1
|
Moore JJ, Rashid SK, Bicker E, Johnson CD, Codrington N, Chklovskii DB, Basu J. Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3. Nat Commun 2025; 16:1119. [PMID: 39875374 PMCID: PMC11775317 DOI: 10.1038/s41467-025-56289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons. We validated the method on sparsely labeled preparations and synthetic data, predicting an optimal labeling density for high experimental throughput and analytical accuracy. Our method detected rapid, local dendritic activity. Dendrites showed robust spatial tuning, similar to soma but with higher activity rates. Across days, apical dendrites remained more stable and outperformed in decoding of the animal's position. Thus, population-level apical and basal dendritic differences may reflect distinct compartment-specific input-output functions and computations in CA3. These tools will facilitate future studies mapping sub-cellular activity and their relation to behavior.
Collapse
Affiliation(s)
- Jason J Moore
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, 10010, USA.
| | - Shannon K Rashid
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Emmett Bicker
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Cara D Johnson
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Naomi Codrington
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Dmitri B Chklovskii
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, 10010, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
2
|
Boutonnet M, Bünemann M, Perroy J. The voltage sensitivity of G-protein coupled receptors: Unraveling molecular mechanisms and physiological implications. Pharmacol Ther 2024; 264:108741. [PMID: 39489434 DOI: 10.1016/j.pharmthera.2024.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
In the landscape of proteins controlled by membrane voltage (Vm), like voltage-gated ionotropic channels, the emergence of the voltage sensitivity within the vast family of G-protein coupled receptors (GPCRs) marked a significant milestone at the onset of the 21st century. Since its discovery, extensive research has been devoted to understanding the intricate relationship between Vm and GPCRs. Approximately 30 GPCRs out of a family comprising more than 800 receptors have been implicated in Vm-dependent positive and negative regulation. GPCRs stand out as the quintessential regulators of synaptic transmission in neurons, where they encounter substantial variations in Vm. However, the molecular mechanism underlying the Vm sensor of GPCRs remains enigmatic, hindered by the scarcity of mutant GPCRs insensitive to Vm yet functionally intact, impeding a comprehensive understanding of this unique property in physiology. Nevertheless, two decades of dedicated research have furnished numerous insights into the molecular aspects of GPCR Vm-sensing, accompanied by recently proposed physiological roles as well as pharmacological potential, which we encapsulate in this review. The Vm sensitivity of GPCRs emerges as a pivotal attribute, shedding light on previously unforeseen roles in synaptic transmission and extending beyond, underscoring its significance in cellular signaling and physiological processes.
Collapse
Affiliation(s)
- Marin Boutonnet
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Lenz M, Kruse P, Eichler A, Straehle J, Hemeling H, Stöhr P, Beck J, Vlachos A. Clinical parameters affect the structure and function of superficial pyramidal neurons in the adult human neocortex. Brain Commun 2024; 6:fcae351. [PMID: 39474044 PMCID: PMC11518857 DOI: 10.1093/braincomms/fcae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 10/04/2024] [Indexed: 01/05/2025] Open
Abstract
The interplay between neuronal structure and function underpins the dynamic nature of neocortical networks. Despite extensive studies in animal models, our understanding of structure-function interrelations in the adult human brain remains incomplete. Recent methodological advances have facilitated the functional analysis of individual neurons within the human neocortex, providing a new understanding of fundamental brain processes. However, the factors contributing to patient-specific neuronal properties have not been thoroughly explored. In this observational study, we investigated the structural and functional variability of superficial pyramidal neurons in the adult human neocortex. Using whole-cell patch-clamp recordings and post hoc analyses of dendritic spine morphology in acute neocortical slice preparations from surgical resections of seven patients, we assessed age-related effects on excitatory neurotransmission, membrane properties and dendritic spine morphologies. These results specify age as an endogenous factor that might affect the structural and functional properties of superficial pyramidal neurons.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hanna Hemeling
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Phyllis Stöhr
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
4
|
Leong LM, Storace DA. Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight. NEUROPHOTONICS 2024; 11:033402. [PMID: 38288247 PMCID: PMC10823906 DOI: 10.1117/1.nph.11.3.033402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) are protein-based optical sensors that allow for measurements from genetically defined populations of neurons. Although in vivo imaging in the mammalian brain with early generation GEVIs was difficult due to poor membrane expression and low signal-to-noise ratio, newer and more sensitive GEVIs have begun to make them useful for answering fundamental questions in neuroscience. We discuss principles of imaging using GEVIs and genetically encoded calcium indicators, both useful tools for in vivo imaging of neuronal activity, and review some of the recent mechanistic advances that have led to GEVI improvements. We provide an overview of the mouse olfactory bulb (OB) and discuss recent studies using the GEVI ArcLight to study different cell types within the bulb using both widefield and two-photon microscopy. Specific emphasis is placed on using GEVIs to begin to study the principles of concentration coding in the OB, how to interpret the optical signals from population measurements in the in vivo brain, and future developments that will push the field forward.
Collapse
Affiliation(s)
- Lee Min Leong
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
| | - Douglas A. Storace
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
- Florida State University, Program in Neuroscience, Tallahassee, Florida, United States
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States
| |
Collapse
|
5
|
Kaufhold D, Maristany de Las Casas E, Ocaña-Fernández MDÁ, Cazala A, Yuan M, Kulik A, Cholvin T, Steup S, Sauer JF, Eyre MD, Elgueta C, Strüber M, Bartos M. Spine plasticity of dentate gyrus parvalbumin-positive interneurons is regulated by experience. Cell Rep 2024; 43:113806. [PMID: 38377001 DOI: 10.1016/j.celrep.2024.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Experience-driven alterations in neuronal activity are followed by structural-functional modifications allowing cells to adapt to these activity changes. Structural plasticity has been observed for cortical principal cells. However, how GABAergic interneurons respond to experience-dependent network activity changes is not well understood. We show that parvalbumin-expressing interneurons (PVIs) of the dentate gyrus (DG) possess dendritic spines, which undergo behaviorally induced structural dynamics. Glutamatergic inputs at PVI spines evoke signals with high spatial compartmentalization defined by neck length. Mice experiencing novel contexts form more PVI spines with elongated necks and exhibit enhanced network and PVI activity and cFOS expression. Enhanced green fluorescent protein reconstitution across synaptic partner-mediated synapse labeling shows that experience-driven PVI spine growth boosts targeting of PVI spines over shafts by glutamatergic synapses. Our findings propose a role for PVI spine dynamics in regulating PVI excitation by their inputs, which may allow PVIs to dynamically adjust their functional integration in the DG microcircuitry in relation to network computational demands.
Collapse
Affiliation(s)
- Dorthe Kaufhold
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | | | - Aurore Cazala
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mei Yuan
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thibault Cholvin
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Stefanie Steup
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mark D Eyre
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Claudio Elgueta
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Michael Strüber
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, 60528 Frankfurt am Main, Germany
| | - Marlene Bartos
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
6
|
Thomas CI, Ryan MA, Kamasawa N, Scholl B. Postsynaptic mitochondria are positioned to support functional diversity of dendritic spines. eLife 2023; 12:RP89682. [PMID: 38059805 PMCID: PMC10703439 DOI: 10.7554/elife.89682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Postsynaptic mitochondria are critical for the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally and structurally characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with a mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.
Collapse
Affiliation(s)
- Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Max Planck WayJupiterUnited States
| | - Melissa A Ryan
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Max Planck WayJupiterUnited States
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Max Planck WayJupiterUnited States
| | - Benjamin Scholl
- Department of Neuroscience, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
7
|
Zecevic D. Electrical properties of dendritic spines. Biophys J 2023; 122:4303-4315. [PMID: 37837192 PMCID: PMC10698282 DOI: 10.1016/j.bpj.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023] Open
Abstract
Dendritic spines are small protrusions that mediate most of the excitatory synaptic transmission in the brain. Initially, the anatomical structure of spines has suggested that they serve as isolated biochemical and electrical compartments. Indeed, following ample experimental evidence, it is now widely accepted that a significant physiological role of spines is to provide biochemical compartmentalization in signal integration and plasticity in the nervous system. In contrast to the clear biochemical role of spines, their electrical role is uncertain and is currently being debated. This is mainly because spines are small and not accessible to conventional experimental methods of electrophysiology. Here, I focus on reviewing the literature on the electrical properties of spines, including the initial morphological and theoretical modeling studies, indirect experimental approaches based on measurements of diffusional resistance of the spine neck, indirect experimental methods using two-photon uncaging of glutamate on spine synapses, optical imaging of intracellular calcium concentration changes, and voltage imaging with organic and genetically encoded voltage-sensitive probes. The interpretation of evidence from different preparations obtained with different methods has yet to reach a consensus, with some analyses rejecting and others supporting an electrical role of spines in regulating synaptic signaling. Thus, there is a need for a critical comparison of the advantages and limitations of different methodological approaches. The only experimental study on electrical signaling monitored optically with adequate sensitivity and spatiotemporal resolution using voltage-sensitive dyes concluded that mushroom spines on basal dendrites of cortical pyramidal neurons in brain slices have no electrical role.
Collapse
Affiliation(s)
- Dejan Zecevic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
8
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 PMCID: PMC12024187 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
9
|
Thomas CI, Ryan MA, Kamasawa N, Scholl B. Postsynaptic mitochondria are positioned to support functional diversity of dendritic spines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549063. [PMID: 37502969 PMCID: PMC10370038 DOI: 10.1101/2023.07.14.549063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Postsynaptic mitochondria are critical to the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy (EM) reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally- and structurally-characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.
