1
|
Urbano VA, Alves GHZ, Pompeu PS, Contieri BB, Benedito E. Fish acting as sinks of methane-derived carbon in Neotropical floodplains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178231. [PMID: 39721522 DOI: 10.1016/j.scitotenv.2024.178231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Floodplains function as global hotspots for the natural production of methane. Some of this methane can be oxidized by methanotrophic bacteria and assimilated into their biomass before reaching the atmosphere. Consequently, aquatic invertebrates that feed on methanotrophic bacteria may transfer methane-derived carbon to higher trophic levels in the aquatic food chain. Our objective was to investigate the proportion of methane-derived carbon in the biomass of apex fish across 34 lakes from four major Neotropical floodplains (Amazon, Pantanal, Araguaia, and Paraná) using stable isotopes of carbon (δ13C). We found that methane-derived carbon contributed between 5 % and 16 % to the biomass of 37 apex fish species, providing, for the first time, evidence of the fish's role in the methane cycle in the Neotropics. Consumers in the Amazon and Pantanal floodplains, the largest and most significant regions for methane production, exhibited higher levels of methane-derived carbon in their biomass (11.06 ± 2.87 % and 9.84 ± 3.08 %, respectively). These results underscore the role of aquatic consumers in mitigating methane emissions in floodplains, as methane oxidation and assimilation are linked to reduced emissions. Therefore, conserving fish assemblages in floodplains through strategies that maintain the natural dynamics of these ecosystems is essential for controlling natural methane emissions.
Collapse
Affiliation(s)
- Vinícius Andrade Urbano
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras (UFLA), Campus Lavras, Lavras, MG 37203-202, Brazil; Department of Biology (DBI), State University of Maringá, Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil.
| | - Gustavo Henrique Zaia Alves
- Department of General Biology, State University of Ponta Grossa (UEPG), Campus Uvaranas, Ponta Grossa, PR 84030-900, Brazil
| | - Paulo Santos Pompeu
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras (UFLA), Campus Lavras, Lavras, MG 37203-202, Brazil
| | - Beatriz Bosquê Contieri
- Graduate Program in Ecology of Inland Water Ecosystems (PEA), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil
| | - Evanilde Benedito
- Department of Biology (DBI), State University of Maringá, Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program in Ecology of Inland Water Ecosystems (PEA), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Nucleus of Limnology, Ictiology and Aquaculture (NUPELIA) of State University of Maringá (UEM). Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program Comparate Biology (PGB), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil
| |
Collapse
|
2
|
Lichman V, Ozerov M, López ME, Noreikiene K, Kahar S, Pukk L, Burimski O, Gross R, Vasemägi A. Whole-genome analysis reveals phylogenetic and demographic history of Eurasian perch. JOURNAL OF FISH BIOLOGY 2024; 105:871-885. [PMID: 38897597 DOI: 10.1111/jfb.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
The contemporary diversity and distribution of species are shaped by their evolutionary and ecological history. This can be deciphered with the help of phylogenetic and demographic analysis methods, ideally combining and supplementing information from mitochondrial and nuclear genomes. In this study, we investigated the demographic history of Eurasian perch (Perca fluviatilis), a highly adaptable teleost with a distribution range across Eurasia. We combined whole-genome resequencing data with available genomic resources to analyse the phylogeny, phylogeography, and demographic history of P. fluviatilis populations from Europe and Siberia. We identified five highly diverged evolutionary mtDNA lineages, three of which show a strong signal of admixture in the Baltic Sea region. The estimated mean divergence time between these lineages ranged from 0.24 to 1.42 million years. Based on nuclear genomes, two distinct demographic trajectories were observed in European and Siberian samples reflecting contrasting demographic histories ca. 30,000-100,000 years before the present. A comparison of mtDNA and nuclear DNA evolutionary trees and AMOVA revealed concordances, as well as incongruences, between the two types of data, most likely reflecting recent postglacial colonization and hybridization events. Overall, our findings demonstrate the power and usefulness of genome-wide information for delineating historical processes that have shaped the genome of P. fluviatilis. We also highlight the added value of data-mining existing transcriptomic resources to complement novel sequence data, helping to shed light on putative glacial refugia and postglacial recolonization routes.
Collapse
Affiliation(s)
- Vitalii Lichman
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Mikhail Ozerov
- Biodiversity Unit, University of Turku, Turku, Finland
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Department of Biology, University of Turku, Turku, Finland
| | - María-Eugenia López
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Kristina Noreikiene
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
- Department of Botany and Genetics, Vilnius University, Vilnius, Lithuania
| | - Siim Kahar
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Lilian Pukk
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Oksana Burimski
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Riho Gross
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Anti Vasemägi
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| |
Collapse
|
3
|
Niu J, Huss M, Garnier A, Vasemägi A, Gårdmark A. Multi-decadal warming alters predator's effect on prey community composition. Proc Biol Sci 2024; 291:20240511. [PMID: 39110169 PMCID: PMC11305412 DOI: 10.1098/rspb.2024.0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Predator responses to warming can occur via phenotypic plasticity, evolutionary adaptation or a combination of both, changing their top-down effects on prey communities. However, we lack evidence of how warming-induced evolutionary changes in predators may influence natural food webs. Here, we ask whether wild fish subject to warming across multiple generations differ in their impacts on prey communities compared with their nearby conspecifics experiencing a natural thermal regime. We carried out a common garden mesocosm experiment with larval perch (Perca fluviatilis), originating from a heated or reference coastal environment, feeding on zooplankton communities under a gradient of experimental temperatures. Overall, in the presence of fish of heated origin, zooplankton abundance was higher and did not change with experimental warming, whereas in the presence of fish of unheated origin, it declined with experimental temperature. Responses in zooplankton taxonomic and size composition suggest that larvae of heated origin consume more large-sized taxa as the temperature increases. Our findings show that differences between fish populations, potentially representing adaptation to their long-term thermal environments, can affect the abundance, biomass, size and species composition of their prey communities. This suggests that rapid microevolution in predators to ongoing climate warming might have indirect cross-generational ecological consequences propagating through food webs.
