determine the subcellular regulating mechanism of PTP1B to the endo-lysosome degradation of PDGFR in atherosclerotic carotid plaques, thereby offering a potential therapeutic target for the stabilization of carotid plaques. METHODS The immunohistochemical staining technique was employed to assess the expression levels of both PDGFR-β and Caspase 3 in stable and vulnerable carotid plaques. Tunnel staining was utilized to quantify the apoptosis of carotid plaques. Live-cell imaging was employed to observe endocytic motility, while cell apoptosis was evaluated through Propidium Iodide staining. In an in vivo experiment, ApoE-/- mice were administered a PTP1B inhibitor to investigate the impact of PTP1B on atherosclerosis. RESULTS The heightened expression of PDGFR-β correlates with apoptosis in patients with vulnerable carotid plaques. At the subcellular level of VSMCs, PDGFR-β plays a pivotal role in sustaining a balanced endocytosis system motility, regulated by the expression of Rab5, a key regulator of endocytic motility. And PTP1B modulates PDGFR-β signaling via Rab5-mediated endocytosis. Additionally, disrupted endocytic motility influences the interplay between endosomes and lysosomes, which is crucial for controlling PDGFR-β trafficking. Elevated PTP1B expression induces cellular apoptosis and impedes migration and proliferation of carotid VSMCs. Ultimately, mice with PTP1B deficiency exhibit a reduction in atherosclerosis. CONCLUSION Our results illustrate that PTP1B induces disruption in endocytosis and apoptosis of VSMCs through the Rab5-PDGFRβ pathway, suggesting a potential association with the heightened vulnerability of carotid plaques.
Collapse
MESH Headings
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Animals
- Apoptosis/physiology
- Humans
- Endocytosis/physiology
- Mice
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- rab5 GTP-Binding Proteins/metabolism
- rab5 GTP-Binding Proteins/genetics
- Male
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Female
- Mice, Inbred C57BL
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Middle Aged
- Aged
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Xiao Zhang
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Ran Xu
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Tao Wang
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Jiayao Li
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Yixin Sun
- First HospitalPeking UniversityBeijingChina
- Health Science CenterPeking UniversityBeijingChina
| | - Shengyan Cui
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Zixuan Xing
- Health Science CenterXi'an Jiaotong UniversityShanxiChina
| | | | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Liqun Jiao
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
- Department of Interventional NeuroradiologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Xue S, Benvie AM, Blum JE, Kolba NJ, Cosgrove BD, Thalacker-Mercer A, Berry DC. Suppressing PDGFRβ Signaling Enhances Myocyte Fusion to Promote Skeletal Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618247. [PMID: 39464006 PMCID: PMC11507758 DOI: 10.1101/2024.10.15.618247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Muscle cell fusion is critical for forming and maintaining multinucleated myotubes during skeletal muscle development and regeneration. However, the molecular mechanisms directing cell-cell fusion are not fully understood. Here, we identify platelet-derived growth factor receptor beta (PDGFRβ) signaling as a key modulator of myocyte fusion in adult muscle cells. Our findings demonstrate that genetic deletion of Pdgfrβ enhances muscle regeneration and increases myofiber size, whereas PDGFRβ activation impairs muscle repair. Inhibition of PDGFRβ activity promotes myonuclear accretion in both mouse and human myotubes, whereas PDGFRβ activation stalls myotube development by preventing cell spreading to limit fusion potential. Transcriptomics analysis show that PDGFRβ signaling cooperates with TGFβ signaling to direct myocyte size and fusion. Mechanistically, PDGFRβ signaling requires STAT1 activation, and blocking STAT1 phosphorylation enhances myofiber repair and size during regeneration. Collectively, PDGFRβ signaling acts as a regenerative checkpoint and represents a potential clinical target to rapidly boost skeletal muscle repair.
Collapse
Affiliation(s)
- Siwen Xue
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Abigail M Benvie
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Jamie E Blum
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Current address: Department of Chemical Engineering; Stanford University; Stanford, CA
| | - Nikolai J Kolba
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | | | - Anna Thalacker-Mercer
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Department of Cell, Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel C Berry
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Corresponding author
| |
Collapse
|
10
|
Brennan PG, Mota L, Aridi T, Patel N, Liang P, Ferran C. Advancements in Omics and Breakthrough Gene Therapies: A Glimpse into the Future of Peripheral Artery Disease. Ann Vasc Surg 2024; 107:229-246. [PMID: 38582204 DOI: 10.1016/j.avsg.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 04/08/2024]
Abstract
Peripheral artery disease (PAD), a highly prevalent global disease, associates with significant morbidity and mortality in affected patients. Despite progress in endovascular and open revascularization techniques for advanced PAD, these interventions grapple with elevated rates of arterial restenosis and vein graft failure attributed to intimal hyperplasia (IH). Novel multiomics technologies, coupled with sophisticated analyses tools recently powered by advances in artificial intelligence, have enabled the study of atherosclerosis and IH with unprecedented single-cell and spatial precision. Numerous studies have pinpointed gene hubs regulating pivotal atherogenic and atheroprotective signaling pathways as potential therapeutic candidates. Leveraging advancements in viral and nonviral gene therapy (GT) platforms, gene editing technologies, and cutting-edge biomaterial reservoirs for delivery uniquely positions us to develop safe, efficient, and targeted GTs for PAD-related diseases. Gene therapies appear particularly fitting for ex vivo genetic engineering of IH-resistant vein grafts. This manuscript highlights currently available state-of-the-art multiomics approaches, explores promising GT-based candidates, and details GT delivery modalities employed by our laboratory and others to thwart mid-term vein graft failure caused by IH, as well as other PAD-related conditions. The potential clinical translation of these targeted GTs holds the promise to revolutionize PAD treatment, thereby enhancing patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Phillip G Brennan
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lucas Mota
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tarek Aridi
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nyah Patel
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Division of Nephrology and the Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
11
|
Ma Q, He X, Wang X, Zhao G, Zhang Y, Su C, Wei M, Zhang K, Liu M, Zhu Y, He J. PTPN14 aggravates neointimal hyperplasia via boosting PDGFRβ signaling in smooth muscle cells. Nat Commun 2024; 15:7398. [PMID: 39191789 PMCID: PMC11350182 DOI: 10.1038/s41467-024-51881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Smooth muscle cell (SMC) phenotypic modulation, primarily driven by PDGFRβ signaling, is implicated in occlusive cardiovascular diseases. However, the promotive and restrictive regulation mechanism of PDGFRβ and the role of protein tyrosine phosphatase non-receptor type 14 (PTPN14) in neointimal hyperplasia remain unclear. Our study observes a marked upregulation of PTPN14 in SMCs during neointimal hyperplasia. PTPN14 overexpression exacerbates neointimal hyperplasia in a phosphatase activity-dependent manner, while SMC-specific deficiency of PTPN14 mitigates this process in mice. RNA-seq indicates that PTPN14 deficiency inhibits PDGFRβ signaling-induced SMC phenotypic modulation. Moreover, PTPN14 interacts with intracellular region of PDGFRβ and mediates its dephosphorylation on Y692 site. Phosphorylation of PDGFRβY692 negatively regulates PDGFRβ signaling activation. The levels of both PTPN14 and phospho-PDGFRβY692 are correlated with the degree of stenosis in human coronary arteries. Our findings suggest that PTPN14 serves as a critical modulator of SMCs, promoting neointimal hyperplasia. PDGFRβY692, dephosphorylated by PTPN14, acts as a self-inhibitory site for controlling PDGFRβ activation.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Coronary Vessels/pathology
- Coronary Vessels/metabolism
- Hyperplasia/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/metabolism
- Neointima/pathology
- Phosphorylation
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Qiannan Ma
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue He
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Xue Wang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Guobing Zhao
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanhong Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Chao Su
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518040, China
| | - Minxin Wei
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518040, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
12
|
Stevenson M, Algarzae NK, Moussa C. Tyrosine kinases: multifaceted receptors at the intersection of several neurodegenerative disease-associated processes. FRONTIERS IN DEMENTIA 2024; 3:1458038. [PMID: 39221072 PMCID: PMC11361951 DOI: 10.3389/frdem.2024.1458038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tyrosine kinases (TKs) are catalytic enzymes activated by auto-phosphorylation that function by phosphorylating tyrosine residues on downstream substrates. Tyrosine kinase inhibitors (TKIs) have been heavily exploited as cancer therapeutics, primarily due to their role in autophagy, blood vessel remodeling and inflammation. This suggests tyrosine kinase inhibition as an appealing therapeutic target for exploiting convergent mechanisms across several neurodegenerative disease (NDD) pathologies. The overlapping mechanisms of action between neurodegeneration and cancer suggest that TKIs may play a pivotal role in attenuating neurodegenerative processes, including degradation of misfolded or toxic proteins, reduction of inflammation and prevention of fibrotic events of blood vessels in the brain. In this review, we will discuss the distinct roles that select TKs have been shown to play in various disease-associated processes, as well as identify TKs that have been explored as targets for therapeutic intervention and associated pharmacological agents being investigated as treatments for NDDs.
Collapse
Affiliation(s)
- Max Stevenson
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Charbel Moussa
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
13
|
Yang S, Zhao Y, Cao S, Liu X, Feng M, Chen Y, Ma C, Zhan T, Zhang Q, Jia H, Zhao Y, Tong M, Yu Y, Liu X, Yang B, Zhang Y. Kanglexin counters vascular smooth muscle cell dedifferentiation and associated arteriosclerosis through inhibiting PDGFR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155704. [PMID: 38759316 DOI: 10.1016/j.phymed.2024.155704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Dysregulation of vascular smooth muscle cell (VSMC) function leads to a variety of diseases such as atherosclerosis and hyperplasia after injury. However, antiproliferative drug targeting VSMC exhibits poor specificity. Therefore, there is an urgent to develop highly specific antiproliferative drugs to prevention and treatment VSMC dedifferentiation associated arteriosclerosis. Kanglexin (KLX), a new anthraquinone compound designed by our team, has potential to regulate VSMC phenotype according to the physicochemical properties. PURPOSE This project aims to evaluate the therapeutic role of KLX in VSMC dedifferentiation and atherosclerosis, neointimal formation and illustrates the underlying molecular mechanism. METHODS In vivo, the ApoE-/- mice were fed with high-fat diet (HFD) for a duration of 13 weeks to establish the atherosclerotic model. And rat carotid artery injury model was performed to establish the neointimal formation model. In vitro, PDGF-BB was used to induce VSMC dedifferentiation. RESULTS We found that KLX ameliorated the atherosclerotic progression including atherosclerotic lesion formation, lipid deposition and collagen deposition in aorta and aortic sinus in atherosclerotic mouse model. In addition, The administration of KLX effectively ameliorated neointimal formation in the carotid artery following balloon injury in SD rats. The findings derived from molecular docking and surface plasmon resonance (SPR) experiments unequivocally demonstrate that KLX had potential to bind PDGFR-β. Mechanism research work proved that KLX prevented VSMC proliferation, migration and dedifferentiation via activating the PDGFR-β-MEK -ERK-ELK-1/KLF4 signaling pathway. CONCLUSION Collectively, we demonstrated that KLX effectively attenuated the progression of atherosclerosis in ApoE-/- mice and carotid arterial neointimal formation in SD rats by inhibiting VSMC phenotypic conversion via PDGFR-β-MEK-ERK-ELK-1/KLF4 signaling. KLX exhibits promising potential as a viable therapeutic agent for the treatment of VSMC phenotype conversion associated arteriosclerosis.