Collapse
Affiliation(s)
- Connon I. Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Melissa A. Ryan
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
- Present Address: Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Benjamin Scholl
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Rodrigues YE, Tigaret CM, Marie H, O'Donnell C, Veltz R. A stochastic model of hippocampal synaptic plasticity with geometrical readout of enzyme dynamics. eLife 2023; 12:e80152. [PMID: 37589251 PMCID: PMC10435238 DOI: 10.7554/elife.80152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/22/2023] [Indexed: 08/18/2023] Open
Abstract
Discovering the rules of synaptic plasticity is an important step for understanding brain learning. Existing plasticity models are either (1) top-down and interpretable, but not flexible enough to account for experimental data, or (2) bottom-up and biologically realistic, but too intricate to interpret and hard to fit to data. To avoid the shortcomings of these approaches, we present a new plasticity rule based on a geometrical readout mechanism that flexibly maps synaptic enzyme dynamics to predict plasticity outcomes. We apply this readout to a multi-timescale model of hippocampal synaptic plasticity induction that includes electrical dynamics, calcium, CaMKII and calcineurin, and accurate representation of intrinsic noise sources. Using a single set of model parameters, we demonstrate the robustness of this plasticity rule by reproducing nine published ex vivo experiments covering various spike-timing and frequency-dependent plasticity induction protocols, animal ages, and experimental conditions. Our model also predicts that in vivo-like spike timing irregularity strongly shapes plasticity outcome. This geometrical readout modelling approach can be readily applied to other excitatory or inhibitory synapses to discover their synaptic plasticity rules.
Collapse
Affiliation(s)
- Yuri Elias Rodrigues
- Université Côte d’AzurNiceFrance
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRSValbonneFrance
- Inria Center of University Côte d’Azur (Inria)Sophia AntipolisFrance
| | - Cezar M Tigaret
- Neuroscience and Mental Health Research Innovation Institute, Division of Psychological Medicine and Clinical Neurosciences,School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Hélène Marie
- Université Côte d’AzurNiceFrance
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRSValbonneFrance
| | - Cian O'Donnell
- School of Computing, Engineering, and Intelligent Systems, Magee Campus, Ulster UniversityLondonderryUnited Kingdom
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of BristolBristolUnited Kingdom
| | - Romain Veltz
- Inria Center of University Côte d’Azur (Inria)Sophia AntipolisFrance
| |
Collapse
|
11
|
Aseyev N, Ivanova V, Balaban P, Nikitin E. Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies. BIOSENSORS 2023; 13:648. [PMID: 37367013 DOI: 10.3390/bios13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The optical imaging of neuronal activity with potentiometric probes has been credited with being able to address key questions in neuroscience via the simultaneous recording of many neurons. This technique, which was pioneered 50 years ago, has allowed researchers to study the dynamics of neural activity, from tiny subthreshold synaptic events in the axon and dendrites at the subcellular level to the fluctuation of field potentials and how they spread across large areas of the brain. Initially, synthetic voltage-sensitive dyes (VSDs) were applied directly to brain tissue via staining, but recent advances in transgenic methods now allow the expression of genetically encoded voltage indicators (GEVIs), specifically in selected neuron types. However, voltage imaging is technically difficult and limited by several methodological constraints that determine its applicability in a given type of experiment. The prevalence of this method is far from being comparable to patch clamp voltage recording or similar routine methods in neuroscience research. There are more than twice as many studies on VSDs as there are on GEVIs. As can be seen from the majority of the papers, most of them are either methodological ones or reviews. However, potentiometric imaging is able to address key questions in neuroscience by recording most or many neurons simultaneously, thus providing unique information that cannot be obtained via other methods. Different types of optical voltage indicators have their advantages and limitations, which we focus on in detail. Here, we summarize the experience of the scientific community in the application of voltage imaging and try to evaluate the contribution of this method to neuroscience research.
Collapse
Affiliation(s)
- Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Evgeny Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| |
Collapse
|
12
|
Hao Y, Toulmé E, König B, Rosenmund C, Plested AJR. Targeted sensors for glutamatergic neurotransmission. eLife 2023; 12:e84029. [PMID: 36622100 PMCID: PMC9917459 DOI: 10.7554/elife.84029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Optical report of neurotransmitter release allows visualisation of excitatory synaptic transmission. Sensitive genetically-encoded fluorescent glutamate reporters operating with a range of affinities and emission wavelengths are available. However, without targeting to synapses, the specificity of the fluorescent signal is uncertain, compared to sensors directed at vesicles or other synaptic markers. We fused the state-of-the-art reporter iGluSnFR to glutamate receptor auxiliary proteins in order to target it to postsynaptic sites. Chimeras of Stargazin and gamma-8 that we named SnFR-γ2 and SnFR-γ8, were enriched at synapses, retained function and reported spontaneous glutamate release in rat hippocampal cells, with apparently diffraction-limited spatial precision. In autaptic mouse neurons cultured on astrocytic microislands, evoked neurotransmitter release could be quantitatively detected at tens of synapses in a field of view whilst evoked currents were recorded simultaneously. These experiments revealed a specific postsynaptic deficit from Stargazin overexpression, resulting in synapses with normal neurotransmitter release but without postsynaptic responses. This defect was reverted by delaying overexpression. By working at different calcium concentrations, we determined that SnFR-γ2 is a linear reporter of the global quantal parameters and short-term synaptic plasticity, whereas iGluSnFR is not. On average, half of iGluSnFR regions of interest (ROIs) showing evoked fluorescence changes had intense rundown, whereas less than 5% of SnFR-γ2 ROIs did. We provide an open-source analysis suite for extracting quantal parameters including release probability from fluorescence time series of individual and grouped synaptic responses. Taken together, postsynaptic targeting improves several properties of iGluSnFR and further demonstrates the importance of subcellular targeting for optogenetic actuators and reporters.
Collapse
Affiliation(s)
- Yuchen Hao
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Estelle Toulmé
- Institute for Neurophysiology, Charité - Universitätsmedizin BerlinBerlinGermany
| | - Benjamin König
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Christian Rosenmund
- Institute for Neurophysiology, Charité - Universitätsmedizin BerlinBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| | - Andrew JR Plested
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| |
Collapse
|
13
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
14
|
Righes Marafiga J, Calcagnotto ME. Electrophysiology of Dendritic Spines: Information Processing, Dynamic Compartmentalization, and Synaptic Plasticity. ADVANCES IN NEUROBIOLOGY 2023; 34:103-141. [PMID: 37962795 DOI: 10.1007/978-3-031-36159-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For many years, synaptic transmission was considered as information transfer between presynaptic neuron and postsynaptic cell. At the synaptic level, it was thought that dendritic arbors were only receiving and integrating all information flow sent along to the soma, while axons were primarily responsible for point-to-point information transfer. However, it is important to highlight that dendritic spines play a crucial role as postsynaptic components in central nervous system (CNS) synapses, not only integrating and filtering signals to the soma but also facilitating diverse connections with axons from many different sources. The majority of excitatory connections from presynaptic axonal terminals occurs on postsynaptic spines, although a subset of GABAergic synapses also targets spine heads. Several studies have shown the vast heterogeneous morphological, biochemical, and functional features of dendritic spines related to synaptic processing. In this chapter (adding to the relevant data on the biophysics of spines described in Chap. 1 of this book), we address the up-to-date functional dendritic characteristics assessed through electrophysiological approaches, including backpropagating action potentials (bAPs) and synaptic potentials mediated in dendritic and spine compartmentalization, as well as describing the temporal and spatial dynamics of glutamate receptors in the spines related to synaptic plasticity.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Maria Elisa Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Fast Synaptically Activated Calcium and Sodium Kinetics in Hippocampal Pyramidal Neuron Dendritic Spines. eNeuro 2022; 9:ENEURO.0396-22.2022. [PMID: 36379712 PMCID: PMC9718353 DOI: 10.1523/eneuro.0396-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
An accurate assessment of the time course, components, and magnitude of postsynaptic currents is important for a quantitative understanding of synaptic integration and signaling in dendritic spines. These parameters have been studied in some detail in previous experiments, primarily using two-photon imaging of [Ca2+]i changes and two-photon uncaging of glutamate. However, even with these revolutionary techniques, there are some missing pieces in our current understanding, particularly related to the time courses of synaptically evoked [Ca2+]i and [Na+]i changes. In new experiments, we used low-affinity, linear Na+ and Ca2+ indicators, laser fluorescence stimulation, and a sensitive camera-based detection system, combined with electrical stimulation and two-photon glutamate uncaging, to extend measurements of these spine parameters. We found that (1) almost all synaptically activated Na+ currents in CA1 hippocampal pyramidal neuron spines in slices from mice of either sex are through AMPA receptors with little Na+ entry through voltage-gated sodium channels (VGSCs) or NMDA receptor channels; (2) a spectrum of sodium transient decay times was observed, suggesting a spectrum of spine neck resistances, even on the same dendrite; (3) synaptically activated [Ca2+]i changes are very fast and are almost entirely because of Ca2+ entry through NMDA receptors at the time when the Mg2+ block is relieved by the fast AMPA-mediated EPSP; (4) the [Ca2+]i changes evoked by uncaging glutamate are slower than the changes evoked by synaptic release, suggesting that the relative contribution of Ca2+ entering through NMDA receptors at rest following uncaging is higher than following electrical stimulation.