Collapse
Affiliation(s)
- Jingyao Niu
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Box 7018, Uppsala75007, Sweden
| | - Magnus Huss
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Box 7018, Uppsala75007, Sweden
| | - Aurélie Garnier
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Box 7018, Uppsala75007, Sweden
- Université de Rennes, UMR 6553 CNRS ECOBIO, 263 Avenue du Général Leclerc, Rennes35042, France
| | - Anti Vasemägi
- Institute of Freshwater Research, Swedish University of Agricultural Sciences, Stångholmsvägen 2, Drottningholm17893, Sweden
- Department of Aquaculture, Estonian University of Life Sciences, Institute of Veterinary Medicine and Animal Sciences, 46A Kreutzwaldi Street, Tartu51006, Estonia
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Box 7018, Uppsala75007, Sweden
| |
Collapse
|
4
|
Hambäck PA, Dawson L, Geranmayeh P, Jarsjö J, Kačergytė I, Peacock M, Collentine D, Destouni G, Futter M, Hugelius G, Hedman S, Jonsson S, Klatt BK, Lindström A, Nilsson JE, Pärt T, Schneider LD, Strand JA, Urrutia-Cordero P, Åhlén D, Åhlén I, Blicharska M. Tradeoffs and synergies in wetland multifunctionality: A scaling issue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160746. [PMID: 36513236 DOI: 10.1016/j.scitotenv.2022.160746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/31/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Wetland area in agricultural landscapes has been heavily reduced to gain land for crop production, but in recent years there is increased societal recognition of the negative consequences from wetland loss on nutrient retention, biodiversity and a range of other benefits to humans. The current trend is therefore to re-establish wetlands, often with an aim to achieve the simultaneous delivery of multiple ecosystem services, i.e., multifunctionality. Here we review the literature on key objectives used to motivate wetland re-establishment in temperate agricultural landscapes (provision of flow regulation, nutrient retention, climate mitigation, biodiversity conservation and cultural ecosystem services), and their relationships to environmental properties, in order to identify potential for tradeoffs and synergies concerning the development of multifunctional wetlands. Through this process, we find that there is a need for a change in scale from a focus on single wetlands to wetlandscapes (multiple neighboring wetlands including their catchments and surrounding landscape features) if multiple societal and environmental goals are to be achieved. Finally, we discuss the key factors to be considered when planning for re-establishment of wetlands that can support achievement of a wide range of objectives at the landscape scale.
Collapse
Affiliation(s)
- P A Hambäck
- Dept of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| | - L Dawson
- School of Forest Management, Swedish University of Agricultural Sciences, Skinnskatteberg, Sweden
| | - P Geranmayeh
- Dept of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J Jarsjö
- Dept of Physical Geography, Stockholm University, Stockholm, Sweden
| | - I Kačergytė
- Dept of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - M Peacock
- Dept of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden; Dept of Geography and Planning, School of Environmental Sciences, University of Liverpool, UK
| | - D Collentine
- Dept of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - G Destouni
- Dept of Physical Geography, Stockholm University, Stockholm, Sweden
| | - M Futter
- Dept of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - G Hugelius
- Dept of Physical Geography, Stockholm University, Stockholm, Sweden
| | - S Hedman
- The Rural Economy and Agricultural Society, Eldsberga, Sweden
| | - S Jonsson
- Dept of Environmental Science, Stockholm University, Stockholm, Sweden
| | - B K Klatt
- The Rural Economy and Agricultural Society, Eldsberga, Sweden; Dept of Biology, Lund University, Lund, Sweden
| | - A Lindström
- National Veterinary Institute, Uppsala, Sweden
| | - J E Nilsson
- Dept of Environmental and Biosciences, Halmstad University, Halmstad, Sweden; Dept of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - T Pärt
- Dept of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - L D Schneider
- The Rural Economy and Agricultural Society, Eldsberga, Sweden
| | - J A Strand
- The Rural Economy and Agricultural Society, Eldsberga, Sweden
| | | | - D Åhlén
- Dept of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - I Åhlén
- Dept of Physical Geography, Stockholm University, Stockholm, Sweden
| | - M Blicharska
- Natural Resources and Sustainable Development, Dept of Earth Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Effects of Water and Fertilizer Management Practices on Methane Emissions from Paddy Soils: Synthesis and Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127324. [PMID: 35742575 PMCID: PMC9223590 DOI: 10.3390/ijerph19127324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022]
Abstract
Water and fertilizer management practices are considered to have great influence on soil methane (CH4) emissions from paddy fields. However, few studies have conducted a quantitative analysis of the effects of these management practices. Here, we selected 156 observations of water management from 34 articles and 288 observations of fertilizer management from 37 articles and conducted a global meta-analysis of the effects of water and fertilizer management practices on soil CH4 emissions in paddy fields. In general, compared with traditional irrigation (long-term flooding irrigation), water-saving irrigation significantly decreased soil CH4 emissions but increased rice yield. Among the different practices, intermittent irrigation had the fewest reductions in CH4 emissions but the greatest increase in rice yield. In addition, fertilization management practices such as manure, mixed fertilizer (mixture), and straw significantly enhanced CH4 emissions. Rice yields were increased under fertilization with a mixture, traditional fertilizer, and controlled release fertilizer. Our results highlight that suitable agricultural water and fertilizer management practices are needed to effectively reduce CH4 emissions while maintaining rice yields. We also put forward some prospects for mitigating soil CH4 emissions from paddy fields in the context of global warming in the future.