Collapse
Affiliation(s)
- Shuang Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yixiu Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Shifeng Cao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xinxin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Min Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yi Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chunyue Ma
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tingting Zhan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Qi Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Honglin Jia
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yu Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ming Tong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuanyuan Yu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xue Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Baofeng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| | - Yan Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
14
|
Wang Y, Chen Z, Zhu Q, Chen Z, Fu G, Ma B, Zhang W. Aiming at early-stage vulnerable plaques: A nanoplatform with dual-mode imaging and lipid-inflammation integrated regulation for atherosclerotic theranostics. Bioact Mater 2024; 37:94-105. [PMID: 38523705 PMCID: PMC10957523 DOI: 10.1016/j.bioactmat.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
The vulnerable plaques in atherosclerosis can cause severe outcome with great danger of acute cardiovascular events. Thus, timely diagnosis and treatment of vulnerable plaques in early stage can effectively benefit the clinical management of atherosclerosis. In this work, a targeting theranostic strategy on early-stage vulnerable plaques in atherosclerosis is realized by a LAID nanoplatform with X-CT and fluorescent dual-mode imaging and lipid-inflammation integrated regulation abilities. The iodinated contrast agents (ICA), phenylboronic acid modified astaxanthin and oxidized-dextran (oxDEX) jointly construct the nanoparticles loaded with the lipid-specific probe LFP. LAID indicates an active targeting to plaques along with the dual-responsive disassembly in oxidative stress and acidic microenvironment of atherosclerosis. The X-CT signals of ICA execute the location of early-stage plaques, while the LFP combines with lipid cores and realizes the recognition of vulnerable plaques. Meanwhile, the treatment based on astaxanthin is performed for restraining the progression of plaques. Transcriptome sequencing suggests that LAID can inhibit the lipid uptake and block NF-κB pathway, which synergistically demonstrates a lipid-inflammation integrated regulation to suppression the plaques growing. The in vivo investigations suggest that LAID delivers a favorable theranostics to the early-stage vulnerable plaques, which provides an impressive prospect for reducing the adverse prognosis of atherosclerosis.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhebin Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Qiongjun Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhezhe Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Boxuan Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
15
|
Benvie AM, Berry DC. Reversing Pdgfrβ Signaling Restores Metabolically Active Beige Adipocytes by Alleviating ILC2 Suppression in Aged and Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599436. [PMID: 38948810 PMCID: PMC11212986 DOI: 10.1101/2024.06.17.599436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objective Platelet Derived Growth Factor Receptor Beta (Pdgfrβ) suppresses the formation of cold temperature-induced beige adipocytes in aged mammals. We aimed to determine if deleting Pdgfrβ in aged mice could rejuvenate metabolically active beige adipocytes by activating group 2 innate lymphoid cells (ILC2), and whether this effect could counteract diet-induced obesity-associated beige fat decline. Methods We employed Pdgfrβ gain-of-function and loss-of-function mouse models targeting beige adipocyte progenitor cells (APCs). Our approach included cold exposure, metabolic cage analysis, and age and diet-induced obesity models to examine beige fat development and metabolic function under varied Pdgfrβ activity. Results Acute cold exposure alone enhanced metabolic benefits in aged mice, irrespective of beige fat generation. However, Pdgfrβ deletion in aged mice reestablished the formation of metabolically functional beige adipocytes, enhancing metabolism. Conversely, constitutive Pdgfrβ activation in young mice stymied beige fat development. Mechanistically, Pdgfrβ deletion upregulated IL-33, promoting ILC2 recruitment and activation, whereas Pdgfrβ activation reduced IL-33 levels and suppressed ILC2 activity. Notably, diet-induced obesity markedly increased Pdgfrβ expression and Stat1 signaling, which inhibited IL-33 induction and ILC2 activation. Genetic deletion of Pdgfrβ restored beige fat formation in obese mice, improving whole-body metabolism. Conclusion This study reveals that cold temperature exposure alone can trigger metabolic activation in aged mammals. However, reversing Pdgfrβ signaling in aged and obese mice not only restores beige fat formation but also renews metabolic function and enhances the immunological environment of white adipose tissue (WAT). These findings highlight Pdgfrβ as a crucial target for therapeutic strategies aimed at combating age- and obesity-related metabolic decline.
Collapse
Affiliation(s)
- Abigail M. Benvie
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853 USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853 USA
| |
Collapse
|
16
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
17
|
Xu F, Chen H, Zhou C, Zang T, Wang R, Shen S, Li C, Yu Y, Pei Z, Shen L, Qian J, Ge J. Targeting deubiquitinase OTUB1 protects vascular smooth muscle cells in atherosclerosis by modulating PDGFRβ. Front Med 2024; 18:465-483. [PMID: 38644399 DOI: 10.1007/s11684-024-1056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 04/23/2024]
Abstract
Atherosclerosis is a chronic artery disease that causes various types of cardiovascular dysfunction. Vascular smooth muscle cells (VSMCs), the main components of atherosclerotic plaque, switch from contractile to synthetic phenotypes during atherogenesis. Ubiquitylation is crucial in regulating VSMC phenotypes in atherosclerosis, and it can be reversely regulated by deubiquitinases. However, the specific effects of deubiquitinases on atherosclerosis have not been thoroughly elucidated. In this study, RNAi screening in human aortic smooth muscle cells was performed to explore the effects of OTU family deubiquitinases, which revealed that silencing OTUB1 inhibited PDGF-BB-stimulated VSMC phenotype switch. Further in vivo studies using Apoe-/- mice revealed that knockdown of OTUB1 in VSMCs alleviated atherosclerosis plaque burden in the advanced stage and led to a stable plaque phenotype. Moreover, VSMC proliferation and migration upon PDGF-BB stimulation could be inhibited by silencing OTUB1 in vitro. Unbiased RNA-sequencing data indicated that knocking down OTUB1 influenced VSMC differentiation, adhesion, and proliferation. Mass spectrometry of ubiquitinated protein confirmed that proteins related to cell growth and migration were differentially ubiquitylated. Mechanistically, we found that OTUB1 recognized the K707 residue ubiquitylation of PDGFRβ with its catalytic triad, thereby reducing the K48-linked ubiquitylation of PDGFRβ. Inhibiting OTUB1 in VSMCs could promote PDGFRβ degradation via the ubiquitin-proteasome pathway, so it was beneficial in preventing VSMCs' phenotype switch. These findings revealed that knocking down OTUB1 ameliorated VSMCs' phenotype switch and atherosclerosis progression, indicating that OTUB1 could be a valuable translational therapeutic target in the future.
Collapse
Affiliation(s)
- Fei Xu
- Department of Cardiology and Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Han Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Changyi Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Tongtong Zang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Rui Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Shutong Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Yue Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| |
Collapse
|
18
|
Hao L, Ya X, Wu J, Tao C, Ma R, Zheng Z, Mou S, Ling Y, Yang Y, Wang J, Zhang Y, Lin Q, Zhao J. Somatic PDGFRB activating variants promote smooth muscle cell phenotype modulation in intracranial fusiform aneurysm. J Biomed Sci 2024; 31:51. [PMID: 38741091 PMCID: PMC11092182 DOI: 10.1186/s12929-024-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The fusiform aneurysm is a nonsaccular dilatation affecting the entire vessel wall over a short distance. Although PDGFRB somatic variants have been identified in fusiform intracranial aneurysms, the molecular and cellular mechanisms driving fusiform intracranial aneurysms due to PDGFRB somatic variants remain poorly understood. METHODS In this study, single-cell sequencing and immunofluorescence were employed to investigate the phenotypic changes in smooth muscle cells within fusiform intracranial aneurysms. Whole-exome sequencing revealed the presence of PDGFRB gene mutations in fusiform intracranial aneurysms. Subsequent immunoprecipitation experiments further explored the functional alterations of these mutated PDGFRB proteins. For the common c.1684 mutation site of PDGFRβ, we established mutant smooth muscle cell lines and zebrafish models. These models allowed us to simulate the effects of PDGFRB mutations. We explored the major downstream cellular pathways affected by PDGFRBY562D mutations and evaluated the potential therapeutic effects of Ruxolitinib. RESULTS Single-cell sequencing of two fusiform intracranial aneurysms sample revealed downregulated smooth muscle cell markers and overexpression of inflammation-related markers in vascular smooth muscle cells, which was validated by immunofluorescence staining, indicating smooth muscle cell phenotype modulation is involved in fusiform aneurysm. Whole-exome sequencing was performed on seven intracranial aneurysms (six fusiform and one saccular) and PDGFRB somatic mutations were detected in four fusiform aneurysms. Laser microdissection and Sanger sequencing results indicated that the PDGFRB mutations were present in smooth muscle layer. For the c.1684 (chr5: 149505131) site mutation reported many times, further cell experiments showed that PDGFRBY562D mutations promoted inflammatory-related vascular smooth muscle cell phenotype and JAK-STAT pathway played a crucial role in the process. Notably, transfection of PDGFRBY562D in zebrafish embryos resulted in cerebral vascular anomalies. Ruxolitinib, the JAK inhibitor, could reversed the smooth muscle cells phenotype modulation in vitro and inhibit the vascular anomalies in zebrafish induced by PDGFRB mutation. CONCLUSION Our findings suggested that PDGFRB somatic variants played a role in regulating smooth muscle cells phenotype modulation in fusiform aneurysms and offered a potential therapeutic option for fusiform aneurysms.
