1
|
Yu H, Maoliniyazi M, Han X, Yang H, Zhang Z, Guo Y, Tang X, Li H, Cao Q, Wang S, Wang X. YUCCA3 interacts with ADF4 to regulate Arabidopsis hypocotyl elongation by organizing actin arrays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109877. [PMID: 40220667 DOI: 10.1016/j.plaphy.2025.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Hypocotyl elongation is critical for plants emerging from the soil, and serves as a model for investigating cell elongation mechanism. It has been reported that auxin biosynthesis enzyme YUCCAs (YUCs) and the cytoskeleton are involved in the regulation of hypocotyl elongation in Arabidopsis. However, whether and how the cytoskeleton is involved in YUCs-regulated hypocotyl elongation is not well understood. Here, we report that YUC3 directly interacted with Actin Depolymerizing Factor 4 (ADF4) to regulate hypocotyl elongation. The yuc3 mutant seedlings produced shorter hypocotyls, while YUC3-OEs seedlings showed longer hypocotyls. Pharmacological analysis showed that microfilament but not microtubule was involved in YUC3-regulated hypocotyl elongation. Consistent with this, defects in actin arrays were observed in the yuc3 seedlings. In addition, YUC3 interacted with ADF4 but not ADF1 in vitro and in vivo. Knock out of ADF4 partially rescued the defects of yuc3 mutant hypocotyl elongation and actin arrays. In summary, our results demonstrate that YUC3 mediates the organization of actin filaments possibly by interacting with ADF4 and affecting its actin depolymerizing/severing activity in the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Haiyang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mairepaiti Maoliniyazi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xueping Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziheng Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yongchao Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiwen Tang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huiru Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qijiang Cao
- College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, 276000, China.
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Zhao Y, Song S, Guo Y, Tian Z, Shang Y, Ding Y, Li X, Zhao L, Zhang H. Overexpression of auxin synthesis gene PagYUC6a in poplar (Populus alba × P. glandulosa) enhances salt tolerance. Int J Biol Macromol 2025; 311:143712. [PMID: 40316105 DOI: 10.1016/j.ijbiomac.2025.143712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
YUCCA proteins play a crucial role in auxin biosynthesis. However, their specific functions in poplar in response to abiotic stress are unclear. Here, we isolated the auxin biosynthesis gene PagYUC6a, one of the Arabidopsis AtYUC6 homologs, from '84 K' poplar (Populus alba × P. glandulosa), and investigated its role in salt tolerance in transgenic poplar plants. PagYUC6a was predominantly expressed in young stems and significantly upregulated upon 200 mM NaCl treatment. Overexpression of PagYUC6a enhanced the growth and salt tolerance of transgenic poplar, as well as the content of indole-3-acetic acid (IAA). Further analysis revealed that the level of reactive oxygen species (ROS) accumulation in the leaves of transgenic plants was significantly lower than that in the leaves of wild type plants, accompanied with a higher activity of catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX). The transcript level of CAT2, SOD1 and APX1 was also higher in the leaves of transgenic plants under salt stress conditions. These results demonstrated that PagYUC6a improved salt tolerance by enhancing ROS scavenging capacity. Our findings provide valuable information on the molecular mechanisms of PagYUC6a mediated salinity tolerance and highlight its potential for the breeding of salt-tolerant tree species.
Collapse
Affiliation(s)
- Yanqiu Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China
| | - Shuo Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China
| | - Yu Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China
| | - Zhaoyang Tian
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China
| | - Yuanyuan Shang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China
| | - Yihao Ding
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China
| | - Xiaoyu Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China
| | - Lizi Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai 264001, China; College of Agriculture and Forestry Science, Linyi University, Middle Section of Shuangling Road, Linyi, Shandong Province 276000, China; School of Biological Science and Technology, University of Jinan, 336 Nanxinzhuangxi Road, Jinan 250024, China.
| |
Collapse
|
3
|
Sun PW, Chang JT, Luo MX, Chao CT, Du FK, Liao PC. In situ diversification and adaptive introgression in Taiwanese Scutellaria. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:238-254. [PMID: 39844615 DOI: 10.1111/plb.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
Island habitats provide unique opportunities to study speciation. Recent work indicates that both ex situ origination and in situ speciation contribute to island species diversity. However, clear evidence of local adaptation of endemic plant species on islands requires in-depth studies, which are scarce. This study underscores the importance of local adaptation in maintaining species boundaries by examining how adaptive introgression, hybridization, and local adaptation contribute to genetic variation in island species. Multilocus genome scanning of 51 nuclear genes was used to investigate the evolutionary relationships of the Scutellaria species complex on Taiwan Island and assess the role of in situ diversification in generating high endemism and genetic diversity. Interspecies introgressions were detected by phylogenetic networks and ABBA-BABA-based analysis, suggesting ongoing or recent speciation processes. Coalescent-based simulation identified hybrid speciation in Scutellaria taiwanensis and Scutellaria hsiehii, with evidence of hybridization between more than two parental species. Genotype-environment association studies revealed that the influence of climate, particularly precipitation- and temperature-related factors, contributed to adaptive genetic divergence between species. Additionally, adaptive introgression related to environmental pressures that may have facilitated the colonization of new island habitats were identified. This research illustrates how hybridization, introgression, and adaptation shaped the evolutionary histories and divergence of this island-endemic plant species complex and sheds light on the multifaceted mechanisms of speciation on semi-isolated islands.
Collapse
Affiliation(s)
- P-W Sun
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, USA
| | - J-T Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - M-X Luo
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - C-T Chao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - F K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - P-C Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
4
|
Ahn G, Jeong SY, Khan HA, Aulia AC, Shin GI, Ji MG, Sultana Chowdhury MS, Kim DY, Lee SY, Yun DJ, Kim WY, Cha JY. FAD and NADPH binding sites of YUCCA6 are essential for chaperone activity and oxidative stress tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109335. [PMID: 39603031 DOI: 10.1016/j.plaphy.2024.109335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Phytohormone auxin plays a pivotal role in governing plant growth, development, and responses to abiotic stresses. YUCCA6 (YUC6), an auxin biosynthetic enzyme belonging to the flavin monooxygenase (FMO) subfamily, converts indole-3-pyruvic acid to indole-3-acetic acid. Our prior investigation uncovered that YUC6 also functions as a thiol-reductase and chaperone in a Cys85-dependent manner, resulting in conferred tolerance to nickel heavy metal stress and drought and delayed leaf senescence. Notably, the conserved co-factor binding sites (FAD and NADPH) in YUC6, shared with FMOs and thioredoxin reductase, prompted our exploration into their significance for holdase chaperone activity and oxidative stress tolerance in Arabidopsis. We demonstrate that YUC6 transcripts are upregulated in response to methyl viologen (MV)-induced oxidative stress, implicating YUC6 in oxidative stress response. Mutations in co-factor binding sites markedly diminish the chaperone activity of YUC6, and reduce the YUC6-mediated oxidative stress tolerance in Arabidopsis. Furthermore, YUC6 proteins exist as oligomeric states under native conditions, formed by disulfide-bond bridges. Oligomeric YUC6 displays enhanced chaperone activity compared to its monomeric YUC6. We found here that co-factor binding sites of YUC6 are necessary for its chaperone properties.
Collapse
Affiliation(s)
- Gyeongik Ahn
- Division of Applied Life Science (BK21four), PBRRC, IALS, and RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21four), PBRRC, IALS, and RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Haris Ali Khan
- Division of Applied Life Science (BK21four), PBRRC, IALS, and RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ade Citra Aulia
- Division of Applied Life Science (BK21four), PBRRC, IALS, and RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21four), PBRRC, IALS, and RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myung Geun Ji
- Division of Applied Life Science (BK21four), PBRRC, IALS, and RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | | | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21four), PBRRC, IALS, and RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dae Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21four), PBRRC, IALS, and RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21four), PBRRC, IALS, and RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
5
|
Zhang K, Khan MN, Khan Z, Luo T, Zhang B, Bi J, Hu L, Luo L. Seed priming with ascorbic acid and spermidine regulated auxin biosynthesis to promote root growth of rice under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1482930. [PMID: 39711584 PMCID: PMC11658984 DOI: 10.3389/fpls.2024.1482930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024]
Abstract
Introduction Drought stress severely hampers seedling growth and root architecture, resulting in yield penalties. Seed priming is a promising approach to tolerate drought stress for stand establishment and root development. Methods Here, various seed priming treatments, viz., hydro priming, ascorbic acid priming (AsA), and spermidine priming (Spd), were adopted concerning root morphological, physiological, microstructural, and molecular studies under drought stress on rice variety Hanyou 73. Results and discussion Results demonstrated that drought severely suppressed seedling establishment, while AsA or Spd priming effectively alleviated the inhibitory effects of drought stress, and significantly increased shoot length (24.5-27.9%), root length (34.6-38.8%), shoot dry weight (56.1-97.1%), root dry weight (39.6-40.6%), total root length (47.0-57.8%), surface area (77.0-84.9%), root volume (106.5-109.8%), average diameter (16.4-19.7%), and root tips (46.8-61.1%); meanwhile, priming with AsA or Spd alleviated microscopic and ultrastructural damage from root cell, and improved root activity (183.8-192.0%). The mitigating effects of AsA or Spd priming on drought stress were primarily responsible for decreasing the accumulation of reactive oxygen species by increasing antioxidants activities and osmoprotectants contents, which reduced oxidative stress and osmotic cell potential and facilitated improved water and nutrients absorption in roots. Additionally, seed priming with AsA or Spd substantially improved auxin synthesis by upregulating of OsYUC7, OsYUC11 and, OsCOW1 expression. However, there were certain differences in the defense responses of plants and mechanisms of reducing the damage of drought stress after seed treatment with AsA or Spd. Under stress conditions, AsA had a greater impact on improving the fresh and dry weight of aboveground parts, while Spd affected the concentration of total sugar and total protein in plants. Likewise, the degree of oxidative damage was lowered, and POD and CAT activities were elevated due to Spd priming under water-deficient conditions.