Collapse
|
6
|
Aung KMM, Chen HH, Segar ST, Miao BG, Peng YQ, Liu C. Changes in temperature alter competitive interactions and overall structure of fig wasp communities. J Anim Ecol 2022; 91:1303-1315. [PMID: 35420162 DOI: 10.1111/1365-2656.13701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
Organisms exist within ecological networks, connected through interactions such as parasitism, predation and mutualism which can modify their abundance and distribution within habitat patches. Differential species responses make it hard to predict the influence of climate change at the community scale. Understanding the interplay between climate and biotic interactions can improve our predictions of how ecosystems will respond to current global warming. We aim to understand how climate affects the multi-trophic biotic interactions as well as the community structure using the enclosed communities of wasps associated with figs as study system. To examine the presence and strength of multi-trophic species interactions, we first characterized the multi-trophic community of fig wasps associated with Ficus racemosa and then applied hierarchical joint species distribution models, fitted to community monitoring data. We further evaluated the effect of climate on individual species trends as well as inter-specific interactions. We found that the competitive balance shifted to favour non-pollinating galling wasps and disadvantage the dominant pollinator in sub-optimal conditions. Further, sub-optimal conditions for galling wasps facilitated the occurrence of their specialized parasitoid, as changes cascaded across trophic levels and led to alternative community structures. Our results highlight the role of how species interactions can be modified across multiple trophic levels in a fig wasp community according to climate.
Collapse
Affiliation(s)
- Khin Me Me Aung
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China
| | - Huan-Huan Chen
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011, China.,Key Laboratory of Yunnan Province Universities of Qujing Natural History and Early Vertebrate Evolution
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, Shropshire TF10 8NB, UK
| | - Bai-Ge Miao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China
| | - Yan-Qiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China
| | - Cong Liu
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
7
|
Ozerov M, Noreikiene K, Kahar S, Huss M, Huusko A, Kõiv T, Sepp M, López M, Gårdmark A, Gross R, Vasemägi A. Whole-genome sequencing illuminates multifaceted targets of selection to humic substances in Eurasian perch. Mol Ecol 2022; 31:2367-2383. [PMID: 35202502 PMCID: PMC9314028 DOI: 10.1111/mec.16409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Extreme environments are inhospitable to the majority of species, but some organisms are able to survive in such hostile conditions due to evolutionary adaptations. For example, modern bony fishes have colonized various aquatic environments, including perpetually dark, hypoxic, hypersaline and toxic habitats. Eurasian perch (Perca fluviatilis) is among the few fish species of northern latitudes that is able to live in very acidic humic lakes. Such lakes represent almost "nocturnal" environments; they contain high levels of dissolved organic matter, which in addition to creating a challenging visual environment, also affects a large number of other habitat parameters and biotic interactions. To reveal the genomic targets of humic-associated selection, we performed whole-genome sequencing of perch originating from 16 humic and 16 clear-water lakes in northern Europe. We identified over 800,000 single nucleotide polymorphisms, of which >10,000 were identified as potential candidates under selection (associated with >3000 genes) using multiple outlier approaches. Our findings suggest that adaptation to the humic environment may involve hundreds of regions scattered across the genome. Putative signals of adaptation were detected in genes and gene families with diverse functions, including organism development and ion transportation. The observed excess of variants under selection in regulatory regions highlights the importance of adaptive evolution via regulatory elements, rather than via protein sequence modification. Our study demonstrates the power of whole-genome analysis to illuminate the multifaceted nature of humic adaptation and provides the foundation for further investigation of causal mutations underlying phenotypic traits of ecological and evolutionary importance.
Collapse
Affiliation(s)
- Mikhail Ozerov
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Kristina Noreikiene
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Siim Kahar
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Magnus Huss
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Ari Huusko
- Natural resources Institute Finland (Luke)PaltamoFinland
| | - Toomas Kõiv
- Chair of Hydrobiology and FisheryInstitute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Margot Sepp
- Chair of Hydrobiology and FisheryInstitute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - María‐Eugenia López
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Riho Gross
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Anti Vasemägi
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| |
Collapse
|
8
|
Guo L, Zhao L, Ye J, Ji Z, Tang JJ, Bai K, Zheng S, Hu L, Chen X. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems. eLife 2022; 11:73869. [PMID: 35190027 PMCID: PMC8863371 DOI: 10.7554/elife.73869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
Whether species coculture can overcome the shortcomings of crop monoculture requires additional study. Here, we show how aquatic animals (i.e. carp, crabs, and softshell turtles) benefit paddy ecosystems when cocultured with rice. Three separate field experiments and three separate mesocosm experiments were conducted. Each experiment included a rice monoculture (RM) treatment and a rice-aquatic animal (RA) coculture treatment; RA included feed addition for aquatic animals. In the field experiments, rice yield was higher with RA than with RM, and RA also produced aquatic animal yields that averaged 0.52–2.57 t ha-1. Compared to their corresponding RMs, the three RAs had significantly higher apparent nitrogen (N)-use efficiency and lower weed infestation, while soil N contents were stable over time. Dietary reconstruction analysis based on 13C and 15N showed that 16.0–50.2% of aquatic animal foods were from naturally occurring organisms in the rice fields. Stable-isotope-labeling (13C) in the field experiments indicated that the organic matter decomposition rate was greater with RA than with RM. Isotope 15N labeling in the mesocosm experiments indicated that rice used 13.0–35.1% of the aquatic animal feed-N. All these results suggest that rice-aquatic animal coculture increases food production, increases N-use efficiency, and maintains soil N content by reducing weeds and promoting decomposition and complementary N use. Our study supports the view that adding species to monocultures may enhance agroecosystem functions. Monoculture, where only one type of crop is grown to the exclusion of any other organism, is a pillar of modern agriculture. Yet this narrow focus disregards how complex inter-species interactions can increase crop yield and biodiversity while decreasing the need for fertilizers or pesticides. For example, many farmers across Asia introduce carps, crabs, turtles or other freshwater grazers into their rice paddies. This coculture approach yields promising results but remains poorly understood. In particular, it is unclear how these animals’ behaviours and biological processes benefit the ecosystem. To examine these questions, Guo, Zhao et al. conducted three separate four-year field experiments; they compared rice plots inhabited by either carp, mitten crabs or Chinese softshell turtles with fields where these organisms were not present. With animals, the rice paddies had less weeds, better crop yields and steady levels of nitrogen (a natural fertiliser) in their soil. These ecosystems could breakdown organic matter faster, use it better and had a reduced need for added fertilizer. While animal feed was provided in the areas that were studied, carp, crabs and turtles obtained up to half their food from the field itself, eating weeds, algae and pests and therefore reducing competition for the crops. This work helps to understand the importance of species interactions, showing that diversifying monocultures may boost yields and make agriculture more sustainable.