Collapse
|
16
|
Howe CL, Quicke P, Song P, Verinaz-Jadan H, Dragotti PL, Foust AJ. Comparing synthetic refocusing to deconvolution for the extraction of neuronal calcium transients from light fields. NEUROPHOTONICS 2022; 9:041404. [PMID: 35445141 PMCID: PMC8922050 DOI: 10.1117/1.nph.9.4.041404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Significance: Light-field microscopy (LFM) enables fast, light-efficient, volumetric imaging of neuronal activity with calcium indicators. Calcium transients differ in temporal signal-to-noise ratio (tSNR) and spatial confinement when extracted from volumes reconstructed by different algorithms. Aim: We evaluated the capabilities and limitations of two light-field reconstruction algorithms for calcium fluorescence imaging. Approach: We acquired light-field image series from neurons either bulk-labeled or filled intracellularly with the red-emitting calcium dye CaSiR-1 in acute mouse brain slices. We compared the tSNR and spatial confinement of calcium signals extracted from volumes reconstructed with synthetic refocusing and Richardson-Lucy three-dimensional deconvolution with and without total variation regularization. Results: Both synthetic refocusing and Richardson-Lucy deconvolution resolved calcium signals from single cells and neuronal dendrites in three dimensions. Increasing deconvolution iteration number improved spatial confinement but reduced tSNR compared with synthetic refocusing. Volumetric light-field imaging did not decrease calcium signal tSNR compared with interleaved, widefield image series acquired in matched planes. Conclusions: LFM enables high-volume rate, volumetric imaging of calcium transients in single cell somata (bulk-labeled) and dendrites (intracellularly loaded). The trade-offs identified for tSNR, spatial confinement, and computational cost indicate which of synthetic refocusing or deconvolution can better realize the scientific requirements of future LFM calcium imaging applications.
Collapse
Affiliation(s)
- Carmel L. Howe
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| | - Peter Quicke
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| | - Pingfan Song
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Herman Verinaz-Jadan
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Pier Luigi Dragotti
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Amanda J. Foust
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| |
Collapse
|
17
|
Priel A, Dai XQ, Chen XZ, Scarinci N, Cantero MDR, Cantiello HF. Electrical recordings from dendritic spines of adult mouse hippocampus and effect of the actin cytoskeleton. Front Mol Neurosci 2022; 15:769725. [PMID: 36090255 PMCID: PMC9453158 DOI: 10.3389/fnmol.2022.769725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Dendritic spines (DS) are tiny protrusions implicated in excitatory postsynaptic responses in the CNS. To achieve their function, DS concentrate a high density of ion channels and dynamic actin networks in a tiny specialized compartment. However, to date there is no direct information on DS ionic conductances. Here, we used several experimental techniques to obtain direct electrical information from DS of the adult mouse hippocampus. First, we optimized a method to isolate DS from the dissected hippocampus. Second, we used the lipid bilayer membrane (BLM) reconstitution and patch clamping techniques and obtained heretofore unavailable electrical phenotypes on ion channels present in the DS membrane. Third, we also patch clamped DS directly in cultured adult mouse hippocampal neurons, to validate the electrical information observed with the isolated preparation. Electron microscopy and immunochemistry of PDS-95 and NMDA receptors and intrinsic actin networks confirmed the enrichment of the isolated DS preparation, showing open and closed DS, and multi-headed DS. The preparation was used to identify single channel activities and “whole-DS” electrical conductance. We identified NMDA and Ca2+-dependent intrinsic electrical activity in isolated DS and in situ DS of cultured adult mouse hippocampal neurons. In situ recordings in the presence of local NMDA, showed that individual DS intrinsic electrical activity often back-propagated to the dendrite from which it sprouted. The DS electrical oscillations were modulated by changes in actin cytoskeleton dynamics by addition of the F-actin disrupter agent, cytochalasin D, and exogenous actin-binding proteins. The data indicate that DS are elaborate excitable electrical devices, whose activity is a functional interplay between ion channels and the underlying actin networks. The data argue in favor of the active contribution of individual DS to the electrical activity of neurons at the level of both the membrane conductance and cytoskeletal signaling.
Collapse
Affiliation(s)
- Avner Priel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Xiao-Qing Dai
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Horacio F. Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- *Correspondence: Horacio F. Cantiello,
| |
Collapse
|
18
|
Linaro D, Levy MJ, Hunt DL. Cell type-specific mechanisms of information transfer in data-driven biophysical models of hippocampal CA3 principal neurons. PLoS Comput Biol 2022; 18:e1010071. [PMID: 35452457 PMCID: PMC9089861 DOI: 10.1371/journal.pcbi.1010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/10/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022] Open
Abstract
The transformation of synaptic input into action potential output is a fundamental single-cell computation resulting from the complex interaction of distinct cellular morphology and the unique expression profile of ion channels that define the cellular phenotype. Experimental studies aimed at uncovering the mechanisms of the transfer function have led to important insights, yet are limited in scope by technical feasibility, making biophysical simulations an attractive complementary approach to push the boundaries in our understanding of cellular computation. Here we take a data-driven approach by utilizing high-resolution morphological reconstructions and patch-clamp electrophysiology data together with a multi-objective optimization algorithm to build two populations of biophysically detailed models of murine hippocampal CA3 pyramidal neurons based on the two principal cell types that comprise this region. We evaluated the performance of these models and find that our approach quantitatively matches the cell type-specific firing phenotypes and recapitulate the intrinsic population-level variability in the data. Moreover, we confirm that the conductance values found by the optimization algorithm are consistent with differentially expressed ion channel genes in single-cell transcriptomic data for the two cell types. We then use these models to investigate the cell type-specific biophysical properties involved in the generation of complex-spiking output driven by synaptic input through an information-theoretic treatment of their respective transfer functions. Our simulations identify a host of cell type-specific biophysical mechanisms that define the morpho-functional phenotype to shape the cellular transfer function and place these findings in the context of a role for bursting in CA3 recurrent network synchronization dynamics. The hippocampus is comprised of numerous types of neurons, which constitute the cellular substrate for its rich repertoire of network dynamics. Among these are sharp waves, sequential activations of ensembles of neurons that have been shown to be crucially involved in learning and memory. In the CA3 area of the hippocampus, two types of excitatory cells, thorny and a-thorny neurons, are preferentially active during distinct phases of a sharp wave, suggesting a differential role for these cell types in phenomena such as memory consolidation. Using a strictly data-driven approach, we built biophysically realistic models of both thorny and a-thorny cells and used them to investigate the integrative differences between these two cell types. We found that both neuron classes have the capability of integrating incoming synaptic inputs in a supralinear fashion, although only a-thorny cells respond with bursts of action potentials to spatially and temporally clustered synaptic inputs. Additionally, by using a computational approach based on information theory, we show that, owing to this propensity for bursting, a-thorny cells can encode more information in their spiking output than their thorny counterpart. These results shed new light on the computational capabilities of two types of excitatory neurons and suggest that thorny and a-thorny cells may play distinct roles in the generation of hippocampal network synchronization.
Collapse
Affiliation(s)
- Daniele Linaro
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy
- * E-mail: (DL); (DLH)
| | - Matthew J. Levy
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United State of America
| | - David L. Hunt
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United State of America
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United State of America
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United State of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United State of America
- * E-mail: (DL); (DLH)
| |
Collapse
|
19
|
Tazerart S, Blanchard MG, Miranda-Rottmann S, Mitchell DE, Navea Pina B, Thomas CI, Kamasawa N, Araya R. Selective activation of BK channels in small-headed dendritic spines suppresses excitatory postsynaptic potentials. J Physiol 2022; 600:2165-2187. [PMID: 35194785 DOI: 10.1113/jp282303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs). The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head. Thus, voltage-gated and calcium-activated potassium channels located in the spine head likely play a key role in synaptic transmission. Here we study the presence and function of large conductance calcium-activated potassium (BK) channels in spines from layer 5 PNs. We found that BK channels are localized to dendrites and spines regardless of their size, but their activity can only be detected in spines with small head volumes (≤0.09 μm3 ), which reduces the amplitude of two-photon uncaging excitatory postsynaptic potentials recorded at the soma. In addition, we found that calcium signals in spines with small head volumes are significantly larger than those observed in spines with larger head volumes. In accordance with our experimental data, numerical simulations predict that synaptic inputs impinging onto spines with small head volumes generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, which are sufficient to activate spine BK channels. These results show that BK channels are selectively activated in small-headed spines, suggesting a new level of dendritic spine-mediated regulation of synaptic processing, integration and plasticity in cortical PNs. KEY POINTS: BK channels are expressed in the visual cortex and layer 5 pyramidal neuron somata, dendrites and spines regardless of their size. BK channels are selectively activated in small-headed spines (≤0.09 μm3 ), which reduces the amplitude of two-photon (2P) uncaging excitatory postsynaptic potentials (EPSPs) recorded at the soma. Two-photon imaging revealed that intracellular calcium responses in the head of 2P-activated spines are significantly larger in small-headed spines (≤0.09 μm3 ) than in spines with larger head volumes. In accordance with our experimental data, numerical simulations showed that synaptic inputs impinging onto spines with small head volumes (≤0.09 μm3 ) generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, sufficient to activate spine BK channels and suppress EPSPs.
