1
|
Kumar S, Singh A, Bist CMS, Sharma M. Advancements in genetic techniques and functional genomics for enhancing crop traits and agricultural sustainability. Brief Funct Genomics 2024; 23:607-623. [PMID: 38679487 DOI: 10.1093/bfgp/elae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Genetic variability is essential for the development of new crop varieties with economically beneficial traits. The traits can be inherited from wild relatives or induced through mutagenesis. Novel genetic elements can then be identified and new gene functions can be predicted. In this study, forward and reverse genetics approaches were described, in addition to their applications in modern crop improvement programs and functional genomics. By using heritable phenotypes and linked genetic markers, forward genetics searches for genes by using traditional genetic mapping and allele frequency estimation. Despite recent advances in sequencing technology, omics and computation, genetic redundancy remains a major challenge in forward genetics. By analyzing close-related genes, we will be able to dissect their functional redundancy and predict possible traits and gene activity patterns. In addition to these predictions, sophisticated reverse gene editing tools can be used to verify them, including TILLING, targeted insertional mutagenesis, gene silencing, gene targeting and genome editing. By using gene knock-down, knock-up and knock-out strategies, these tools are able to detect genetic changes in cells. In addition, epigenome analysis and editing enable the development of novel traits in existing crop cultivars without affecting their genetic makeup by increasing epiallelic variants. Our understanding of gene functions and molecular dynamics of various biological phenomena has been revised by all of these findings. The study also identifies novel genetic targets in crop species to improve yields and stress tolerances through conventional and non-conventional methods. In this article, genetic techniques and functional genomics are specifically discussed and assessed for their potential in crop improvement.
Collapse
Affiliation(s)
- Surender Kumar
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Anupama Singh
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Chander Mohan Singh Bist
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla-171001, Himachal Pradesh, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Dharamshala-176215, Himachal Pradesh, India
| |
Collapse
|
2
|
Wijnen CL, Botet R, van de Belt J, Deurhof L, de Jong H, de Snoo CB, Dirks R, Boer MP, van Eeuwijk FA, Wijnker E, Keurentjes JJB. A complete chromosome substitution mapping panel reveals genome-wide epistasis in Arabidopsis. Heredity (Edinb) 2024; 133:198-205. [PMID: 38982296 PMCID: PMC11350127 DOI: 10.1038/s41437-024-00705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Chromosome substitution lines (CSLs) are tentatively supreme resources to investigate non-allelic genetic interactions. However, the difficulty of generating such lines in most species largely yielded imperfect CSL panels, prohibiting a systematic dissection of epistasis. Here, we present the development and use of a unique and complete panel of CSLs in Arabidopsis thaliana, allowing the full factorial analysis of epistatic interactions. A first comparison of reciprocal single chromosome substitutions revealed a dependency of QTL detection on different genetic backgrounds. The subsequent analysis of the complete panel of CSLs enabled the mapping of the genetic interactors and identified multiple two- and three-way interactions for different traits. Some of the detected epistatic effects were as large as any observed main effect, illustrating the impact of epistasis on quantitative trait variation. We, therefore, have demonstrated the high power of detection and mapping of genome-wide epistasis, confirming the assumed supremacy of comprehensive CSL sets.
Collapse
Affiliation(s)
- Cris L Wijnen
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - Ramon Botet
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - José van de Belt
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - Laurens Deurhof
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - Hans de Jong
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | | | - Rob Dirks
- Rijk Zwaan, Molecular Biology Research, Fijnaart, The Netherlands
- Managerial Genetics Consulting, Maaseik, Belgium
| | - Martin P Boer
- Wageningen University and Research, Biometris, Wageningen, The Netherlands
| | - Fred A van Eeuwijk
- Wageningen University and Research, Biometris, Wageningen, The Netherlands
| | - Erik Wijnker
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Capilla-Pérez L, Solier V, Gilbault E, Lian Q, Goel M, Huettel B, Keurentjes JJB, Loudet O, Mercier R. Enhanced recombination empowers the detection and mapping of Quantitative Trait Loci. Commun Biol 2024; 7:829. [PMID: 38977904 PMCID: PMC11231358 DOI: 10.1038/s42003-024-06530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Modern plant breeding, such as genomic selection and gene editing, is based on the knowledge of the genetic architecture of desired traits. Quantitative trait loci (QTL) analysis, which combines high throughput phenotyping and genotyping of segregating populations, is a powerful tool to identify these genetic determinants and to decipher the underlying mechanisms. However, meiotic recombination, which shuffles genetic information between generations, is limited: Typically only one to two exchange points, called crossovers, occur between a pair of homologous chromosomes. Here we test the effect on QTL analysis of boosting recombination, by mutating the anti-crossover factors RECQ4 and FIGL1 in Arabidopsis thaliana full hybrids and lines in which a single chromosome is hybrid. We show that increasing recombination ~6-fold empowers the detection and resolution of QTLs, reaching the gene scale with only a few hundred plants. Further, enhanced recombination unmasks some secondary QTLs undetected under normal recombination. These results show the benefits of enhanced recombination to decipher the genetic bases of traits.