Collapse
Affiliation(s)
- Li Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Joint Laboratory of School of Pharmacy, Capital Medical University and National Clinical Research Center for Nervous System Diseases, Beijing, China
| | - Xiaolong Ya
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Joint Laboratory of School of Pharmacy, Capital Medical University and National Clinical Research Center for Nervous System Diseases, Beijing, China
| | - Jiaye Wu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Chuming Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Ruochen Ma
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, HKSAR, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Ling
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiguang Wang
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, HKSAR, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Qing Lin
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Joint Laboratory of School of Pharmacy, Capital Medical University and National Clinical Research Center for Nervous System Diseases, Beijing, China.
| |
Collapse
|
19
|
Heo J, Kang H. Platelet-derived growth factor-stimulated pulmonary artery smooth muscle cells regulate pulmonary artery endothelial cell dysfunction through extracellular vesicle miR-409-5p. Biol Chem 2024; 405:203-215. [PMID: 37903646 DOI: 10.1515/hsz-2023-0222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
Platelet-derived growth factor (PDGF)-induced changes in vascular smooth muscle cells (VSMCs) stimulate vascular remodeling, resulting in vascular diseases such as pulmonary arterial hypertension. VSMCs communicate with endothelial cells through extracellular vesicles (EVs) carrying cargos, including microRNAs. To understand the molecular mechanisms through which PDGF-stimulated pulmonary artery smooth muscle cells (PASMCs) interact with pulmonary artery endothelial cells (PAECs) under pathological conditions, we investigated the crosstalk between PASMCs and PAECs via extracellular vesicle miR-409-5p under PDGF stimulation. miR-409-5p expression was upregulated in PASMCs upon PDGF signaling, and it was released into EVs. The elevated expression of miR-409-5p was transported to PAECs and led to their impaired function, including reduced NO release, which consequentially resulted in enhanced PASMC proliferation. We propose that the positive regulatory loop of PASMC-extracellular vesicle miR-409-5p-PAEC is a potential mechanism underlying the proliferation of PASMCs under PDGF stimulation. Therefore, miR-409-5p may be a novel therapeutic target for the treatment of vascular diseases, including pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jeongyeon Heo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
20
|
Chen J, Zhang X, Cross R, Ahn Y, Huskin G, Evans W, Hwang PT, Kim JA, Brott BC, Jo H, Yoon YS, Jun HW. Atherosclerotic three-layer nanomatrix vascular sheets for high-throughput therapeutic evaluation. Biomaterials 2024; 305:122450. [PMID: 38169190 PMCID: PMC10843643 DOI: 10.1016/j.biomaterials.2023.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
In vitro atherosclerosis models are essential to evaluate therapeutics before in vivo and clinical studies, but significant limitations remain, such as the lack of three-layer vascular architecture and limited atherosclerotic features. Moreover, no scalable 3D atherosclerosis model is available for making high-throughput assays for therapeutic evaluation. Herein, we report an in vitro 3D three-layer nanomatrix vascular sheet with critical atherosclerosis multi-features (VSA), including endothelial dysfunction, monocyte recruitment, macrophages, extracellular matrix remodeling, smooth muscle cell phenotype transition, inflammatory cytokine secretion, foam cells, and calcification initiation. Notably, we present the creation of high-throughput functional assays with VSAs and the use of these assays for evaluating therapeutics for atherosclerosis treatment. The therapeutics include conventional drugs (statin and sirolimus), candidates for treating atherosclerosis (curcumin and colchicine), and potential gene therapy (miR-146a-loaded liposomes). The high efficiency and flexibility of the scalable VSA functional assays should facilitate drug discovery and development for atherosclerosis.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA; Endomimetics, LLC., Birmingham, AL, USA
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robbie Cross
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yujin Ahn
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gillian Huskin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Will Evans
- Augusta University/University of Georgia Medical Partnership, Athens, GA, USA
| | | | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology and Metabolism, UAB Comprehensive Diabetes Center, Birmingham, AL, USA
| | - Brigitta C Brott
- Endomimetics, LLC., Birmingham, AL, USA; Department of Medicine and Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Young-Sup Yoon
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA; Endomimetics, LLC., Birmingham, AL, USA.
| |
Collapse
|
21
|
Benvie AM, Lee D, Jiang Y, Berry DC. Platelet-derived growth factor receptor beta is required for embryonic specification and confinement of the adult white adipose lineage. iScience 2024; 27:108682. [PMID: 38235323 PMCID: PMC10792241 DOI: 10.1016/j.isci.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
White adipose tissue (WAT) development and adult homeostasis rely on distinct adipocyte progenitor cells (APCs). While adult APCs are defined early during embryogenesis and generate adipocytes after WAT organogenesis, the mechanisms underlying adult adipose lineage determination and preservation remain undefined. Here, we uncover a critical role for platelet-derived growth factor receptor beta (Pdgfrβ) in identifying the adult APC lineage. Without Pdgfrβ, APCs lose their adipogenic competency to incite fibrotic tissue replacement and inflammation. Through lineage tracing analysis, we reveal that the adult APC lineage is lost and develops into macrophages when Pdgfrβ is deleted embryonically. Moreover, to maintain the APC lineage, Pdgfrβ activation stimulates p38/MAPK phosphorylation to promote APC proliferation and maintains the APC state by phosphorylating peroxisome proliferator activated receptor gamma (Pparγ) at serine 112. Together, our findings identify a role for Pdgfrβ acting as a rheostat for adult adipose lineage confinement to prevent unintended lineage switches.
Collapse
Affiliation(s)
- Abigail M. Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Otunla AA, Shanmugarajah K, Davies AH, Lucia Madariaga M, Shalhoub J. The Biological Parallels Between Atherosclerosis and Cardiac Allograft Vasculopathy: Implications for Solid Organ Chronic Rejection. Cardiol Rev 2024; 32:2-11. [PMID: 38051983 DOI: 10.1097/crd.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atherosclerosis and solid organ chronic rejection are pervasive chronic disease states that account for significant morbidity and mortality in developed countries. Recently, a series of shared molecular pathways have emerged, revealing biological parallels from early stages of development up to the advanced forms of pathology. These shared mechanistic processes are inflammatory in nature, reflecting the importance of inflammation in both disorders. Vascular inflammation triggers endothelial dysfunction and disease initiation through aberrant vasomotor control and shared patterns of endothelial activation. Endothelial dysfunction leads to the recruitment of immune cells and the perpetuation of the inflammatory response. This drives lesion formation through the release of key cytokines such as IFN-y, TNF-alpha, and IL-2. Continued interplay between the adaptive and innate immune response (represented by T lymphocytes and macrophages, respectively) promotes lesion instability and thrombotic complications; hallmarks of advanced disease in both atherosclerosis and solid organ chronic rejection. The aim of this study is to identify areas of overlap between atherosclerosis and chronic rejection. We then discuss new approaches to improve current understanding of the pathophysiology of both disorders, and eventually design novel therapeutics.
Collapse
Affiliation(s)
- Afolarin A Otunla
- From the Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | | | - Alun H Davies
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Joseph Shalhoub
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
23
|
Yu TH, Lee TL, Tsai IT, Hsuan CF, Wang CP, Lu YC, Tang WH, Wei CT, Chung FM, Lee YJ, Wu CC. Transcription factor 21 rs12190287 polymorphism is related to stable angina and ST elevation myocardial infarction in a Chinese Population. Int J Med Sci 2024; 21:483-491. [PMID: 38250610 PMCID: PMC10797673 DOI: 10.7150/ijms.89901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Background: Transcription factor 21 (TCF21, epicardin, capsuling, pod-1) is expressed in the epicardium and is involved in the regulation of cell fate and differentiation via epithelial-mesenchymal transformation during development of the heart. In addition, TCF21 can suppress the differentiation of epicardial cells into vascular smooth muscle cells and promote cardiac fibroblast development. This study aimed to explore whether TCF21 gene (12190287G/C) variants affect coronary artery disease risk. Methods: We enrolled 381 patients who had stable angina, 138 with ST elevation myocardial infarction (STEMI), and 276 healthy subjects. Genotyping of rs12190287 of the TCF21 gene was performed. Results: Higher frequencies of the CC genotype were found in the patients with stable angina/STEMI than in the healthy controls. After adjusting for diabetes mellitus, hypertension, age, sex, smoking, body mass index and hyperlipidemia, the patients with the CC genotype of the TCF21 gene were associated with 2.49- and 9.19-fold increased risks of stable angina and STEMI, respectively, compared to the patients with the GG genotype. Furthermore, TCF21 CC genotypes showed positive correlations with both stable angina and STEMI, whereas TCF21 GG genotypes exhibited a negative correlation with STEMI. Moreover, the stable angina and STEMI patients with the CC genotype had significantly elevated high-sensitivity C-reactive protein levels than those with the GG genotype. In addition, significant associations were found between type 2 diabetes mellitus, hypertension, and hyperlipidemia with TCF21 gene polymorphisms (p for trend < 0.05). Conclusion: TCF21 gene polymorphisms may increase susceptibility to stable angina and STEMI.
