1
|
Jia H, Wei J, Zheng W, Li Z. The dual role of autophagy in cancer stem cells: implications for tumor progression and therapy resistance. J Transl Med 2025; 23:583. [PMID: 40414839 DOI: 10.1186/s12967-025-06595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Cancer stem cells (CSCs) constitute a small yet crucial subgroup in tumors, known for their capacity to self-renew, differentiate, and promote tumor growth, metastasis, and resistance to therapy. These characteristics position CSCs as significant factors in tumor recurrence and unfavorable clinical results, emphasizing their role as targets for therapy. Autophagy, an evolutionarily preserved cellular mechanism for degradation and recycling, has a complex function in cancer by aiding cell survival during stress and preserving balance by eliminating damaged organelles and proteins. Although autophagy can hinder tumor growth by reducing genomic instability, it also aids tumor advancement, particularly in harsh microenvironments, highlighting its dual characteristics. Recent research has highlighted the complex interactions between autophagy and CSCs, showing that autophagy governs CSC maintenance, boosts survival, and aids in resistance to chemotherapy and radiotherapy. On the other hand, in specific situations, autophagy may restrict CSC growth by increasing differentiation or inducing cell death. These intricate interactions offer both obstacles and possibilities for therapeutic intervention. Pharmacological modulation of autophagy, via inhibitors like chloroquine or by enhancing autophagy when advantageous, has demonstrated potential in making CSCs more responsive to standard treatments. Nonetheless, applying these strategies in clinical settings necessitates a better understanding of context-dependent autophagy dynamics and the discovery of dependable biomarkers indicating autophagic activity in CSCs. Progressing in this area might unveil novel, accurate strategies to tackle therapy resistance, lessen tumor recurrence, and ultimately enhance patient outcomes.
Collapse
Affiliation(s)
- Haiqing Jia
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China
| | - Jing Wei
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China
| | - Wei Zheng
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China.
| | - Zhuo Li
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China.
| |
Collapse
|
2
|
Pimentel JM, Zhou JY, Wu GS. Autophagy and cancer therapy. Cancer Lett 2024; 605:217285. [PMID: 39395780 DOI: 10.1016/j.canlet.2024.217285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Autophagy is an intracellular degradation process that sequesters cytoplasmic components in double-membrane vesicles known as autophagosomes, which are degraded upon fusion with lysosomes. This pathway maintains the integrity of proteins and organelles while providing energy and nutrients to cells, particularly under nutrient deprivation. Deregulation of autophagy can cause genomic instability, low protein quality, and DNA damage, all of which can contribute to cancer. Autophagy can also be overactivated in cancer cells to aid in cancer cell survival and drug resistance. Emerging evidence indicates that autophagy has functions beyond cargo degradation, including roles in tumor immunity and cancer stem cell survival. Additionally, autophagy can also influence the tumor microenvironment. This feature warrants further investigation of the role of autophagy in cancer, in which autophagy manipulation can improve cancer therapies, including cancer immunotherapy. This review discusses recent findings on the regulation of autophagy and its role in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA; Institutional Research Academic Career Development Award Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jun Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
3
|
Dong Y, He Y, Geng Y, Wei M, Zhou X, Lian J, Hallajzadeh J. Autophagy-related lncRNAs and exosomal lncRNAs in colorectal cancer: focusing on lncRNA-targeted strategies. Cancer Cell Int 2024; 24:328. [PMID: 39342235 PMCID: PMC11439232 DOI: 10.1186/s12935-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a cellular process that involves the degradation and recycling of cellular components, including damaged proteins and organelles. It is an important mechanism for maintaining cellular homeostasis and has been implicated in various diseases, including cancer. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but instead play regulatory roles in gene expression. Emerging evidence suggests that lncRNAs can influence autophagy and contribute to the development and progression of colorectal cancer (CRC). Several lncRNAs have been identified as key players in modulating autophagy in CRC. The dysregulation of autophagy and non-coding RNAs (ncRNAs) in CRC suggests a complex interplay between these two factors in the pathogenesis of the disease. Modulating autophagy may sensitize cancer cells to existing therapies or improve the efficacy of new treatment approaches. Additionally, targeting specific lncRNAs involved in autophagy regulation could potentially be used as a therapeutic intervention to inhibit tumor growth, metastasis, and overcome drug resistance in CRC. In this review, a thorough overview is presented, encompassing the functions and underlying mechanisms of autophagy-related lncRNAs in a range of critical areas within tumor biology. These include cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, and radiation resistance.
Collapse
Affiliation(s)
- Yan Dong
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yiwei He
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yanna Geng
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Meimei Wei
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Xiaomei Zhou
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Jianlun Lian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
4
|
Tedesco G, Santarosa M, Maestro R. Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review). Int J Oncol 2024; 64:57. [PMID: 38606507 PMCID: PMC11087037 DOI: 10.3892/ijo.2024.5645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Autophagy is a conserved catabolic process that controls organelle quality, removes misfolded or abnormally aggregated proteins and is part of the defense mechanisms against intracellular pathogens. Autophagy contributes to the suppression of tumor initiation by promoting genome stability, cellular integrity, redox balance and proteostasis. On the other hand, once a tumor is established, autophagy can support cancer cell survival and promote epithelial‑to‑mesenchymal transition. A growing number of molecules involved in autophagy have been identified. In addition to their key canonical activity, several of these molecules, such as ATG5, ATG12 and Beclin‑1, also exert autophagy‑independent functions in a variety of biological processes. The present review aimed to summarize autophagy‑independent functions of molecules of the autophagy machinery and how the activity of these molecules can influence signaling pathways that are deregulated in cancer progression.
Collapse
Affiliation(s)
- Giulia Tedesco
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Manuela Santarosa
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| |
Collapse
|
5
|
Rahmati S, Moeinafshar A, Rezaei N. The multifaceted role of extracellular vesicles (EVs) in colorectal cancer: metastasis, immune suppression, therapy resistance, and autophagy crosstalk. J Transl Med 2024; 22:452. [PMID: 38741166 PMCID: PMC11092134 DOI: 10.1186/s12967-024-05267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer structures released by all cells and widely distributed in all biological fluids. EVs are implicated in diverse physiopathological processes by orchestrating cell-cell communication. Colorectal cancer (CRC) is one of the most common cancers worldwide, with metastasis being the leading cause of mortality in CRC patients. EVs contribute significantly to the advancement and spread of CRC by transferring their cargo, which includes lipids, proteins, RNAs, and DNAs, to neighboring or distant cells. Besides, they can serve as non-invasive diagnostic and prognostic biomarkers for early detection of CRC or be harnessed as effective carriers for delivering therapeutic agents. Autophagy is an essential cellular process that serves to remove damaged proteins and organelles by lysosomal degradation to maintain cellular homeostasis. Autophagy and EV release are coordinately activated in tumor cells and share common factors and regulatory mechanisms. Although the significance of autophagy and EVs in cancer is well established, the exact mechanism of their interplay in tumor development is obscure. This review focuses on examining the specific functions of EVs in various aspects of CRC, including progression, metastasis, immune regulation, and therapy resistance. Further, we overview emerging discoveries relevant to autophagy and EVs crosstalk in CRC.
Collapse
Affiliation(s)
- Soheil Rahmati
- Student Research Committee, Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Shang JN, Yu CG, Li R, Xi Y, Jian YJ, Xu N, Chen S. The nonautophagic functions of autophagy-related proteins. Autophagy 2024; 20:720-734. [PMID: 37682088 PMCID: PMC11062363 DOI: 10.1080/15548627.2023.2254664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
ABBREVIATIONS ATG: autophagy related; BECN1: beclin 1; cAMP: cyclic adenosine monophosphate; dsDNA: double-stranded DNA; EMT: epithelial-mesenchymal transition; IFN: interferon; ISCs: intestinal stem cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase/c-Jun N-terminal kinases; MTOR: mechanistic target of rapamycin kinase; STING1: stimulator of interferon response cGAMP interactor 1; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting.
Collapse
Affiliation(s)
- Jia-Ni Shang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Chen-Ge Yu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Rui Li
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Yan Xi
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Yue Jenny Jian
- Nanjing Foreign Language School, Nanjing, Jiangsu, PR China
| | - Nan Xu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| |
Collapse
|
7
|
Cui Z, Cong M, Yin S, Li Y, Ye Y, Liu X, Tang J. Role of protein degradation systems in colorectal cancer. Cell Death Discov 2024; 10:141. [PMID: 38485957 PMCID: PMC10940631 DOI: 10.1038/s41420-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/18/2024] Open
Abstract
Protein degradation is essential for maintaining protein homeostasis. The ubiquitin‒proteasome system (UPS) and autophagy-lysosome system are the two primary pathways responsible for protein degradation and directly related to cell survival. In malignant tumors, the UPS plays a critical role in managing the excessive protein load caused by cancer cells hyperproliferation. In this review, we provide a comprehensive overview of the dual roles played by the UPS and autolysosome system in colorectal cancer (CRC), elucidating their impact on the initiation and progression of this disease while also highlighting their compensatory relationship. Simultaneously targeting both protein degradation pathways offers new promise for enhancing treatment efficacy against CRC. Additionally, apoptosis is closely linked to ubiquitination and autophagy, and caspases degrade proteins. A thorough comprehension of the interplay between various protein degradation pathways is highly important for clarifying the mechanism underlying the onset and progression of CRC.