Collapse
Affiliation(s)
- Sabrina Tazerart
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| | - Maxime G Blanchard
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| | - Soledad Miranda-Rottmann
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| | - Diana E Mitchell
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| | - Bruno Navea Pina
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| | - Connon I Thomas
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Naomi Kamasawa
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Roberto Araya
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| |
Collapse
|
20
|
Larkum ME, Wu J, Duverdin SA, Gidon A. The guide to dendritic spikes of the mammalian cortex in vitro and in vivo. Neuroscience 2022; 489:15-33. [PMID: 35182699 DOI: 10.1016/j.neuroscience.2022.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Half a century since their discovery by Llinás and colleagues, dendritic spikes have been observed in various neurons in different brain regions, from the neocortex and cerebellum to the basal ganglia. Dendrites exhibit a terrifically diverse but stereotypical repertoire of spikes, sometimes specific to subregions of the dendrite. Despite their prevalence, we only have a glimpse into their role in the behaving animal. This article aims to survey the full range of dendritic spikes found in excitatory and inhibitory neurons, compare them in vivo versus in vitro, and discuss new studies describing dendritic spikes in the human cortex. We focus on dendritic spikes in neocortical and hippocampal neurons and present a roadmap to identify and understand the broader role of dendritic spikes in single-cell computation.
Collapse
Affiliation(s)
- Matthew E Larkum
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Cluster, Charité - Universitätsmedizin Berlin, Germany
| | - Jiameng Wu
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sarah A Duverdin
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert Gidon
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
21
|
Ramdas T, Mel BW. Optimizing a Neuron for Reliable Dendritic Subunit Pooling. Neuroscience 2021; 489:216-233. [PMID: 34715265 DOI: 10.1016/j.neuroscience.2021.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022]
Abstract
In certain biologically relevant computing scenarios, a neuron "pools" the outputs of multiple independent functional subunits, firing if any one of them crosses threshold. Recent studies suggest that active dendrites could provide the thresholding mechanism, so that both the thresholding and pooling operations could take place within a single neuron. A pooling neuron faces a difficult task, however. Dendrites can produce highly variable responses depending on the density and spatial patterning of their synaptic inputs, and bona fide dendritic firing may be very rare, making it difficult for a neuron to reliably detect when one of its many dendrites has "gone suprathreshold". Our goal has been to identify biological adaptations that optimize a neuron's performance at the binary subunit pooling (BSP) task. Katz et al. (2009) pointed to the importance of spine density gradients in shaping dendritic responses. In a similar vein, we used a compartmental model to study how a neuron's performance at the BSP task is affected by different spine density layouts and other biological variables. We found BSP performance was optimized when dendrites have (1) a decreasing spine density gradient (true for many types of pyramidal neurons); (2) low-to-medium resistance spine necks; (3) strong NMDA currents; (4) fast spiking Na+ channels; and (5) powerful hyperpolarizing inhibition. Our findings provide a normative account that links several neuronal properties within the context of a behaviorally relevant task, and thus provide new insights into nature's subtle strategies for optimizing the computing capabilities of neural tissue.
Collapse
Affiliation(s)
- Tejas Ramdas
- Computational Neuroscience Program, USC, United States.
| | - Bartlett W Mel
- Biomedical Engineering Department and Neuroscience Graduate Program, USC, United States.
| |
Collapse
|
22
|
Gemin O, Serna P, Zamith J, Assendorp N, Fossati M, Rostaing P, Triller A, Charrier C. Unique properties of dually innervated dendritic spines in pyramidal neurons of the somatosensory cortex uncovered by 3D correlative light and electron microscopy. PLoS Biol 2021; 19:e3001375. [PMID: 34428203 PMCID: PMC8415616 DOI: 10.1371/journal.pbio.3001375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 09/03/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Abstract
Pyramidal neurons (PNs) are covered by thousands of dendritic spines receiving excitatory synaptic inputs. The ultrastructure of dendritic spines shapes signal compartmentalization, but ultrastructural diversity is rarely taken into account in computational models of synaptic integration. Here, we developed a 3D correlative light-electron microscopy (3D-CLEM) approach allowing the analysis of specific populations of synapses in genetically defined neuronal types in intact brain circuits. We used it to reconstruct segments of basal dendrites of layer 2/3 PNs of adult mouse somatosensory cortex and quantify spine ultrastructural diversity. We found that 10% of spines were dually innervated and 38% of inhibitory synapses localized to spines. Using our morphometric data to constrain a model of synaptic signal compartmentalization, we assessed the impact of spinous versus dendritic shaft inhibition. Our results indicate that spinous inhibition is locally more efficient than shaft inhibition and that it can decouple voltage and calcium signaling, potentially impacting synaptic plasticity.
Collapse
Affiliation(s)
- Olivier Gemin
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Pablo Serna
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, PSL Research University, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Joseph Zamith
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Nora Assendorp
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Matteo Fossati
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Philippe Rostaing
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Antoine Triller
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Cécile Charrier
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
23
|
Circuit mechanisms for cortical plasticity and learning. Semin Cell Dev Biol 2021; 125:68-75. [PMID: 34332885 DOI: 10.1016/j.semcdb.2021.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
The cerebral cortex integrates sensory information with emotional states and internal representations to produce coherent percepts, form associations, and execute voluntary actions. For the cortex to optimize perception, its neuronal network needs to dynamically retrieve and encode new information. Over the last few decades, research has started to provide insight into how the cortex serves these functions. Building on classical Hebbian plasticity models, the latest hypotheses hold that throughout experience and learning, streams of feedforward, feedback, and modulatory information operate in selective and coordinated manners to alter the strength of synapses and ultimately change the response properties of cortical neurons. Here, we describe cortical plasticity mechanisms that involve the concerted action of feedforward and long-range feedback input onto pyramidal neurons as well as the implication of local disinhibitory circuit motifs in this process.
Collapse
|
24
|
Roth Y. QLCA and Entangled States as Single-Neuron Activity Generators. Front Comput Neurosci 2021; 15:600075. [PMID: 34149386 PMCID: PMC8206504 DOI: 10.3389/fncom.2021.600075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
Each neuron in the central nervous system has many dendrites, which provide input information through impulses. Assuming that a neuron's decision to continue or stop firing is made by rules applied to the dendrites' inputs, we associate neuron activity with a quantum like-cellular automaton (QLCA) concepts. Following a previous study that related the CA description with entangled states, we provide a quantum-like description of neuron activity. After reviewing and presenting the entanglement concept expressed by QLCA terminology, we propose a model that relates quantum-like measurement to consciousness. Then, we present a toy model that reviews the QLCA theory, which is adapted to our terminology. The study also focuses on implementing QLCA formalism to describe a single neuron activity.
Collapse
Affiliation(s)
- Yehuda Roth
- Oranim Academic College, Science Department, Kiryat Tiv'on, Israel
| |
Collapse
|
25
|
Obashi K, Taraska JW, Okabe S. The role of molecular diffusion within dendritic spines in synaptic function. J Gen Physiol 2021; 153:e202012814. [PMID: 33720306 PMCID: PMC7967910 DOI: 10.1085/jgp.202012814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Spines are tiny nanoscale protrusions from dendrites of neurons. In the cortex and hippocampus, most of the excitatory postsynaptic sites reside in spines. The bulbous spine head is connected to the dendritic shaft by a thin membranous neck. Because the neck is narrow, spine heads are thought to function as biochemically independent signaling compartments. Thus, dynamic changes in the composition, distribution, mobility, conformations, and signaling properties of molecules contained within spines can account for much of the molecular basis of postsynaptic function and regulation. A major factor in controlling these changes is the diffusional properties of proteins within this small compartment. Advances in measurement techniques using fluorescence microscopy now make it possible to measure molecular diffusion within single dendritic spines directly. Here, we review the regulatory mechanisms of diffusion in spines by local intra-spine architecture and discuss their implications for neuronal signaling and synaptic plasticity.
Collapse
Affiliation(s)
- Kazuki Obashi
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Justin W. Taraska
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Hanlon L, Gautam V, Wood JDA, Reddy P, Barson MSJ, Niihori M, Silalahi ARJ, Corry B, Wrachtrup J, Sellars MJ, Daria VR, Maletinsky P, Stuart GJ, Doherty MW. Diamond nanopillar arrays for quantum microscopy of neuronal signals. NEUROPHOTONICS 2020; 7:035002. [PMID: 32775500 PMCID: PMC7406893 DOI: 10.1117/1.nph.7.3.035002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/29/2020] [Indexed: 05/05/2023]
Abstract
Significance: Wide-field measurement of cellular membrane dynamics with high spatiotemporal resolution can facilitate analysis of the computing properties of neuronal circuits. Quantum microscopy using a nitrogen-vacancy (NV) center is a promising technique to achieve this goal. Aim: We propose a proof-of-principle approach to NV-based neuron functional imaging. Approach: This goal is achieved by engineering NV quantum sensors in diamond nanopillar arrays and switching their sensing mode to detect the changes in the electric fields instead of the magnetic fields, which has the potential to greatly improve signal detection. Apart from containing the NV quantum sensors, nanopillars also function as waveguides, delivering the excitation/emission light to improve sensitivity. The nanopillars also improve the amplitude of the neuron electric field sensed by the NV by removing screening charges. When the nanopillar array is used as a cell niche, it acts as a cell scaffolds which makes the pillars function as biomechanical cues that facilitate the growth and formation of neuronal circuits. Based on these growth patterns, numerical modeling of the nanoelectromagnetics between the nanopillar and the neuron was also performed. Results: The growth study showed that nanopillars with a 2 - μ m pitch and a 200-nm diameter show ideal growth patterns for nanopillar sensing. The modeling showed an electric field amplitude as high as ≈ 1.02 × 10 10 mV / m at an NV 100 nm from the membrane, a value almost 10 times the minimum field that the NV can detect. Conclusion: This proof-of-concept study demonstrated unprecedented NV sensing potential for the functional imaging of mammalian neuron signals.