Collapse
Affiliation(s)
- Kangkang Zhang
- Institute of Quality Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Mohammad Nauman Khan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Tao Luo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Biaojin Zhang
- Institute of Quality Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Junguo Bi
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liyong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lijun Luo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| |
Collapse
|
6
|
Salehin M. Emerging roles of auxin in plant abiotic stress tolerance. PHYSIOLOGIA PLANTARUM 2024; 176:e14601. [PMID: 39489540 DOI: 10.1111/ppl.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
Plants are continuously attacked by several biotic and abiotic factors. Among abiotic factors, heat, cold, drought, and salinity are common stresses. Plants produce several hormones as their main weapon in fightback against these stresses. Among these hormones, the role of auxin is well established in regulating plant growth and development at various scales. However, in recent literature, the important role of auxin in abiotic stress tolerance has emerged. Several auxin signalling and transport mutants exhibit heat, drought, and salinity-related phenotypes. Among them, auxin-mediated hypocotyl elongation and root growth in response to increased heat are of importance due to the continuous rise in global temperature. Auxin is also involved in regulating and recruiting specialized metabolites like aliphatic glucosinolate to defend themselves from drought stress. Aliphatic glucosinolate (A-GLS) regulates guard cell closure using auxin, which is independent of the major abiotic stress hormone abscisic acid. This regulatory mechanism serves as an additional layer of guard cell movement to protect plants from drought. Transferring the aliphatic glucosinolate pathway into non-brassica plants such as rice and soybean holds the promise to improve drought tolerance. In addition to these, post-translational modification of auxin signalling components and redistribution of auxin efflux transporters are also playing important roles in drought and salt tolerance and, hence, may be exploited to breed drought-tolerant crops. Also, reactive oxygen species, along with peptide hormone and auxin signalling, are important in root growth under stress. In conclusion, we summarize recent discoveries that suggest auxin is involved in various abiotic stresses.
Collapse
Affiliation(s)
- Mohammad Salehin
- Department of Biology, North Carolina A&T State University, Greensboro, NC
| |
Collapse
|
7
|
Slawin C, Ajayi O, Mahalingam R. Association mapping unravels the genetic basis for drought related traits in different developmental stages of barley. Sci Rep 2024; 14:25121. [PMID: 39448604 PMCID: PMC11502909 DOI: 10.1038/s41598-024-73618-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Drought stress significantly reduces crop yields at all stages of plant development. Barley, known for its abiotic-stress adaptation among cereals was used to examine the genetic basis of drought tolerance. A population of 164 spring barley lines was subjected to polyethylene glycol (PEG) induced drought stress during germination and seedling development. Six traits were measured, including germination percentage and rate, seedling length and weight, and root-to-shoot ratios. Seedling area, volume, and root and shoot diameter was acquired with a flatbed scanner. This population was also subjected to short-term drought during the heading stage in the greenhouse. Root and shoot weight and grain yield data were collected from well watered and droughted plants. Significant variation within traits were observed and several of them exhibited strong correlations with each other. In this population, two genotypes had 100% germination under PEG-induced drought and drought tolerance throughout the heading stage of plant development. A genome-wide association scan (GWAS) revealed 64 significant marker-trait associations across all seven barley chromosomes. Candidate genes related to abiotic stress and germination were identified within a 0.5Mbp interval around these SNPs. In silico analysis indicated a high frequency of differential expression of the candidate genes in response to stress. This study enabled identification of barley lines useful for drought tolerance breeding and pinpointed candidate genes for enhancing drought resiliency in barley.
Collapse
Affiliation(s)
- Connor Slawin
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53726, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Oyeyemi Ajayi
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53726, USA
| | | |
Collapse
|
8
|
Malwattage NR, Wone B, Wone BWM. A CAM-Related NF-YB Transcription Factor Enhances Multiple Abiotic Stress Tolerance in Arabidopsis. Int J Mol Sci 2024; 25:7107. [PMID: 39000218 PMCID: PMC11241642 DOI: 10.3390/ijms25137107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Abiotic stresses often occur simultaneously, and the tolerance mechanisms of plants to combined multiple abiotic stresses remain poorly studied. Extremophytes, adapted to abiotic stressors, might possess stress-adaptive or -responsive regulators that could enhance multiple abiotic stress resistance in crop plants. We identified an NF-YB transcription factor (TF) from the heat-tolerant obligate Crassulacean acid metabolism (CAM) plant, Kalanchoe fedtschenkoi, as a potential regulator of multiple abiotic stresses. The KfNF-YB3 gene was overexpressed in Arabidopsis to determine its role in multiple abiotic stress responses. Transgenic lines exhibited accelerated flowering time, increased biomass, larger rosette size, higher seed yield, and more leaves. Transgenic lines had higher germination rates under combined NaCl, osmotic, and water-deficit stress treatments compared to control plants. They also showed enhanced root growth and survival under simultaneous NaCl, osmotic, water-deficit, and heat stress conditions in vitro. Interestingly, potted transgenic lines had higher survival rates, yield, and biomass under simultaneous heat, water-deficit, and light stresses compared to control plants. Altogether, these results provide initial insights into the functions of a CAM-related TF and its potential roles in regulating multiple abiotic stress responses. The CAM abiotic stress-responsive TF-based approach appears to be an ideal strategy to enhance multi-stress resilience in crop plants.
Collapse
Affiliation(s)
| | | | - Bernard W. M. Wone
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
9
|
Braidotti R, Falchi R, Calderan A, Pichierri A, Vankova R, Dobrev PI, Griesser M, Sivilotti P. Multi-hormonal analysis and aquaporins regulation reveal new insights on drought tolerance in grapevine. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154243. [PMID: 38593590 DOI: 10.1016/j.jplph.2024.154243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Disentangling the factors that foster the tolerance to water stress in plants could provide great benefits to crop productions. In a two-year experiment, two new PIWI (fungus resistant) grapevine varieties, namely Merlot Kanthus and Sauvignon Kretos (Vitis hybrids), grown in the field, were subjected to two different water regimes: weekly irrigated (IR) or not irrigated (NIR) for two months during the summer. The two varieties exhibited large differences in terms of performance under water-limiting conditions. In particular, Merlot Kanthus strongly decreased stem water potential (Ψs) under water shortage and Sauvignon Kretos maintained higher Ψs values accompanied by generally high stomatal conductance and net carbon assimilation, regardless of the treatment. We hypothesized differences in the hormonal profile that mediate most of the plant responses to stresses or in the regulation of the aquaporins that control the water transport in the leaves. In general, substantial differences were found in the abundance of different hormonal classes, with Merlot Kanthus reporting higher concentrations of cytokinins while Sauvignon Kretos higher concentrations of auxins, jasmonate and salicylic acid. Interestingly, under water stress conditions ABA modulation appeared similar between the two cultivars, while other hormones were differently modulated between the two varieties. Regarding the expression of aquaporin encoding genes, Merlot Kanthus showed a significant downregulation of VvPIP2;1 and VvTIP2;1 in leaves exposed to water stress. Both genes have probably a role in influencing leaf conductance, and VvTIP2;1 has been correlated with stomatal conductance values. This evidence suggests that the two PIWI varieties are characterized by different behaviour in response to drought. Furthermore, the findings of the study may be generalized, suggesting the involvement of a complex hormonal cross-talk and aquaporins in effectively influencing plant performance under water shortage.
Collapse
Affiliation(s)
- Riccardo Braidotti
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy
| | - Rachele Falchi
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy.
| | - Alberto Calderan
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy; University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Alessandro Pichierri
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy; University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, 6, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, 6, Czech Republic
| | - Michaela Griesser
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria
| | - Paolo Sivilotti
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy
| |
Collapse
|
10
|
Li Y, Su Z, Lin Y, Xu Z, Bao H, Wang F, Liu J, Hu S, Wang Z, Yu X, Gao J. Utilizing transcriptomics and metabolomics to unravel key genes and metabolites of maize seedlings in response to drought stress. BMC PLANT BIOLOGY 2024; 24:34. [PMID: 38185653 PMCID: PMC10773024 DOI: 10.1186/s12870-023-04712-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Drought stress can substantially restrict maize growth and productivity, and global warming and an increasing frequency of extreme weather events are likely to result in more yield losses in the future. Therefore, unraveling the molecular mechanism underlying the response to drought stress is essential for breeding drought-resilient crops. RESULTS In this study, we subjected the 3-leaf-period plants of two maize inbred lines, a drought-tolerant line (si287) and a drought-sensitive line (X178), to drought stress for seven days while growing in a chamber. Subsequently, we measured physiological traits and analyzed transcriptomic and metabolic profiles of two inbred lines. Our KEGG analysis of genes and metabolites revealed significant differences in pathways related to glycolysis/gluconeogenesis, flavonoid biosynthesis, starch and sucrose metabolism, and biosynthesis of amino acids. Additionally, our joint analysis identified proline, tryptophan and phenylalanine are crucial amino acids for maize response to drought stress. Furthermore, we concentrated on tryptophan (Trp), which was found to enhance tolerance via IAA-ABA signaling, as well as SA and nicotinamide adenine dinucleotide (NAD) consequent reactive oxygen species (ROS) scavenging. We identified three hub genes in tryptophan biosynthesis, indole-3-acetaldehyde oxidase (ZmAO1, 542,228), catalase 1 (ZmCAT1, 542,369), and flavin-containing monooxygenase 6 (ZmYUC6, 103,629,142), High expression of these genes plays a significant role in regulating drought tolerance. Two metabolites related to tryptophan biosynthesis, quinolinic acid, and kynurenine improved maize tolerance to drought stress by scavenging reactive oxygen species. CONCLUSIONS This study illuminates the mechanisms underlying the response of maize seedlings to drought stress. Especially, it identifies novel candidate genes and metabolites, enriching our understanding of the role of tryptophan in drought stress. The identification of distinct resistance mechanisms in maize inbred lines will facilitate the exploration of maize germplasm and the breeding of drought-resilient hybrids.
Collapse
Affiliation(s)
- Yipu Li
- Region Research Center for Conservation and Utilization of Crop Germplasm Resources in Cold and Arid Areas, Agricultural College, Inner Mongolia Agricultural University, Hohhot, China.
| | - Zhijun Su
- Region Research Center for Conservation and Utilization of Crop Germplasm Resources in Cold and Arid Areas, Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanan Lin
- Region Research Center for Conservation and Utilization of Crop Germplasm Resources in Cold and Arid Areas, Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhenghan Xu
- Region Research Center for Conservation and Utilization of Crop Germplasm Resources in Cold and Arid Areas, Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Haizhu Bao
- Region Research Center for Conservation and Utilization of Crop Germplasm Resources in Cold and Arid Areas, Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Fugui Wang
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Jian Liu
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Shuping Hu
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Zhigang Wang
- Region Research Center for Conservation and Utilization of Crop Germplasm Resources in Cold and Arid Areas, Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaofang Yu
- Region Research Center for Conservation and Utilization of Crop Germplasm Resources in Cold and Arid Areas, Agricultural College, Inner Mongolia Agricultural University, Hohhot, China.
| | - Julin Gao
- Region Research Center for Conservation and Utilization of Crop Germplasm Resources in Cold and Arid Areas, Agricultural College, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
11
|
Samanta S, Seth CS, Roychoudhury A. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108259. [PMID: 38154293 DOI: 10.1016/j.plaphy.2023.108259] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
Drought is undoubtedly a major environmental constraint that negatively affects agricultural yield and productivity throughout the globe. Plants are extremely vulnerable to drought which imposes several physiological, biochemical and molecular perturbations. Increased generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in different plant organs is one of the inevitable consequences of drought. ROS and RNS are toxic byproducts of metabolic reactions and poise oxidative stress and nitrosative stress that are detrimental for plants. In spite of toxic effects, these potentially active radicals also play a beneficial role in mediating several signal transduction events that lead to plant acclimation and enhanced survival under harsh environmental conditions. The precise understanding of ROS and RNS signaling and their molecular paradigm with different phytohormones, such as auxin, gibberellin, cytokinin, abscisic acid, ethylene, brassinosteroids, strigolactones, jasmonic acid, salicylic acid and melatonin play a pivotal role for maintaining plant fitness and resilience to counteract drought toxicity. Therefore, the present review provides an overview of integrated systemic signaling between ROS, RNS and phytohormones during drought stress based on past and recent advancements and their influential role in conferring protection against drought-induced damages in different plant species. Indeed, it would not be presumptuous to hope that the detailed knowledge provided in this review will be helpful for designing drought-tolerant crop cultivars in the forthcoming times.