Collapse
Affiliation(s)
- Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Yin
- Department of Oncology, Chifeng City Hospital, Chifeng, 024000, China
| | - Yuqi Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Yuguang Ye
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Xi Liu
- Cardiovascular Center, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, 010017, China.
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
8
|
Takebayashi G, Chiba Y, Wakamatsu K, Murakami R, Miyai Y, Matsumoto K, Uemura N, Yanase K, Shirakami G, Ogino Y, Ueno M. E-Cadherin Is Expressed in Epithelial Cells of the Choroid Plexus in Human and Mouse Brains. Curr Issues Mol Biol 2023; 45:7813-7826. [PMID: 37886936 PMCID: PMC10605538 DOI: 10.3390/cimb45100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Evidence showing the functional significance of the choroid plexus is accumulating. Epithelial cells with tight and adherens junctions of the choroid plexus play important roles in cerebrospinal fluid production and circadian rhythm formation. Although specific types of cadherin expressed in adherens junctions of choroid plexus epithelium (CPE) have been examined, they remained uncertain. Recent mass spectrometry and immunolocalization analysis revealed that non-epithelial cadherins, P- and N-cadherins, are expressed in the lateral membrane of CPE, whereas E-cadherin expression has not been confirmed in CPE of humans or mice. In this study, we examined E-cadherin expression in CPE of mice and humans by RT-PCR, immunohistochemical-, and Western blotting analyses. We confirmed, by using RT-PCR analysis, the mRNA expression of E-cadherin in the choroid plexus of mice. The immunohistochemical expression of E-cadherin was noted in the lateral membrane of CPE of mice and humans. We further confirmed, in Western blotting, the specific immunoreactivity for E-cadherin. Immunohistochemically, the expression of E- and N-cadherins or vimentin was unevenly distributed in some CPE, whereas that of E- and P-cadherins or β-catenin frequently co-existed in other CPE. These findings indicate that E-cadherin is expressed in the lateral membrane of CPE, possibly correlated with the expression of other cadherins and cytoplasmic proteins.
Collapse
Affiliation(s)
- Genta Takebayashi
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (N.U.); (K.Y.); (G.S.); (Y.O.)
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| | - Yumi Miyai
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (N.U.); (K.Y.); (G.S.); (Y.O.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (N.U.); (K.Y.); (G.S.); (Y.O.)
| | - Gotaro Shirakami
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (N.U.); (K.Y.); (G.S.); (Y.O.)
| | - Yuichi Ogino
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (N.U.); (K.Y.); (G.S.); (Y.O.)
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| |
Collapse
|
9
|
Ma B, Hu Y, Zhu J, Zheng Z, Ye J. Research on the role of cellular autophagy in the sensitivity of human tongue cancer cells to radiotherapy and chemotherapy. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101430. [PMID: 36878357 DOI: 10.1016/j.jormas.2023.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE This paper aims to investigate the role of cisplatin-induced autophagy in human tongue squamous carcinoma Tca8113 cells. METHODS After inhibiting the expression of autophagic proteins with different autophagy inhibitors (3-methyladenine, chloroquine), the sensitivity of human tongue squamous cell carcinoma (Tca8113) cells to killing by gradient concentrations of cisplatin and gradient doses of radiation was detected using a colony formation assay. Further, the changes of autophagy expression in Tca8113 cells that had been treated with cisplatin and radiation were detected using western immunoblot, GFP-LC3 fluorescence and transmission electron microscopy. RESULTS The sensitivity of Tca8113 cells to cisplatin and radiation was significantly increased (P < 0.05) after reducing autophagy expression using different autophagy inhibitors. Meanwhile, the expression of autophagy in the cells was significantly increased by cisplatin and radiation treatment. CONCLUSION Tca8113 cells upregulated autophagy under the effect of either radiation or cisplatin, and the sensitivity of Tca8113 cells to cisplatin and radiation could be improved by inhibiting autophagy using multiple pathways.
Collapse
Affiliation(s)
- Ben Ma
- Department of Oral and Maxillofacial Surgery, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China
| | - Yong Hu
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Jiadong Zhu
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Zeguang Zheng
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
10
|
Ye T, Lin A, Qiu Z, Hu S, Zhou C, Liu Z, Cheng Q, Zhang J, Luo P. Microsatellite instability states serve as predictive biomarkers for tumors chemotherapy sensitivity. iScience 2023; 26:107045. [PMID: 37448561 PMCID: PMC10336167 DOI: 10.1016/j.isci.2023.107045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is an urgent need for markers to predict the efficacy of different chemotherapy drugs. Herein, we examined whether microsatellite instability (MSI) status can predict tumor multidrug sensitivity and explored the underlying mechanisms. We downloaded data from several public databases. Drug sensitivity was compared between the high microsatellite instability (MSI-H) and microsatellite-stable/low microsatellite instability (MSS/MSI-L) groups. In addition, we performed pathway enrichment analysis and cellular chemosensitivity assays to explore the mechanisms by which MSI status may affect drug sensitivity and assessed the differences between drug-treated and control cell lines. We found that multiple MSI-H tumors were more sensitive to a variety of chemotherapy drugs than MSS/MSI-L tumors, and especially for CRC, chemosensitivity is enhanced through the downregulation of DDR pathways such as NHEJ. Additional DNA damage caused by chemotherapeutic drugs results in further downregulation of DDR pathways and enhances drug sensitivity, forming a cycle of increasing drug sensitivity.
Collapse
Affiliation(s)
- Taojun Ye
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Qiu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shulu Hu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Song Y, Zhang J, Wang H, Wang H, Liu Y, Hu Z. Histone lysine demethylase 3B regulates autophagy via transcriptional regulation of GABARAPL1 in acute myeloid leukemia cells. Int J Oncol 2023; 63:87. [PMID: 37326062 PMCID: PMC10552699 DOI: 10.3892/ijo.2023.5535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is a highly conserved self‑digestion process that is critical for maintaining homeostasis in response to various stresses. The autophagy‑related protein family, including the GABA type A receptor‑associated protein (GABARAP) and microtubule‑associated protein 1 light chain 3 subfamilies, is crucial for autophagosome biogenesis. Although the regulatory machinery of autophagy in the cytoplasm has been widely studied, its transcriptional and epigenetic regulatory mechanisms still require more targeted investigations. The present study identified histone lysine demethylase 3B (KDM3B) as a crucial component of autophagy on a panel of leukemia cell lines, including K562, THP1 and U937, resulting in transcriptional activation of the autophagy‑related gene GABA type A receptor‑associated protein like 1 (GABARAPL1). KDM3B expression promoted autophagosome formation and affected the autophagic flux in leukemia cells under the induction of external stimuli. Notably, RNA‑sequencing and reverse transcription‑quantitative PCR analysis showed that KDM3B knockout inhibited the expression of GABARAPL1. Chromatin immunoprecipitation‑quantitative PCR and luciferase assay showed that KDM3B was associated with the GABARAPL1 gene promoter under stimulation and enhanced its transcription. The present findings demonstrated that KDM3B was critical for regulating the GABARAPL1 gene and influencing the process of autophagy in leukemia cells. These results provide a new insight for exploring the association between autophagy and KDM3B epigenetic regulation in leukemia.
Collapse
Affiliation(s)
- Ying Song
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
| | - Jiaqi Zhang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
- Granduate School, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Haihua Wang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
- Granduate School, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Haiying Wang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
| | - Yong Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
| | - Zhenbo Hu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
| |
Collapse
|
12
|
Du YX, Mamun AA, Lyu AP, Zhang HJ. Natural Compounds Targeting the Autophagy Pathway in the Treatment of Colorectal Cancer. Int J Mol Sci 2023; 24:7310. [PMID: 37108476 PMCID: PMC10138367 DOI: 10.3390/ijms24087310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway by which misfolded proteins or damaged organelles are delivered in a double-membrane vacuolar vesicle and finally degraded by lysosomes. The risk of colorectal cancer (CRC) is high, and there is growing evidence that autophagy plays a critical role in regulating the initiation and metastasis of CRC; however, whether autophagy promotes or suppresses tumor progression is still controversial. Many natural compounds have been reported to exert anticancer effects or enhance current clinical therapies by modulating autophagy. Here, we discuss recent advancements in the molecular mechanisms of autophagy in regulating CRC. We also highlight the research on natural compounds that are particularly promising autophagy modulators for CRC treatment with clinical evidence. Overall, this review illustrates the importance of autophagy in CRC and provides perspectives for these natural autophagy regulators as new therapeutic candidates for CRC drug development.