Collapse
Affiliation(s)
- Teng-Hung Yu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 807066, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Yung-Chuan Lu
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| | - Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Yuli Branch, Hualien 98142 Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304 Taiwan
| | - Ching-Ting Wei
- Division of General Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445 Taiwan
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| | | | - Cheng-Ching Wu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| |
Collapse
|
24
|
Jin L, Chen Y, Muzaffar S, Li C, Mier-Aguilar CA, Khan J, Kashyap MP, Liu S, Srivastava R, Deshane JS, Townes TM, Elewski BE, Elmets CA, Crossman DK, Raman C, Athar M. Epigenetic switch reshapes epithelial progenitor cell signatures and drives inflammatory pathogenesis in hidradenitis suppurativa. Proc Natl Acad Sci U S A 2023; 120:e2315096120. [PMID: 38011564 PMCID: PMC10710069 DOI: 10.1073/pnas.2315096120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a complex inflammatory skin disease with undefined mechanistic underpinnings. Here, we investigated HS epithelial cells and demonstrated that HS basal progenitors modulate their lineage restriction and give rise to pathogenic keratinocyte clones, resulting in epidermal hyperproliferation and dysregulated inflammation in HS. When comparing to healthy epithelial stem/progenitor cells, in HS, we identified changes in gene signatures that revolve around the mitotic cell cycle, DNA damage response and repair, as well as cell-cell adhesion and chromatin remodeling. By reconstructing cell differentiation trajectory and CellChat modeling, we identified a keratinocyte population specific to HS. This population is marked by S100A7/8/9 and KRT6 family members, triggering IL1, IL10, and complement inflammatory cascades. These signals, along with HS-specific proinflammatory cytokines and chemokines, contribute to the recruitment of certain immune cells during the disease progression. Furthermore, we revealed a previously uncharacterized role of S100A8 in regulating the local chromatin environment of target loci in HS keratinocytes. Through the integration of genomic and epigenomic datasets, we identified genome-wide chromatin rewiring alongside the switch of transcription factors (TFs), which mediated HS transcriptional profiles. Importantly, we identified numerous clinically relevant inflammatory enhancers and their coordinated TFs in HS basal CD49fhigh cells. The disruption of the S100A enhancer using the CRISPR/Cas9-mediated approach or the pharmacological inhibition of the interferon regulatory transcription factor 3 (IRF3) efficiently reduced the production of HS-associated inflammatory regulators. Our study not only uncovers the plasticity of epidermal progenitor cells in HS but also elucidates the epigenetic mechanisms underlying HS pathogenesis.
Collapse
Affiliation(s)
- Lin Jin
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL35294
| | - Suhail Muzaffar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chao Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL35294
| | - Carlos A. Mier-Aguilar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Jasim Khan
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Mahendra P. Kashyap
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Shanrun Liu
- Institutional Research Core Program, Flow Cytometry and Singe Cell Core, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Ritesh Srivastava
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Jessy S. Deshane
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Tim M. Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL35294
| | - Boni E. Elewski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Craig A. Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Mohammad Athar
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| |
Collapse
|
25
|
Bose R, Jana SS, Ain R. Cellular Prion protein moonlights vascular smooth muscle cell fate: Surveilled by trophoblast cells. J Cell Physiol 2023; 238:2794-2811. [PMID: 37819170 DOI: 10.1002/jcp.31130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Uterine spiral artery remodeling (uSAR) is a hallmark of hemochorial placentation. Compromised uSAR leads to adverse pregnancy outcomes. Salient developmental events involved in uSAR are active areas of research and include (a) trophendothelial cell invasion into the spiral arteries, selected demise of endothelial cells; (b) de-differentiation of vascular smooth muscle cells (VSMC); and (c) migration and/or death of VSMCs surrounding spiral arteries. Here we demonstrated that cellular prion (PRNP) is expressed in the rat metrial gland, the entry point of spiral arteries with the highest expression on E16.5, the day at which trophoblast invasion peaks. PRNP is expressed in VSMCs that drift away from the arterial wall. RNA interference of Prnp functionally restricted migration and invasion of rat VSMCs. Furthermore, PRNP interacted with two migration-promoting factors, focal adhesion kinase (FAK) and platelet-derived growth factor receptor-β (PDGFR-β), forming a ter-molecular complex in both the metrial gland and A7r5 cells. The presence of multiple putative binding site of odd skipped related-1 (OSR1) transcription factor on the Prnp promoter was observed using in silico promoter analysis. Ectopic overexpression of OSR1 increased, and knockdown of OSR1 decreased expression of PRNP in VSMCs. Coculture of VSMCs with rat primary trophoblast cells decreased the levels of OSR1 and PRNP. Interestingly, PRNP knockdown led to apoptotic death in ~9% of VSMCs and activated extrinsic apoptotic pathways. PRNP interacts with TRAIL-receptor DR4 and protects VSMCs from TRAIL-mediated apoptosis. These results highlight the biological functions of PRNP in VSMC cell-fate determination during uteroplacental development, an important determinant of healthy pregnancy outcome.
Collapse
Affiliation(s)
- Rumela Bose
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sarmita Sanjay Jana
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
26
|
Terasawa M, Zang L, Hiramoto K, Shimada Y, Mitsunaka M, Uchida R, Nishiura K, Matsuda K, Nishimura N, Suzuki K. Oral Administration of Rhamnan Sulfate from Monostroma nitidum Suppresses Atherosclerosis in ApoE-Deficient Mice Fed a High-Fat Diet. Cells 2023; 12:2666. [PMID: 37998401 PMCID: PMC10670814 DOI: 10.3390/cells12222666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Oral administration of rhamnan sulfate (RS), derived from the seaweed Monostroma nitidum, markedly suppresses inflammatory damage in the vascular endothelium and organs of lipopolysaccharide-treated mice. This study aimed to analyze whether orally administered RS inhibits the development of atherosclerosis, a chronic inflammation of the arteries. ApoE-deficient female mice were fed a normal or high-fat diet (HFD) with or without RS for 12 weeks. Immunohistochemical and mRNA analyses of atherosclerosis-related genes were performed. The effect of RS on the migration of RAW264.7 cells was also examined in vitro. RS administration suppressed the increase in blood total cholesterol and triglyceride levels. In the aorta of HFD-fed mice, RS reduced vascular smooth muscle cell proliferation, macrophage accumulation, and elevation of VCAM-1 and inhibited the reduction of Robo4. Increased mRNA levels of Vcam1, Mmp9, and Srebp1 in atherosclerotic areas of HFD-fed mice were also suppressed with RS. Moreover, RS directly inhibited the migration of RAW264.7 cells in vitro. Thus, in HFD-fed ApoE-deficient mice, oral administration of RS ameliorated abnormal lipid metabolism and reduced vascular endothelial inflammation and hyperpermeability, macrophage infiltration and accumulation, and smooth muscle cell proliferation in the arteries leading to atherosclerosis. These results suggest that RS is an effective functional food for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Masahiro Terasawa
- Konan Chemical Manufacturing Co., Ltd., Kitagomizuka, Kusu-cho, Yokkaichi 510-0103, Japan; (M.T.); (R.U.); (K.N.); (K.M.)
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minamitamagaki-cho, Suzuka 513-8670, Japan;
| | - Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan; (L.Z.); (N.N.)
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minamitamagaki-cho, Suzuka 513-8670, Japan;
| | - Yasuhito Shimada
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.S.); (M.M.)
| | - Mari Mitsunaka
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.S.); (M.M.)
| | - Ryota Uchida
- Konan Chemical Manufacturing Co., Ltd., Kitagomizuka, Kusu-cho, Yokkaichi 510-0103, Japan; (M.T.); (R.U.); (K.N.); (K.M.)
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minamitamagaki-cho, Suzuka 513-8670, Japan;
| | - Kaoru Nishiura
- Konan Chemical Manufacturing Co., Ltd., Kitagomizuka, Kusu-cho, Yokkaichi 510-0103, Japan; (M.T.); (R.U.); (K.N.); (K.M.)
| | - Koichi Matsuda
- Konan Chemical Manufacturing Co., Ltd., Kitagomizuka, Kusu-cho, Yokkaichi 510-0103, Japan; (M.T.); (R.U.); (K.N.); (K.M.)
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan; (L.Z.); (N.N.)
| | - Koji Suzuki
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minamitamagaki-cho, Suzuka 513-8670, Japan;
| |
Collapse
|
27
|
Ji R, Hao Z, Wang H, Li X, Duan L, Guan F, Ma S. Application of Injectable Hydrogels as Delivery Systems in Spinal Cord Injury. Gels 2023; 9:907. [PMID: 37998998 PMCID: PMC10670785 DOI: 10.3390/gels9110907] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Spinal cord injury (SCI) is a severe neurological injury caused by traffic accidents, trauma, or falls, which leads to significant loss of sensory, motor, and autonomous functions and seriously affects the patient's life quality. Although considerable progress has been made in mitigating secondary injury and promoting the regeneration/repair of SCI, the therapeutic effects need to be improved due to drug availability. Given their good biocompatibility, biodegradability, and low immunogenicity, injectable hydrogels can be used as delivery systems to achieve controlled release of drugs and other substances (cells and proteins, etc.), offering new hope for SCI repair. In this article, we summarized the types of injectable hydrogels, analyzed their application as delivery systems in SCI, and further discussed the mechanisms of hydrogels in the treatment of SCI, such as anti-inflammatory, antioxidant, anti-apoptosis, and pro-neurogenesis. Moreover, we highlighted the potential benefits of hydrogels in the treatment of SCI in combination with therapies, including the recent advances and achievements of these promising tools. Our review may offer new strategies for the development of SCI treatments based on injectable hydrogels as delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| |
Collapse
|
28
|
Pedroza AJ, Cheng P, Dalal AR, Baeumler K, Kino A, Tognozzi E, Shad R, Yokoyama N, Nakamura K, Mitchel O, Hiesinger W, MacFarlane EG, Fleischmann D, Woo YJ, Quertermous T, Fischbein MP. Early clinical outcomes and molecular smooth muscle cell phenotyping using a prophylactic aortic arch replacement strategy in Loeys-Dietz syndrome. J Thorac Cardiovasc Surg 2023; 166:e332-e376. [PMID: 37500053 PMCID: PMC11888900 DOI: 10.1016/j.jtcvs.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Patients with Loeys-Dietz syndrome demonstrate a heightened risk of distal thoracic aortic events after valve-sparing aortic root replacement. This study assesses the clinical risks and hemodynamic consequences of a prophylactic aortic arch replacement strategy in Loeys-Dietz syndrome and characterizes smooth muscle cell phenotype in Loeys-Dietz syndrome aneurysmal and normal-sized downstream aorta. METHODS Patients with genetically confirmed Loeys-Dietz syndrome (n = 8) underwent prophylactic aortic arch replacement during valve-sparing aortic root replacement. Four-dimensional flow magnetic resonance imaging studies were performed in 4 patients with Loeys-Dietz syndrome (valve-sparing aortic root replacement + arch) and compared with patients with contemporary Marfan syndrome (valve-sparing aortic root replacement only, n = 5) and control patients (without aortopathy, n = 5). Aortic tissues from 4 patients with Loeys-Dietz syndrome and 2 organ donors were processed for anatomically segmented single-cell RNA sequencing and histologic assessment. RESULTS Patients with Loeys-Dietz syndrome valve-sparing aortic root replacement + arch had no deaths, major morbidity, or aortic events in a median of 2 years follow-up. Four-dimensional magnetic resonance imaging demonstrated altered flow parameters in patients with postoperative aortopathy relative to controls, but no clear deleterious changes due to arch replacement. Integrated analysis of aortic single-cell RNA sequencing data (>49,000 cells) identified a continuum of abnormal smooth muscle cell phenotypic modulation in Loeys-Dietz syndrome defined by reduced contractility and enriched extracellular matrix synthesis, adhesion receptors, and transforming growth factor-beta signaling. These modulated smooth muscle cells populated the Loeys-Dietz syndrome tunica media with gradually reduced density from the overtly aneurysmal root to the nondilated arch. CONCLUSIONS Patients with Loeys-Dietz syndrome demonstrated excellent surgical outcomes without overt downstream flow or shear stress disturbances after concomitant valve-sparing aortic root replacement + arch operations. Abnormal smooth muscle cell-mediated aortic remodeling occurs within the normal diameter, clinically at-risk Loeys-Dietz syndrome arch segment. These initial clinical and pathophysiologic findings support concomitant arch replacement in Loeys-Dietz syndrome.