Collapse
Affiliation(s)
- Santanu Samanta
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | | | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
12
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
13
|
Li W, Deng M, Wang S, Wang C, Guo M, Song Y, Guo J, Yan J, Ma F, Guan Q, Xu J. HISTONE DEACETYLASE 6 interaction with ABSCISIC ACID-INSENSITIVE 5 decreases apple drought tolerance. PLANT PHYSIOLOGY 2023; 193:2711-2733. [PMID: 37607253 PMCID: PMC10663142 DOI: 10.1093/plphys/kiad468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Understanding the molecular regulation of plant response to drought is the basis of drought-resistance improvement through molecular strategies. Here, we characterized apple (Malus × domestica) histone deacetylase 6 (MdHDA6), which negatively regulates apple drought tolerance by catalyzing deacetylation on histones associated with drought-responsive genes. Transgenic apple plants over-expressing MdHDA6 were less drought-tolerant, while those with down-regulated MdHDA6 expression were more drought-resistant than nontransgenic apple plants. Transcriptomic and histone 3 acetylation (H3ac) Chromatin immunoprecipitation-seq analyses indicated that MdHDA6 could facilitate histone deacetylation on the drought-responsive genes, repressing gene expression. Moreover, MdHDA6 interacted with the abscisic acid (ABA) signaling transcriptional factor, ABSCISIC ACID-INSENSITIVE 5 (MdABI5), forming the MdHDA6-MdABI5 complex. Interestingly, MdHDA6 facilitated histone deacetylation on the drought-responsive genes regulated by MdABI5, resulting in gene repression. Furthermore, a dual-Luc experiment showed that MdHDA6 could repress the regulation of a drought-responsive gene, RESPONSIVE TO DESICCATION 29A (MdRD29A) activated by MdABI5. On the one hand, MdHDA6 can facilitate histone deacetylation and gene repression on the positive drought-responsive genes to negatively regulate drought tolerance in apple. On the other hand, MdHDA6 directly interacts with MdABI5 and represses the expression of genes downstream of MdABI5 via histone deacetylation around these genes to reduce drought tolerance. Our study uncovers a different drought response regulatory mechanism in apple based on the MdHDA6-MdABI5 complex function and provides the molecular basis for drought-resistance improvement in apple.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengting Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caixia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meimiao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinjiao Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Qin Q. ROS: Important factor in plant stem cell fate regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154082. [PMID: 37690340 DOI: 10.1016/j.jplph.2023.154082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Reactive oxygen species (ROS) are initially considered to be toxic byproducts of aerobic metabolic reactions. However, increasing evidence has shown that they have emerged as signaling molecules involved in several basic biological processes. Recent studies highlight the pivotal role of ROS in the maintenance of shoot and root stem cell niche. In this review, we discuss the impact of ROS distribution and their gradients on the stability of the stem cell niches (SCN) in shoot apical meristem (SAM) and root apical meristem (RAM) by determining the balance between stemness and differentiation. We also summarize several important transcription factors that are involved in the regulation of ROS balance in SAM and RAM, regulating key enzymes in ROS metabolism, especially SOD and peroxidase. ROS are also tightly interconnected with phytohormones in the control of the stem cell fate. Besides, ROS are also important regulators of the cell cycle in controlling the size of the stem cells. Understanding the regulation mechanisms of ROS production, polarization gradient distribution, homeostasis, and downstream signal transduction in cells will open exciting new perspectives for plant developmental biology.
Collapse
Affiliation(s)
- Qianqian Qin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Shao A, Fan S, Xu X, Wang W, Fu J. Identification and evolution analysis of YUCCA genes of Medicago sativa and Medicago truncatula and their expression profiles under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1268027. [PMID: 37701802 PMCID: PMC10494245 DOI: 10.3389/fpls.2023.1268027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
The YUCCAs (YUC) are functionally identified flavin-containing monooxidases (FMOs) in plants that act as an important rate-limiting enzyme functioning in the auxin synthesis IPA (indole-3-pyruvic acid) pathway. In this study, 12 MsYUCs and 15 MtYUCs containing characteristic conserved motifs were identified in M. sativa (Medicago sativa L.) and M. truncatula (Medicago truncatula Gaertn.), respectively. Phylogenetic analysis revealed that YUC proteins underwent an evolutionary divergence. Both tandem and segmental duplication events were presented in MsYUC and MtYUC genes. Comparative syntenic maps of M. sativa with M. truncatula, Arabidopsis (Arabidopsis thaliana), or rice (Oryza sativa L.) were constructed to illustrate the evolution relationship of the YUC gene family. A large number of cis-acting elements related to stress response and hormone regulation were revealed in the promoter sequences of MsYUCs. Expression analysis showed that MsYUCs had a tissue-specific, genotype-differential expression and a differential abiotic stress response pattern based on transcriptome data analysis of M. sativa online. In addition, RT-qPCR confirmed that salt stress significantly induced the expression of MsYUC1/MsYUC10 but significantly inhibited MsYUC2/MsYUC3 expression and the expression of MsYUC10/MsYUC11/MsYUC12 was significantly induced by cold treatment. These results could provide valuable information for functional analysis of YUC genes via gene engineering of the auxin synthetic IPA pathway in Medicago.
Collapse
Affiliation(s)
| | | | | | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| |
Collapse
|
16
|
Kumar N, Mishra BK, Liu J, Mohan B, Thingujam D, Pajerowska-Mukhtar KM, Mukhtar MS. Network Biology Analyses and Dynamic Modeling of Gene Regulatory Networks under Drought Stress Reveal Major Transcriptional Regulators in Arabidopsis. Int J Mol Sci 2023; 24:ijms24087349. [PMID: 37108512 PMCID: PMC10139068 DOI: 10.3390/ijms24087349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Drought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal transcriptional signatures and demonstrated the involvement of specific biological pathways. Generation of a large-scale co-expression network followed by network centrality analyses identified 117 TFs that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered major transcriptional events during the course of drought stress. Mathematical transcriptional simulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional intensity and amplitude of their target genes. Finally, we validated our predictions by providing experimental evidence of gene expression under drought stress for a set of four TFs and their major target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs that could potentially be used in future genetic crop engineering programs.
Collapse
Affiliation(s)
- Nilesh Kumar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Bharat K Mishra
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Jinbao Liu
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Binoop Mohan
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Doni Thingujam
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Karolina M Pajerowska-Mukhtar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Department of Surgery, University of Alabama at Birmingham, 1808 7th Ave S, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Wang L, Zhou Y, Ding Y, Chen C, Chen X, Su N, Zhang X, Pan Y, Li J. Novel flavin-containing monooxygenase protein FMO1 interacts with CAT2 to negatively regulate drought tolerance through ROS homeostasis and ABA signaling pathway in tomato. HORTICULTURE RESEARCH 2023; 10:uhad037. [PMID: 37101513 PMCID: PMC10124749 DOI: 10.1093/hr/uhad037] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Drought stress is the major abiotic factor that can seriously affect plant growth and crop production. The functions of flavin-containing monooxygenases (FMOs) are known in animals. They add molecular oxygen to lipophilic compounds or produce reactive oxygen species (ROS). However, little information on FMOs in plants is available. Here, we characterized a tomato drought-responsive gene that showed homology to FMO, and it was designated as FMO1. FMO1 was downregulated promptly by drought and ABA treatments. Transgenic functional analysis indicated that RNAi suppression of the expression of FMO1 (FMO1-Ri) improved drought tolerance relative to wild-type (WT) plants, whereas overexpression of FMO1 (FMO1-OE) reduced drought tolerance. The FMO1-Ri plants exhibited lower ABA accumulation, higher levels of antioxidant enzyme activities, and less ROS generation compared with the WT and FMO1-OE plants under drought stress. RNA-seq transcriptional analysis revealed the differential expression levels of many drought-responsive genes that were co-expressed with FMO1, including PP2Cs, PYLs, WRKY, and LEA. Using Y2H screening, we found that FMO1 physically interacted with catalase 2 (CAT2), which is an antioxidant enzyme and confers drought resistance. Our findings suggest that tomato FMO1 negatively regulates tomato drought tolerance in the ABA-dependent pathway and modulates ROS homeostasis by directly binding to SlCAT2.
Collapse
Affiliation(s)
| | | | - Yin Ding
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Chunrui Chen
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xueting Chen
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Nini Su
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xingguo Zhang
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Yu Pan
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | | |
Collapse
|
18
|
Gaba Y, Bhowal B, Pareek A, Singla-Pareek SL. Genomic Survey of Flavin Monooxygenases in Wild and Cultivated Rice Provides Insight into Evolution and Functional Diversities. Int J Mol Sci 2023; 24:4190. [PMID: 36835601 PMCID: PMC9960948 DOI: 10.3390/ijms24044190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/22/2023] Open
Abstract
The flavin monooxygenase (FMO) enzyme was discovered in mammalian liver cells that convert a carcinogenic compound, N-N'-dimethylaniline, into a non-carcinogenic compound, N-oxide. Since then, many FMOs have been reported in animal systems for their primary role in the detoxification of xenobiotic compounds. In plants, this family has diverged to perform varied functions like pathogen defense, auxin biosynthesis, and S-oxygenation of compounds. Only a few members of this family, primarily those involved in auxin biosynthesis, have been functionally characterized in plant species. Thus, the present study aims to identify all the members of the FMO family in 10 different wild and cultivated Oryza species. Genome-wide analysis of the FMO family in different Oryza species reveals that each species has multiple FMO members in its genome and that this family is conserved throughout evolution. Taking clues from its role in pathogen defense and its possible function in ROS scavenging, we have also assessed the involvement of this family in abiotic stresses. A detailed in silico expression analysis of the FMO family in Oryza sativa subsp. japonica revealed that only a subset of genes responds to different abiotic stresses. This is supported by the experimental validation of a few selected genes using qRT-PCR in stress-sensitive Oryza sativa subsp. indica and stress-sensitive wild rice Oryza nivara. The identification and comprehensive in silico analysis of FMO genes from different Oryza species carried out in this study will serve as the foundation for further structural and functional studies of FMO genes in rice as well as other crop types.