Collapse
Affiliation(s)
- Liam Hanlon
- Australian National University, Research School of Physics and Engineering, Laser Physics Centre, Canberra, ACT, Australia
| | - Vini Gautam
- Australian National University, John Curtin School of Medical Research, Eccles Institute of Neuroscience, Canberra, ACT, Australia
| | | | - Prithvi Reddy
- Australian National University, Research School of Physics and Engineering, Laser Physics Centre, Canberra, ACT, Australia
| | - Michael S. J. Barson
- Australian National University, Research School of Physics and Engineering, Laser Physics Centre, Canberra, ACT, Australia
| | - Marika Niihori
- Australian National University, Research School of Physics and Engineering, Laser Physics Centre, Canberra, ACT, Australia
| | | | - Ben Corry
- Australian National University, Research School of Biology, Canberra, ACT, Australia
| | - Jörg Wrachtrup
- University of Stuttgart, 3rd Institute of Physics, Stuttgart Research Centre of Photonic Engineering (SCoPE), Stuttgart, Germany
| | - Matthew J. Sellars
- Australian National University, Research School of Physics and Engineering, Laser Physics Centre, Canberra, ACT, Australia
| | - Vincent R. Daria
- Australian National University, John Curtin School of Medical Research, Eccles Institute of Neuroscience, Canberra, ACT, Australia
| | | | - Gregory J. Stuart
- Australian National University, John Curtin School of Medical Research, Eccles Institute of Neuroscience, Canberra, ACT, Australia
| | - Marcus W. Doherty
- Australian National University, Research School of Physics and Engineering, Laser Physics Centre, Canberra, ACT, Australia
| |
Collapse
|
27
|
Bando Y, Sakamoto M, Kim S, Ayzenshtat I, Yuste R. Comparative Evaluation of Genetically Encoded Voltage Indicators. Cell Rep 2020; 26:802-813.e4. [PMID: 30650368 PMCID: PMC7075032 DOI: 10.1016/j.celrep.2018.12.088] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 09/24/2018] [Accepted: 12/19/2018] [Indexed: 01/02/2023] Open
Abstract
Imaging voltage using fluorescent-based sensors could be an ideal technique to probe neural circuits with high spatiotemporal resolution. However, due to insufficient signal-to-noise ratio (SNR), imaging membrane potential in mammalian preparations is still challenging. In recent years, many genetically encoded voltage indicators (GEVIs) have been developed. To compare them and guide decisions on which GEVI to use, we have characterized side by side the performance of eight GEVIs that represent different families of molecular constructs. We tested GEVIs in vitro with 1-photon imaging and in vivo with 1-photon wide-field imaging and 2-photon imaging. We find that QuasAr2 exhibited the best performance in vitro, whereas only ArcLight-MT could be used to reliably detect electrical activity in vivo with 2-photon excitation. No single GEVI was ideal for every experiment. These results provide a guide for choosing optimal GEVIs for specific applications.
Collapse
Affiliation(s)
- Yuki Bando
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Masayuki Sakamoto
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Samuel Kim
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Inbal Ayzenshtat
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
28
|
Basak R, Narayanan R. Robust emergence of sharply tuned place-cell responses in hippocampal neurons with structural and biophysical heterogeneities. Brain Struct Funct 2020; 225:567-590. [PMID: 31900587 DOI: 10.1007/s00429-019-02018-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023]
Abstract
Hippocampal pyramidal neurons sustain propagation of fast electrical signals and are electrotonically non-compact structures exhibiting cell-to-cell variability in their complex dendritic arborization. In this study, we demonstrate that sharp place-field tuning and several somatodendritic functional maps concomitantly emerge despite the presence of geometrical heterogeneities in these neurons. We establish this employing an unbiased stochastic search strategy involving thousands of models that spanned several morphologies and distinct profiles of dispersed synaptic localization and channel expression. Mechanistically, employing virtual knockout models (VKMs), we explored the impact of bidirectional modulation in dendritic spike prevalence on place-field tuning sharpness. Consistent with the prior literature, we found that across all morphologies, virtual knockout of either dendritic fast sodium channels or N-methyl-D-aspartate receptors led to a reduction in dendritic spike prevalence, whereas A-type potassium channel knockouts resulted in a non-specific increase in dendritic spike prevalence. However, place-field tuning sharpness was critically impaired in all three sets of VKMs, demonstrating that sharpness in feature tuning is maintained by an intricate balance between mechanisms that promote and those that prevent dendritic spike initiation. From the functional standpoint of the emergence of sharp feature tuning and intrinsic functional maps, within this framework, geometric variability was compensated by a combination of synaptic democracy, the ability of randomly dispersed synapses to yield sharp tuning through dendritic spike initiation, and ion-channel degeneracy. Our results suggest electrotonically non-compact neurons to be endowed with several degrees of freedom, encompassing channel expression, synaptic localization and morphological microstructure, in achieving sharp feature encoding and excitability homeostasis.
Collapse
Affiliation(s)
- Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
29
|
Liu F, Hu Z, Xue J, Huo H, Zhou J, Li L. Stabilizing cathode structure via the binder material with high resilience for lithium-sulfur batteries. RSC Adv 2019; 9:40471-40477. [PMID: 35542670 PMCID: PMC9076401 DOI: 10.1039/c9ra08238g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/28/2019] [Indexed: 11/21/2022] Open
Abstract
Lithium-sulfur (Li-S) batteries have been considered as one of the most promising next-generation energy storage systems with high-energy density. The huge volumetric change of sulfur (ca. 80% increase in volume) in the cathode during discharge is one of the factors affecting the battery performance, which can be remedied with a binder. Herein, a self-crosslinking polyacrylate latex (PAL) is synthesized and used as a binder for the sulfur cathode of a Li-S battery to keep the cathode structure stable. The synthesized PAL has nano-sized latex particles and a low glass transition temperature (T g), which will ensure a uniform dispersion and good adhesion in the cathode. This crosslinking structure can provide fine elasticity to recover from the deformation due to volumetric change. The stable cathode structure, stemming from the fine elasticity of the PAL binder, can facilitate ion migration and diffusion to decrease the polarization. Therefore, the Li-S batteries with the PAL binder can function well with excellent cycling stability and superior C-rate performance.
Collapse
Affiliation(s)
- Fengquan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Zhiyu Hu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Jinxin Xue
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Hong Huo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Jianjun Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Lin Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
30
|
Lee HJ, Jiang Y, Cheng JX. Label-free Optical Imaging of Membrane Potential. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:118-125. [PMID: 32864527 DOI: 10.1016/j.cobme.2019.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Offering high temporal resolution, voltage imaging is an important and essential technique in neuroscience. Among different optical imaging approaches, the label-free approach remains attractive due to its unique value coming from free of exogenous chromophores. The intrinsic voltage-indicating signals arising from membrane deformation, membrane spectral change, phase shift, light scattering, and membrane hydration haven been reported. First demonstrated 70 years ago, label-free optical imaging of membrane potential is still at an early stage and the field is challenged by the relatively small signals generated by the intrinsic optical properties. We review major contrast mechanisms used for label-free voltage imaging and discuss several recent exciting advances that could potentially enable membrane potential imaging in mammalian neurons at high speed and high sensitivity.
Collapse
Affiliation(s)
- Hyeon Jeong Lee
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027.,Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215.,Photonics Center, Boston University, Boston, MA 02215.,These authors contributed equally
| | - Ying Jiang
- Photonics Center, Boston University, Boston, MA 02215.,Graduate Program for Neuroscience, Boston University, Boston, MA 02215.,These authors contributed equally
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215.,Department of Biomedical Engineering, Boston University, Boston, MA 02215.,Photonics Center, Boston University, Boston, MA 02215
| |
Collapse
|
31
|
Antic SD, Baker BJ, Canepari M. Editorial: New Insights on Neuron and Astrocyte Function From Cutting-Edge Optical Techniques. Front Cell Neurosci 2019; 13:463. [PMID: 31680872 PMCID: PMC6803618 DOI: 10.3389/fncel.2019.00463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Srdjan D Antic
- Department of Neuroscience, Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, CT, United States
| | - Bradley James Baker
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, South Korea
| | - Marco Canepari
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France.,Institut National de la Santé et Recherche Médicale, Paris, France
| |
Collapse
|
32
|
Electrodiffusion models of synaptic potentials in dendritic spines. J Comput Neurosci 2019; 47:77-89. [PMID: 31410632 DOI: 10.1007/s10827-019-00725-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
The biophysical properties of dendritic spines play a critical role in neuronal integration but are still poorly understood, due to experimental difficulties in accessing them. Spine biophysics has been traditionally explored using theoretical models based on cable theory. However, cable theory generally assumes that concentration changes associated with ionic currents are negligible and, therefore, ignores electrodiffusion, i.e. the interaction between electric fields and ionic diffusion. This assumption, while true for large neuronal compartments, could be incorrect when applied to femto-liter size structures such as dendritic spines. To extend cable theory and explore electrodiffusion effects, we use here the Poisson (P) and Nernst-Planck (NP) equations, which relate electric field to charge and Fick's law of diffusion, to model ion concentration dynamics in spines receiving excitatory synaptic potentials (EPSPs). We use experimentally measured voltage transients from spines with nanoelectrodes to explore these dynamics with realistic parameters. We find that (i) passive diffusion and electrodiffusion jointly affect the dynamics of spine EPSPs; (ii) spine geometry plays a key role in shaping EPSPs; and, (iii) the spine-neck resistance dynamically decreases during EPSPs, leading to short-term synaptic facilitation. Our formulation, which complements and extends cable theory, can be easily adapted to model ionic biophysics in other nanoscale bio-compartments.