Collapse
Affiliation(s)
| | | | - Ai-Ping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| |
Collapse
|
13
|
Al-Bari AA. Inhibition of autolysosomes by repurposing drugs as a promising therapeutic strategy for the treatment of cancers. ALL LIFE 2022; 15:568-601. [DOI: 10.1080/26895293.2022.2078894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022] Open
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
14
|
Martelli A, Omrani M, Zarghooni M, Citi V, Brogi S, Calderone V, Sureda A, Lorzadeh S, da Silva Rosa SC, Grabarek BO, Staszkiewicz R, Los MJ, Nabavi SF, Nabavi SM, Mehrbod P, Klionsky DJ, Ghavami S. New Visions on Natural Products and Cancer Therapy: Autophagy and Related Regulatory Pathways. Cancers (Basel) 2022; 14:5839. [PMID: 36497321 PMCID: PMC9738256 DOI: 10.3390/cancers14235839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce or inhibit) the autophagy pathway. Natural products may target different regulatory components of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated ~100 natural compounds and plant species and their impact on different types of cancers via the autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in regulating cell autophagy and its potential impact on cancer therapy; however, the number of related clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted to better clarify the utility of natural compounds and their modulatory effects on autophagy, as fine-tuning of autophagy could be translated into therapeutic applications for several cancers.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marzieh Omrani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Maryam Zarghooni
- Department of Laboratory Medicine & Pathobiology, University of Toronto Alumna, Toronto, ON M5S 3J3, Canada
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition, Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C. da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Beniamin Oscar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
| | - Marek J. Los
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyed Fazel Nabavi
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite 62760-000, Brazil
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030 San Salvatore Telesino, Italy
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
15
|
Khan SU, Fatima K, Aisha S, Hamza B, Malik F. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:12. [PMID: 36352310 DOI: 10.1007/s12032-022-01871-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Cellular ROS production participates in various cellular functions but its accumulation decides the cell fate. Malignant cells have higher levels of ROS and active antioxidant machinery, a characteristic hallmark of cancer with an outcome of activation of stress-induced pathways like autophagy. Autophagy is an intracellular catabolic process that produces alternative raw materials to meet the energy demand of cells and is influenced by the cellular redox state thus playing a definite role in cancer cell fate. Since damaged mitochondria are the main source of ROS in the cell, however, cancer cells remove them by upregulating the process of mitophagy which is known to play a decisive role in tumorigenesis and tumor progression. Chemotherapy exploits cell machinery which results in the accumulation of toxic levels of ROS in cells resulting in cell death by activating either of the pathways like apoptosis, necrosis, ferroptosis or autophagy in them. So understanding these redox and autophagy regulations offers a promising method to design and develop new cancer therapies that can be very effective and durable for years. This review will give a summary of the current therapeutic molecules targeting redox regulation and autophagy for the treatment of cancer. Further, it will highlight various challenges in developing anticancer agents due to autophagy and ROS regulation in the cell and insights into the development of future therapies.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Baseerat Hamza
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Negi S, Chaudhuri A, Kumar DN, Dehari D, Singh S, Agrawal AK. Nanotherapeutics in autophagy: a paradigm shift in cancer treatment. Drug Deliv Transl Res 2022; 12:2589-2612. [PMID: 35149969 DOI: 10.1007/s13346-022-01125-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is a catabolic process in which an organism responds to its nutrient or metabolic emergencies. It involves the degradation of cytoplasmic proteins and organelles by forming double-membrane vesicles called "autophagosomes." They sequester cargoes, leading them to degradation in the lysosomes. Although autophagy acts as a protective mechanism for maintaining homeostasis through cellular recycling, it is ostensibly a cause of certain cancers, but a cure for others. In other words, insufficient autophagy, due to genetic or cellular dysfunctions, can lead to tumorigenesis. However, many autophagy modulators are developed for cancer therapy. Diverse nanoparticles have been documented to induce autophagy. Also, the highly stable nanoparticles show blockage to autophagic flux. In this review, we revealed a general mechanism by which autophagy can be induced or blocked via nanoparticles as well as several studies recently performed to prove the stated fact. In addition, we have also elucidated the paradoxical roles of autophagy in cancer and how their differential role at different stages of various cancers can affect its treatment outcomes. And finally, we summarize the breakthroughs in cancer disease treatments by using metallic, polymeric, and liposomal nanoparticles as potent autophagy modulators.
Collapse
Affiliation(s)
- Shloka Negi
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Deepa Dehari
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Sanjay Singh
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India.
| |
Collapse
|
17
|
Grosjean I, Roméo B, Domdom MA, Belaid A, D’Andréa G, Guillot N, Gherardi RK, Gal J, Milano G, Marquette CH, Hung RJ, Landi MT, Han Y, Brest P, Von Bergen M, Klionsky DJ, Amos CI, Hofman P, Mograbi B. Autophagopathies: from autophagy gene polymorphisms to precision medicine for human diseases. Autophagy 2022; 18:2519-2536. [PMID: 35383530 PMCID: PMC9629091 DOI: 10.1080/15548627.2022.2039994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 12/15/2022] Open
Abstract
At a time when complex diseases affect globally 280 million people and claim 14 million lives every year, there is an urgent need to rapidly increase our knowledge into their underlying etiologies. Though critical in identifying the people at risk, the causal environmental factors (microbiome and/or pollutants) and the affected pathophysiological mechanisms are not well understood. Herein, we consider the variations of autophagy-related (ATG) genes at the heart of mechanisms of increased susceptibility to environmental stress. A comprehensive autophagy genomic resource is presented with 263 single nucleotide polymorphisms (SNPs) for 69 autophagy-related genes associated with 117 autoimmune, inflammatory, infectious, cardiovascular, neurological, respiratory, and endocrine diseases. We thus propose the term 'autophagopathies' to group together a class of complex human diseases the etiology of which lies in a genetic defect of the autophagy machinery, whether directly related or not to an abnormal flux in autophagy, LC3-associated phagocytosis, or any associated trafficking. The future of precision medicine for common diseases will lie in our ability to exploit these ATG SNP x environment relationships to develop new polygenetic risk scores, new management guidelines, and optimal therapies for afflicted patients.Abbreviations: ATG, autophagy-related; ALS-FTD, amyotrophic lateral sclerosis-frontotemporal dementia; ccRCC, clear cell renal cell carcinoma; CD, Crohn disease; COPD, chronic obstructive pulmonary disease; eQTL, expression quantitative trait loci; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; GTEx, genotype-tissue expression; GWAS, genome-wide association studies; LAP, LC3-associated phagocytosis; LC3-II, phosphatidylethanolamine conjugated form of LC3; LD, linkage disequilibrium; LUAD, lung adenocarcinoma; MAF, minor allele frequency; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NSCLC, non-small cell lung cancer; OS, overall survival; PtdIns3K CIII, class III phosphatidylinositol 3 kinase; PtdIns3P, phosphatidylinositol-3-phosphate; SLE, systemic lupus erythematosus; SNPs, single-nucleotide polymorphisms; mQTL, methylation quantitative trait loci; ULK, unc-51 like autophagy activating kinase; UTRs, untranslated regions; WHO, World Health Organization.
Collapse
Affiliation(s)
- Iris Grosjean
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Barnabé Roméo
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Marie-Angela Domdom
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Amine Belaid
- Université Côte d’Azur (UCA), INSERM U1065, C3M, Team 5, F-06204, France
| | - Grégoire D’Andréa
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- ENT and Head and Neck surgery department, Institut Universitaire de la Face et du Cou, CHU de Nice, University Hospital, Côte d’Azur University, Nice, France
| | - Nicolas Guillot
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Romain K Gherardi
- INSERM U955 Team Relais, Faculty of Health, Paris Est University, France
| | - Jocelyn Gal
- University Côte d’Azur, Centre Antoine Lacassagne, Epidemiology and Biostatistics Department, Nice, France
| | - Gérard Milano
- Université Côte d’Azur, Centre Antoine Lacassagne, UPR7497, Nice, France
| | - Charles Hugo Marquette
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- University Côte d’Azur, FHU-OncoAge, Department of Pulmonary Medicine and Oncology, CHU de Nice, Nice, France
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Brest
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Martin Von Bergen
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Daniel J. Klionsky
- University of Michigan, Life Sciences Institute, Ann Arbor, MI, 48109, USA
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Paul Hofman
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- University Côte d’Azur, FHU-OncoAge, CHU de Nice, Laboratory of Clinical and Experimental Pathology (LPCE) Biobank(BB-0033-00025), Nice, France
| | - Baharia Mograbi
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| |
Collapse
|
18
|
Naseer F, Ahmed M, Majid A, Kamal W, Phull AR. Green nanoparticles as multifunctional nanomedicines: Insights into anti-inflammatory effects, growth signaling and apoptosis mechanism in cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35787941 DOI: 10.1016/j.semcancer.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Recently, green nanotechnology got great attention due to their reliable, sustainable, and eco-friendly synthesis protocols. The green nanoparticles (GNPs) are preferred over chemically synthesized nanoparticles owing to less destructive effects associated with the synthesis procedures as well as therapeutic involvement. In this review, we have discussed the applications of GNPs in inflammation-mediated disorders, with special emphasis on cancer, initiated due to oxidative stress and inflammatory cascade. Real-time mechanism based studies on GNPs have suggested their anticancer effects through inducing apoptosis, inhibiting angiogenesis, tissue invasion metastasis, reduced replicative capabilities in addition to target specific different signaling molecules and cascades involved in the development or progression of cancer. Moreover, the association of GNPs with the inhibition or induction of autophagy for the management of cancer has also been discussed. A large number of studies showed the GNPs have multifunctional biomedical properties of theranostic prominence. Therefore, the development of GNPs with naturally established systems could upsurge their definite applications as biomedicines including target specific destruction of the cancerous cells.