Collapse
Affiliation(s)
- Liang Guo
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lufeng Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junlong Ye
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zijun Ji
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Jun Tang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Keyu Bai
- Bioversity International, Maccarese, Italy
| | - Sijun Zheng
- Bioversity International, Maccarese, Italy.,Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Liangliang Hu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xin Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Disproportionate Contribution of Vegetated Habitats to the CH4 and CO2 Budgets of a Boreal Lake. Ecosystems 2022. [DOI: 10.1007/s10021-021-00730-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Martin G, Rissanen AJ, Garcia SL, Mehrshad M, Buck M, Peura S. Candidatus Methylumidiphilus Drives Peaks in Methanotrophic Relative Abundance in Stratified Lakes and Ponds Across Northern Landscapes. Front Microbiol 2021; 12:669937. [PMID: 34456882 PMCID: PMC8397446 DOI: 10.3389/fmicb.2021.669937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Boreal lakes and ponds produce two-thirds of the total natural methane emissions above the latitude of 50° North. These lake emissions are regulated by methanotrophs which can oxidize up to 99% of the methane produced in the sediments and the water column. Despite their importance, the diversity and distribution of the methanotrophs in lakes are still poorly understood. Here, we used shotgun metagenomic data to explore the diversity and distribution of methanotrophs in 40 oxygen-stratified water bodies in boreal and subarctic areas in Europe and North America. In our data, gammaproteobacterial methanotrophs (order Methylococcales) generally dominated the methanotrophic communities throughout the water columns. A recently discovered lineage of Methylococcales, Candidatus Methylumidiphilus, was present in all the studied water bodies and dominated the methanotrophic community in lakes with a high relative abundance of methanotrophs. Alphaproteobacterial methanotrophs were the second most abundant group of methanotrophs. In the top layer of the lakes, characterized by low CH4 concentration, their abundance could surpass that of the gammaproteobacterial methanotrophs. These results support the theory that the alphaproteobacterial methanotrophs have a high affinity for CH4 and can be considered stress-tolerant strategists. In contrast, the gammaproteobacterial methanotrophs are competitive strategists. In addition, relative abundances of anaerobic methanotrophs, Candidatus Methanoperedenaceae and Candidatus Methylomirabilis, were strongly correlated, suggesting possible co-metabolism. Our data also suggest that these anaerobic methanotrophs could be active even in the oxic layers. In non-metric multidimensional scaling, alpha- and gammaproteobacterial methanotrophs formed separate clusters based on their abundances in the samples, except for the gammaproteobacterial Candidatus Methylumidiphilus, which was separated from these two clusters. This may reflect similarities in the niche and environmental requirements of the different genera within alpha- and gammaproteobacterial methanotrophs. Our study confirms the importance of O2 and CH4 in shaping the methanotrophic communities and suggests that one variable cannot explain the diversity and distribution of the methanotrophs across lakes. Instead, we suggest that the diversity and distribution of freshwater methanotrophs are regulated by lake-specific factors.
Collapse
Affiliation(s)
- Gaëtan Martin
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Antti J. Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Bartosiewicz M, Maranger R, Przytulska A, Laurion I. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake. WATER RESEARCH 2021; 196:116985. [PMID: 33735621 DOI: 10.1016/j.watres.2021.116985] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Lakes are important sources of greenhouse gases (GHGs) to the atmosphere. Factors controlling CO2, CH4 and N2O fluxes include eutrophication and warming, but the integrated influence of climate-warming-driven stratification, oxygen loss and resultant changes in bloom characteristics on GHGs are not well understood. Here we assessed the influence of contrasting meteorological conditions on stratification and phytoplankton bloom composition in a eutrophic lake, and tested for associated changes in GHGs inventories in both the shallow and deep waters, over three seasons (2010-2012). Atmospheric heatwaves had one of the most dramatic effects on GHGs. Indeed, cyanobacterial blooms that developed in response to heatwave events in 2012 enhanced both sedimentary CH4 concentrations (reaching up to 1mM) and emissions to the atmosphere (up to 8 mmol m-2 d-1). That summer, CH4 contributed 52% of the integrated warming potential of GHGs produced in the lake (in CO2 equivalents) as compared to between 34 and 39% in years without cyanobacterial blooms. High CH4 accumulation and subsequent emission in 2012 were preceded by CO2 and N2O consumption and under-saturation at the lake surface (uptakes at -30 mmol m-2 d-1 and -1.6 µmol m-2 d-1, respectively). Fall overturn presented a large efflux of N2O and CH4, particularly from the littoral zone after the cyanobacterial bloom. We provide evidence that, despite cooling observed at depth during hot summers, CH4 emissions increased via stronger stratification and surface warming, resulting in enhanced cyanobacterial biomass deposition and intensified bottom water anoxia. Our results, supported by recent literature reports, suggests a novel interplay between climate change effects on lake hydrodynamics that impacts both bloom characteristics and GHGs production in shallow eutrophic lakes. Given global trends of warming and enrichment, these interactive effects should be considered to more accurately predict the future global role of lakes in GHG emissions.