Collapse
Affiliation(s)
- Yashika Gaba
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
19
|
Genome-Wide Identification, Expression Analysis, and Potential Roles under Abiotic Stress of the YUCCA Gene Family in Mungbean ( Vigna radiata L.). Int J Mol Sci 2023; 24:ijms24021603. [PMID: 36675117 PMCID: PMC9866024 DOI: 10.3390/ijms24021603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
YUCCA, belonging to the class B flavin-dependent monooxygenases, catalyzes the rate-limiting step for endogenous auxin synthesis and is implicated in plant-growth regulation and stress response. Systematic analysis of the YUCCA gene family and its stress response benefits the dissection of regulation mechanisms and breeding applications. In this study, 12 YUCCA genes were identified from the mungbean (Vigna radiata L.) genome and were named based on their similarity to AtYUCCAs. Phylogenetic analysis revealed that the 12 VrYUCCAs could be divided into 4 subfamilies. The evidence from enzymatic assays in vitro and transgenetic Arabidopsis in vivo indicated that all the isolated VrYUCCAs had biological activity in response to IAA synthesis. Expression pattern analysis showed that functional redundancy and divergence existed in the VrYUCCA gene family. Four VrYUCCAs were expressed in most tissues, and five VrYUCCAs were specifically highly expressed in the floral organs. The response toward five stresses, namely, auxin (indole-3-acetic acid, IAA), salinity, drought, high temperatures, and cold, was also investigated here. Five VrYUCCAs responded to IAA in the root, while only VrYUCCA8a was induced in the leaf. VrYUCCA2a, VrYUCCA6a, VrYUCCA8a, VrYUCCA8b, and VrYUCCA10 seemed to dominate under abiotic stresses, due to their sensitivity to the other four treatments. However, the response modes of the VrYUCCAs varied, indicating that they may regulate different stresses in distinct ways to finely adjust IAA content. The comprehensive analysis of the VrYUCCAs in this study lays a solid foundation for further investigation of VrYUCCA genes' mechanisms and applications in breeding.
Collapse
|
20
|
Cha JY, Ahn G, Jeong SY, Shin GI, Ali I, Ji MG, Alimzhan A, Lee SY, Kim MG, Kim WY. Nucleoredoxin 1 positively regulates heat stress tolerance by enhancing the transcription of antioxidants and heat-shock proteins in tomato. Biochem Biophys Res Commun 2022; 635:12-18. [DOI: 10.1016/j.bbrc.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
|
21
|
Zhang M, Liu N, Teixeira da Silva JA, Liu X, Deng R, Yao Y, Duan J, He C. Physiological and transcriptomic analysis uncovers salinity stress mechanisms in a facultative crassulacean acid metabolism plant Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:1028245. [PMID: 36275597 PMCID: PMC9582936 DOI: 10.3389/fpls.2022.1028245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Dendrobium officinale is a precious medicinal Chinese herb that employs facultative crassulacean acid metabolism (CAM) and has a high degree of abiotic stress tolerance, but the molecular mechanism underlying the response of this orchid to abiotic stresses is poorly understood. In this study, we analyzed the root microstructure of D. officinale plantlets and verified the presence of chloroplasts by transmission electron microscopy. To obtain a more comprehensive overview of the molecular mechanism underlying their tolerance to abiotic stress, we performed whole-transcriptome sequencing of the roots of 10-month-old plantlets exposed to salt (NaCl) treatment in a time-course experiment (0, 4 and 12 h). The total of 7376 differentially expressed genes that were identified were grouped into three clusters (P < 0.05). Metabolic pathway analysis revealed that the expression of genes related to hormone (such as auxins, cytokinins, abscisic acid, ethylene and jasmonic acid) biosynthesis and response, as well as the expression of genes related to photosynthesis, amino acid and flavonoid metabolism, and the SOS pathway, were either up- or down-regulated after salt treatment. Additionally, we identified an up-regulated WRKY transcription factor, DoWRKY69, whose ectopic expression in Arabidopsis promoted seed germination under salt tress. Collectively, our findings provide a greater understanding of the salt stress response mechanisms in the roots of a facultative CAM plant. A number of candidate genes that were discovered may help plants to cope with salt stress when introduced via genetic engineering.
Collapse
Affiliation(s)
- Mingze Zhang
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Rufang Deng
- Opening Public Laboratory, Chinese Academy of Sciences, Guangzhou, China
| | - Yuxian Yao
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
22
|
Cha JY, Jeong SY, Ahn G, Shin GI, Ji MG, Lee SC, Khakurel D, Macoy DM, Lee YB, Kim MG, Lee SY, Yun DJ, Kim WY. The thiol-reductase activity of YUCCA6 enhances nickel heavy metal stress tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1007542. [PMID: 36237515 PMCID: PMC9551240 DOI: 10.3389/fpls.2022.1007542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic activities cause the leaching of heavy metals into groundwater and their accumulation in soil. Excess levels of heavy metals cause toxicity in plants, inducing the production of reactive oxygen species (ROS) and possible death caused by the resulting oxidative stress. Heavy metal stresses repress auxin biosynthesis and transport, inhibiting plant growth. Here, we investigated whether nickel (Ni) heavy metal toxicity is reduced by exogenous auxin application and whether Ni stress tolerance in Arabidopsis thaliana is mediated by the bifunctional enzyme YUCCA6 (YUC6), which functions as an auxin biosynthetic enzyme and a thiol-reductase (TR). We found that an application of up to 1 µM exogenous indole-3-acetic acid (IAA) reduces Ni stress toxicity. yuc6-1D, a dominant mutant of YUC6 with high auxin levels, was more tolerant of Ni stress than wild-type (WT) plants, despite absorbing significantly more Ni. Treatments of WT plants with YUCASIN, a specific inhibitor of YUC-mediated auxin biosynthesis, increased Ni toxicity; however yuc6-1D was not affected by YUCASIN and remained tolerant of Ni stress. This suggests that rather than the elevated IAA levels in yuc6-1D, the TR activity of YUC6 might be critical for Ni stress tolerance. The loss of TR activity in YUC6 caused by the point-mutation of Cys85 abolished the YUC6-mediated Ni stress tolerance. We also found that the Ni stress-induced ROS accumulation was inhibited in yuc6-1D plants, which consequently also showed reduced oxidative damage. An enzymatic assay and transcriptional analysis revealed that the peroxidase activity and transcription of PEROXIREDOXIN Q were enhanced by Ni stress to a greater level in yuc6-1D than in the WT. These findings imply that despite the need to maintain endogenous IAA levels for basal Ni stress tolerance, the TR activity of YUC6, not the elevated IAA levels, plays the predominant role inNi stress tolerance by lowering Ni-induced oxidative stress.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Gyeongik Ahn
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Myung Geun Ji
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Sang Cheol Lee
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dhruba Khakurel
- Department of Biology, Graduate School of Gyeongsang National University, Jinju, South Korea
| | - Donah Mary Macoy
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Yong Bok Lee
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Woe-Yeon Kim
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
23
|
Lou S, Guo X, Liu L, Song Y, Zhang L, Jiang Y, Zhang L, Sun P, Liu B, Tong S, Chen N, Liu M, Zhang H, Liang R, Feng X, Zheng Y, Liu H, Holdsworth MJ, Liu J. Allelic shift in cis-elements of the transcription factor RAP2.12 underlies adaptation associated with humidity in Arabidopsis thaliana. SCIENCE ADVANCES 2022; 8:eabn8281. [PMID: 35507656 PMCID: PMC9067915 DOI: 10.1126/sciadv.abn8281] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Populations of widespread species are usually geographically distributed through contrasting stresses, but underlying genetic mechanisms controlling this adaptation remain largely unknown. Here, we show that in Arabidopsis thaliana, allelic changes in the cis-regulatory elements, WT box and W box, in the promoter of a key transcription factor associated with oxygen sensing, RELATED TO AP 2.12 (RAP2.12), are responsible for differentially regulating tolerance to drought and flooding. These two cis-elements are regulated by different transcription factors that downstream of RAP2.12 results in differential accumulation of hypoxia-responsive transcripts. The evolution from one cis-element haplotype to the other is associated with the colonization of humid environments from arid habitats. This gene thus promotes both drought and flooding adaptation via an adaptive mechanism that diversifies its regulation through noncoding alleles.
Collapse
Affiliation(s)
- Shangling Lou
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiang Guo
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lian Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yan Song
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lei Zhang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lushui Zhang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Pengchuan Sun
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Bao Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shaofei Tong
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ningning Chen
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Meng Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Han Zhang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ruyun Liang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoqin Feng
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yudan Zheng
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Corresponding author. (H.L.); (M.J.H.); (J.L.)
| | - Michael J. Holdsworth
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
- Corresponding author. (H.L.); (M.J.H.); (J.L.)
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Corresponding author. (H.L.); (M.J.H.); (J.L.)
| |
Collapse
|
24
|
Liu Z, Guo C, Wu R, Wang J, Zhou Y, Yu X, Zhang Y, Zhao Z, Liu H, Sun S, Hu M, Qin A, Liu Y, Yang J, Bawa G, Sun X. Identification of the Regulators of Epidermis Development under Drought- and Salt-Stressed Conditions by Single-Cell RNA-Seq. Int J Mol Sci 2022; 23:ijms23052759. [PMID: 35269904 PMCID: PMC8911155 DOI: 10.3390/ijms23052759] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
As sessile organisms, plants constantly face challenges from the external environment. In order to meet these challenges and survive, plants have evolved a set of sophisticated adaptation strategies, including changes in leaf morphology and epidermal cell development. These developmental patterns are regulated by both light and hormonal signaling pathways. However, our mechanistic understanding of the role of these signaling pathways in regulating plant response to environmental stress is still very limited. By applying single-cell RNA-Seq, we determined the expression pattern of PHYTOCHROME INTERACTING FACTOR (PIF) 1, PIF3, PIF4, and PIF5 genes in leaf epidermal pavement cells (PCs) and guard cells (GCs). PCs and GCs are very sensitive to environmental stress, and our previous research suggests that these PIFs may be involved in regulating the development of PCs, GCs, and leaf morphology under environmental stress. Growth analysis showed that pif1/3/4/5 quadruple mutant maintained tolerance to drought and salt stress, and the length to width ratio of leaves and petiole length under normal growth conditions were similar to those of wild-type (WT) plants under drought and salt treatment. Analysis of the developmental patterns of PCs and GCs, and whole leaf morphology, further confirmed that these PIFs may be involved in mediating the development of epidermal cells under drought and salt stress, likely by regulating the expression of MUTE and TOO MANY MOUTHS (TMM) genes. These results provide new insights into the molecular mechanism of plant adaptation to adverse growth environments.