Collapse
Affiliation(s)
- Faiza Naseer
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Abdul Majid
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, Pakistan
| | - Warda Kamal
- Biomediotronics, Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Abdul Rehman Phull
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeong gi-do, Republic of Korea.
| |
Collapse
|
19
|
Yu T, Ben S, Ma L, Jiang L, Chen S, Lin Y, Chen T, Li S, Zhu L. Genetic variants in autophagy-related gene ATG2B predict the prognosis of colorectal cancer patients receiving chemotherapy. Front Oncol 2022; 12:876424. [PMID: 35992821 PMCID: PMC9389459 DOI: 10.3389/fonc.2022.876424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Autophagy-related genes have a vital effect on colorectal cancer (CRC) by affecting genomic stability and regulating immune responses. However, the associations between genetic variants in autophagy-related genes and CRC outcomes for chemotherapy therapy remain unclear. The Cox regression model was used to evaluate the associations between single-nucleotide polymorphisms (SNPs) in autophagy-related genes and overall survival (OS) and progression-free survival (PFS) of CRC patients. The results were corrected by the false discovery rate (FDR) correction. We used the logistic regression model to investigate the associations of SNPs with the disease control rate (DCR) of patients. Gene expression analysis was explored based on an in-house dataset and other databases. The associations between gene expression and infiltrating immune cells were evaluated using the Tumor Immune Estimation Resource (TIMER) database. We observed that ATG2B rs17094017 A > T was significantly associated with increased OS (HR = 0.65, 95% CI = 0.50-0.86, P = 2.54×10-3), PFS (HR = 0.76, 95% CI = 0.62-0.93, P = 7.34×10-3), and DCR (OR = 0.60, 95% CI = 0.37-0.96, P = 3.31×10-2) of CRC patients after chemotherapy. The expression of ATG2B was down-expressed in CRC tissues than in adjacent normal tissues. Moreover, ATG2B expression influenced the infiltration of CD8+ T cells, CD4+ T cells, B cells, and T cell receptor signaling pathways, which may inhibit the occurrence of CRC by affecting the immune system. This study suggests that genetic variants in the autophagy-related gene ATG2B play a critical role in predicting the prognosis of CRC prognosis undergoing chemotherapy.
Collapse
Affiliation(s)
- Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Silu Chen
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Lin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| |
Collapse
|
20
|
From Intestinal Epithelial Homeostasis to Colorectal Cancer: Autophagy Regulation in Cellular Stress. Antioxidants (Basel) 2022; 11:antiox11071308. [PMID: 35883800 PMCID: PMC9311735 DOI: 10.3390/antiox11071308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
The intestinal epithelium is continuously exposed to abundant stress stimuli, which relies on an evolutionarily conserved process, autophagy, to maintain its homeostasis by degrading and recycling unwanted and damaged intracellular substances. Otherwise, disruption of this balance will result in the development of a wide range of disorders, including colorectal cancer (CRC). Dysregulated autophagy is implicated in the regulation of cellular responses to stress during the development, progression, and treatment of CRC. However, experimental investigations addressing the impact of autophagy in different phases of CRC have generated conflicting results, showing that autophagy is context-dependently related to CRC. Thus, both inhibition and activation of autophagy have been proposed as therapeutic strategies against CRC. Here, we will discuss the multifaceted role of autophagy in intestinal homeostasis and CRC, which may provide insights for future research directions.
Collapse
|
21
|
Sena P, Mancini S, Pedroni M, Reggiani Bonetti L, Carnevale G, Roncucci L. Expression of Autophagic and Inflammatory Markers in Normal Mucosa of Individuals with Colorectal Adenomas: A Cross Sectional Study among Italian Outpatients Undergoing Colonoscopy. Int J Mol Sci 2022; 23:5211. [PMID: 35563601 PMCID: PMC9104783 DOI: 10.3390/ijms23095211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) ranks among the three most common cancers in terms of both cancer incidence and cancer-related deaths in Western industrialized countries. Lifetime risk of colorectal cancer may reach 6% of the population living in developed countries. In the current era of personalized medicine, CRC is no longer considered as a single entity. In more recent years many studies have described the distinct differences in epidemiology, pathogenesis, genetic and epigenetic alterations, molecular pathways and outcome depending on the anatomical site. The aim of our study is to assess in a multidimensional model the association between metabolic status and inflammatory and autophagic changes in the normal colorectal mucosa classified as right-sided, left-sided and rectum, and the presence of adenomas. One hundred and sixteen patients undergoing colonoscopy were recruited and underwent a complete serum lipid profile, immunofluorescence analysis of colonic biopsies for MAPLC3 and myeloperoxidase expression, matched with clinical and anthropometric characteristics. Presence of adenomas correlated with cholesterol (total and LDL) levels, IL-6 levels, and MAPLC3 tissue expression, especially in the right colon. In conclusion, serum IL-6 amount and autophagic markers could be good predictors of the presence of colorectal adenomas.
Collapse
Affiliation(s)
- Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Stefano Mancini
- Department of Internal Medicine and Rehabilitation, Santa Maria Bianca Hospital, Mirandola 6, 41037 Modena, Italy;
| | - Monica Pedroni
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.P.); (L.R.B.); (L.R.)
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.P.); (L.R.B.); (L.R.)
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.P.); (L.R.B.); (L.R.)
| |
Collapse
|
22
|
Ravichandran R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166400. [PMID: 35341960 DOI: 10.1016/j.bbadis.2022.166400] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Autophagy is an intracellular self-degradative mechanism which responds to cellular conditions like stress or starvation and plays a key role in regulating cell metabolism, energy homeostasis, starvation adaptation, development and cell death. Numerous studies have stipulated the participation of autophagy in cancer, but the role of autophagy either as tumor suppressor or tumor promoter is not clearly understood. However, mechanisms by which autophagy promotes cancer involves a diverse range of modifications of autophagy associated proteins such as ATGs, Beclin-1, mTOR, p53, KRAS etc. and autophagy pathways like mTOR, PI3K, MAPK, EGFR, HIF and NFκB. Furthermore, several researches have highlighted a context-dependent, cell type and stage-dependent regulation of autophagy in cancer. Alongside this, the interaction between tumor cells and their microenvironment including hypoxia has a great potential in modulating autophagy response in favour to substantiate cancer cell metabolism, self-proliferation and metastasis. In this review article, we highlight the mechanism of autophagy and their contribution to cancer cell proliferation and development. In addition, we discuss about tumor microenvironment interaction and their consequence on selective autophagy pathways and the involvement of autophagy in various tumor types and their therapeutic interventions concentrated on exploiting autophagy as a potential target to improve cancer therapy.
Collapse
Affiliation(s)
- Rakesh Ravichandran
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | | | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
23
|
Lei Y, Chen L, Liu J, Zhong Y, Deng L. The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Front Oncol 2022; 12:841625. [PMID: 35211417 PMCID: PMC8861360 DOI: 10.3389/fonc.2022.841625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance frequently occurs in cancer treatment, which results in chemotherapy failure and is one of the most leading causes of cancer-related death worldwide. Understanding the mechanism of chemoresistance and exploring strategies to overcome chemoresistance have become an urgent need. Autophagy is a highly conserved self-degraded process in cells. The dual roles of autophagy (pro-death or pro-survival) have been implicated in cancers and chemotherapy. MicroRNA (miRNA) is a class of small non-coding molecules that regulate autophagy at the post-transcriptional level in cancer cells. The association between miRNAs and autophagy in cancer chemoresistance has been emphasized. In this review, we focus on the dual roles of miRNA-mediated autophagy in facilitating or combating chemoresistance, aiming to shed lights on the potential role of miRNAs as targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Baker MJ, Kazanietz MG. The anti-Rac1-GTP antibody and the detection of active Rac1: a tool with a fundamental flaw. Small GTPases 2022; 13:136-140. [PMID: 33910489 PMCID: PMC9707529 DOI: 10.1080/21541248.2021.1920824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rac1 is a member of the Rho GTPase family and is involved in many cellular processes, particularly the formation of actin-rich membrane protrusions, such as lamellipodia and ruffles. With such a widely studied protein, it is essential that the research community has reliable tools for detecting Rac1 activation both in cellular models and tissues. Using a series of cancer cellular models, we recently demonstrated that a widely used antibody for visualizing active Rac1 (Rac1-GTP) does not recognize Rac1 but instead recognizes vimentin filaments (Baker MJ, J. Biol. Chem. 295:13698-13710, 2020). We believe that this tool has misled the field and impose on the GTPase research community the need to validate published results using this antibody as well as to continue the development of new resources to visualize endogenous active Rac1.
Collapse
Affiliation(s)
- Martin J. Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,CONTACT Marcelo G. Kazanietz Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 1256 Biomedical Research Building II/III, 421 Curie Blvd., Philadelphia, PA19104-6160, USA
| |
Collapse
|
25
|
Gorbunova AS, Kopeina GS, Zhivotovsky B. A Balance Between Autophagy and Other Cell Death Modalities in Cancer. Methods Mol Biol 2022; 2445:3-24. [PMID: 34972982 DOI: 10.1007/978-1-0716-2071-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Autophagy is an intracellular self-digestive process involved in catabolic degradation of damaged proteins, and organelles, and the elimination of cellular pathogens. Initially, autophagy was considered as a prosurvival mechanism, but the following insights shed light on its prodeath function. Nowadays, autophagy is established as a crucial player in the development of various diseases through interaction with other molecular pathways within a cell. Additionally, disturbance in autophagy is one of the main pathological alterations that lead to resistance of cancer cells to treatment. These autophagy-related pathologies gave rise to the development of new therapeutic drugs. Here, we summarize the current knowledge on the autophagic role in disease pathogenesis, particularly in cancer, and the interplay between autophagy and other cell death modalities in order to combat cancer.