Collapse
Affiliation(s)
- Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland; Groupe de recherche interuniversitaire en limnologie (GRIL); Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 de la Couronne, Québec, Canada
| | - Roxane Maranger
- Groupe de recherche interuniversitaire en limnologie (GRIL); Département des Sciences Biologiques, Université de Montréal, C.P. 6128 succ. Centre-ville, Montréal, Canada
| | - Anna Przytulska
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Isabelle Laurion
- Groupe de recherche interuniversitaire en limnologie (GRIL); Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 de la Couronne, Québec, Canada
| |
Collapse
|
12
|
Luhring TM, DeLong JP. Trophic cascades alter eco-evolutionary dynamics and body size evolution. Proc Biol Sci 2020; 287:20200526. [PMID: 33143578 DOI: 10.1098/rspb.2020.0526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Trait evolution in predator-prey systems can feed back to the dynamics of interacting species as well as cascade to impact the dynamics of indirectly linked species (eco-evolutionary trophic cascades; EETCs). A key mediator of trophic cascades is body mass, as it both strongly influences and evolves in response to predator-prey interactions. Here, we use Gillespie eco-evolutionary models to explore EETCs resulting from top predator loss and mediated by body mass evolution. Our four-trophic-level food chain model uses allometric scaling to link body mass to different functions (ecological pleiotropy) and is realistically parameterized from the FORAGE database to mimic the parameter space of a typical freshwater system. To track real-time changes in selective pressures, we also calculated fitness gradients for each trophic level. As predicted, top predator loss generated alternating shifts in abundance across trophic levels, and, depending on the nature and strength in changes to fitness gradients, also altered trajectories of body mass evolution. Although more distantly linked, changes in the abundance of top predators still affected the eco-evolutionary dynamics of the basal producers, in part because of their relatively short generation times. Overall, our results suggest that impacts on top predators can set off transient EETCs with the potential for widespread indirect impacts on food webs.
Collapse
Affiliation(s)
- Thomas M Luhring
- School of Biological Sciences, University of Nebraska, 410 Manter Hall, Lincoln, NE 68588, USA
| | - John P DeLong
- School of Biological Sciences, University of Nebraska, 410 Manter Hall, Lincoln, NE 68588, USA
| |
Collapse
|
13
|
Schmitz OJ, Leroux SJ. Food Webs and Ecosystems: Linking Species Interactions to the Carbon Cycle. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-104730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All species within ecosystems contribute to regulating carbon cycling because of their functional integration into food webs. Yet carbon modeling and accounting still assumes that only plants, microbes, and invertebrate decomposer species are relevant to the carbon cycle. Our multifaceted review develops a case for considering a wider range of species, especially herbivorous and carnivorous wild animals. Animal control over carbon cycling is shaped by the animals’ stoichiometric needs and functional traits in relation to the stoichiometry and functional traits of their resources. Quantitative synthesis reveals that failing to consider these mechanisms can lead to serious inaccuracies in the carbon budget. Newer carbon-cycle models that consider food-web structure based on organismal functional traits and stoichiometry can offer mechanistically informed predictions about the magnitudes of animal effects that will help guide new empirical research aimed at developing a coherent understanding of the interactions and importance of all species within food webs.
Collapse
Affiliation(s)
- Oswald J. Schmitz
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Shawn J. Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| |
Collapse
|
14
|
Grasset C, Sobek S, Scharnweber K, Moras S, Villwock H, Andersson S, Hiller C, Nydahl AC, Chaguaceda F, Colom W, Tranvik LJ. The CO 2 -equivalent balance of freshwater ecosystems is non-linearly related to productivity. GLOBAL CHANGE BIOLOGY 2020; 26:5705-5715. [PMID: 32681718 DOI: 10.1111/gcb.15284] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Eutrophication of fresh waters results in increased CO2 uptake by primary production, but at the same time increased emissions of CH4 to the atmosphere. Given the contrasting effects of CO2 uptake and CH4 release, the net effect of eutrophication on the CO2 -equivalent balance of fresh waters is not clear. We measured carbon fluxes (CO2 and CH4 diffusion, CH4 ebullition) and CH4 oxidation in 20 freshwater mesocosms with 10 different nutrient concentrations (total phosphorus range: mesotrophic 39 µg/L until hypereutrophic 939 µg/L) and planktivorous fish in half of them. We found that the CO2 -equivalent balance had a U-shaped relationship with productivity, up to a threshold in hypereutrophic systems. CO2 -equivalent sinks were confined to a narrow range of net ecosystem production (NEP) between 5 and 19 mmol O2 m-3 day-1 . Our findings indicate that eutrophication can shift fresh waters from sources to sinks of CO2 -equivalents due to enhanced CO2 uptake, but continued eutrophication enhances CH4 emission and transforms freshwater ecosystems to net sources of CO2 -equivalents to the atmosphere. Nutrient enrichment but also planktivorous fish presence increased productivity, thereby regulating the resulting CO2 -equivalent balance. Increasing planktivorous fish abundance, often concomitant with eutrophication, will consequently likely affect the CO2 -equivalent balance of fresh waters.
Collapse
Affiliation(s)
- Charlotte Grasset
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Sebastian Sobek
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Kristin Scharnweber
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Simone Moras
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Holger Villwock
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Sara Andersson
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Carolin Hiller
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Anna C Nydahl
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Fernando Chaguaceda
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - William Colom
- Erken Laboratory, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Lars J Tranvik
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Sentis A, Bertram R, Dardenne N, Simon JC, Magro A, Pujol B, Danchin E, Hemptinne JL. Intraspecific difference among herbivore lineages and their host-plant specialization drive the strength of trophic cascades. Ecol Lett 2020; 23:1242-1251. [PMID: 32394585 DOI: 10.1111/ele.13528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
Abstract
Trophic cascades - the indirect effect of predators on non-adjacent lower trophic levels - are important drivers of the structure and dynamics of ecological communities. However, the influence of intraspecific trait variation on the strength of trophic cascade remains largely unexplored, which limits our understanding of the mechanisms underlying ecological networks. Here we experimentally investigated how intraspecific difference among herbivore lineages specialized on different host plants influences trophic cascade strength in a terrestrial tri-trophic system. We found that the occurrence and strength of the trophic cascade are strongly influenced by herbivores' lineage and host-plant specialization but are not associated with density-dependent effects mediated by the growth rate of herbivore populations. Our findings stress the importance of intraspecific heterogeneities and evolutionary specialization as drivers of trophic cascade strength and underline that intraspecific variation should not be overlooked to decipher the joint influence of evolutionary and ecological factors on the functioning of multi-trophic interactions.