Collapse
Affiliation(s)
- Albert J Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Paul Cheng
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Alex R Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Kathrin Baeumler
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Aya Kino
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Emily Tognozzi
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Rohan Shad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Nobu Yokoyama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Ken Nakamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Olivia Mitchel
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Elena Gallo MacFarlane
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Dominik Fleischmann
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
29
|
van Dijk RA, Kleemann R, Schaapherder AF, van den Bogaerdt A, Hedin U, Matic L, Lindeman JH. Validating human and mouse tissues commonly used in atherosclerosis research with coronary and aortic reference tissue: similarities but profound differences in disease initiation and plaque stability. JVS Vasc Sci 2023; 4:100118. [PMID: 37810738 PMCID: PMC10551657 DOI: 10.1016/j.jvssci.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Characterization of the atherosclerotic process fully relies on histological evaluation and staging through a consensus grading system. So far, a head-to-head comparison of atherosclerotic process in experimental models and tissue resources commonly applied in atherosclerosis research with the actual human atherosclerotic process is missing. Material and Methods Aspects of the atherosclerotic process present in established murine atherosclerosis models and human carotid endarterectomy specimen were systematically graded using the modified American Heart Association histological classification (Virmani classification). Aspects were aligned with the atherosclerotic process observed in human coronary artery and aortic atherosclerosis reference tissues that were available through biobanks based on human tissue/organ donor material. Results Apart from absent intraplaque hemorrhages in aortic lesions, the histological characteristics of the different stages of human coronary and aortic atherosclerosis are similar. Carotid endarterectomy samples all represent end-stage "fibrous calcified plaque" lesions, although secondary, progressive, and vulnerable lesions with gross morphologies similar to coronary/aortic lesions occasionally present along the primary lesions. For the murine lesions, clear histological parallels were observed for the intermediate lesion types ("pathological intimal thickening," and "early fibroatheroma"). However, none of the murine lesions studied progressed to an equivalent of late fibroatheroma or beyond. Notable contrasts were observed for disease initiation: whereas disease initiation in humans is characterized by a mesenchymal cell influx in the intima, the earliest murine lesions are exclusively intimal, with subendothelial accumulation foam cells. A mesenchymal (and medial) response are absent. In fact, it is concluded that the stage of "adaptive intimal thickening" is absent in all mouse models included in this study. Conclusions The Virmani classification for coronary atherosclerosis can be applied for systematically grading experimental and clinical atherosclerosis. Application of this histological grading tool shows clear parallels for intermediate human and murine atherosclerotic lesions. However, clear contrasts are observed for disease initiation, and late stage atherosclerotic lesions. Carotid endarterectomy all represent end-stage fibrous calcified plaque lesions, although secondary earlier lesions may present in a subset of samples.
Collapse
Affiliation(s)
- Rogier A. van Dijk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Kleemann
- The Netherlands Organization for Applied Scientific Research (TNO), Department of Metabolic Health Research, TNO Metabolic Health Research, Leiden, The Netherlands
| | | | | | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Ljubica Matic
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Jan H.N. Lindeman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Zhang HL, Kong Q. Patent landscape of platelet growth factor receptor and c-KIT targets. Pharm Pat Anal 2023; 12:193-204. [PMID: 37754550 DOI: 10.4155/ppa-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Type III receptor tyrosine kinase, e.g., PDGFR, are associated with various autoimmune diseases. To show the status of PDGFR and c-KIT targets, we performed the US patent analysis. The present study showed that the R&D of c-KIT target was much earlier than the R&D of PDGFR targets. Currently, the PDGFR-based target demonstrates more applications in the development of biological therapy. Our findings indicated that some inhibitors of c-KIT target contained sulfur elements or 1,3-diazine rings. The c-KIT target has more competitive edges for chemical drug discovery than the PDGFR target. c-KIT and PDGFR targets are currently preferable for drug discovery in autoimmune diseases. This study was the first to show R&D differentiation between PDGFR and c-KIT targets in drug development.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Central International Intellectual Property (Baotou) Co., Ltd., Baotou, 014030, China
| | - Qian Kong
- Department of Chemistry, College of Science, Southern University of Science & Technology, Shenzhen, 518055, China
| |
Collapse
|
31
|
Shima Y, Sasagawa S, Ota N, Oyama R, Tanaka M, Kubota-Sakashita M, Kawakami H, Kobayashi M, Takubo N, Ozeki AN, Sun X, Kim YJ, Kamatani Y, Matsuda K, Maejima K, Fujita M, Noda K, Kamiyama H, Tanikawa R, Nagane M, Shibahara J, Tanaka T, Rikitake Y, Mataga N, Takahashi S, Kosaki K, Okano H, Furihata T, Nakaki R, Akimitsu N, Wada Y, Ohtsuka T, Kurihara H, Kamiguchi H, Okabe S, Nakafuku M, Kato T, Nakagawa H, Saito N, Nakatomi H. Increased PDGFRB and NF-κB signaling caused by highly prevalent somatic mutations in intracranial aneurysms. Sci Transl Med 2023; 15:eabq7721. [PMID: 37315111 DOI: 10.1126/scitranslmed.abq7721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Intracranial aneurysms (IAs) are a high-risk factor for life-threatening subarachnoid hemorrhage. Their etiology, however, remains mostly unknown at present. We conducted screening for sporadic somatic mutations in 65 IA tissues (54 saccular and 11 fusiform aneurysms) and paired blood samples by whole-exome and targeted deep sequencing. We identified sporadic mutations in multiple signaling genes and examined their impact on downstream signaling pathways and gene expression in vitro and an arterial dilatation model in mice in vivo. We identified 16 genes that were mutated in at least one IA case and found that these mutations were highly prevalent (92%: 60 of 65 IAs) among all IA cases examined. In particular, mutations in six genes (PDGFRB, AHNAK, OBSCN, RBM10, CACNA1E, and OR5P3), many of which are linked to NF-κB signaling, were found in both fusiform and saccular IAs at a high prevalence (43% of all IA cases examined). We found that mutant PDGFRBs constitutively activated ERK and NF-κB signaling, enhanced cell motility, and induced inflammation-related gene expression in vitro. Spatial transcriptomics also detected similar changes in vessels from patients with IA. Furthermore, virus-mediated overexpression of a mutant PDGFRB induced a fusiform-like dilatation of the basilar artery in mice, which was blocked by systemic administration of the tyrosine kinase inhibitor sunitinib. Collectively, this study reveals a high prevalence of somatic mutations in NF-κB signaling pathway-related genes in both fusiform and saccular IAs and opens a new avenue of research for developing pharmacological interventions.
Collapse
Affiliation(s)
- Yasuyuki Shima
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Neurodegenerative Disorders Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Nakao Ota
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Rieko Oyama
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Minoru Tanaka
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Innovative Cancer Therapy and Department of Surgical Neuro-Oncology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Mie Kubota-Sakashita
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Hirochika Kawakami
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Mika Kobayashi
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | - Naoko Takubo
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | | | - Xiaoning Sun
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | - Yeon-Jeong Kim
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kosumo Noda
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Hiroyasu Kamiyama
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Rokuya Tanikawa
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
| | - Junji Shibahara
- Department of Pathology, Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
| | - Toru Tanaka
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Nobuko Mataga
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0005, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University Faculty of Medicine, Tokyo 160-0016, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-0016, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama 351-0198, Japan
- International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | | | | | - Youichiro Wada
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiroki Kurihara
- Department of Molecular Cell Biology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo 113-8654, Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neural Cell Dynamics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo 113-8654, Japan
- Brain Medical Science Collaboration Division, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Masato Nakafuku
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-8654, Japan
| | - Hirofumi Nakatomi
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Department of Neurosurgery, Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
32
|
Cao Z, Liu Y, Wang Y, Leng P. Research progress on the role of PDGF/PDGFR in type 2 diabetes. Biomed Pharmacother 2023; 164:114983. [PMID: 37290188 DOI: 10.1016/j.biopha.2023.114983] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) are basic proteins stored in the α granules of platelets. PDGFs and their receptors (PDGFRs) are widely expressed in platelets, fibroblasts, vascular endothelial cells, platelets, pericytes, smooth muscle cells and tumor cells. The activation of PDGFR plays a number of critical roles in physiological functions and diseases, including normal embryonic development, cellular differentiation, and responses to tissue damage. In recent years, emerging experimental evidence has shown that activation of the PDGF/PDGFR pathway is involved in the development of diabetes and its complications, such as atherosclerosis, diabetic foot ulcers, diabetic nephropathy, and retinopathy. Research on targeting PDGF/PDGFR as a treatment has also made great progress. In this mini-review, we summarized the role of PDGF in diabetes, as well as the research progress on targeted diabetes therapy, which provides a new strategy for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Zhanqi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yijie Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yini Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
33
|
Su D, Jiao Z, Li S, Yue L, Li C, Deng M, Hu L, Dai L, Gao B, Wang J, Zhang H, Xiao H, Chen F, Yang H, Zhou D. Spatiotemporal single-cell transcriptomic profiling reveals inflammatory cell states in a mouse model of diffuse alveolar damage. EXPLORATION (BEIJING, CHINA) 2023; 3:20220171. [PMID: 37933384 PMCID: PMC10624389 DOI: 10.1002/exp.20220171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/10/2023] [Indexed: 11/08/2023]
Abstract
Diffuse alveolar damage (DAD) triggers neutrophilic inflammation in damaged tissues of the lung, but little is known about the distinct roles of tissue structural cells in modulating the recruitment of neutrophils to damaged areas. Here, by combining single-cell and spatial transcriptomics, and using quantitative assays, we systematically analyze inflammatory cell states in a mouse model of DAD-induced neutrophilic inflammation after aerosolized intratracheal inoculation with ricin toxin. We show that homeostatic resident fibroblasts switch to a hyper-inflammatory state, and the subsequent occurrence of a CXCL1-CXCR2 chemokine axis between activated fibroblasts (AFib) as the signal sender and neutrophils as the signal receiver triggers further neutrophil recruitment. We also identify an anatomically localized inflamed niche (characterized by a close-knit spatial intercellular contact between recruited neutrophils and AFib) in peribronchial regions that facilitate the pulmonary inflammation outbreak. Our findings identify an intricate interplay between hyper-inflammatory fibroblasts and neutrophils and provide an overarching profile of dynamically changing inflammatory microenvironments during DAD progression.