Collapse
Affiliation(s)
- Anna S Gorbunova
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia.
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden.
| |
Collapse
|
26
|
Marzoog BA. Autophagy in Cancer Cell Transformation: A Potential Novel Therapeutic Strategy. Curr Cancer Drug Targets 2022; 22:749-756. [PMID: 36062863 DOI: 10.2174/1568009622666220428102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023]
Abstract
Basal autophagy plays a crucial role in maintaining intracellular homeostasis and prevents the cell from escaping the cell cycle regulation mechanisms and being cancerous. Mitophagy and nucleophagy are essential for cell health. Autophagy plays a pivotal role in cancer cell transformation, where upregulated precancerous autophagy induces apoptosis. Impaired autophagy has been shown to upregulate cancer cell transformation. However, tumor cells upregulate autophagy to escape elimination and survive the unfavorable conditions and resistance to chemotherapy. Cancer cells promote autophagy through modulation of autophagy regulation mechanisms and increase expression of the autophagyrelated genes. Whereas, autophagy regulation mechanisms involved microRNAs, transcription factors, and the internalized signaling pathways such as AMPK, mTOR, III PI3K, and ULK-1. Disrupted regulatory mechanisms are various as the cancer cell polymorphism. Targeting a higher level of autophagy regulation is more effective, such as gene expression, transcription factors, or epigenetic modification that are responsible for the up-regulation of autophagy in cancer cells. Currently, the CRISPR-CAS9 technique is available and can be applied to demonstrate the potential effects of autophagy in cancerous cells.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- National Research Mordovia State University, Bolshevitskaya Street, 68, Saransk, Rep. Mordovia 430005, Russian Federation
| |
Collapse
|
27
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
28
|
Leonardi L, Sibéril S, Alifano M, Cremer I, Joubert PE. Autophagy Modulation by Viral Infections Influences Tumor Development. Front Oncol 2021; 11:743780. [PMID: 34745965 PMCID: PMC8569469 DOI: 10.3389/fonc.2021.743780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a self-degradative process important for balancing cellular homeostasis at critical times in development and/or in response to nutrient stress. This is particularly relevant in tumor model in which autophagy has been demonstrated to have an important impact on tumor behavior. In one hand, autophagy limits tumor transformation of precancerous cells in early stage, and in the other hand, it favors the survival, proliferation, metastasis, and resistance to antitumor therapies in more advanced tumors. This catabolic machinery can be induced by an important variety of extra- and intracellular stimuli. For instance, viral infection has often been associated to autophagic modulation, and the role of autophagy in virus replication differs according to the virus studied. In the context of tumor development, virus-modulated autophagy can have an important impact on tumor cells' fate. Extensive analyses have shed light on the molecular and/or functional complex mechanisms by which virus-modulated autophagy influences precancerous or tumor cell development. This review includes an overview of discoveries describing the repercussions of an autophagy perturbation during viral infections on tumor behavior.
Collapse
Affiliation(s)
- Lucas Leonardi
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Sophie Sibéril
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Marco Alifano
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Department of Thoracic Surgery, Hospital Cochin Assistance Publique Hopitaux de Paris, Paris, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Pierre-Emmanuel Joubert
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| |
Collapse
|
29
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
30
|
Brimson JM, Prasanth MI, Malar DS, Thitilertdecha P, Kabra A, Tencomnao T, Prasansuklab A. Plant Polyphenols for Aging Health: Implication from Their Autophagy Modulating Properties in Age-Associated Diseases. Pharmaceuticals (Basel) 2021; 14:ph14100982. [PMID: 34681206 PMCID: PMC8538309 DOI: 10.3390/ph14100982] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are a family of naturally occurring organic compounds, majorly present in fruits, vegetables, and cereals, characterised by multiple phenol units, including flavonoids, tannic acid, and ellagitannin. Some well-known polyphenols include resveratrol, quercetin, curcumin, epigallocatechin gallate, catechin, hesperetin, cyanidin, procyanidin, caffeic acid, and genistein. They can modulate different pathways inside the host, thereby inducing various health benefits. Autophagy is a conserved process that maintains cellular homeostasis by clearing the damaged cellular components and balancing cellular survival and overall health. Polyphenols could maintain autophagic equilibrium, thereby providing various health benefits in mediating neuroprotection and exhibiting anticancer and antidiabetic properties. They could limit brain damage by dismantling misfolded proteins and dysfunctional mitochondria, thereby activating autophagy and eliciting neuroprotection. An anticarcinogenic mechanism is stimulated by modulating canonical and non-canonical signalling pathways. Polyphenols could also decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function from inducing antidiabetic activity. Polyphenols are usually included in the diet and may not cause significant side effects that could be effectively used to prevent and treat major diseases and ailments.
Collapse
Affiliation(s)
- James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10330, Thailand;
| | - Atul Kabra
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Sahibzad Ajit Singh Nagar 140413, Punjab, India;
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| |
Collapse
|
31
|
Chai JY, Sugumar V, Alshanon AF, Wong WF, Fung SY, Looi CY. Defining the Role of GLI/Hedgehog Signaling in Chemoresistance: Implications in Therapeutic Approaches. Cancers (Basel) 2021; 13:4746. [PMID: 34638233 PMCID: PMC8507559 DOI: 10.3390/cancers13194746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Insight into cancer signaling pathways is vital in the development of new cancer treatments to improve treatment efficacy. A relatively new but essential developmental signaling pathway, namely Hedgehog (Hh), has recently emerged as a major mediator of cancer progression and chemoresistance. The evolutionary conserved Hh signaling pathway requires an in-depth understanding of the paradigm of Hh signaling transduction, which is fundamental to provide the necessary means for the design of novel tools for treating cancer related to aberrant Hh signaling. This review will focus substantially on the canonical Hh signaling and the treatment strategies employed in different studies, with special emphasis on the molecular mechanisms and combination treatment in regard to Hh inhibitors and chemotherapeutics. We discuss our views based on Hh signaling's role in regulating DNA repair machinery, autophagy, tumor microenvironment, drug inactivation, transporters, epithelial-to-mesenchymal transition, and cancer stem cells to promote chemoresistance. The understanding of this Achilles' Heel in cancer may improve the therapeutic outcome for cancer therapy.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Ahmed F. Alshanon
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad 10072, Iraq;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| |
Collapse
|
32
|
Zuo Q, Liao L, Yao ZT, Liu YP, Wang DK, Li SJ, Yin XF, He QY, Xu WW. Targeting PP2A with lomitapide suppresses colorectal tumorigenesis through the activation of AMPK/Beclin1-mediated autophagy. Cancer Lett 2021; 521:281-293. [PMID: 34509534 DOI: 10.1016/j.canlet.2021.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/08/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide, and effective therapy remains a challenge. In this study, we take advantage of a drug repurposing strategy to screen small molecules with novel anticancer activities in a small-molecule library consisting of 1056 FDA-approved drugs. We show, for the first time, that lomitapide, a lipid-lowering agent, exhibits antitumor properties in vitro and in vivo. Activated autophagy is characterized as a key biological process in lomitapide-induced CRC repression. Mechanistically, lomitapide stimulated mitochondrial dysfunction-mediated AMPK activation, resulting in increased AMPK phosphorylation and enhanced Beclin1/Atg14/Vps34 interactions, provoking autophagy induction. Autophagy inhibition or AMPK silencing significantly abrogated lomitapide-induced cell death, indicating the significance of AMPK-regulated autophagy in the antitumor activities of lomitapide. More importantly, PP2A was identified as a direct target of lomitapide by limited proteolysis-mass spectrometry (LiP-SMap), and the bioactivity of lomitapide was attenuated in PP2A-deficient cells, suggesting that the anticancer effect of lomitapide occurs in a PP2A-dependent manner. Taken together, the results of the study reveal that lomitapide can be repositioned as a potential therapeutic drug for CRC treatment.
Collapse
Affiliation(s)
- Qian Zuo
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Long Liao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Ting Yao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ya-Ping Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ding-Kang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shu-Jun Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xing-Feng Yin
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wen-Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
33
|
Hou X, Shao C, Sun K, Li R, Gao L, Meng Y, Jing Y, Wei L. Autophagy deficiency downregulates O 6methylguanine-DNA methyltransferase and increases chemosensitivity of liver cancer cells. Aging (Albany NY) 2021; 13:14289-14303. [PMID: 34031266 PMCID: PMC8202878 DOI: 10.18632/aging.203044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 11/25/2022]
Abstract
It is known that autophagy-deficient cells are prone to DNA damage, but the specific role of autophagy in DNA damage repair is not fully known. Here, we show that autophagy-deficient liver cancer cells exhibit increased DNA damage caused by the chemotherapeutic agent epirubicin. Autophagy deficiency promotes downregulation of the DNA repair enzyme O6methylguanine-DNA methyltransferase (MGMT) in liver cancer cells. However, autophagy induction with epirubicin had no impact on MGMT gene or protein expression in liver cancer cells. In the absence of autophagy, the chemosensitivity of liver cancer cells was increased, but this was reversed by MGMT overexpression, indicating that autophagy mediates resistance to chemotherapy in liver cancer cells via MGMT. These findings demonstrate a direct link between autophagy, MGMT, and DNA damage repair in liver cancer cells, and show that MGMT not only regulates chemosensitivity to alkylating agents, but may also be involved in other DNA damage repair processes in autophagy-deficient cells.