Collapse
Affiliation(s)
- Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chenxi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Rui Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jiajing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xiaole Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zihao Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Susu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Mengke Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Aizhi Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yumeng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jincheng Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - George Bawa
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Correspondence: ; Tel.: +86-135-2401-6285
| |
Collapse
|
25
|
Jiang L, Zhang D, Liu C, Shen W, He J, Yue Q, Niu C, Yang F, Li X, Shen X, Hou N, Chen P, Ma F, Guan Q. MdGH3.6 is targeted by MdMYB94 and plays a negative role in apple water-deficit stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1271-1289. [PMID: 34918398 DOI: 10.1111/tpj.15631] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Drought significantly limits apple fruit production and quality. Decoding the key genes involved in drought stress tolerance is important for breeding varieties with improved drought resistance. Here, we identified GRETCHEN HAGEN3.6 (GH3.6), an indole-3-acetic acid (IAA) conjugating enzyme, to be a negative regulator of water-deficit stress tolerance in apple. Overexpressing MdGH3.6 reduced IAA content, adventitious root number, root length and water-deficit stress tolerance, whereas knocking down MdGH3.6 and its close paralogs increased IAA content, adventitious root number, root length and water-deficit stress tolerance. Moreover, MdGH3.6 negatively regulated the expression of wax biosynthetic genes under water-deficit stress and thus negatively regulated cuticular wax content. Additionally, MdGH3.6 negatively regulated reactive oxygen species scavengers, including antioxidant enzymes and metabolites involved in the phenylpropanoid and flavonoid pathway in response to water-deficit stress. Further study revealed that the homolog of transcription factor AtMYB94, rather than AtMYB96, could bind to the MdGH3.6 promoter and negatively regulated its expression under water-deficit stress conditions in apple. Overall, our results identify a candidate gene for the improvement of drought resistance in fruit trees.
Collapse
Affiliation(s)
- Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feng Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
26
|
Wang HL, Yang Q, Tan S, Wang T, Zhang Y, Yang Y, Yin W, Xia X, Guo H, Li Z. Regulation of cytokinin biosynthesis using PtRD26 pro -IPT module improves drought tolerance through PtARR10-PtYUC4/5-mediated reactive oxygen species removal in Populus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:771-786. [PMID: 34990062 DOI: 10.1111/jipb.13218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Drought is a critical environmental factor which constrains plant survival and growth. Genetic engineering provides a credible strategy to improve drought tolerance of plants. Here, we generated transgenic poplar lines expressing the isopentenyl transferase gene (IPT) under the driver of PtRD26 promoter (PtRD26pro -IPT). PtRD26 is a senescence and drought-inducible NAC transcription factor. PtRD26pro -IPT plants displayed multiple phenotypes, including improved growth and drought tolerance. Transcriptome analysis revealed that auxin biosynthesis pathway was activated in the PtRD26pro -IPT plants, leading to an increase in auxin contents. Biochemical analysis revealed that ARABIDOPSIS RESPONSE REGULATOR10 (PtARR10), one of the type-B ARR transcription factors in the cytokinin pathway, was induced in PtRD26pro -IPT plants and directly regulated the transcripts of YUCCA4 (PtYUC4) and YUCCA5 (PtYUC5), two enzymes in the auxin biosynthesis pathway. Overexpression of PtYUC4 enhanced drought tolerance, while simultaneous silencing of PtYUC4/5 evidently attenuated the drought tolerance of PtRD26pro -IPT plants. Intriguingly, PtYUC4/5 displayed a conserved thioredoxin reductase activity that is required for drought tolerance by deterring reactive oxygen species accumulation. Our work reveals the molecular basis of cytokinin and auxin interactions in response to environmental stresses, and shed light on the improvement of drought tolerance without a growth penalty in trees by molecular breeding.
Collapse
Affiliation(s)
- Hou-Ling Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qi Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Zhang
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yanli Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zhonghai Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
27
|
Chen P, Zhi F, Li X, Shen W, Yan M, He J, Bao C, Fan T, Zhou S, Ma F, Guan Q. Zinc-finger protein MdBBX7/MdCOL9, a target of MdMIEL1 E3 ligase, confers drought tolerance in apple. PLANT PHYSIOLOGY 2022; 188:540-559. [PMID: 34618120 PMCID: PMC8774816 DOI: 10.1093/plphys/kiab420] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 05/21/2023]
Abstract
Water deficit is one of the main challenges for apple (Malus × domestica) growth and productivity. Breeding drought-tolerant cultivars depends on a thorough understanding of the drought responses of apple trees. Here, we identified the zinc-finger protein B-BOX 7/CONSTANS-LIKE 9 (MdBBX7/MdCOL9), which plays a positive role in apple drought tolerance. The overexpression of MdBBX7 enhanced drought tolerance, whereas knocking down MdBBX7 expression reduced it. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis identified one cis-element of MdBBX7, CCTTG, as well as its known binding motif, the T/G box. ChIP-seq and RNA-seq identified 1,197 direct targets of MdBBX7, including ETHYLENE RESPONSE FACTOR (ERF1), EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15), and GOLDEN2-LIKE 1 (GLK1) and these were further verified by ChIP-qPCR and electronic mobility shift assays. Yeast two-hybrid screen identified an interacting protein of MdBBX7, RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1). Further examination revealed that MdMIEL1 could mediate the ubiquitination and degradation of MdBBX7 by the 26S proteasome pathway. Genetic interaction analysis suggested that MdMIEL1 acts as an upstream factor of MdBBX7. In addition, MdMIEL1 was a negative regulator of the apple drought stress response. Taken together, our results illustrate the molecular mechanisms by which the MdMIEL1-MdBBX7 module influences the response of apple to drought stress.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianle Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangxi Zhou
- The New Zealand Institute for Plant and Food Research Ltd., Hawke's Bay 4130, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
Kanwar P, Sanyal SK, Mahiwal S, Ravi B, Kaur K, Fernandes JL, Yadav AK, Tokas I, Srivastava AK, Suprasanna P, Pandey GK. CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:241-260. [PMID: 34748255 DOI: 10.1111/tpj.15572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Calcium (Ca2+ ) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Kanwaljeet Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Joel L Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Indu Tokas
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| |
Collapse
|
29
|
Chakraborty S, Toyota M, Moeder W, Chin K, Fortuna A, Champigny M, Vanneste S, Gilroy S, Beeckman T, Nambara E, Yoshioka K. CYCLIC NUCLEOTIDE-GATED ION CHANNEL 2 modulates auxin homeostasis and signaling. PLANT PHYSIOLOGY 2021; 187:1690-1703. [PMID: 34618044 PMCID: PMC8566268 DOI: 10.1093/plphys/kiab332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/05/2021] [Indexed: 05/04/2023]
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) have been firmly established as Ca2+-conducting ion channels that regulate a wide variety of physiological responses in plants. CNGC2 has been implicated in plant immunity and Ca2+ signaling due to the autoimmune phenotypes exhibited by null mutants of CNGC2 in Arabidopsis thaliana. However, cngc2 mutants display additional phenotypes that are unique among autoimmune mutants, suggesting that CNGC2 has functions beyond defense and generates distinct Ca2+ signals in response to different triggers. In this study, we found that cngc2 mutants showed reduced gravitropism, consistent with a defect in auxin signaling. This was mirrored in the diminished auxin response detected by the auxin reporters DR5::GUS and DII-VENUS and in a strongly impaired auxin-induced Ca2+ response. Moreover, the cngc2 mutant exhibits higher levels of the endogenous auxin indole-3-acetic acid, indicating that excess auxin in the cngc2 mutant causes its pleiotropic phenotypes. These auxin signaling defects and the autoimmunity syndrome of the cngc2 mutant could be suppressed by loss-of-function mutations in the auxin biosynthesis gene YUCCA6 (YUC6), as determined by identification of the cngc2 suppressor mutant repressor of cngc2 (rdd1) as an allele of YUC6. A loss-of-function mutation in the upstream auxin biosynthesis gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA1, WEAK ETHYLENE INSENSITIVE8) also suppressed the cngc2 phenotypes, further supporting the tight relationship between CNGC2 and the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS-YUCCA -dependent auxin biosynthesis pathway. Taking these results together, we propose that the Ca2+ signal generated by CNGC2 is a part of the negative feedback regulation of auxin homeostasis in which CNGC2 balances cellular auxin perception by influencing auxin biosynthesis.
Collapse
Affiliation(s)
- Sonhita Chakraborty
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Sakura-ku, Saitama, 338-8570, Japan
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
| | - Kimberley Chin
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
| | - Alex Fortuna
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
| | | | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Faculty of Bioscience Engineering, Department Plants and Crops, Ghent University, Unit HortiCell, Coupure Links 653, 9000 Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Faculty of Bioscience Engineering, Department Plants and Crops, Ghent University, Unit HortiCell, Coupure Links 653, 9000 Ghent, Belgium
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, , Canada, ON M5S 3B2
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, Canada, ON M5S 3B2
| |
Collapse
|
30
|
Leftley N, Banda J, Pandey B, Bennett M, Voß U. Uncovering How Auxin Optimizes Root Systems Architecture in Response to Environmental Stresses. Cold Spring Harb Perspect Biol 2021; 13:a040014. [PMID: 33903159 PMCID: PMC8559545 DOI: 10.1101/cshperspect.a040014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since colonizing land, plants have developed mechanisms to tolerate a broad range of abiotic stresses that include flooding, drought, high salinity, and nutrient limitation. Roots play a key role acclimating plants to these as their developmental plasticity enables them to grow toward more favorable conditions and away from limiting or harmful stresses. The phytohormone auxin plays a key role translating these environmental signals into developmental outputs. This is achieved by modulating auxin levels and/or signaling, often through cross talk with other hormone signals like abscisic acid (ABA) or ethylene. In our review, we discuss how auxin controls root responses to water, osmotic and nutrient-related stresses, and describe how the synthesis, degradation, transport, and response of this key signaling hormone helps optimize root architecture to maximize resource acquisition while limiting the impact of abiotic stresses.