Collapse
Affiliation(s)
- Duo Su
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
- Reproductive Genetics CenterBethune International Peace HospitalShijiazhuangChina
| | - Zhouguang Jiao
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
| | - Sha Li
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Liya Yue
- Laboratory of Genome Sciences & Information, Beijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijingChina
| | - Cuidan Li
- Laboratory of Genome Sciences & Information, Beijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijingChina
| | - Mengyun Deng
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Lingfei Hu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Lupeng Dai
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Bo Gao
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Jinglin Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and ChemistryInstitute of Chemistry, Chinese Academy of ScienceBeijingChina
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and ChemistryInstitute of Chemistry, Chinese Academy of ScienceBeijingChina
| | - Fei Chen
- Laboratory of Genome Sciences & Information, Beijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijingChina
| | - Huiying Yang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| |
Collapse
|
34
|
Bao H, Li B, You Q, Dun X, Zhang Z, Liang Y, Li Y, Jiang Q, Zhang R, Chen R, Chen W, Zheng Y, Li D, Cui L. Exposure to real-ambient particulate matter induced vascular hypertrophy through activation of PDGFRβ. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130985. [PMID: 36801716 DOI: 10.1016/j.jhazmat.2023.130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Vascular toxicity induced by particulate matter (PM) exposure exacerbates the onset and development of cardiovascular diseases; however, its detailed mechanism remains unclear. Platelet-derived growth factor receptor β (PDGFRβ) acts as a mitogen for vascular smooth muscle cells (VSMCs) and is therefore essential for normal vasoformation. However, the potential effects of PDGFRβ on VSMCs in PM-induced vascular toxicity have not yet been elucidated. METHODS To reveal the potential roles of PDGFRβ signalling in vascular toxicity, individually ventilated cage (IVC)-based real-ambient PM exposure system mouse models and PDGFRβ overexpression mouse models were established in vivo, along with in vitro VSMCs models. RESULTS Vascular hypertrophy was observed following PM-induced PDGFRβ activation in C57/B6 mice, and the regulation of hypertrophy-related genes led to vascular wall thickening. Enhanced PDGFRβ expression in VSMCs aggravated PM-induced smooth muscle hypertrophy, which was attenuated by inhibiting the PDGFRβ and janus kinase 2 /signal transducer and activator of transcription 3 (JAK2/STAT3) pathways. CONCLUSION Our study identified the PDGFRβ gene as a potential biomarker of PM-induced vascular toxicity. PDGFRβ induced hypertrophic effects through the activation of the JAK2/STAT3 pathway, which may be a biological target for the vascular toxic effects caused by PM exposure.
Collapse
Affiliation(s)
- Hongxu Bao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Benying Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qing You
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Dun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanan Liang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yahui Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- Department of Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
35
|
Yang X, Yang C, Friesel RE, Liaw L. Sprouty1 has a protective role in atherogenesis and modifies the migratory and inflammatory phenotype of vascular smooth muscle cells. Atherosclerosis 2023; 373:17-28. [PMID: 37121163 PMCID: PMC10225353 DOI: 10.1016/j.atherosclerosis.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Sprouty1 (Spry1) regulates the differentiation of vascular smooth muscle cells (VSMC), and our aim was to determine its role in atherogenesis. A significant proportion of cells within atherosclerotic lesions are derived from migration and pathological adaptation of medial VSMC. METHODS We used global Spry1 null mouse, and Myh11-CreERT2, ROSA26-STOPfl/fl-tdTomato-Spry1fl/fl mice to allow for lineage tracing and conditional Spry1 deletion in VSMC. Atherosclerosis was induced by injection of a mutant form of mPCSK9D377Y-AAV followed by Western diet. Human aortic VSMC (hVSMC) with shRNA targeting of Spry1 were also analyzed. RESULTS Global loss of Spry1 increased inflammatory markers ICAM1 and Cox2 in VSMC. Conditional deletion of Spry1 in VSMC had no effect on early lesion development, despite increased Sca1high cells. After 26 weeks of Western diet, mice with VSMC deletion of Spry1 had increased plaque burden, with reduced collagen content and smooth muscle alpha actin (SMA) in the fibrous cap. Lineage tracing via tdTomato marking Cre-recombined cells indicated that VSMC with loss of Spry1 had decreased migration into the lesion, noted by decreased proportions of tdTomato+ and tdTomato+/SMA + cells. Loss-of-function of Spry1 in hVSMC increased mesenchymal and activation markers, including KLF4, PDGFRb, ICAM1, and Cox2. Loss of Spry1 enhanced the effects of PDGFBB and TNFa on hVSMC. CONCLUSIONS Loss of Spry1 in VSMC aggravated plaque formation at later stages, and increased markers of instability. Our results indicate that Spry1 suppresses the mesenchymal and inflammatory phenotype of VSMC, and its expression in VSMC is protective against chronic atherosclerotic disease.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA
| | - Chenhao Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, USA
| | - Robert E Friesel
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, USA.
| |
Collapse
|
36
|
Benvie AM, Lee D, Steiner BM, Xue S, Jiang Y, Berry DC. Age-dependent Pdgfrβ signaling drives adipocyte progenitor dysfunction to alter the beige adipogenic niche in male mice. Nat Commun 2023; 14:1806. [PMID: 37002214 PMCID: PMC10066302 DOI: 10.1038/s41467-023-37386-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Perivascular adipocyte progenitor cells (APCs) can generate cold temperature-induced thermogenic beige adipocytes within white adipose tissue (WAT), an effect that could counteract excess fat mass and metabolic pathologies. Yet, the ability to generate beige adipocytes declines with age, creating a key challenge for their therapeutic potential. Here we show that ageing beige APCs overexpress platelet derived growth factor receptor beta (Pdgfrβ) to prevent beige adipogenesis. We show that genetically deleting Pdgfrβ, in adult male mice, restores beige adipocyte generation whereas activating Pdgfrβ in juvenile mice blocks beige fat formation. Mechanistically, we find that Stat1 phosphorylation mediates Pdgfrβ beige APC signaling to suppress IL-33 induction, which dampens immunological genes such as IL-13 and IL-5. Moreover, pharmacologically targeting Pdgfrβ signaling restores beige adipocyte development by rejuvenating the immunological niche. Thus, targeting Pdgfrβ signaling could be a strategy to restore WAT immune cell function to stimulate beige fat in adult mammals.
Collapse
Affiliation(s)
- Abigail M Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Benjamin M Steiner
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Siwen Xue
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
37
|
Wu W, Jia S, Xu H, Gao Z, Wang Z, Lu B, Ai Y, Liu Y, Liu R, Yang T, Luo R, Hu C, Kong L, Huang D, Yan L, Yang Z, Zhu L, Hao D. Supramolecular Hydrogel Microspheres of Platelet-Derived Growth Factor Mimetic Peptide Promote Recovery from Spinal Cord Injury. ACS NANO 2023; 17:3818-3837. [PMID: 36787636 DOI: 10.1021/acsnano.2c12017] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neural stem cells (NSCs) are considered to be prospective replacements for neuronal cell loss as a result of spinal cord injury (SCI). However, the survival and neuronal differentiation of NSCs are strongly affected by the unfavorable microenvironment induced by SCI, which critically impairs their therapeutic ability to treat SCI. Herein, a strategy to fabricate PDGF-MP hydrogel (PDGF-MPH) microspheres (PDGF-MPHM) instead of bulk hydrogels is proposed to dramatically enhance the efficiency of platelet-derived growth factor mimetic peptide (PDGF-MP) in activating its receptor. PDGF-MPHM were fabricated by a piezoelectric ceramic-driven thermal electrospray device, had an average size of 9 μm, and also had the ability to activate the PDGFRβ of NSCs more effectively than PDGF-MPH. In vitro, PDGF-MPHM exerted strong neuroprotective effects by maintaining the proliferation and inhibiting the apoptosis of NSCs in the presence of myelin extracts. In vivo, PDGF-MPHM inhibited M1 macrophage infiltration and extrinsic or intrinsic cells apoptosis on the seventh day after SCI. Eight weeks after SCI, the T10 SCI treatment results showed that PDGF-MPHM + NSCs significantly promoted the survival of NSCs and neuronal differentiation, reduced lesion size, and considerably improved motor function recovery in SCI rats by stimulating axonal regeneration, synapse formation, and angiogenesis in comparison with the NSCs graft group. Therefore, our findings provide insights into the ability of PDGF-MPHM to be a promising therapeutic agent for SCI repair.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Ziheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Zhiyuan Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Botao Lu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Yixiang Ai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Tong Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Rongjin Luo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Chunping Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| |
Collapse
|
38
|
Nambo-Venegas R, Palacios-González B, Mas-Oliva J, Aurioles-Amozurrutia AK, Cruz-Rangel A, Moreno A, Hidalgo-Miranda A, Rodríguez-Dorantes M, Vadillo-Ortega F, Xicohtencatl-Cortes J, Ruiz-Olmedo MI, Reyes-Grajeda JP. Conversion of M1 Macrophages to Foam Cells: Transcriptome Differences Determined by Sex. Biomedicines 2023; 11:biomedicines11020490. [PMID: 36831031 PMCID: PMC9953229 DOI: 10.3390/biomedicines11020490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND M1 macrophages involved in pro-inflammatory processes can be induced by low-density lipoproteins (LDL), giving rise to foam cells. In the atheroma plaque, it has been identified that males present more advanced lesions associated with infiltration. Therefore, our study aims to investigate sex-related changes in the transcriptome of M1 macrophages during the internalization process of LDL particles. METHODS Peripheral blood mononuclear cells (PBMCs) from healthy male and female subjects were separated using Hystopaque, and monocytes were isolated from PBMCs using a positive selection of CD14+ cells. Cells were stimulated with LDL 10 µg/mL, and the transcriptional profile of M1 macrophages performed during LDL internalization was determined using a Clariom D platform array. RESULTS Chromosome Y influences the immune system and inflammatory responses in males expressing 43% of transcripts in response to LDL treatment. Males and females share 15 transcripts, where most correspond to non-coding elements involved in oxidative stress and endothelial damage. CONCLUSIONS During LDL internalization, male monocyte-derived M1 macrophages display more marked proinflammatory gene expression. In contrast, female M1 macrophages display a more significant number of markers associated with cell damage.