Collapse
Affiliation(s)
- Arnaud Sentis
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France.,UMR RECOVER, INRAE, Aix Marseille Univ, Aix-en-Provence, France
| | - Raphaël Bertram
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France
| | - Nathalie Dardenne
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France
| | | | - Alexandra Magro
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France
| | - Benoit Pujol
- PSL Université Paris: EPHE-UPVD-CNRS, USR, 3278 CRIOBE, Uni. Perpignan, France
| | - Etienne Danchin
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France
| | - Jean-Louis Hemptinne
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France
| |
Collapse
|
16
|
Reis PCJ, Thottathil SD, Ruiz-González C, Prairie YT. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ Microbiol 2019; 22:738-751. [PMID: 31769176 DOI: 10.1111/1462-2920.14877] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022]
Abstract
Lake methane (CH4 ) emissions are largely controlled by aerobic methane-oxidizing bacteria (MOB) which mostly belong to the classes Alpha- and Gammaproteobacteria (Alpha- and Gamma-MOB). Despite the known metabolic and ecological differences between the two MOB groups, their main environmental drivers and their relative contribution to CH4 oxidation rates across lakes remain unknown. Here, we quantified the two MOB groups through CARD-FISH along the water column of six temperate lakes and during incubations in which we measured ambient CH4 oxidation rates. We found a clear niche separation of Alpha- and Gamma-MOB across lake water columns, which is mostly driven by oxygen concentration. Gamma-MOB appears to dominate methanotrophy throughout the water column, but Alpha-MOB may also be an important player particularly in well-oxygenated bottom waters. The inclusion of Gamma-MOB cell abundance improved environmental models of CH4 oxidation rate, explaining part of the variation that could not be explained by environmental factors alone. Altogether, our results show that MOB composition is linked to CH4 oxidation rates in lakes and that information on the MOB community can help predict CH4 oxidation rates and thus emissions from lakes.
Collapse
Affiliation(s)
- Paula C J Reis
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| | - Shoji D Thottathil
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| | - Clara Ruiz-González
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), Barcelona, E-08003, Spain
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| |
Collapse
|
17
|
Burkepile DE, Thurber RV. The Long Arm of Species Loss: How Will Defaunation Disrupt Ecosystems Down to the Microbial Scale? Bioscience 2019. [DOI: 10.1093/biosci/biz047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Deron E Burkepile
- Department of Ecology, Evolution and Marine Biology, and with the Marine Science Institute, both at the University of California, in Santa Barbara
| | | |
Collapse
|
18
|
El Abbadi SH, Criddle CS. Engineering the Dark Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2273-2287. [PMID: 30640466 DOI: 10.1021/acs.est.8b04038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Meeting global food needs in the face of climate change and resource limitation requires innovative approaches to food production. Here, we explore incorporation of new dark food chains into human food systems, drawing inspiration from natural ecosystems, the history of single cell protein, and opportunities for new food production through wastewater treatment, microbial protein production, and aquaculture. The envisioned dark food chains rely upon chemoautotrophy in lieu of photosynthesis, with primary production based upon assimilation of CH4 and CO2 by methane- and hydrogen-oxidizing bacteria. The stoichiometry, kinetics, and thermodynamics of these bacteria are evaluated, and opportunities for recycling of carbon, nitrogen, and water are explored. Because these processes do not require light delivery, high volumetric productivities are possible; because they are exothermic, heat is available for downstream protein processing; because the feedstock gases are cheap, existing pipeline infrastructure could facilitate low-cost energy-efficient delivery in urban environments. Potential life-cycle benefits include: a protein alternative to fishmeal; partial decoupling of animal feed from human food; climate change mitigation due to decreased land use for agriculture; efficient local cycling of carbon and nutrients that offsets the need for energy-intensive fertilizers; and production of high value products, such as the prebiotic polyhydroxybutyrate.
Collapse
Affiliation(s)
- Sahar H El Abbadi
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305-4020 , United States
| | - Craig S Criddle
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305-4020 , United States
- William and Cloy Codiga Resource Recovery Center , Stanford University , Stanford , California 94305-4020 , United States
| |
Collapse
|
19
|
Schmitz OJ, Wilmers CC, Leroux SJ, Doughty CE, Atwood TB, Galetti M, Davies AB, Goetz SJ. Animals and the zoogeochemistry of the carbon cycle. Science 2018; 362:362/6419/eaar3213. [DOI: 10.1126/science.aar3213] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Predicting and managing the global carbon cycle requires scientific understanding of ecosystem processes that control carbon uptake and storage. It is generally assumed that carbon cycling is sufficiently characterized in terms of uptake and exchange between ecosystem plant and soil pools and the atmosphere. We show that animals also play an important role by mediating carbon exchange between ecosystems and the atmosphere, at times turning ecosystem carbon sources into sinks, or vice versa. Animals also move across landscapes, creating a dynamism that shapes landscape-scale variation in carbon exchange and storage. Predicting and measuring carbon cycling under such dynamism is an important scientific challenge. We explain how to link analyses of spatial ecosystem functioning, animal movement, and remote sensing of animal habitats with carbon dynamics across landscapes.