Collapse
Affiliation(s)
- Nicola Leftley
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Jason Banda
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Bipin Pandey
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Ute Voß
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| |
Collapse
|
31
|
Duan L, Pérez-Ruiz JM, Cejudo FJ, Dinneny JR. Characterization of CYCLOPHILLIN38 shows that a photosynthesis-derived systemic signal controls lateral root emergence. PLANT PHYSIOLOGY 2021; 185:503-518. [PMID: 33721893 PMCID: PMC8133581 DOI: 10.1093/plphys/kiaa032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/29/2020] [Indexed: 05/10/2023]
Abstract
Photosynthesis in leaves generates fixed-carbon resources and essential metabolites that support sink tissues, such as roots. Two of these metabolites, sucrose and auxin, promote growth in root systems, but the explicit connection between photosynthetic activity and control of root architecture has not been explored. Through a mutant screen to identify pathways regulating root system architecture, we identified a mutation in the Arabidopsis thaliana CYCLOPHILIN 38 (CYP38) gene, which causes accumulation of pre-emergent stage lateral roots. CYP38 was previously reported to stabilize photosystem II (PSII) in chloroplasts. CYP38 expression is enriched in shoots, and grafting experiments show that the gene acts non-cell-autonomously to promote lateral root emergence. Growth of wild-type plants under low-light conditions phenocopies the cyp38 lateral root emergence defect, as does the inhibition of PSII-dependent electron transport or Nicotinamide adenine dinucleotide phosphate (NADPH) production. Importantly, these perturbations to photosynthetic activity rapidly suppress lateral root emergence, which is separate from their effects on shoot size. Supplementary exogenous sucrose largely rescued primary root (PR) growth in cyp38, but not lateral root growth. Auxin (indole-3-acetic acid (IAA)) biosynthesis from tryptophan is dependent on reductant generated during photosynthesis. Consistently, we found that wild-type seedlings grown under low light and cyp38 mutants have highly diminished levels of IAA in root tissues. IAA treatment rescued the cyp38 lateral root defect, revealing that photosynthesis promotes lateral root emergence partly through IAA biosynthesis. These data directly confirm the importance of CYP38-dependent photosynthetic activity in supporting root growth, and define the specific contributions of two metabolites in refining root architecture under light-limited conditions.
Collapse
Affiliation(s)
- Lina Duan
- Biology Department, Stanford University, Stanford, CA 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda Américo Vespucio 49, 41092 Sevilla, Spain
| | - José R Dinneny
- Biology Department, Stanford University, Stanford, CA 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- Author for communication:
| |
Collapse
|
32
|
Watanabe D, Takahashi I, Jaroensanti-Tanaka N, Miyazaki S, Jiang K, Nakayasu M, Wada M, Asami T, Mizutani M, Okada K, Nakajima M. The apple gene responsible for columnar tree shape reduces the abundance of biologically active gibberellin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1026-1034. [PMID: 33211343 DOI: 10.1111/tpj.15084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Ectopic expression of the apple 2-oxoglutarate-dependent dioxygenase (DOX, 2ODD) gene, designated MdDOX-Co, is thought to cause the columnar shape of apple trees. However, the mechanism underlying the formation of such a unique tree shape remains unclear. To solve this problem, we demonstrated that Arabidopsis thaliana overexpressing MdDOX-Co contained reduced levels of biologically active gibberellin (GA) compared with wild type. In summary: (i) with biochemical approaches, the gene product MdDOX-Co was shown to metabolize active GA A4 (GA4 ) to GA58 (12-OH-GA4 ) in vitro. MdDOX-Co also metabolized its precursors GA12 and GA9 to GA111 (12-OH-GA12 ) and GA70 (12-OH-GA9 ), respectively; (ii) Of the three 12-OH-GAs, GA58 was still active physiologically, but not GA70 or GA111 ; (iii) Arabidopsis MdDOX-Co OE transformants converted exogenously applied deuterium-labeled (d2 )-GA12 to d2 -GA111 but not to d2 -GA58 , whereas transformants converted applied d2 -GA9 to d2 -GA58 ; (iv) GA111 is converted poorly to GA70 by GA 20-oxidases in vitro when GA12 is efficiently metabolized to GA9 ; (v) no GA58 was detected endogenously in MdDOX-Co OE transformants. Overall, we conclude that 12-hydroxylation of GA12 by MdDOX-Co prevents the biosynthesis of biologically active GAs in planta, resulting in columnar phenotypes.
Collapse
Affiliation(s)
- Daichi Watanabe
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ikuo Takahashi
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naiyanate Jaroensanti-Tanaka
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Sho Miyazaki
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kai Jiang
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaru Nakayasu
- Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Masato Wada
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaharu Mizutani
- Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Kazuma Okada
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
33
|
Zhang Y, Cheng P, Wang Y, Li Y, Su J, Chen Z, Yu X, Shen W. Genetic elucidation of hydrogen signaling in plant osmotic tolerance and stomatal closure via hydrogen sulfide. Free Radic Biol Med 2020; 161:1-14. [PMID: 32987125 DOI: 10.1016/j.freeradbiomed.2020.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Although ample evidence showed that exogenous hydrogen gas (H2) controls a diverse range of physiological functions in both animals and plants, the selective antioxidant mechanism, in some cases, is questioned. Importantly, most of the experiments on the function of H2 in plants were based on pharmacological approaches due to the synthesis pathway(s) in plants are still unclear. Here, we observed that the seedling growth inhibition of Arabidopsis caused by low doses of mannitol could progressively recover by recuperation, accompanied with the increased hydrogenase activity and H2 synthesis. To investigate the functions of endogenous H2, a hydrogenase gene (CrHYD1) for H2 biosynthesis from Chlamydomonas reinhardtii was expressed in Arabidopsis. Transgenic plants could intensify higher H2 synthesis compared with wild type and Arabidopsis transformed with the empty vector, and exhibited enhanced osmotic tolerance in both germination and post-germination stages. In response to mannitol, transgenic plants enhanced L-Cys desulfhydrase (DES)-dependent hydrogen sulfide (H2S) synthesis in guard cells and thereafter stomatal closure. The application of des mutant further highlights H2S acting as a downstream molecule of endogenous H2 control of stomatal closure. These results thus open a new window for increasing plant tolerance to osmotic stress.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiuchang Su
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziping Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuli Yu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
34
|
Thodberg S, Sørensen M, Bellucci M, Crocoll C, Bendtsen AK, Nelson DR, Motawia MS, Møller BL, Neilson EHJ. A flavin-dependent monooxygenase catalyzes the initial step in cyanogenic glycoside synthesis in ferns. Commun Biol 2020; 3:507. [PMID: 32917937 PMCID: PMC7486406 DOI: 10.1038/s42003-020-01224-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Cyanogenic glycosides form part of a binary plant defense system that, upon catabolism, detonates a toxic hydrogen cyanide bomb. In seed plants, the initial step of cyanogenic glycoside biosynthesis-the conversion of an amino acid to the corresponding aldoxime-is catalyzed by a cytochrome P450 from the CYP79 family. An evolutionary conundrum arises, as no CYP79s have been identified in ferns, despite cyanogenic glycoside occurrence in several fern species. Here, we report that a flavin-dependent monooxygenase (fern oxime synthase; FOS1), catalyzes the first step of cyanogenic glycoside biosynthesis in two fern species (Phlebodium aureum and Pteridium aquilinum), demonstrating convergent evolution of biosynthesis across the plant kingdom. The FOS1 sequence from the two species is near identical (98%), despite diversifying 140 MYA. Recombinant FOS1 was isolated as a catalytic active dimer, and in planta, catalyzes formation of an N-hydroxylated primary amino acid; a class of metabolite not previously observed in plants.
Collapse
Affiliation(s)
- Sara Thodberg
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Matteo Bellucci
- Novo Nordisk Foundation Center for Protein Research, Protein Production and Characterization Platform, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Christoph Crocoll
- Section for Plant Molecular Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Amalie Kofoed Bendtsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - David Ralph Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, 858 Madison Ave. Suite G01, Memphis, TN, 38163, USA
| | - Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Elizabeth Heather Jakobsen Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
35
|
Lo S, Cheng M, Hsing YC, Chen Y, Lee K, Hong Y, Hsiao Y, Hsiao A, Chen P, Wong L, Chen N, Reuzeau C, Ho TD, Yu S. Rice Big Grain 1 promotes cell division to enhance organ development, stress tolerance and grain yield. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1969-1983. [PMID: 32034845 PMCID: PMC7415788 DOI: 10.1111/pbi.13357] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 01/07/2020] [Accepted: 01/19/2020] [Indexed: 05/18/2023]
Abstract
Grain/seed yield and plant stress tolerance are two major traits that determine the yield potential of many crops. In cereals, grain size is one of the key factors affecting grain yield. Here, we identify and characterize a newly discovered gene Rice Big Grain 1 (RBG1) that regulates grain and organ development, as well as abiotic stress tolerance. Ectopic expression of RBG1 leads to significant increases in the size of not only grains but also other major organs such as roots, shoots and panicles. Increased grain size is primarily due to elevated cell numbers rather than cell enlargement. RBG1 is preferentially expressed in meristematic and proliferating tissues. Ectopic expression of RBG1 promotes cell division, and RBG1 co-localizes with microtubules known to be involved in cell division, which may account for the increase in organ size. Ectopic expression of RBG1 also increases auxin accumulation and sensitivity, which facilitates root development, particularly crown roots. Moreover, overexpression of RBG1 up-regulated a large number of heat-shock proteins, leading to enhanced tolerance to heat, osmotic and salt stresses, as well as rapid recovery from water-deficit stress. Ectopic expression of RBG1 regulated by a specific constitutive promoter, GOS2, enhanced harvest index and grain yield in rice. Taken together, we have discovered that RBG1 regulates two distinct and important traits in rice, namely grain yield and stress tolerance, via its effects on cell division, auxin and stress protein induction.
Collapse
Affiliation(s)
- Shuen‐Fang Lo
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Ming‐Lung Cheng
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan, ROC
| | | | - Yi‐Shih Chen
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - Kuo‐Wei Lee
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - Ya‐Fang Hong
- Institute of Plant and Microbial BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - Yu Hsiao
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - An‐Shan Hsiao
- Institute of Plant and Microbial BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - Pei‐Jing Chen
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Lai‐In Wong
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Nan‐Chen Chen
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Institute of Plant and Microbial BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | | | - Tuan‐Hua David Ho
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan, ROC
- Institute of Plant and Microbial BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Su‐May Yu
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan, ROC
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
| |
Collapse
|
36
|
Genome-wide identification and expression profiling of the YUCCA gene family in Malus domestica. Sci Rep 2020; 10:10866. [PMID: 32616911 PMCID: PMC7331580 DOI: 10.1038/s41598-020-66483-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
The plant hormone auxin is essential for plant growth and development. YUCCA proteins catalyse the rate-limiting step for endogenous auxin biosynthesis. In this study, we isolated 20 MdYUCCA genes from apple genome. MdYUCCA6a, MdYUCCA8a, and MdYUCCA10a were expressed in most organs and could support whole plant basal auxin synthesis. MdYUCCA4a, MdYUCCA10b, and MdYUCCA11a expression indicated roles for these genes in auxin biosynthesis in vegetative organs. MdYUCCA2b, MdYUCCA11b, and MdYUCCA11d were mainly expressed in flower organs. High temperature induced the expression of MdYUCCA4a, MdYUCCA6a, MdYUCCA8a, and MdYUCCA10a, and down-regulated the expression of MdYUCCA2b and MdYUCCA6b. Dual-luciferase assay indicated that MdPIF4 could trans-activate the MdYUCCA8a promoter. Overexpression of MdYUCCA8a increased IAA content, increased stem height, enhanced apical dominance, and led to silique malformation. These results provide a foundation for further investigation of the biological functions of apple MdYUCCAs.