Collapse
|
33
|
Cartailler J, Holcman D. Electrical transient laws in neuronal microdomains based on electro-diffusion. Phys Chem Chem Phys 2019; 20:21062-21067. [PMID: 30074044 DOI: 10.1039/c8cp02593b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current-voltage (I-V) conversion characterizes the physiology of cellular microdomains and reflects cellular communication, excitability, and electrical transduction. Yet deriving such I-V laws remains a major challenge in most cellular microdomains due to their small sizes and the difficulty in assessing voltage with high nanometer precision. We present here novel analytical relations derived for different numbers of ionic species inside neuronal micro/nano-domains, such as dendritic spines. When a steady-state current is injected, we find a large deviation from the classical Ohm's law, showing that the spine neck resistance is insufficient to characterize electrical properties. For a constricted spine neck, modeled by a hyperboloid, we obtain a new I-V law that illustrates the consequences of narrow passages on electrical conduction. Finally, during a fast current transient, the local voltage is modulated by the distance between activated voltage-gated channels. To conclude, electro-diffusion laws can now be used to interpret voltage distribution in neuronal microdomains.
Collapse
Affiliation(s)
- J Cartailler
- Group of Computational Biology and Applied Mathematics, Ecole Normale Supérieure, 75005 Paris, France.
| | | |
Collapse
|
34
|
Emmenegger V, Obien MEJ, Franke F, Hierlemann A. Technologies to Study Action Potential Propagation With a Focus on HD-MEAs. Front Cell Neurosci 2019; 13:159. [PMID: 31118887 PMCID: PMC6504789 DOI: 10.3389/fncel.2019.00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
Axons convey information in neuronal circuits via reliable conduction of action potentials (APs) from the axon initial segment (AIS) to the presynaptic terminals. Recent experimental findings increasingly evidence that the axonal function is not limited to the simple transmission of APs. Advances in subcellular-resolution recording techniques have shown that axons display activity-dependent modulation in spike shape and conduction velocity, which influence synaptic strength and latency. We briefly review here, how recent methodological developments facilitate the understanding of the axon physiology. We included the three most common methods, i.e., genetically encoded voltage imaging (GEVI), subcellular patch-clamp and high-density microelectrode arrays (HD-MEAs). We then describe the potential of using HD-MEAs in studying axonal physiology in more detail. Due to their robustness, amenability to high-throughput and high spatiotemporal resolution, HD-MEAs can provide a direct functional electrical readout of single cells and cellular ensembles at subcellular resolution. HD-MEAs can, therefore, be employed in investigating axonal pathologies, the effects of large-scale genomic interventions (e.g., with RNAi or CRISPR) or in compound screenings. A combination of extracellular microelectrode arrays (MEAs), intracellular microelectrodes and optical imaging may potentially reveal yet unexplored repertoires of axonal functions.
Collapse
Affiliation(s)
- Vishalini Emmenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Marie Engelene J. Obien
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Basel, Switzerland
| | - Felix Franke
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
35
|
Miyazaki K, Lisman JE, Ross WN. Improvements in Simultaneous Sodium and Calcium Imaging. Front Cell Neurosci 2019; 12:514. [PMID: 30670951 PMCID: PMC6331411 DOI: 10.3389/fncel.2018.00514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
High speed imaging of ion concentration changes in neurons is an important and growing tool for neuroscientists. We previously developed a system for simultaneously measuring sodium and calcium changes in small compartments in neurons (Miyazaki and Ross, 2015). We used this technique to analyze the dynamics of these ions in individual pyramidal neuron dendritic spines (Miyazaki and Ross, 2017). This system is based on high speed multiplexing of light emitting diodes (LEDs) and classic organic indicators. To improve this system we made additional changes, primarily incorporating lasers in addition to the LEDs, more sophisticated imaging protocols, and the use of newer sodium and calcium indicators. This new system generates signals with higher signal to noise ratio (S/N), less background fluorescence, and less photodynamic damage. In addition, by using longer wavelength indicators instead of indicators sensitive in the UV range, it allows for the incorporation of focal uncaging along with simultaneous imaging, which should extend the range of experiments.
Collapse
Affiliation(s)
- Kenichi Miyazaki
- Department of Physiology, New York Medical College, Valhalla, NY, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| | - John E Lisman
- Marine Biological Laboratory, Woods Hole, MA, United States.,Department of Biology, Brandeis University, Waltham, MA, United States
| | - William N Ross
- Department of Physiology, New York Medical College, Valhalla, NY, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
36
|
Basak R, Narayanan R. Active dendrites regulate the spatiotemporal spread of signaling microdomains. PLoS Comput Biol 2018; 14:e1006485. [PMID: 30383745 PMCID: PMC6233924 DOI: 10.1371/journal.pcbi.1006485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/13/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Microdomains that emerge from spatially constricted spread of biochemical signaling components play a central role in several neuronal computations. Although dendrites, endowed with several voltage-gated ion channels, form a prominent structural substrate for microdomain physiology, it is not known if these channels regulate the spatiotemporal spread of signaling microdomains. Here, we employed a multiscale, morphologically realistic, conductance-based model of the hippocampal pyramidal neuron that accounted for experimental details of electrical and calcium-dependent biochemical signaling. We activated synaptic N-Methyl-d-Aspartate receptors through theta-burst stimulation (TBS) or pairing (TBP) and assessed microdomain propagation along a signaling pathway that included calmodulin, calcium/calmodulin-dependent protein kinase II (CaMKII) and protein phosphatase 1. We found that the spatiotemporal spread of the TBS-evoked microdomain in phosphorylated CaMKII (pCaMKII) was amplified in comparison to that of the corresponding calcium microdomain. Next, we assessed the role of two dendritically expressed inactivating channels, one restorative (A-type potassium) and another regenerative (T-type calcium), by systematically varying their conductances. Whereas A-type potassium channels suppressed the spread of pCaMKII microdomains by altering the voltage response to TBS, T-type calcium channels enhanced this spread by modulating TBS-induced calcium influx without changing the voltage. Finally, we explored cross-dependencies of these channels with other model components, and demonstrated the heavy mutual interdependence of several biophysical and biochemical properties in regulating microdomains and their spread. Our conclusions unveil a pivotal role for dendritic voltage-gated ion channels in actively amplifying or suppressing biochemical signals and their spatiotemporal spread, with critical implications for clustered synaptic plasticity, robust information transfer and efficient neural coding. The spatiotemporal spread of biochemical signals in neurons and other cells regulate signaling specificity, tuning of signal propagation, along with specificity and clustering of adaptive plasticity. Theoretical and experimental studies have demonstrated a critical role for cellular morphology and the topology of signaling networks in regulating this spread. In this study, we add a significantly complex dimension to this narrative by demonstrating that voltage-gated ion channels on the plasma membrane could actively amplify or suppress the strength and spread of downstream signaling components. Given the expression of different ion channels with wide-ranging heterogeneity in gating kinetics, localization and density, our results point to an increase in complexity of and degeneracy in signaling spread, and unveil a powerful mechanism for regulating biochemical-signaling pathways across different cell types.
Collapse
Affiliation(s)
- Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
37
|
Guerrier C, Holcman D. The First 100 nm Inside the Pre-synaptic Terminal Where Calcium Diffusion Triggers Vesicular Release. Front Synaptic Neurosci 2018; 10:23. [PMID: 30083101 PMCID: PMC6064743 DOI: 10.3389/fnsyn.2018.00023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/29/2018] [Indexed: 12/04/2022] Open
Abstract
Calcium diffusion in the thin 100 nm layer located between the plasma membrane and docked vesicles in the pre-synaptic terminal of neuronal cells mediates vesicular fusion and synaptic transmission. Accounting for the narrow-cusp geometry located underneath the vesicle is a key ingredient that defines the probability and the time scale of calcium diffusion to bind calcium sensors for the initiation of vesicular release. We review here the time scale, the calcium binding dynamics and the consequences for asynchronous versus synchronous release. To conclude, three-dimensional modeling approaches and the associated coarse-grained simulations can now account efficiently for the precise co-organization of vesicles and Voltage-Gated-Calcium-Channel (VGCC). This co-organization is a key determinant of short-term plasticity and it shapes asynchronous release. Moreover, changing the location of VGCC from few nanometers underneath the vesicle modifies significantly the release probability. Finally, by modifying the calcium buffer concentration, a single synapse can switch from facilitation to depression.