Collapse
Affiliation(s)
- Xiaojuan Hou
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Changchun Shao
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Kai Sun
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Yingying Jing
- Institutes of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| |
Collapse
|
34
|
Chen L, He M, Zhang M, Sun Q, Zeng S, Zhao H, Yang H, Liu M, Ren S, Meng X, Xu H. The Role of non-coding RNAs in colorectal cancer, with a focus on its autophagy. Pharmacol Ther 2021; 226:107868. [PMID: 33901505 DOI: 10.1016/j.pharmthera.2021.107868] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of malignant afflictions burdening people worldwide, mainly caused by shortages of effective medical intervention and poorly mechanistic understanding of the pathogenesis of CRC. Non-coding RNAs (ncRNAs) are a type of heterogeneous transcripts without the capability of coding protein, but have the potency of regulating protein-coding gene expression. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic contents are delivered to cellular lysosomes for degradation, resulting in the turnover of cellular components and producing energy for cell functions. A growing body of evidence reveals that ncRNAs, autophagy, and the crosstalks of ncRNAs and autophagy play intricate roles in the initiation, progression, metastasis, recurrence and therapeutic resistance of CRC, which confer ncRNAs and autophagy to serve as clinical biomarkers and therapeutic targets for CRC. In this review, we sought to delineate the complicated roles of ncRNAs, mainly including miRNAs, lncRNAs and circRNAs, in the pathogenesis of CRC, particularly focus on the regulatory role of ncRNAs in CRC-related autophagy, attempting to shed light on the complex pathological mechanisms, involving ncRNAs and autophagy, responsible for CRC tumorigenesis and development, so as to underpin the ncRNAs- and autophagy-based therapeutic strategies for CRC in clinical setting.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
35
|
He Q, Li Z, Yin J, Li Y, Yin Y, Lei X, Zhu W. Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer. Front Oncol 2021; 11:566539. [PMID: 33937013 PMCID: PMC8081889 DOI: 10.3389/fonc.2021.566539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background Colorectal cancer (CRC) is a common malignant solid tumor with an extremely low survival rate after relapse. Previous investigations have shown that autophagy possesses a crucial function in tumors. However, there is no consensus on the value of autophagy-associated genes in predicting the prognosis of CRC patients. This work screens autophagy-related markers and signaling pathways that may participate in the development of CRC, and establishes a prognostic model of CRC based on autophagy-associated genes. Methods Gene transcripts from the TCGA database and autophagy-associated gene data from the GeneCards database were used to obtain expression levels of autophagy-associated genes, followed by Wilcox tests to screen for autophagy-related differentially expressed genes. Then, 11 key autophagy-associated genes were identified through univariate and multivariate Cox proportional hazard regression analysis and used to establish prognostic models. Additionally, immunohistochemical and CRC cell line data were used to evaluate the results of our three autophagy-associated genes EPHB2, NOL3, and SNAI1 in TCGA. Based on the multivariate Cox analysis, risk scores were calculated and used to classify samples into high-risk and low-risk groups. Kaplan-Meier survival analysis, risk profiling, and independent prognosis analysis were carried out. Receiver operating characteristic analysis was performed to estimate the specificity and sensitivity of the prognostic model. Finally, GSEA, GO, and KEGG analysis were performed to identify the relevant signaling pathways. Results A total of 301 autophagy-related genes were differentially expressed in CRC. The areas under the 1-year, 3-year, and 5-year receiver operating characteristic curves of the autophagy-based prognostic model for CRC were 0.764, 0.751, and 0.729, respectively. GSEA analysis of the model showed significant enrichment in several tumor-relevant pathways and cellular protective biological processes. The expression of EPHB2, IL-13, MAP2, RPN2, and TRAF5 was correlated with microsatellite instability (MSI), while the expression of IL-13, RPN2, and TRAF5 was related to tumor mutation burden (TMB). GO analysis showed that the 11 target autophagy genes were chiefly enriched in mRNA processing, RNA splicing, and regulation of the mRNA metabolic process. KEGG analysis showed enrichment mainly in spliceosomes. We constructed a prognostic risk assessment model based on 11 autophagy-related genes in CRC. Conclusion A prognostic risk assessment model based on 11 autophagy-associated genes was constructed in CRC. The new model suggests directions and ideas for evaluating prognosis and provides guidance to choose better treatment strategies for CRC.
Collapse
Affiliation(s)
- Qinglian He
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Jinbao Yin
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Yuling Li
- Department of Pathology, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Yuting Yin
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
36
|
SRSF1 inhibits autophagy through regulating Bcl-x splicing and interacting with PIK3C3 in lung cancer. Signal Transduct Target Ther 2021; 6:108. [PMID: 33664238 PMCID: PMC7933324 DOI: 10.1038/s41392-021-00495-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/10/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Alternative splicing is a critical process to generate protein diversity. However, whether and how alternative splicing regulates autophagy remains largely elusive. Here we systematically identify the splicing factor SRSF1 as an autophagy suppressor. Specifically, SRSF1 inhibits autophagosome formation by reducing the accumulation of LC3-II and numbers of autophagosomes in different cell lines. Mechanistically, SRSF1 promotes the splicing of the long isoform of Bcl-x that interacts with Beclin1, thereby dissociating the Beclin1-PIK3C3 complex. In addition, SRSF1 also directly interacts with PIK3C3 to disrupt the interaction between Beclin1 and PIK3C3. Consequently, the decrease of SRSF1 stabilizes the Beclin1 and PIK3C3 complex and activates autophagy. Interestingly, SRSF1 can be degraded by starvation- and oxidative stresses-induced autophagy through interacting with LC3-II, whereas reduced SRSF1 further promotes autophagy. This positive feedback is critical to inhibiting Gefitinib-resistant cancer cell progression both in vitro and in vivo. Consistently, the expression level of SRSF1 is inversely correlated to LC3 level in clinical cancer samples. Our study not only provides mechanistic insights of alternative splicing in autophagy regulation but also discovers a new regulatory role of SRSF1 in tumorigenesis, thereby offering a novel avenue for potential cancer therapeutics.
Collapse
|
37
|
Distinct roles of UVRAG and EGFR signaling in skeletal muscle homeostasis. Mol Metab 2021; 47:101185. [PMID: 33561544 PMCID: PMC7921879 DOI: 10.1016/j.molmet.2021.101185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/20/2022] Open
Abstract
Objective Autophagy is a physiological self-eating process that can promote cell survival or activate cell death in eukaryotic cells. In skeletal muscle, it is important for maintaining muscle mass and function that is critical to sustain mobility and regulate metabolism. The UV radiation resistance-associated gene (UVRAG) regulates the early stages of autophagy and autophagosome maturation and plays a key role in endosomal trafficking. This study investigated the essential in vivo role of UVRAG in skeletal muscle biology. Methods To determine the role of UVRAG in skeletal muscle in vivo, we generated muscle-specific UVRAG knockout mice using the Cre-loxP system driven by Myf6 promoter that is exclusively expressed in skeletal muscle. Myf6-Cre+ UVRAGfl/fl (M-UVRAG−/−) mice were compared to littermate Myf6-Cre+ UVRAG+/+ (M-UVRAG+/+) controls under basal conditions on a normal chow diet. Body composition, muscle function, and mitochondria morphology were assessed in muscles of the WT and KO mice at 24 weeks of age. Results M-UVRAG−/− mice developed accelerated sarcopenia and impaired muscle function compared to M-UVRAG+/+ littermates at 24 weeks of age. Interestingly, these mice displayed improved glucose tolerance and increased energy expenditure likely related to upregulated Fgf21, a marker of muscle dysfunction. Skeletal muscle of the M-UVRAG−/− mice showed altered mitochondrial morphology with increased mitochondrial fission and EGFR accumulation reflecting defects in endosomal trafficking. To determine whether increased EGFR signaling had a causal role in muscle dysfunction, the mice were treated with an EGFR inhibitor, gefitinib, which partially restored markers of muscle and mitochondrial deregulation. Conversely, constitutively active EGFR transgenic expression in UVRAG-deficient muscle led to further detrimental effects with non-overlapping distinct defects in muscle function, with EGFR activation affecting the muscle fiber type whereas UVRAG deficiency impaired mitochondrial homeostasis. Conclusions Our results show that both UVRAG and EGFR signaling are critical for maintaining muscle mass and function with distinct mechanisms in the differentiation pathway. Deletion of UVRAG in skeletal muscle accelerates muscle wasting with aging. UVRAG in skeletal muscle regulates mitochondrial dynamics and function. UVRAG deletion leads to EGFR accumulation in skeletal muscle. Constitutively active EGFR contributes to muscle fiber type determination.