Collapse
|
37
|
Abstract
Flavin-dependent monooxygenases (FMOs) are ancient enzymes present in all kingdoms of life. FMOs typically catalyze the incorporation of an oxygen atom from molecular oxygen into small molecules. To date, the majority of functional characterization studies have been performed on mammalian, fungal and bacterial FMOs, showing that they play fundamental roles in drug and xenobiotic metabolism. By contrast, our understanding of FMOs across the plant kingdom is very limited, despite plants possessing far greater FMO diversity compared to both bacteria and other multicellular organisms. Here, we review the progress of plant FMO research, with a focus on FMO diversity and functionality. Significantly, of the FMOs characterized to date, they all perform oxygenation reactions that are crucial steps within hormone metabolism, pathogen resistance, signaling and chemical defense. This demonstrates the fundamental role FMOs have within plant metabolism, and presents significant opportunities for future research pursuits and downstream applications.
Collapse
|
38
|
Munguía-Rodríguez AG, López-Bucio JS, Ruiz-Herrera LF, Ortiz-Castro R, Guevara-García ÁA, Marsch-Martínez N, Carreón-Abud Y, López-Bucio J, Martínez-Trujillo M. YUCCA4 overexpression modulates auxin biosynthesis and transport and influences plant growth and development via crosstalk with abscisic acid in Arabidopsis thaliana. Genet Mol Biol 2020; 43:e20190221. [PMID: 32105289 PMCID: PMC7197984 DOI: 10.1590/1678-4685-gmb-2019-0221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/18/2019] [Indexed: 01/29/2023] Open
Abstract
Auxin regulates a plethora of events during plant growth and development, acting
in concert with other phytohormones. YUCCA genes encode flavin
monooxygenases that function in tryptophan-dependent auxin biosynthesis. To
understand the contribution of the YUCCA4
(YUC4) gene on auxin homeostasis, plant growth and
interaction with abscisic acid (ABA) signaling, 35S::YUC4
seedlings were generated, which showed elongated hypocotyls with hyponastic
leaves and changes in root system architecture that correlate with enhanced
auxin responsive gene expression. Differential expression of PIN1, 2, 3 and 7
auxin transporters was detected in roots of YUC4 overexpressing
seedlings compared to the wild-type: PIN1 was down-regulated whereas PIN2, PIN3
and PIN7 were up-regulated. Noteworthy, 35S::YUC4 lines showed
enhanced sensitivity to ABA on seed germination and post-embryonic root growth,
involving ABI4 transcription factor. The auxin reporter genes DR5::GUS,
DR5::GFP and BA3::GUS further revealed that
abscisic acid impairs auxin responses in 35S::YUC4 seedlings.
Our results indicate that YUC4 overexpression influences
several aspects of auxin homeostasis and reveal the critical roles of ABI4
during auxin-ABA interaction in germination and primary root growth.
Collapse
Affiliation(s)
- Aarón Giovanni Munguía-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria. Morelia, Michoacán, Mexico.,Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, Mexico
| | - Jesús Salvador López-Bucio
- CONACYT-Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria. Morelia, Michoacán, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria. Morelia, Michoacán, Mexico
| | - Randy Ortiz-Castro
- CONACYT-Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C. Carretera antigua a Coatepec 351, Colonia El Haya. Xalapa, Veracruz, Mexico
| | | | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Yazmín Carreón-Abud
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria. Morelia, Michoacán, Mexico
| | - Miguel Martínez-Trujillo
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, Mexico
| |
Collapse
|
39
|
AtTPR10 Containing Multiple ANK and TPR Domains Exhibits Chaperone Activity and Heat-Shock Dependent Structural Switching. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Among the several tetratricopeptide (TPR) repeat-containing proteins encoded by the Arabidopsis thaliana genome, AtTPR10 exhibits an atypical structure with three TPR domain repeats at the C-terminus in addition to seven ankyrin (ANK) domain repeats at the N-terminus. However, the function of AtTPR10 remains elusive. Here, we investigated the biochemical function of AtTPR10. Bioinformatic analysis revealed that AtTPR10 expression is highly enhanced by heat shock compared with the other abiotic stresses, suggesting that AtTPR10 functions as a molecular chaperone to protect intracellular proteins from thermal stresses. Under the heat shock treatment, the chaperone activity of AtTPR10 increased significantly; this was accompanied by a structural switch from the low molecular weight (LMW) protein to a high molecular weight (HMW) complex. Analysis of two truncated fragments of AtTPR10 containing the TPR and ANK repeats showed that each domain exhibits a similar range of chaperone activity (approximately one-third of that of the native protein), suggesting that each domain cooperatively regulates the chaperone function of AtTPR10. Additionally, both truncated fragments of AtTPR10 underwent structural reconfiguration to form heat shock-dependent HMW complexes. Our results clearly demonstrate that AtTPR10 functions as a molecular chaperone in plants to protect intracellular targets from heat shock stress.
Collapse
|
40
|
Choudhary A, Kumar A, Kaur N. ROS and oxidative burst: Roots in plant development. PLANT DIVERSITY 2020; 42:33-43. [PMID: 32140635 PMCID: PMC7046507 DOI: 10.1016/j.pld.2019.10.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) are widely generated in various redox reactions in plants. In earlier studies, ROS were considered toxic byproducts of aerobic metabolism. In recent years, it has become clear that ROS act as plant signaling molecules that participate in various processes such as growth and development. Several studies have elucidated the roles of ROS from seed germination to senescence. However, there is much to discover about the diverse roles of ROS as signaling molecules and their mechanisms of sensing and response. ROS may provide possible benefits to plant physiological processes by supporting cellular proliferation in cells that maintain basal levels prior to oxidative effects. Although ROS are largely perceived as either negative by-products of aerobic metabolism or makers for plant stress, elucidating the range of functions that ROS play in growth and development still require attention.
Collapse
|
41
|
The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants. Int J Mol Sci 2019; 20:ijms20246343. [PMID: 31888214 PMCID: PMC6941117 DOI: 10.3390/ijms20246343] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Auxin plays essential roles in plant normal growth and development. The auxin signaling pathway relies on the auxin gradient within tissues and cells, which is facilitated by both local auxin biosynthesis and polar auxin transport (PAT). The TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA)/YUCCA (YUC) pathway is the most important and well-characterized pathway that plants deploy to produce auxin. YUCs function as flavin-containing monooxygenases (FMO) catalyzing the rate-limiting irreversible oxidative decarboxylation of indole-3-pyruvate acid (IPyA) to form indole-3-acetic acid (IAA). The spatiotemporal dynamic expression of different YUC gene members finely tunes the local auxin biosynthesis in plants, which contributes to plant development as well as environmental responses. In this review, the recent advances in the identification, evolution, molecular structures, and functions in plant development and stress response regarding the YUC gene family are addressed.
Collapse
|
42
|
Sertse D, You FM, Ravichandran S, Cloutier S. The Complex Genetic Architecture of Early Root and Shoot Traits in Flax Revealed by Genome-Wide Association Analyses. FRONTIERS IN PLANT SCIENCE 2019; 10:1483. [PMID: 31798617 PMCID: PMC6878218 DOI: 10.3389/fpls.2019.01483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/25/2019] [Indexed: 05/05/2023]
Abstract
Roots are fundamental organs for water and nutrient uptake as well as for signal transduction in response to biotic and abiotic stresses. Flax has a shallow tap root system that relies mostly on top soil nutrient and moisture resources. The crop can easily be outcompeted by weeds or other crops in intercropping systems, especially in moisture deficit conditions. However, there is a wide range of variation among genotypes in terms of performance under scarce resources such as moisture limitation. Here we phenotyped 15 root, two shoot traits and shoot to root dry weight ratio on 115 flax accessions grown in a hydroponic pouch system and performed a genome-wide association study (GWAS) based on seven different models to identify quantitative trait loci underlying these traits. Significant variation among genotypes was observed for the two shoot and 12 of the 14 root traits. Shoot dry weight was correlated with root network volume, length, surface area, and root dry weight (r > 0.5, P < 0.001) but not significantly correlated with root depth (r = 0.033, P > 0.05). The seven GWAS models detected a total of 228 quantitative trait nucleotides (QTNs) for 16 traits. Most loci, defined by an interval of 100 kb up and downstream of the QTNs, harbored genes known to play role(s) in root and shoot development, suggesting them as candidates. Examples of candidate genes linked to root network QTNs included genes encoding GRAS transcription factors, mitogen-activated protein kinases, and auxin related lateral organ boundary proteins while QTN loci for shoot dry weight harbored genes involved in photomorphogenesis and plant immunity. These results provide insights into the genetic bases of early shoot and root development traits in flax that could be capitalized upon to improve its root architecture, particularly in view of better withstanding water limiting conditions during the cropping season.
Collapse
Affiliation(s)
- Demissew Sertse
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Frank M. You
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sridhar Ravichandran
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
43
|
Blakeslee JJ, Spatola Rossi T, Kriechbaumer V. Auxin biosynthesis: spatial regulation and adaptation to stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5041-5049. [PMID: 31198972 DOI: 10.1093/jxb/erz283] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/03/2019] [Indexed: 05/25/2023]
Abstract
The plant hormone auxin is essential for plant growth and development, controlling both organ development and overall plant architecture. Auxin homeostasis is regulated by coordination of biosynthesis, transport, conjugation, sequestration/storage, and catabolism to optimize concentration-dependent growth responses and adaptive responses to temperature, water stress, herbivory, and pathogens. At present, the best defined pathway of auxin biosynthesis is the TAA/YUC route, in which the tryptophan aminotransferases TAA and TAR and YUCCA flavin-dependent monooxygenases produce the auxin indole-3-acetic acid from tryptophan. This review highlights recent advances in our knowledge of TAA/YUC-dependent auxin biosynthesis focusing on membrane localization of auxin biosynthetic enzymes, differential regulation in root and shoot tissue, and auxin biosynthesis during abiotic stress.