Collapse
Affiliation(s)
- Rafael Nambo-Venegas
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica, Mexico City 14600, Mexico
| | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable, Centro de Investigación Sobre Envejecimiento (CIE-CINVESTAV Sur), Instituto Nacional de Medicina Genómica, Mexico City 14330, Mexico
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Armando Cruz-Rangel
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica, Mexico City 14600, Mexico
| | - Abel Moreno
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14600, Mexico
| | | | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina UNAM en INMEGEN, Instituto Nacional de Medicina Genómica, Mexico City 14600, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | | | - Juan Pablo Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica, Mexico City 14600, Mexico
- Correspondence:
| |
Collapse
|
39
|
Zhen C, Wu X, Zhang J, Liu D, Li G, Yan Y, He X, Miao J, Song H, Yan Y, Zhang Y. Ganoderma lucidum polysaccharides attenuates pressure-overload-induced pathological cardiac hypertrophy. Front Pharmacol 2023; 14:1127123. [PMID: 37033616 PMCID: PMC10076566 DOI: 10.3389/fphar.2023.1127123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Pathological cardiac hypertrophy is an important risk factor for cardiovascular disease. However, drug therapies that can reverse the maladaptive process and restore heart function are limited. Ganoderma lucidum polysaccharides (GLPs) are one of the main active components of G. lucidum (Ganoderma lucidum), and they have various pharmacological effects. GLPs have been used as Chinese medicine prescriptions for clinical treatment. In this study, cardiac hypertrophy was induced by transverse aortic constriction (TAC) in mice. We found that GLPs ameliorate Ang II-induced cardiomyocyte hypertrophy in vitro and attenuate pressure overload-induced cardiac hypertrophy in vivo. Further research indicated that GLPs attenuated the mRNA levels of hypertrophic and fibrotic markers to inhibit cardiac hypertrophy through the PPARγ/PGC-1α pathway. Overall, these results indicate that GLPs inhibit cardiac hypertrophy through downregulating key genes for hypertrophy and fibrosis and attenuate pressure overload-induced pathological cardiac hypertrophy by activating PPARγ. This study provides important theoretical support for the potential of using GLPs to treat pathological myocardial hypertrophy and heart failure.
Collapse
Affiliation(s)
- Changlin Zhen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Xunxun Wu
- School of Biomedical Science, Huaqiao University, Quanzhou, China
| | - Jing Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Dan Liu
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Guoli Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yongbo Yan
- The People’s Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing, China
| | - Xiuzhen He
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Jiawei Miao
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Hongxia Song
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yifan Yan
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
- *Correspondence: Yifan Yan, ; Yonghui Zhang,
| | - Yonghui Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
- *Correspondence: Yifan Yan, ; Yonghui Zhang,
| |
Collapse
|
40
|
Abstract
RNA is not always a faithful copy of DNA. Advances in tools enabling the interrogation of the exact RNA sequence have permitted revision of how genetic information is transferred. We now know that RNA is a dynamic molecule, amenable to chemical modifications of its four canonical nucleotides by dedicated RNA-binding enzymes. The ever-expanding catalogue of identified RNA modifications in mammals has led to a burst of studies in the past 5 years that have explored the biological relevance of the RNA modifications, also known as epitranscriptome. These studies concluded that chemical modification of RNA nucleotides alters several properties of RNA molecules including sequence, secondary structure, RNA-protein interaction, localization and processing. Importantly, a plethora of cellular functions during development, homeostasis and disease are controlled by RNA modification enzymes. Understanding the regulatory interface between a single-nucleotide modification and cellular function will pave the way towards the development of novel diagnostic, prognostic and therapeutic tools for the management of diseases, including cardiovascular disease. In this Review, we use two well-studied and abundant RNA modifications - adenosine-to-inosine RNA editing and N6-methyladenosine RNA methylation - as examples on which to base the discussion about the current knowledge on installation or removal of RNA modifications, their effect on biological processes related to cardiovascular health and disease, and the potential for development and application of epitranscriptome-based prognostic, diagnostic and therapeutic tools for cardiovascular disease.
Collapse
|
41
|
Paunel-Görgülü A, Conforti A, Mierau N, Zierden M, Xiong X, Wahlers T. Peptidylarginine deiminase 4 deficiency in bone marrow cells prevents plaque progression without decreasing atherogenic inflammation in apolipoprotein E-knockout mice. Front Cardiovasc Med 2022; 9:1046273. [PMID: 36465436 PMCID: PMC9709396 DOI: 10.3389/fcvm.2022.1046273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 08/30/2023] Open
Abstract
INTRODUCTION Despite multiple studies in the past, the role of peptidylarginine deiminase 4 (PAD4) in atherosclerosis is currently insufficiently understood. In this regard, PAD4 deletion or inhibition of enzymatic activity was previously reported to ameliorate disease progression and inflammation. Besides, strong influence of neutrophil extracellular traps (NETs) on atherosclerosis burden has been proposed. Here, we studied the role of PAD4 for atherogenesis and plaque progression in a mouse model of atherosclerosis. METHODS AND RESULTS Lethally irradiated ApoE -/- mice were reconstituted with ApoE -/-/Pad4 -/- bone marrow cells and fed a high-fat diet (HFD) for 4 and 10 weeks, respectively. PAD4 deficiency did not prevent the development of atherosclerotic lesions after 4 weeks of HFD. However, after 10 weeks of HFD, mice with bone marrow cells-restricted PAD4 deficiency displayed significantly reduced lesion size, impaired lipid incorporation, decreased necrotic core area and less collagen when compared to ApoE -/- bone marrow-transplanted mice as demonstrated by histological staining. Moreover, flow cytometric analysis and quantitative real-time PCR revealed different macrophage subsets in atherosclerotic lesions and higher inflammatory response in these mice, as reflected by increased content of M1-like macrophages and upregulated aortic expression of the pro-inflammatory genes CCL2 and iNOS. Notably, diminished oxLDL uptake by in vitro-polarized M1-like macrophages was evidenced when compared to M2-like cells. CONCLUSION These results suggest that pharmacological inhibition of PAD4 may impede lipid accumulation and lesion progression despite no beneficial effects on vascular inflammation.
Collapse
Affiliation(s)
- Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Andreas Conforti
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Natalia Mierau
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Mario Zierden
- Department of Cardiology, Heart Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Xiaolin Xiong
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| |
Collapse
|
42
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
43
|
Wang K, Fu Z, Li X, Hong H, Zhan X, Guo X, Luo Y, Tan Y. Whey protein hydrolysate alleviated atherosclerosis and hepatic steatosis by regulating lipid metabolism in apoE -/- mice fed a Western diet. Food Res Int 2022; 157:111419. [PMID: 35761665 DOI: 10.1016/j.foodres.2022.111419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Whey protein hydrolysate (WPH) has been proved to possess various biological activities associated with the amelioration of cardiovascular disease (CVD). The objective of this study was to investigate the anti-atherosclerotic and hepatoprotective effects of WPH on apolipoprotein E knockout (apoE-/-) mice fed with a Western diet for 15 weeks. Results revealed that WPH markedly inhibited the development of atherosclerotic lesions in the aorta and steatosis injury in the liver. The serum lipid and inflammation levels were both reduced after WPH supplemented in apoE-/- mice. In addition, WPH inhibited the lipid accumulation in the liver, thereby decreasing the hepatic inflammation level and oxidative stress injury. Mechanism investigation revealed that WPH down-regulated the expression of cholesterol biosynthesis genes while up-regulated the expression of cholesterol uptake and excretion genes in the liver. Meanwhile, the de novo lipogenesis was inhibited while the fatty acids β-oxidation was activated in the liver by WPH supplementation. Notably, the n-3 polyunsaturated fatty acid (PUFA)/n-6 PUFA ratio in serum and liver of the WPH-H group were 2.69-fold (p < 0.01) and 3.64-fold (p < 0.01) higher than that of the Model group. Collectively, our results proved WPH possesses potent anti-atherosclerotic and hepatoprotective activities and has the potential to be used as a novel functional ingredient for the management of CVD.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zixin Fu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaoyi Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Hui Hong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xin Zhan
- Tianjin Milkyway Import and Export Corp, Tianjin 300457, China.
| | - Xiaohong Guo
- Hebei Dongkang Dairy Co., Ltd, Shijiazhuang 052160, China.
| | - Yongkang Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yuqing Tan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
44
|
Diverse roles of tumor-stromal PDGFB-to-PDGFRβ signaling in breast cancer growth and metastasis. Adv Cancer Res 2022; 154:93-140. [PMID: 35459473 DOI: 10.1016/bs.acr.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last couple of decades, it has become increasingly apparent that the tumor microenvironment (TME) mediates every step of cancer progression and solid tumors are only able to metastasize with a permissive TME. This intricate interaction of cancer cells with their surrounding TME, or stroma, is becoming more understood with an ever greater knowledge of tumor-stromal signaling pairs such as platelet-derived growth factors (PDGF) and their cognate receptors. We and others have focused our research efforts on understanding how tumor-derived PDGFB activates platelet-derived growth factor receptor beta (PDGFRβ) signaling specifically in the breast cancer TME. In this chapter, we broadly discuss PDGF and PDGFR expression patterns and signaling in normal physiology and breast cancer. We then detail the expansive roles played by the PDGFB-to-PDGFRβ signaling pathway in modulating breast tumor growth and metastasis with a focus on specific cellular populations within the TME, which are responsive to tumor-derived PDGFB. Given the increasingly appreciated importance of PDGFB-to-PDGFRβ signaling in breast cancer progression, specifically in promoting metastasis, we end by discussing how therapeutic targeting of PDGFB-to-PDGFRβ signaling holds great promise for improving current breast cancer treatment strategies.