Collapse
|
20
|
Limberger R, Birtel J, Peter H, Catalán N, da Silva Farias D, Best RJ, Brodersen J, Bürgmann H, Matthews B. Predator-induced changes in dissolved organic carbon dynamics. OIKOS 2018. [DOI: 10.1111/oik.05673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Romana Limberger
- Eawag, Dept of Aquatic Ecology; Seestrasse 79, CH-6047 Kastanienbaum Switzerland
- Research Dept for Limnology, Univ. of Innsbruck; Mondsee Austria
| | - Julia Birtel
- Eawag, Dept of Aquatic Ecology; Seestrasse 79, CH-6047 Kastanienbaum Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne; Lausanne Switzerland
- Inst. of Ecology, Univ. of Innsbruck; Innsbruck Austria
| | - Núria Catalán
- ICRA, Catalan Inst. for Water Research; Girona Spain
| | | | - Rebecca J. Best
- School of Earth Sciences and Environmental Sustainability; Northern Arizona University USA
| | - Jakob Brodersen
- Eawag, Dept of Fish Ecology and Evolution; Kastanienbaum Switzerland
| | | | - Blake Matthews
- Eawag, Dept of Aquatic Ecology; Seestrasse 79, CH-6047 Kastanienbaum Switzerland
| |
Collapse
|
21
|
Schilder J, van Hardenbroek M, Bodelier P, Kirilova EP, Leuenberger M, Lotter AF, Heiri O. Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs. Proc Biol Sci 2018. [PMID: 28637853 DOI: 10.1098/rspb.2017.0278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methane-derived carbon, incorporated by methane-oxidizing bacteria, has been identified as a significant source of carbon in food webs of many lakes. By measuring the stable carbon isotopic composition (δ13C values) of particulate organic matter, Chironomidae and Daphnia spp. and their resting eggs (ephippia), we show that methane-derived carbon presently plays a relevant role in the food web of hypertrophic Lake De Waay, The Netherlands. Sediment geochemistry, diatom analyses and δ13C measurements of chironomid and Daphnia remains in the lake sediments indicate that oligotrophication and re-eutrophication of the lake during the twentieth century had a strong impact on in-lake oxygen availability. This, in turn, influenced the relevance of methane-derived carbon in the diet of aquatic invertebrates. Our results show that, contrary to expectations, methane-derived relative to photosynthetically produced organic carbon became more relevant for at least some invertebrates during periods with higher nutrient availability for algal growth, indicating a proportionally higher use of methane-derived carbon in the lake's food web during peak eutrophication phases. Contributions of methane-derived carbon to the diet of the investigated invertebrates are estimated to have ranged from 0-11% during the phase with the lowest nutrient availability to 13-20% during the peak eutrophication phase.
Collapse
Affiliation(s)
- Jos Schilder
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland .,Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
| | - Maarten van Hardenbroek
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.,School of Geography, Politics and Sociology, Newcastle University, Newcastle NE1 7RU, UK
| | - Paul Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Emiliya P Kirilova
- Palaeoecology, Department of Physical Geography, Laboratory of Palaeobotany and Palynology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Markus Leuenberger
- Climate and Environmental Physics Division, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - André F Lotter
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.,Palaeoecology, Department of Physical Geography, Laboratory of Palaeobotany and Palynology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Oliver Heiri
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
22
|
Verstraete W, De Vrieze J. Microbial technology with major potentials for the urgent environmental needs of the next decades. Microb Biotechnol 2017; 10:988-994. [PMID: 28771931 PMCID: PMC5609260 DOI: 10.1111/1751-7915.12779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/20/2023] Open
Abstract
Several needs in the context of the water-energy-food nexus will become more prominent in the next decades. It is crucial to delineate these challenges and to find opportunities for innovative microbial technologies in the framework of sustainability and climate change. Here, we focus on four key issues, that is the imbalance in the nitrogen cycle, the diffuse emission of methane, the necessity for carbon capture and the deterioration of freshwater reserves. We suggest a set of microbial technologies to deal with each of these issues, such as (i) the production of microbial protein as food and feed, (ii) the control of methanogenic archaea and better use of methanotrophic consortia, (iii) the avoidance of nitrification and (iv) the upgrading of CO2 to microbial bioproducts. The central message is that instead of using crude methods to exploit microorganisms for degradations, the potentials of the microbiomes should be used to create processes and products that fit the demands of the cyclic market economy.
Collapse
Affiliation(s)
- Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653B‐9000GentBelgium
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653B‐9000GentBelgium
| |
Collapse
|
23
|
|
24
|
Gonçalves AZ, Srivastava DS, Oliveira PS, Romero GQ. Effects of predatory ants within and across ecosystems in bromeliad food webs. J Anim Ecol 2017; 86:790-799. [PMID: 28342283 DOI: 10.1111/1365-2656.12671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/01/2017] [Indexed: 11/28/2022]
Abstract
Predation is one of the most fundamental ecological processes affecting biotic communities. Terrestrial predators that live at ecosystem boundaries may alter the diversity of terrestrial organisms, but they may also have cross-ecosystem cascading effects when they feed on organisms with complex life cycles (i.e. organisms that shift from aquatic juvenile stages to terrestrial adult stages) or inhibit female oviposition in the aquatic environment. The predatory ant Odontomachus hastatus establishes its colonies among roots of Vriesea procera, an epiphytic bromeliad species with water-filled tanks that shelters many terrestrial and aquatic organisms. Ants may impact terrestrial communities and deter adult insects from ovipositing in the water of bromeliads via consumptive and non-consumptive effects. Ants do not forage within the aquatic environment; thus, they may be more efficient predators on terrestrial organisms. Therefore, we predict that ants will have stronger effects on terrestrial than aquatic food webs. However, such effects may also be site contingent and depend on the local composition of food webs. To test our hypothesis, we surveyed bromeliads with and without O. hastatus colonies from three different coastal field sites in the Atlantic Forest of southeast Brazil, and quantified the effect of this predatory ant on the composition, density and richness of aquatic and terrestrial metazoans found in these bromeliads. We found that ants changed the composition and reduced the overall density of aquatic and terrestrial metazoans in bromeliad ecosystems. However, effects of ants on species diversity were contingent on site. In general terms, the effects of the ant on aquatic and terrestrial metazoan communities were similar in strength and magnitude. Ants reduced the density of virtually all aquatic functional groups, especially detritivore insects as well as metazoans that reach bromeliads through phoresy on the skin of terrestrial animals (i.e. Ostracoda and Helobdella sp.). Our results suggest that the cross-ecosystem effect of this terrestrial predator on the aquatic metazoans was at least as strong as its within-ecosystem effect on the terrestrial ecosystem, and demonstrates that the same predator can simultaneously initiate cascades in multiple ecosystems.