Collapse
Affiliation(s)
- Joshua J Blakeslee
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, USA
| | - Tatiana Spatola Rossi
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
44
|
Shen L, Zhong T, Wang L, Zhang Q, Jin H, Xu M, Ye J. Characterization the role of a UFC homolog, AtAuxRP3, in the regulation of Arabidopsis seedling growth and stress response. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:152990. [PMID: 31207460 DOI: 10.1016/j.jplph.2019.152990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Auxin is a well-known, crucial regulator of the entire plant lifecycle, not only orchestrating many aspects of plant growth and development, but also playing various roles in biotic and abiotic stress. This study reports the isolation and functional characterization of a DUF-966 domain-containing gene, At3g46110, re-named AtAuxRP3. AtAuxRP3 overexpression in Arabidopsis increased the levels of endogenous indole-3-acetic acid, enhanced expression of the auxin-responsive reporter DR5:GUS near the vegetative shoot apex, and led to ectopic activation of auxin signaling, including dysmorphic (narrow, asymmetric) rosette leaves, abnormal emergence of inflorescence, inhibition of primary root elongation and arrest of dark-grown hypocotyls. AtAuxRP3-OX lines also showed decreased tolerance to NaCl and osmotic stress during Arabidopsis seeds germination and young seedling growth. Genome-wide transcriptomic analysis showed AtAuxRP3-OX seedlings displayed increases in the expression of genes that group in a variety of developmental categories, while other downregulated genes were associated with stress responses. Our results provide evidence for a regulatory role of AtAuxRP3 in endogenous auxin levels, leaf development, and initiation of inflorescence stems early in reproductive development during Arabidopsis seedling growth.
Collapse
Affiliation(s)
- Liping Shen
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China; State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Tao Zhong
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Lina Wang
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Qianqian Zhang
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Hongyu Jin
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Mingling Xu
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Jianrong Ye
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China.
| |
Collapse
|
45
|
Ahmad R, Liu Y, Wang TJ, Meng Q, Yin H, Wang X, Wu Y, Nan N, Liu B, Xu ZY. GOLDEN2-LIKE Transcription Factors Regulate WRKY40 Expression in Response to Abscisic Acid. PLANT PHYSIOLOGY 2019; 179:1844-1860. [PMID: 30723180 PMCID: PMC6446771 DOI: 10.1104/pp.18.01466] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/29/2019] [Indexed: 05/20/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) GARP (Golden2, ARR-B, Psr1) family transcription factors, GOLDEN2-LIKE1 and -2 (GLK1/2), function in different biological processes; however, whether and how these transcription factors modulate the response to abscisic acid (ABA) remain unknown. In this study, we used a glk1 glk2 double mutant to examine the role of GLK1/2 in the ABA response. The glk1 glk2 double mutant displayed ABA-hypersensitive phenotypes during seed germination and seedling development and an osmotic stress-resistant phenotype during seedling development. Genome-wide RNA sequencing analysis of the glk1 glk2 double mutant revealed that GLK1/2 regulate several ABA-responsive genes, including WRKY40, in the presence of ABA. Chromatin immunoprecipitation and gel retardation assays showed that GLK1/2 directly associate with the WRKY40 promoter via the recognition of a consensus sequence. Additionally, RNA sequencing analysis of the glk1 glk2 double mutant and wrky40 single mutant revealed that GLK1/2 and WRKY40 control a common set of downstream target genes in response to ABA. Furthermore, results of a genetic interaction test showed that the glk1 glk2 wrky40 triple mutant displayed similar ABA hypersensitivity to the wrky40 single mutant and the glk1 glk2 double mutant, while the glk1 glk2 wrky40 abi5-c (ABI5 CRISPR/Cas9 mutant) quadruple mutant displayed similar ABA hyposensitivity to the abi5-7 single mutant. Based on these results, we propose that the GLK1/2-WRKY40 transcription module plays a negative regulatory role in the ABA response.
Collapse
Affiliation(s)
- Rafiq Ahmad
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Qingxiang Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Hao Yin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiao Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yifan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
46
|
Jan S, Abbas N, Ashraf M, Ahmad P. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. PROTOPLASMA 2019; 256:313-329. [PMID: 30311054 DOI: 10.1007/s00709-018-1310-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Plant leaves offer an exclusive windowpane to uncover the changes in organs, tissues, and cells as they advance towards the process of senescence and death. Drought-induced leaf senescence is an intricate process with remarkably coordinated phases of onset, progression, and completion implicated in an extensive reprogramming of gene expression. Advancing leaf senescence remobilizes nutrients to younger leaves thereby contributing to plant fitness. However, numerous mysteries remain unraveled concerning leaf senescence. We are not still able to correlate leaf senescence and drought stress to endogenous and exogenous environments. Furthermore, we need to decipher how molecular mechanisms of the leaf senescence and levels of drought tolerance are advanced and how is the involvement of SAGs in drought tolerance and plant fitness. This review provides the perspicacity indispensable for facilitating our coordinated point of view pertaining to leaf senescence together with inferences on progression of whole plant aging. The main segments discussed in the review include coordination between hormonal signaling, leaf senescence, drought tolerance, and crosstalk between hormones in leaf senescence regulation.
Collapse
Affiliation(s)
- Sumira Jan
- ICAR- Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India
| | - Nazia Abbas
- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Jammu and Kashmir, India
| | | | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
47
|
Gourlay G, Constabel CP. Condensed tannins are inducible antioxidants and protect hybrid poplar against oxidative stress. TREE PHYSIOLOGY 2019; 39:345-355. [PMID: 30917196 DOI: 10.1093/treephys/tpy143] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 05/12/2023]
Abstract
Condensed tannins (CTs) have been studied extensively as potential defenses against pests and pathogens, and for their beneficial effects on human health. They are known to possess high in vitro antioxidant capacity, but whether they can function as in planta antioxidants for protection against oxidative stress has not been previously tested. Here, we show that stress induction of CTs in poplar (Populus) is matched closely by an increase in antioxidant activity under both high light and nitrogen deficiency. We also investigate the effects of CTs as in vivo antioxidants directly, using transgenic poplar plants which overexpress poplar MYB transcription factors that regulate the CT pathway. These transgenics have 50-fold higher CT concentrations than controls, and and also have dramatically higher antioxidant activity. High-CT and control poplar leaves were exposed to methyl viologen for 24 h. Chlorophyll fluorescence was used to measure maximum quantum efficiency of photosystem II photochemistry (Fv/Fm), and leaf discs were stained with 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) to assess hydrogen peroxide and superoxide levels. After methyl viologen exposure, high-CT transgenics retained higher Fv/Fm ratios and accumulated less hydrogen peroxide and superoxide than the controls. Our findings indicate that high-CT concentrations protect poplar against methyl viologen-induced oxidative stress and suggest a broader function of CTs than previously supposed.
Collapse
Affiliation(s)
- Geraldine Gourlay
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada
| | - C Peter Constabel
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada
| |
Collapse
|
48
|
Abstract
Reactive oxygen species (ROS) are produced by metabolic pathways in almost all cells. As signaling components, ROS are best known for their roles in abiotic and biotic stress-related events. However, recent studies have revealed that they are also involved in numerous processes throughout the plant life cycle, from seed development and germination, through to root, shoot and flower development. Here, we provide an overview of ROS production and signaling in the context of plant growth and development, highlighting the key functions of ROS and their interactions with plant phytohormonal networks.
Collapse
Affiliation(s)
- Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium, and Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium, and Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
49
|
Li W, Nishiyama R, Watanabe Y, Van Ha C, Kojima M, An P, Tian L, Tian C, Sakakibara H, Tran LSP. Effects of overproduced ethylene on the contents of other phytohormones and expression of their key biosynthetic genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:170-177. [PMID: 29783182 DOI: 10.1016/j.plaphy.2018.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 05/12/2023]
Abstract
Ethylene is involved in regulation of various aspects of plant growth and development. Physiological and genetic analyses have indicated the existence of crosstalk between ethylene and other phytohormones, including auxin, cytokinin (CK), abscisic acid (ABA), gibberellin (GA), salicylic acid (SA), jasmonic acid (JA), brassinosteroid (BR) and strigolactone (SL) in regulation of different developmental processes. However, the effects of ethylene on the biosynthesis and contents of these hormones are not fully understood. Here, we investigated how overproduction of ethylene may affect the contents of other plant hormones using the ethylene-overproducing mutant ethylene-overproducer 1 (eto1-1). The contents of various hormones and transcript levels of the associated biosynthetic genes in the 10-day-old Arabidopsis eto1-1 mutant and wild-type (WT) plants were determined and compared. Higher levels of CK and ABA, while lower levels of auxin, SA and GA were observed in eto1-1 plants in comparison with WT, which was supported by the up- or down-regulation of their biosynthetic genes. Although we could not quantify the BR and SL contents in Arabidopsis, we observed that the transcript levels of the potential rate-limiting BR and SL biosynthetic genes were increased in the eto1-1 versus WT plants, suggesting that BR and SL levels might be enhanced by ethylene overproduction. JA level was not affected by overproduction of ethylene, which might be explained by unaltered expression level of the proposed rate-limiting JA biosynthetic gene allene oxide synthase. Taken together, our results suggest that ET affects the levels of auxin, CK, ABA, SA and GA, and potentially BR and SL, by influencing the expression of genes involved in the rate-limiting steps of their biosynthesis.
Collapse
Affiliation(s)
- Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Rie Nishiyama
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Chien Van Ha
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikiko Kojima
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Ping An
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888, Shengbei Street, Changchun 130102, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888, Shengbei Street, Changchun 130102, China
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
| |
Collapse
|
50
|
Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:313-328. [PMID: 29237069 PMCID: PMC5853230 DOI: 10.1093/jxb/erx375] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Providing a mechanistic understanding of the crucial roles of the phytohormone auxin has been an important and coherent aspect of plant biology research. Since its discovery more than a century ago, prominent advances have been made in the understanding of auxin action, ranging from metabolism and transport to cellular and transcriptional responses. However, there is a long road ahead before a thorough understanding of its complex effects is achieved, because a lot of key information is still missing. The availability of an increasing number of technically advanced scientific tools has boosted the basic discoveries in auxin biology. A plethora of bioactive small molecules, consisting of the synthetic auxin-like herbicides and the more specific auxin-related compounds, developed as a result of the exploration of chemical space by chemical biology, have made the tool box for auxin research more comprehensive. This review mainly focuses on the compounds targeting the auxin co-receptor complex, demonstrates the various ways to use them, and shows clear examples of important basic knowledge obtained by their usage. Application of these precise chemical tools, together with an increasing amount of structural information for the major components in auxin action, will certainly aid in strengthening our insights into the complexity and diversity of auxin response.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | - Peter Grones
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | | |
Collapse
|