Collapse
|
45
|
Shaw K, Boyd K, Anderle S, Hammond-Haley M, Amin D, Bonnar O, Hall CN. Gradual Not Sudden Change: Multiple Sites of Functional Transition Across the Microvascular Bed. Front Aging Neurosci 2022; 13:779823. [PMID: 35237142 PMCID: PMC8885127 DOI: 10.3389/fnagi.2021.779823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/20/2021] [Indexed: 01/03/2023] Open
Abstract
In understanding the role of the neurovascular unit as both a biomarker and target for disease interventions, it is vital to appreciate how the function of different components of this unit change along the vascular tree. The cells of the neurovascular unit together perform an array of vital functions, protecting the brain from circulating toxins and infection, while providing nutrients and clearing away waste products. To do so, the brain's microvasculature dilates to direct energy substrates to active neurons, regulates access to circulating immune cells, and promotes angiogenesis in response to decreased blood supply, as well as pulsating to help clear waste products and maintain the oxygen supply. Different parts of the cerebrovascular tree contribute differently to various aspects of these functions, and previously, it has been assumed that there are discrete types of vessel along the vascular network that mediate different functions. Another option, however, is that the multiple transitions in function that occur across the vascular network do so at many locations, such that vascular function changes gradually, rather than in sharp steps between clearly distinct vessel types. Here, by reference to new data as well as by reviewing historical and recent literature, we argue that this latter scenario is likely the case and that vascular function gradually changes across the network without clear transition points between arteriole, precapillary arteriole and capillary. This is because classically localized functions are in fact performed by wide swathes of the vasculature, and different functional markers start and stop being expressed at different points along the vascular tree. Furthermore, vascular branch points show alterations in their mural cell morphology that suggest functional specializations irrespective of their position within the network. Together this work emphasizes the need for studies to consider where transitions of different functions occur, and the importance of defining these locations, in order to better understand the vascular network and how to target it to treat disease.
Collapse
Affiliation(s)
- Kira Shaw
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Katie Boyd
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Silvia Anderle
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | | | - Davina Amin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Orla Bonnar
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown Navy Yard, MA, United States
| | - Catherine N. Hall
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| |
Collapse
|
46
|
Chen JN, He YD, Liang HT, Cai TT, Chen Q, Zheng KW. Regulation of PDGFR-β gene expression by targeting the G-vacancy bearing G-quadruplex in promoter. Nucleic Acids Res 2021; 49:12634-12643. [PMID: 34850916 PMCID: PMC8682790 DOI: 10.1093/nar/gkab1154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
G-quadruplex is an essential element in gene transcription that serves as a promising drug target. Guanine-vacancy-bearing G-quadruplex (GVBQ) is a newly identified G-quadruplex that has distinct structural features from the canonical G-quadruplex. Potential GVBQ-forming motifs are widely distributed in gene promoter regions. However, whether GVBQ can form in genomic DNA and be an effective target for manipulating gene expression is unknown. Using photo-crosslinking, dimethyl sulfate footprinting, exonuclease digestion and in vitro transcription, we demonstrated the formation of a GVBQ in the G-rich nuclease hypersensitivity element within the human PDGFR-β gene promoter region in both single-stranded and double-stranded DNA. The formation of GVBQ in dsDNA could be induced by negative supercoiling created by downstream transcription. We also found that the PDGFR-β GVBQ was specifically recognized and stabilized by a new synthetic porphyrin guanine conjugate (mPG). Targeting the PDGFR-β GVBQ in human cancer cells using the mPG could specifically alter PDGFR-β gene expression. Our work illustrates that targeting GVBQ with mPG in human cells can regulate the expression level of a specific gene, thus indicating a novel strategy for drug development.
Collapse
Affiliation(s)
- Juan-Nan Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Yi-de He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, P.R. China.,School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hui-Ting Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Ting-Ting Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Qi Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Ke-Wei Zheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
47
|
Sun J, Wu Z, Wu W, Leng J, Lv X, Zhang T, Wang L, Song L. PDGFRβ Recognizes and Binds Bacteria to Activate Src/Stat Pathway in Oysters. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:3060-3069. [PMID: 34799429 DOI: 10.4049/jimmunol.2100486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The Stat signaling pathway plays important roles in mediating the secretions of a large number of cytokines and growth factors in vertebrates, which is generally triggered by the growth factor receptor, cytokine receptor, G protein coupled receptor, and receptor protein tyrosine kinase. In the current study, a platelet-derived growth factor receptor (defined as CgPDGFRβ) was identified from the Pacific oyster Crassostrea gigas, with a signal peptide, three Ig domains, a transmembrane domain, and an intracellular Ser/Thr/Tyr kinase domain. The two N-terminal Ig domains of CgPDGFRβ showed relatively higher binding activity to Gram-negative bacteria and LPS compared with Gram-positive bacteria and peptidoglycan. Upon binding bacteria, CgPDGFRβ in hemocytes formed a dimer and interacted with protein tyrosine kinase CgSrc to induce the phosphorylation of CgSrc at Tyr416. The activated CgSrc interacted with CgStat to induce the translocation of CgStat into the nucleus of hemocytes, which then promoted the expressions of Big defensin 1 (CgBigdef1), IL17-4 (CgIL17-4), and TNF (CgTNF1). These findings together demonstrated that the Src/Stat signaling was activated after the binding of CgPDGFRβ with bacteria to induce the expressions of CgBigdef1, CgIL17-4, and CgTNF1.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Zhaojun Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Tong Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China;
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; and
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China;
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; and
| |
Collapse
|
48
|
Santhanam L, Liu G, Jandu S, Su W, Wodu BP, Savage W, Poe A, Liu X, Alexander LM, Cao X, Wan M. Skeleton-secreted PDGF-BB mediates arterial stiffening. J Clin Invest 2021; 131:e147116. [PMID: 34437300 PMCID: PMC8516464 DOI: 10.1172/jci147116] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Evidence links osteoporosis and cardiovascular disease but the cellular and molecular mechanisms are unclear. Here we identify skeleton-secreted platelet-derived growth factor-BB (PDGF-BB) as a key mediator of arterial stiffening in response to aging and metabolic stress. Aged mice and those fed high-fat diet (HFD), relative to young mice and those fed normal chow food diet, respectively, had higher serum PDGF-BB and developed bone loss and arterial stiffening. Bone/bone marrow preosteoclasts in aged mice and HFD mice secrete an excessive amount of PDGF-BB, contributing to the elevated PDGF-BB in blood circulation. Conditioned medium prepared from preosteoclasts stimulated proliferation and migration of the vascular smooth muscle cells. Conditional transgenic mice, in which PDGF-BB is overexpressed in preosteoclasts, had 3-fold higher serum PDGF-BB concentration and developed simultaneous bone loss and arterial stiffening spontaneously at a young age. Conversely, in conditional knockout mice, in which PDGF-BB is deleted selectively in preosteoclasts, HFD did not affect serum PDGF-BB concentration; as a result, HFD-induced bone loss and arterial stiffening were attenuated. These studies confirm that preosteoclasts are a main source of excessive PDGF-BB in blood circulation during aging and metabolic stress and establish the role of skeleton-derived PDGF-BB as an important mediator of vascular stiffening.
Collapse
Affiliation(s)
- Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine and
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Guanqiao Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine and
| | - Weiping Su
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bulouere P. Wodu
- Department of Biotechnology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - William Savage
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Alan Poe
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lacy M. Alexander
- Department of Kinesiology, Penn State University, University Park, Pennsylvania, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Beck-Joseph J, Tabrizian M, Lehoux S. Molecular Interactions Between Vascular Smooth Muscle Cells and Macrophages in Atherosclerosis. Front Cardiovasc Med 2021; 8:737934. [PMID: 34722670 PMCID: PMC8554018 DOI: 10.3389/fcvm.2021.737934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023] Open
Abstract
Atherosclerosis is the largest contributor toward life-threatening cardiovascular events. Cellular activity and cholesterol accumulation lead to vascular remodeling and the formation of fatty plaques. Complications arise from blood clots, forming at sites of plaque development, which may detach and result in thrombotic occlusions. Vascular smooth muscle cells and macrophages play dominant roles in atherosclerosis. A firm understanding of how these cells influence and modulate each other is pivotal for a better understanding of the disease and the development of novel therapeutics. Recent studies have investigated molecular interactions between both cell types and their impact on disease progression. Here we aim to review the current knowledge. Intercellular communications through soluble factors, physical contact, and extracellular vesicles are discussed. We also present relevant background on scientific methods used to study the disease, the general pathophysiology and intracellular factors involved in phenotypic modulation of vascular smooth muscle cells. We conclude this review with a discussion of the current state, shortcomings and potential future directions of the field.
Collapse
Affiliation(s)
- Jahnic Beck-Joseph
- Biomat'X Research Laboratories, Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Maryam Tabrizian
- Biomat'X Research Laboratories, Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Stephanie Lehoux
- Department of Medicine, Lady Davis Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
50
|
Kalra K, Eberhard J, Farbehi N, Chong JJ, Xaymardan M. Role of PDGF-A/B Ligands in Cardiac Repair After Myocardial Infarction. Front Cell Dev Biol 2021; 9:669188. [PMID: 34513823 PMCID: PMC8424099 DOI: 10.3389/fcell.2021.669188] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/20/2021] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) are powerful inducers of cellular mitosis, migration, angiogenesis, and matrix modulation that play pivotal roles in the development, homeostasis, and healing of cardiac tissues. PDGFs are key signaling molecules and important drug targets in the treatment of cardiovascular disease as multiple researchers have shown that delivery of recombinant PDGF ligands during or after myocardial infarction can reduce mortality and improve cardiac function in both rodents and porcine models. The mechanism involved cannot be easily elucidated due to the complexity of PDGF regulatory activities, crosstalk with other protein tyrosine kinase activators, and diversity of the pathological milieu. This review outlines the possible roles of PDGF ligands A and B in the healing of cardiac tissues including reduced cell death, improved vascularization, and improved extracellular matrix remodeling to improve cardiac architecture and function after acute myocardial injury. This review may highlight the use of recombinant PDGF-A and PDGF-B as a potential therapeutic modality in the treatment of cardiac injury.
Collapse
Affiliation(s)
- Kunal Kalra
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Joerg Eberhard
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nona Farbehi
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - James J Chong
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Munira Xaymardan
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|