Collapse
Affiliation(s)
- Ana Z Gonçalves
- Department of Botany, University of São Paulo, São Paulo, Brazil
| | - Diane S Srivastava
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Paulo S Oliveira
- Department of Animal Biology, University of Campinas, Campinas, Brazil
| | - Gustavo Q Romero
- Department of Animal Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
25
|
Directly converted iNeuron as a screening model for pathogenic variants. Oncotarget 2017; 8:3764-3765. [PMID: 28031528 PMCID: PMC5354789 DOI: 10.18632/oncotarget.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Sci Rep 2016; 6:35039. [PMID: 27733762 PMCID: PMC5062065 DOI: 10.1038/srep35039] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/23/2016] [Indexed: 12/05/2022] Open
Abstract
Parasites are rarely included in food web studies, although they can strongly alter trophic interactions. In aquatic ecosystems, poorly grazed cyanobacteria often dominate phytoplankton communities, leading to the decoupling of primary and secondary production. Here, we addressed the interface between predator-prey and host-parasite interactions by conducting a life-table experiment, in which four Daphnia galeata genotypes were maintained on quantitatively comparable diets consisting of healthy cyanobacteria or cyanobacteria infected by a fungal (chytrid) parasite. In four out of five fitness parameters, at least one Daphnia genotype performed better on parasitised cyanobacteria than in the absence of infection. Further treatments consisting of purified chytrid zoospores and heterotrophic bacteria suspensions established the causes of improved fitness. First, Daphnia feed on chytrid zoospores which trophically upgrade cyanobacterial carbon. Second, an increase in heterotrophic bacterial biomass, promoted by cyanobacterial decay, provides an additional food source for Daphnia. In addition, chytrid infection induces fragmentation of cyanobacterial filaments, which could render cyanobacteria more edible. Our results demonstrate that chytrid parasitism can sustain zooplankton under cyanobacterial bloom conditions, and exemplify the potential of parasites to alter interactions between trophic levels.
Collapse
|
27
|
Syväranta J, Scharnweber K, Brauns M, Hilt S, Mehner T. Assessing the Utility of Hydrogen, Carbon and Nitrogen Stable Isotopes in Estimating Consumer Allochthony in Two Shallow Eutrophic Lakes. PLoS One 2016; 11:e0155562. [PMID: 27167517 PMCID: PMC4863965 DOI: 10.1371/journal.pone.0155562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/29/2016] [Indexed: 11/22/2022] Open
Abstract
Hydrogen stable isotopes (δ2H) have recently been used to complement δ13C and δ15N in food web studies due to their potentially greater power to separate sources of organic matter in aquatic food webs. However, uncertainties remain regarding the use of δ2H, since little is known about the potential variation in the amount of exchangeable hydrogen (Hex) among common sample materials or the patterns of δ2H when entire food webs are considered. We assessed differences in Hex among the typical sample materials in freshwater studies and used δ2H, δ13C and δ15N to compare their effectiveness in tracing allochthonous matter in food webs of two small temperate lakes. Our results showed higher average amounts of Hex in animal tissues (27% in fish and macroinvertebrates, 19% in zooplankton) compared to most plant material (15% in terrestrial plants and 8% in seston/periphyton), with the exception of aquatic vascular plants (23%, referred to as macrophytes). The amount of Hex correlated strongly with sample lipid content (inferred from C:N ratios) in fish and zooplankton samples. Overall, the three isotopes provided good separation of sources (seston, periphyton, macrophytes and allochthonous organic matter), particularly the δ2H followed by δ13C. Aquatic macrophytes revealed unexpectedly high δ2H values, having more elevated δ2H values than terrestrial organic matter with direct implications for estimating consumer allochthony. Organic matter from macrophytes significantly contributed to the food webs in both lakes highlighting the need to include macrophytes as a potential source when using stable isotopes to estimate trophic structures and contributions from allochthonous sources.
Collapse
Affiliation(s)
- Jari Syväranta
- Department of Fish Biology and Ecology, Leibniz-Institute of Freshwater Biology and Inland Fisheries, Berlin, Germany
- Lake Ecology Section, Department of Bioscience, Aarhus University, Silkeborg, Denmark
- * E-mail:
| | - Kristin Scharnweber
- Department of Fish Biology and Ecology, Leibniz-Institute of Freshwater Biology and Inland Fisheries, Berlin, Germany
- Evolutionary Biology Centre, Department of Ecology and Genetics; Limnology, Uppsala University, Uppsala, Sweden
| | - Mario Brauns
- Department of Fish Biology and Ecology, Leibniz-Institute of Freshwater Biology and Inland Fisheries, Berlin, Germany
- Department of River Ecology, Helmholtz Centre for Environmental Research -UFZ, Magdeburg, Germany
| | - Sabine Hilt
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Biology and Inland Fisheries, Berlin, Germany
| | - Thomas Mehner
- Department of Fish Biology and Ecology, Leibniz-Institute of Freshwater Biology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
28
|
Grey J. The Incredible Lightness of Being Methane-Fuelled: Stable Isotopes Reveal Alternative Energy Pathways in Aquatic Ecosystems and Beyond. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|