Collapse
Affiliation(s)
- Claire Guerrier
- Department of Mathematics and Brain Research Center, University of British Columbia, Vancouver, BC, Canada
| | - David Holcman
- Group of Applied Mathematics and Computational Biology, IBENS, École Normale Supérieure, Paris, France
- Churchill College, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
38
|
Eyal G, Verhoog MB, Testa-Silva G, Deitcher Y, Benavides-Piccione R, DeFelipe J, de Kock CPJ, Mansvelder HD, Segev I. Human Cortical Pyramidal Neurons: From Spines to Spikes via Models. Front Cell Neurosci 2018; 12:181. [PMID: 30008663 PMCID: PMC6034553 DOI: 10.3389/fncel.2018.00181] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022] Open
Abstract
We present detailed models of pyramidal cells from human neocortex, including models on their excitatory synapses, dendritic spines, dendritic NMDA- and somatic/axonal Na+ spikes that provided new insights into signal processing and computational capabilities of these principal cells. Six human layer 2 and layer 3 pyramidal cells (HL2/L3 PCs) were modeled, integrating detailed anatomical and physiological data from both fresh and postmortem tissues from human temporal cortex. The models predicted particularly large AMPA- and NMDA-conductances per synaptic contact (0.88 and 1.31 nS, respectively) and a steep dependence of the NMDA-conductance on voltage. These estimates were based on intracellular recordings from synaptically-connected HL2/L3 pairs, combined with extra-cellular current injections and use of synaptic blockers, and the assumption of five contacts per synaptic connection. A large dataset of high-resolution reconstructed HL2/L3 dendritic spines provided estimates for the EPSPs at the spine head (12.7 ± 4.6 mV), spine base (9.7 ± 5.0 mV), and soma (0.3 ± 0.1 mV), and for the spine neck resistance (50–80 MΩ). Matching the shape and firing pattern of experimental somatic Na+-spikes provided estimates for the density of the somatic/axonal excitable membrane ion channels, predicting that 134 ± 28 simultaneously activated HL2/L3-HL2/L3 synapses are required for generating (with 50% probability) a somatic Na+ spike. Dendritic NMDA spikes were triggered in the model when 20 ± 10 excitatory spinous synapses were simultaneously activated on individual dendritic branches. The particularly large number of basal dendrites in HL2/L3 PCs and the distinctive cable elongation of their terminals imply that ~25 NMDA-spikes could be generated independently and simultaneously in these cells, as compared to ~14 in L2/3 PCs from the rat somatosensory cortex. These multi-sites non-linear signals, together with the large (~30,000) excitatory synapses/cell, equip human L2/L3 PCs with enhanced computational capabilities. Our study provides the most comprehensive model of any human neuron to-date demonstrating the biophysical and computational distinctiveness of human cortical neurons.
Collapse
Affiliation(s)
- Guy Eyal
- Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Matthijs B Verhoog
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.,Department of Human Biology, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Guilherme Testa-Silva
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Yair Deitcher
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Benavides-Piccione
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), and Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier DeFelipe
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), and Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Christiaan P J de Kock
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Idan Segev
- Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
39
|
Platisa J, Pieribone VA. Genetically encoded fluorescent voltage indicators: are we there yet? Curr Opin Neurobiol 2018; 50:146-153. [PMID: 29501950 PMCID: PMC5984684 DOI: 10.1016/j.conb.2018.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/04/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
In order to understand how brain activity produces adaptive behavior we need large-scale, high-resolution recordings of neuronal activity. Fluorescent genetically encoded voltage indicators (GEVIs) offer the potential for these recordings to be performed chronically from targeted cells in a minimally invasive manner. As the number of GEVIs successfully tested for in vivo use grows, so has the number of open questions regarding the improvements that would facilitate broad adoption of this technology that surpasses mere 'proof of principle' studies. Our aim in this review is not to provide a status check of the current state of the field, as excellent publications covering this topic already exist. Here, we discuss specific questions regarding GEVI development and application that we think are crucial in achieving this goal.
Collapse
Affiliation(s)
- Jelena Platisa
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, United States; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States.
| | - Vincent A Pieribone
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, United States; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
40
|
Theis AK, Rózsa B, Katona G, Schmitz D, Johenning FW. Voltage Gated Calcium Channel Activation by Backpropagating Action Potentials Downregulates NMDAR Function. Front Cell Neurosci 2018; 12:109. [PMID: 29755321 PMCID: PMC5932410 DOI: 10.3389/fncel.2018.00109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
The majority of excitatory synapses are located on dendritic spines of cortical glutamatergic neurons. In spines, compartmentalized Ca2+ signals transduce electrical activity into specific long-term biochemical and structural changes. Action potentials (APs) propagate back into the dendritic tree and activate voltage gated Ca2+ channels (VGCCs). For spines, this global mode of spine Ca2+ signaling is a direct biochemical feedback of suprathreshold neuronal activity. We previously demonstrated that backpropagating action potentials (bAPs) result in long-term enhancement of spine VGCCs. This activity-dependent VGCC plasticity results in a large interspine variability of VGCC Ca2+ influx. Here, we investigate how spine VGCCs affect glutamatergic synaptic transmission. We combined electrophysiology, two-photon Ca2+ imaging and two-photon glutamate uncaging in acute brain slices from rats. T- and R-type VGCCs were the dominant depolarization-associated Ca2+conductances in dendritic spines of excitatory layer 2 neurons and do not affect synaptic excitatory postsynaptic potentials (EPSPs) measured at the soma. Using two-photon glutamate uncaging, we compared the properties of glutamatergic synapses of single spines that express different levels of VGCCs. While VGCCs contributed to EPSP mediated Ca2+ influx, the amount of EPSP mediated Ca2+ influx is not determined by spine VGCC expression. On a longer timescale, the activation of VGCCs by bAP bursts results in downregulation of spine NMDAR function.
Collapse
Affiliation(s)
- Anne-Kathrin Theis
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Balázs Rózsa
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter University, Budapest, Hungary
| | - Gergely Katona
- Faculty of Information Technology and Bionics, Pázmány Péter University, Budapest, Hungary
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany.,Cluster of Excellence "Neurocure", Berlin, Germany.,DZNE-German Center for Neurodegenerative Disease, Berlin, Germany
| | - Friedrich W Johenning
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
41
|
Kwon T, Sakamoto M, Peterka DS, Yuste R. Attenuation of Synaptic Potentials in Dendritic Spines. Cell Rep 2018; 20:1100-1110. [PMID: 28768195 DOI: 10.1016/j.celrep.2017.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022] Open
Abstract
Dendritic spines receive the majority of excitatory inputs in many mammalian neurons, but their biophysical properties and exact role in dendritic integration are still unclear. Here, we study spine electrical properties in cultured hippocampal neurons using an improved genetically encoded voltage indicator (ArcLight) and two-photon glutamate uncaging. We find that back-propagating action potentials (bAPs) fully invade dendritic spines. However, uncaging excitatory post-synaptic potentials (uEPSPs) generated by glutamate photorelease, ranging from 4 to 27 mV in amplitude, are attenuated by up to 4-fold as they propagate to the parent dendrites. Finally, the simultaneous occurrence of bAPs and uEPSPs results in sublinear summation of membrane potential. Our results demonstrate that spines can behave as electric compartments, reducing the synaptic inputs injected into the cell, while receiving bAPs are unmodified. The attenuation of EPSPs by spines could have important repercussions for synaptic plasticity and dendritic integration.
Collapse
Affiliation(s)
- Taekyung Kwon
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Masayuki Sakamoto
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Darcy S Peterka
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
42
|
Akram MA, Nanda S, Maraver P, Armañanzas R, Ascoli GA. An open repository for single-cell reconstructions of the brain forest. Sci Data 2018; 5:180006. [PMID: 29485626 PMCID: PMC5827689 DOI: 10.1038/sdata.2018.6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
NeuroMorpho.Org was launched in 2006 to provide unhindered access to any and all digital tracings of neuronal morphology that researchers were willing to share freely upon request. Today this database is the largest public inventory of cellular reconstructions in neuroscience with a content of over 80,000 neurons and glia from a representative diversity of animal species, anatomical regions, and experimental methods. Datasets continuously contributed by hundreds of laboratories worldwide are centrally curated, converted into a common non-proprietary format, morphometrically quantified, and annotated with comprehensive metadata. Users download digital reconstructions for a variety of scientific applications including visualization, classification, analysis, and simulations. With more than 1,000 peer-reviewed publications describing data stored in or utilizing data retrieved from NeuroMorpho.Org, this ever-growing repository can already be considered a mature resource for neuroscience.
Collapse
Affiliation(s)
- Masood A. Akram
- Center for Neural Informatics, Structures & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Sumit Nanda
- Center for Neural Informatics, Structures & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Patricia Maraver
- Center for Neural Informatics, Structures & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Rubén Armañanzas
- Center for Neural Informatics, Structures & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
43
|
Cartailler J, Kwon T, Yuste R, Holcman D. Deconvolution of Voltage Sensor Time Series and Electro-diffusion Modeling Reveal the Role of Spine Geometry in Controlling Synaptic Strength. Neuron 2018; 97:1126-1136.e10. [PMID: 29429935 DOI: 10.1016/j.neuron.2018.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/09/2017] [Accepted: 01/12/2018] [Indexed: 01/03/2023]
Abstract
Most synaptic excitatory connections are made on dendritic spines. But how the voltage in spines is modulated by its geometry remains unclear. To investigate the electrical properties of spines, we combine voltage imaging data with electro-diffusion modeling. We first present a temporal deconvolution procedure for the genetically encoded voltage sensor expressed in hippocampal cultured neurons and then use electro-diffusion theory to compute the electric field and the current-voltage conversion. We extract a range for the neck resistances of 〈R〉=100±35MΩ. When a significant current is injected in a spine, the neck resistance can be inversely proportional to its radius, but not to the radius square, as predicted by Ohm's law. We conclude that the postsynaptic voltage cannot only be modulated by changing the number of receptors, but also by the spine geometry. Thus, spine morphology could be a key component in determining synaptic transduction and plasticity.