Collapse
|
38
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
39
|
Molecular Insights into the Multifunctional Role of Natural Compounds: Autophagy Modulation and Cancer Prevention. Biomedicines 2020; 8:biomedicines8110517. [PMID: 33228222 PMCID: PMC7699596 DOI: 10.3390/biomedicines8110517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a vacuolar, lysosomal degradation pathway for injured and damaged protein molecules and organelles in eukaryotic cells, which is controlled by nutrients and stress responses. Dysregulation of cellular autophagy may lead to various diseases such as neurodegenerative disease, obesity, cardiovascular disease, diabetes, and malignancies. Recently, natural compounds have come to attention for being able to modulate the autophagy pathway in cancer prevention, although the prospective role of autophagy in cancer treatment is very complex and not yet clearly elucidated. Numerous synthetic chemicals have been identified that modulate autophagy and are favorable candidates for cancer treatment, but they have adverse side effects. Therefore, different phytochemicals, which include natural compounds and their derivatives, have attracted significant attention for use as autophagy modulators in cancer treatment with minimal side effects. In the current review, we discuss the promising role of natural compounds in modulating the autophagy pathway to control and prevent cancer, and provide possible therapeutic options.
Collapse
|
40
|
Sarmah DT, Bairagi N, Chatterjee S. Tracing the footsteps of autophagy in computational biology. Brief Bioinform 2020; 22:5985288. [PMID: 33201177 PMCID: PMC8293817 DOI: 10.1093/bib/bbaa286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays a crucial role in maintaining cellular homeostasis through the degradation of unwanted materials like damaged mitochondria and misfolded proteins. However, the contribution of autophagy toward a healthy cell environment is not only limited to the cleaning process. It also assists in protein synthesis when the system lacks the amino acids’ inflow from the extracellular environment due to diet consumptions. Reduction in the autophagy process is associated with diseases like cancer, diabetes, non-alcoholic steatohepatitis, etc., while uncontrolled autophagy may facilitate cell death. We need a better understanding of the autophagy processes and their regulatory mechanisms at various levels (molecules, cells, tissues). This demands a thorough understanding of the system with the help of mathematical and computational tools. The present review illuminates how systems biology approaches are being used for the study of the autophagy process. A comprehensive insight is provided on the application of computational methods involving mathematical modeling and network analysis in the autophagy process. Various mathematical models based on the system of differential equations for studying autophagy are covered here. We have also highlighted the significance of network analysis and machine learning in capturing the core regulatory machinery governing the autophagy process. We explored the available autophagic databases and related resources along with their attributes that are useful in investigating autophagy through computational methods. We conclude the article addressing the potential future perspective in this area, which might provide a more in-depth insight into the dynamics of autophagy.
Collapse
Affiliation(s)
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, India
| | - Samrat Chatterjee
- Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
41
|
Cozzo AJ, Coleman MF, Pearce JB, Pfeil AJ, Etigunta SK, Hursting SD. Dietary Energy Modulation and Autophagy: Exploiting Metabolic Vulnerabilities to Starve Cancer. Front Cell Dev Biol 2020; 8:590192. [PMID: 33224954 PMCID: PMC7674637 DOI: 10.3389/fcell.2020.590192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells experience unique and dynamic shifts in their metabolic function in order to survive, proliferate, and evade growth inhibition in the resource-scarce tumor microenvironment. Therefore, identification of pharmacological agents with potential to reprogram cancer cell metabolism may improve clinical outcomes in cancer therapy. Cancer cells also often exhibit an increased dependence on the process known as autophagy, both for baseline survival and as a response to stressors such as chemotherapy or a decline in nutrient availability. There is evidence to suggest that this increased dependence on autophagy in cancer cells may be exploitable clinically by combining autophagy modulators with existing chemotherapies. In light of the increased metabolic rate in cancer cells, interest is growing in approaches aimed at "starving" cancer through dietary and pharmacologic interventions that reduce availability of nutrients and pro-growth hormonal signals known to promote cancer progression. Several dietary approaches, including chronic calorie restriction and multiple forms of fasting, have been investigated for their potential anti-cancer benefits, yielding promising results in animal models. Induction of autophagy in response to dietary energy restriction may underlie some of the observed benefit. However, while interventions based on dietary energy restriction have demonstrated safety in clinical trials, uncertainty remains regarding translation to humans as well as feasibility of achieving compliance due to the potential discomfort and weight loss that accompanies dietary restriction. Further induction of autophagy through dietary or pharmacologic metabolic reprogramming interventions may enhance the efficacy of autophagy inhibition in the context of adjuvant or neo-adjuvant chemotherapy. Nonetheless, it remains unclear whether therapeutic agents aimed at autophagy induction, autophagy inhibition, or both are a viable therapeutic strategy for improving cancer outcomes. This review discusses the literature available for the therapeutic potential of these approaches.
Collapse
Affiliation(s)
- Alyssa J Cozzo
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Duke University School of Medicine, Durham, NC, United States
| | - Michael F Coleman
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jane B Pearce
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alexander J Pfeil
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Suhas K Etigunta
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D Hursting
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
42
|
Walsh S, Pagani L, Xue Y, Laayouni H, Tyler-Smith C, Bertranpetit J. Positive selection in admixed populations from Ethiopia. BMC Genet 2020; 21:108. [PMID: 33092534 PMCID: PMC7580818 DOI: 10.1186/s12863-020-00908-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the process of adaptation of humans to their environment, positive or adaptive selection has played a main role. Positive selection has, however, been under-studied in African populations, despite their diversity and importance for understanding human history. RESULTS Here, we have used 119 available whole-genome sequences from five Ethiopian populations (Amhara, Oromo, Somali, Wolayta and Gumuz) to investigate the modes and targets of positive selection in this part of the world. The site frequency spectrum-based test SFselect was applied to idfentify a wide range of events of selection (old and recent), and the haplotype-based statistic integrated haplotype score to detect more recent events, in each case with evaluation of the significance of candidate signals by extensive simulations. Additional insights were provided by considering admixture proportions and functional categories of genes. We identified both individual loci that are likely targets of classic sweeps and groups of genes that may have experienced polygenic adaptation. We found population-specific as well as shared signals of selection, with folate metabolism and the related ultraviolet response and skin pigmentation standing out as a shared pathway, perhaps as a response to the high levels of ultraviolet irradiation, and in addition strong signals in genes such as IFNA, MRC1, immunoglobulins and T-cell receptors which contribute to defend against pathogens. CONCLUSIONS Signals of positive selection were detected in Ethiopian populations revealing novel adaptations in East Africa, and abundant targets for functional follow-up.
Collapse
Affiliation(s)
- Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Yali Xue
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
- Bioinformatics Studies, ESCI-UPF, Barcelona, Catalonia, Spain
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
43
|
Baker MJ, Cooke M, Kreider-Letterman G, Garcia-Mata R, Janmey PA, Kazanietz MG. Evaluation of active Rac1 levels in cancer cells: A case of misleading conclusions from immunofluorescence analysis. J Biol Chem 2020; 295:13698-13710. [PMID: 32817335 DOI: 10.1074/jbc.ra120.013919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
A large number of aggressive cancer cell lines display elevated levels of activated Rac1, a small GTPase widely implicated in cytoskeleton reorganization, cell motility, and metastatic dissemination. A commonly accepted methodological approach for detecting Rac1 activation in cancer cells involves the use of a conformation-sensitive antibody that detects the active (GTP-bound) Rac1 without interacting with the GDP-bound inactive form. This antibody has been extensively used in fixed cell immunofluorescence and immunohistochemistry. Taking advantage of prostate and pancreatic cancer cell models known to have high basal Rac1-GTP levels, here we have established that this antibody does not recognize Rac1 but rather detects the intermediate filament protein vimentin. Indeed, Rac1-null PC3 prostate cancer cells or cancer models with low levels of Rac1 activation still show a high signal with the anti-Rac1-GTP antibody, which is lost upon silencing of vimentin expression. Moreover, this antibody was unable to detect activated Rac1 in membrane ruffles induced by epidermal growth factor stimulation. These results have profound implications for the study of this key GTPase in cancer, particularly because a large number of cancer cell lines with characteristic mesenchymal features show simultaneous up-regulation of vimentin and high basal Rac1-GTP levels when measured biochemically. This misleading correlation can lead to assumptions about the validity of this antibody and inaccurate conclusions that may affect the development of appropriate therapeutic approaches for targeting the Rac1 pathway.
Collapse
Affiliation(s)
- Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
44
|
Roedig H, Damiescu R, Zeng-Brouwers J, Kutija I, Trebicka J, Wygrecka M, Schaefer L. Danger matrix molecules orchestrate CD14/CD44 signaling in cancer development. Semin Cancer Biol 2020; 62:31-47. [PMID: 31412297 DOI: 10.1016/j.semcancer.2019.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The tumor matrix together with inflammation and autophagy are crucial regulators of cancer development. Embedded in the tumor stroma are numerous proteoglycans which, in their soluble form, act as danger-associated molecular patterns (DAMPs). By interacting with innate immune receptors, the Toll-like receptors (TLRs), DAMPs autonomously trigger aseptic inflammation and can regulate autophagy. Biglycan, a known danger proteoglycan, can regulate the cross-talk between inflammation and autophagy by evoking a switch between pro-inflammatory CD14 and pro-autophagic CD44 co-receptors for TLRs. Thus, these novel mechanistic insights provide some explanation for the plethora of reports indicating that the same matrix-derived DAMP acts either as a promoter or suppressor of tumor growth. In this review we will summarize and critically discuss the role of the matrix-derived DAMPs biglycan, hyaluronan, and versican in regulating the TLR-, CD14- and CD44-signaling dialogue between inflammation and autophagy with particular emphasis on cancer development.