Collapse
Affiliation(s)
- Jerome Cartailler
- Institut de Biologie de l'École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Taekyung Kwon
- Neurotechnology Center, Depts. Biological Sciences and Neuroscience, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Depts. Biological Sciences and Neuroscience, Columbia University, New York, NY 10027, USA
| | - David Holcman
- Institut de Biologie de l'École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
44
|
Beaulieu-Laroche L, Harnett MT. Dendritic Spines Prevent Synaptic Voltage Clamp. Neuron 2017; 97:75-82.e3. [PMID: 29249288 DOI: 10.1016/j.neuron.2017.11.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 11/27/2022]
Abstract
Synapses are the fundamental units of information processing in the mammalian brain. Much of our understanding of their functional properties comes from voltage-clamp analysis, the predominant approach for investigating synaptic physiology. Here, we reveal that voltage clamp is completely ineffective for most excitatory synapses due to spine electrical compartmentalization. Under local dendritic voltage clamp, single-spine activation produced large spine head depolarizations that severely distorted measurements and recruited voltage-dependent channels. To overcome these voltage-clamp errors, we developed an approach to provide new, accurate measurements of synaptic conductance. Single-synapse AMPA conductance was much larger than previously appreciated, producing saturation effects on synaptic currents. We conclude that electrical compartmentalization profoundly shapes both synaptic function and how that function can be assessed with electrophysiological methods.
Collapse
Affiliation(s)
- Lou Beaulieu-Laroche
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark T Harnett
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
45
|
Voltage and Calcium Imaging of Brain Activity. Biophys J 2017; 113:2160-2167. [PMID: 29102396 DOI: 10.1016/j.bpj.2017.09.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/02/2023] Open
Abstract
Sensors for imaging brain activity have been under development for almost 50 years. The development of some of these tools is relatively mature, whereas qualitative improvements of others are needed and are actively pursued. In particular, genetically encoded voltage indicators are just now starting to be used to answer neurobiological questions and, at the same time, more than 10 laboratories are working to improve them. In this Biophysical Perspective, we attempt to discuss the present state of the art and indicate areas of active development.
Collapse
|
46
|
Sodium Dynamics in Pyramidal Neuron Dendritic Spines: Synaptically Evoked Entry Predominantly through AMPA Receptors and Removal by Diffusion. J Neurosci 2017; 37:9964-9976. [PMID: 28904093 DOI: 10.1523/jneurosci.1758-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 11/21/2022] Open
Abstract
Dendritic spines are key elements underlying synaptic integration and cellular plasticity, but many features of these important structures are not known or are controversial. We examined these properties using newly developed simultaneous sodium and calcium imaging with single-spine resolution in pyramidal neurons in rat hippocampal slices from either sex. Indicators for both ions were loaded through the somatic patch pipette, which also recorded electrical responses. Fluorescence changes were detected with a high-speed, low-noise CCD camera. Following subthreshold electrical stimulation, postsynaptic sodium entry is almost entirely through AMPA receptors with little contribution from entry through NMDA receptors or voltage-gated sodium channels. Sodium removal from the spine head is through rapid diffusion out to the dendrite through the spine neck with a half-removal time of ∼16 ms, which suggests the neck has low resistance. Peak [Na+]i changes during single EPSPs are ∼5 mm Stronger electrical stimulation evoked small plateau potentials that had significant longer-lasting localized [Na+]i increases mediated through NMDA receptors.SIGNIFICANCE STATEMENT Dendritic spines, small structures that are difficult to investigate, are important elements in the fundamental processes of synaptic integration and plasticity. The main tool for examining these structures has been calcium imaging. However, the kinds of information that calcium imaging reveals is limited. We used newly developed, high-speed, simultaneous sodium and calcium imaging to examine ion dynamics in spines in hippocampal pyramidal neurons. We found that following single subthreshold synaptic activation most sodium entry was through AMPA receptors and not through NMDA receptors or through voltage-gated sodium channels and that the spine neck is not a significant resistance barrier. Most spine mechanisms are linear. However, regenerative NMDA conductances can be activated with stronger stimulation.
Collapse
|
47
|
Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor. J Neurosci 2017; 37:9305-9319. [PMID: 28842412 DOI: 10.1523/jneurosci.1363-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information.SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In brain slices from these animals, single-trial hybrid optical voltage sensor recordings revealed voltage changes with submillisecond resolution in multiple neurons simultaneously. This imaging tool will allow for the study of the emergent properties of neural circuits and permit experimental tests of the roles of specific types of neurons in complex circuit activity.
Collapse
|
48
|
Liu XW, Yang Y, Wang W, Wang S, Gao M, Wu J, Tao N. Plasmonic-Based Electrochemical Impedance Imaging of Electrical Activities in Single Cells. Angew Chem Int Ed Engl 2017; 56:8855-8859. [PMID: 28504338 PMCID: PMC5837822 DOI: 10.1002/anie.201703033] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 01/10/2023]
Abstract
Studying electrical activities in cells, such as action potential and its propagation in neurons, requires a sensitive and non-invasive analytical tool that can image local electrical signals with high spatial and temporal resolutions. Here we report a plasmonic-based electrochemical impedance imaging technique to study transient electrical activities in single cells. The technique is based on the conversion of the electrical signal into a plasmonic signal, which is imaged optically without labels. We demonstrate imaging of the fast initiation and propagation of action potential within single neurons, and validate the imaging technique with the traditional patch clamp technique. We anticipate that the plasmonic imaging technique will contribute to the study of electrical activities in various cellular processes.
Collapse
Affiliation(s)
- Xian-Wei Liu
- CAS Key Laboratory of Urban Pollutant Conversion, School of Chemistry and Materials Science, University of Science & Technology of China, Hefei, 230026, China
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, 85287, USA
| | - Yunze Yang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, 85287, USA
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, 85287, USA
| | - Ming Gao
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Jie Wu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
49
|
Titley HK, Brunel N, Hansel C. Toward a Neurocentric View of Learning. Neuron 2017; 95:19-32. [PMID: 28683265 PMCID: PMC5519140 DOI: 10.1016/j.neuron.2017.05.021] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/29/2023]
Abstract
Synaptic plasticity (e.g., long-term potentiation [LTP]) is considered the cellular correlate of learning. Recent optogenetic studies on memory engram formation assign a critical role in learning to suprathreshold activation of neurons and their integration into active engrams ("engram cells"). Here we review evidence that ensemble integration may result from LTP but also from cell-autonomous changes in membrane excitability. We propose that synaptic plasticity determines synaptic connectivity maps, whereas intrinsic plasticity-possibly separated in time-amplifies neuronal responsiveness and acutely drives engram integration. Our proposal marks a move away from an exclusively synaptocentric toward a non-exclusive, neurocentric view of learning.
Collapse
Affiliation(s)
- Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Nicolas Brunel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Statistics, University of Chicago, Chicago, IL 60637, USA
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
50
|
Tanese D, Weng JY, Zampini V, De Sars V, Canepari M, Rozsa B, Emiliani V, Zecevic D. Imaging membrane potential changes from dendritic spines using computer-generated holography. NEUROPHOTONICS 2017; 4:031211. [PMID: 28523281 PMCID: PMC5428833 DOI: 10.1117/1.nph.4.3.031211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/24/2017] [Indexed: 05/08/2023]
Abstract
Electrical properties of neuronal processes are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor electrical subthreshold events as they travel from synapses on distal dendrites and summate at particular locations to initiate action potentials. It is now possible to carry out these measurements at the scale of individual dendritic spines using voltage imaging. In these measurements, the voltage-sensitive probes can be thought of as transmembrane voltmeters with a linear scale, which directly monitor electrical signals. Grinvald et al. were important early contributors to the methodology of voltage imaging, and they pioneered some of its significant results. We combined voltage imaging and glutamate uncaging using computer-generated holography. The results demonstrated that patterned illumination, by reducing the surface area of illuminated membrane, reduces photodynamic damage. Additionally, region-specific illumination practically eliminated the contamination of optical signals from individual spines by the scattered light from the parent dendrite. Finally, patterned illumination allowed one-photon uncaging of glutamate on multiple spines to be carried out in parallel with voltage imaging from the parent dendrite and neighboring spines.
Collapse
Affiliation(s)
- Dimitrii Tanese
- Paris Descartes University, Neurophotonics Laboratory, CNRS UMR8250, Paris, France
| | - Ju-Yun Weng
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, New Haven, Connecticut, United States
| | - Valeria Zampini
- Paris Descartes University, Neurophotonics Laboratory, CNRS UMR8250, Paris, France
| | - Vincent De Sars
- Paris Descartes University, Neurophotonics Laboratory, CNRS UMR8250, Paris, France
| | - Marco Canepari
- Université Grenoble Alpes and CNRS, Laboratory for Interdisciplinary Physics, UMR 5588, Saint Martin d’Hères, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, France
- Institut National de la Santé et Recherche Médicale, Grenoble, France
| | - Balazs Rozsa
- Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Valentina Emiliani
- Paris Descartes University, Neurophotonics Laboratory, CNRS UMR8250, Paris, France
| | - Dejan Zecevic
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, New Haven, Connecticut, United States
- Address all correspondence to: Dejan Zecevic, E-mail:
| |
Collapse
|