Collapse
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Roxana Damiescu
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Iva Kutija
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
45
|
Xie J, Li L, Deng S, Chen J, Gu Q, Su H, Wen L, Wang S, Lin C, Qi C, Zhang Q, Li J, He X, Li W, Wang L, Zheng L. Slit2/Robo1 Mitigates DSS-induced Ulcerative Colitis by Activating Autophagy in Intestinal Stem Cell. Int J Biol Sci 2020; 16:1876-1887. [PMID: 32398956 PMCID: PMC7211176 DOI: 10.7150/ijbs.42331] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/12/2020] [Indexed: 01/05/2023] Open
Abstract
Ulcerative colitis (UC) is a recurrent intestinal inflammatory disease. Slit2, a secreted protein, interacts with its receptor Robo1 to regulate the differentiation of intestinal stem cells and participate in inflammation and tumor development. However, whether Slit2/Robo1involved in the pathogenesis of UC is not known. We investigated Slit2/Robo1-mediated UC using a dextran sodium sulfate (DSS)-induced model. Eight-week-old male Slit2-Tg (Slit2 transgene) mice, Robo1/2+/- (Robo1+/- Robo2+/-) mice, and their WT littermates were allocated into two groups: (I) control group (n=10), of mice fed a normal diet and tap water and (II) DSS group (n=10), of mice fed a normal diet and drinking water with 2% DSS for 7 days. Colon tissues were collected and analyzed by qPCR, immunohistochemistry, western blot, and immunofluorescence. Slit2-Tg DSS mice showed less body weight loss, less blood in the stool, and less viscous stool compared to those of WTSlit DSS mice. Robo1/2+/- DSS mice displayed a heavier degree of blood in the stool and a more apparent viscosity of the stool compared to those of WTRobo1/2 DSS mice. Slit2 overexpression maintained Lgr5+ stem cell proliferation in the crypt after DSS treatment, significantly increased the LC3II/I ratio, and slightly stimulated p62 expression in the crypt compared to those of DSS-induced WTSlit mice. Robo1/2 partial knockout reduced the number of Lgr5+ stem cells, decreased the LC3II/I ratio, and markedly increased p62 expression in the crypt compare to those of DSS-treated WTRobo1/2 mice. Our findings suggest that Slit2/Robo1 mediates DSS-induced UC probably by activating the autophagy of Lgr5+ stem cells.
Collapse
Affiliation(s)
- Jingzhou Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Li Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Shuhua Deng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Jiayuan Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Quliang Gu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Huanhou Su
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Lijing Wen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Sheng Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Caixia Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Qianqian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Xiaodong He
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Weidong Li
- Institute of Health, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
- Guangdong Engineering Research Center for Light and Health, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| |
Collapse
|
46
|
Autophagy-Independent Functions of the Autophagy Machinery. Cell 2020; 177:1682-1699. [PMID: 31199916 PMCID: PMC7173070 DOI: 10.1016/j.cell.2019.05.026] [Citation(s) in RCA: 641] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Macroautophagy (herein referred to as autophagy) is an evolutionary ancient mechanism that culminates with the lysosomal degradation of superfluous or potentially dangerous cytosolic entities. Over the past 2 decades, the molecular mechanisms underlying several variants of autophagy have been characterized in detail. Accumulating evidence suggests that most, if not all, components of the molecular machinery for autophagy also mediate autophagy-independent functions. Here, we discuss emerging data on the non-autophagic functions of autophagy-relevant proteins.
Collapse
|
47
|
Zhu Q, Wang R, Nemecio D, Liang C. How autophagy is tied to inflammation and cancer. Mol Cell Oncol 2020; 7:1717908. [PMID: 32158928 PMCID: PMC7051155 DOI: 10.1080/23723556.2020.1717908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
It is not completely understood how autophagy is tied to inflammation and age-related cancer predisposition. Here, we used a mouse model with inducible expression of a cancer-derived frameshift mutation in UV radiation resistance associated (UVRAG) to demonstrate that intervention with autophagy suppressor could exacerbate inflammation and promote age-related spontaneous cancers.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruifang Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dali Nemecio
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chengyu Liang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
48
|
Quach C, Song Y, Guo H, Li S, Maazi H, Fung M, Sands N, O'Connell D, Restrepo-Vassalli S, Chai B, Nemecio D, Punj V, Akbari O, Idos GE, Mumenthaler SM, Wu N, Martin SE, Hagiya A, Hicks J, Cui H, Liang C. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun 2019; 10:5681. [PMID: 31831743 PMCID: PMC6908726 DOI: 10.1038/s41467-019-13475-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Aberrant autophagy is a major risk factor for inflammatory diseases and cancer. However, the genetic basis and underlying mechanisms are less established. UVRAG is a tumor suppressor candidate involved in autophagy, which is truncated in cancers by a frameshift (FS) mutation and expressed as a shortened UVRAGFS. To investigate the role of UVRAGFS in vivo, we generated mutant mice that inducibly express UVRAGFS (iUVRAGFS). These mice are normal in basal autophagy but deficient in starvation- and LPS-induced autophagy by disruption of the UVRAG-autophagy complex. iUVRAGFS mice display increased inflammatory response in sepsis, intestinal colitis, and colitis-associated cancer development through NLRP3-inflammasome hyperactivation. Moreover, iUVRAGFS mice show enhanced spontaneous tumorigenesis related to age-related autophagy suppression, resultant β-catenin stabilization, and centrosome amplification. Thus, UVRAG is a crucial autophagy regulator in vivo, and autophagy promotion may help prevent/treat inflammatory disease and cancer in susceptible individuals.
Collapse
Affiliation(s)
- Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ying Song
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hongrui Guo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, 611130, China
| | - Shun Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Marshall Fung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nathaniel Sands
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Douglas O'Connell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sara Restrepo-Vassalli
- USC Michelson Center for Convergent Bioscience, Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Billy Chai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Dali Nemecio
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Vasu Punj
- Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Gregory E Idos
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nancy Wu
- Norris Comprehensive Cancer Center Transgenic/Knockout Rodent Core Facility, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sue Ellen Martin
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ashley Hagiya
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - James Hicks
- USC Michelson Center for Convergent Bioscience, Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, 611130, China
| | - Chengyu Liang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
49
|
Han F, Zhang L, Chen C, Wang Y, Zhang Y, Qian L, Sun W, Zhou D, Yang B, Zhang H, Lai M. GLTSCR1 Negatively Regulates BRD4-Dependent Transcription Elongation and Inhibits CRC Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901114. [PMID: 31832310 PMCID: PMC6891902 DOI: 10.1002/advs.201901114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/30/2019] [Indexed: 05/08/2023]
Abstract
Frameshift mutations frequently occur in colorectal cancer (CRC) with microsatellite instability (MSI), but the nature and biological function of many MSI-associated mutations remain elusive. Here, an MSI frameshift mutation is identified in glioma tumor suppressor candidate region gene 1 (GLTSCR1) that produces two C-terminal-truncated proteins. Additionally, GLTSCR1 is verified as a tumor suppressor that inhibits CRC metastasis. Through binding to bromodomains and the phosphorylation-dependent interaction domain of bromodomain protein 4 (BRD4) via the C-terminus, GLTSCR1 blocks oncogenic transcriptional elongation. However, truncated GLTSCR1 translocates into the cytoplasm and loses BRD4 binding domain, which induces the phosphorylation of RNA Pol II at Ser2 and dephosphorylation at Ser5, then increases oncogenic transcriptional elongation. Importantly, GLTSCR1 deficiency decreases sensitivity to bromodomain and extra terminal domain inhibitors. This study highlights the molecular mechanism of the GLTSCR1-BRD4 interaction, which is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Fengyan Han
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Lei Zhang
- Department of PharmacologyChina Pharmaceutical UniversityNanjing210009China
| | - Chaoyi Chen
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Yan Wang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Yi Zhang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Lili Qian
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Wenjie Sun
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Dan Zhou
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Beibei Yang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Honghe Zhang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Maode Lai
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
- Department of PharmacologyChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
50
|
Khan T, Relitti N, Brindisi M, Magnano S, Zisterer D, Gemma S, Butini S, Campiani G. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med Res Rev 2019; 40:1002-1060. [PMID: 31742748 DOI: 10.1002/med.21646] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinomas (OSCC) and esophageal squamous cell carcinomas (ESCC) exhibit a survival rate of less than 60% and 40%, respectively. Late-stage diagnosis and lack of effective treatment strategies make both OSCC and ESCC a significant health burden. Autophagy, a lysosome-dependent catabolic process, involves the degradation of intracellular components to maintain cell homeostasis. Targeting autophagy has been highlighted as a feasible therapeutic strategy with clinical utility in cancer treatment, although its associated regulatory mechanisms remain elusive. The detection of relevant biomarkers in biological fluids has been anticipated to facilitate early diagnosis and/or prognosis for these tumors. In this context, recent studies have indicated the presence of specific proteins and small RNAs, detectable in circulating plasma and serum, as biomarkers. Interestingly, the interplay between biomarkers (eg, exosomal microRNAs) and autophagic processes could be exploited in the quest for targeted and more effective therapies for OSCC and ESCC. In this review, we give an overview of the available biomarkers and innovative targeted therapeutic strategies, including the application of autophagy modulators in OSCC and ESCC. Additionally, we provide a viewpoint on the state of the art and on future therapeutic perspectives combining the early detection of relevant biomarkers with drug discovery for the treatment of OSCC and ESCC.
Collapse
Affiliation(s)
- Tuhina Khan
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico IL, Napoli, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| |
Collapse
|