Collapse
Affiliation(s)
- Laia Capilla-Pérez
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Victor Solier
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Elodie Gilbault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Qichao Lian
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Manish Goel
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Ludwig-Maximilians-Universität München, Fakultät für Biologie, Biozentrum Martinsried, 82152, Planegg-Martinsried, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, MPIPZ, Genome Center, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - Raphael Mercier
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
4
|
Wijnen CL, Becker FFM, Okkersen AA, de Snoo CB, Boer MP, van Eeuwijk FA, Wijnker E, Keurentjes JJB. Genetic Mapping of Genotype-by-Ploidy Effects in Arabidopsis thaliana. Genes (Basel) 2023; 14:1161. [PMID: 37372341 DOI: 10.3390/genes14061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Plants can express different phenotypic responses following polyploidization, but ploidy-dependent phenotypic variation has so far not been assigned to specific genetic factors. To map such effects, segregating populations at different ploidy levels are required. The availability of an efficient haploid inducer line in Arabidopsis thaliana allows for the rapid development of large populations of segregating haploid offspring. Because Arabidopsis haploids can be self-fertilised to give rise to homozygous doubled haploids, the same genotypes can be phenotyped at both the haploid and diploid ploidy level. Here, we compared the phenotypes of recombinant haploid and diploid offspring derived from a cross between two late flowering accessions to map genotype × ploidy (G × P) interactions. Ploidy-specific quantitative trait loci (QTLs) were detected at both ploidy levels. This implies that mapping power will increase when phenotypic measurements of monoploids are included in QTL analyses. A multi-trait analysis further revealed pleiotropic effects for a number of the ploidy-specific QTLs as well as opposite effects at different ploidy levels for general QTLs. Taken together, we provide evidence of genetic variation between different Arabidopsis accessions being causal for dissimilarities in phenotypic responses to altered ploidy levels, revealing a G × P effect. Additionally, by investigating a population derived from late flowering accessions, we revealed a major vernalisation-specific QTL for variation in flowering time, countering the historical bias of research in early flowering accessions.
Collapse
Affiliation(s)
- Cris L Wijnen
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Andries A Okkersen
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - C Bastiaan de Snoo
- Rijk Zwaan R&D Fijnaart, Eerste Kruisweg 9, 4793 RS Fijnaart, The Netherlands
| | - Martin P Boer
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Fred A van Eeuwijk
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Zhang L, Nie FJ, Gong L, Gan XY, Zhang GH, Liu X, Yang WJ, Shi L, Chen YC, Xie RX, Guo ZQ, Song Y. Regenerative plantlets with improved agronomic characteristics caused by anther culture of tetraploid potato ( Solanum tuberosum L.). PeerJ 2023; 11:e14984. [PMID: 37187528 PMCID: PMC10178354 DOI: 10.7717/peerj.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/10/2023] [Indexed: 05/17/2023] Open
Abstract
Objective As the primary means of plant-induced haploid, anther culture is of great significance in quickly obtaining pure lines and significantly shortening the potato breeding cycle. Nevertheless, the methods of anther culture of tetraploid potato were still not well established. Methods In this study, 16 potato cultivars (lines) were used for anther culture in vitro. The corresponding relation between the different development stages of microspores and the external morphology of buds was investigated. A highly-efficient anther culture system of tetraploid potatoes was established. Results It was shown in the results that the combined use of 0.5 mg/L 1-Naphthylacetic acid (NAA), 1.0 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D), and 1.0 mg/L Kinetin (KT) was the ideal choice of hormone pairing for anther callus. Ten of the 16 potato cultivars examined could be induced callus with their respective anthers, and the induction rate ranged from 4.44% to 22.67% using this hormone combination. According to the outcome from the orthogonal design experiments of four kinds of appendages, we found that the medium with sucrose (40 g/L), AgNO3 (30 mg/L), activated carbon (3 g/L), potato extract (200 g/L) had a promotive induction effect on the anther callus. In contrast, adding 1 mg/L Zeatin (ZT) effectively facilitated callus differentiation. Conclusion Finally, 201 anther culture plantlets were differentiated from 10 potato cultivars. Among these, Qingshu 168 and Ningshu 15 had higher efficiency than anther culture. After identification by flow cytometry and fluorescence in situ hybridization, 10 haploid plantlets (5%), 177 tetraploids (88%), and 14 octoploids (7%) were obtained. Some premium anther-cultured plantlets were further selected by morphological and agronomic comparison. Our findings provide important guidance for potato ploidy breeding.
Collapse
Affiliation(s)
- Li Zhang
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
- College of Agriculture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Feng-jie Nie
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Lei Gong
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Xiao-yan Gan
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Guo-hui Zhang
- Guyuan Institute of Agricultural Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Guyuan, Ningxia, China
| | - Xuan Liu
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Wen-jing Yang
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Lei Shi
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Yu-chao Chen
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Rui-xia Xie
- Guyuan Institute of Agricultural Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Guyuan, Ningxia, China
| | - Zhi-qian Guo
- Guyuan Institute of Agricultural Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Guyuan, Ningxia, China
| | - Yuxia Song
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Wang Z, Chen M, Yang H, Hu Z, Yu Y, Xu H, Yan S, Yi K, Li J. A simple and highly efficient strategy to induce both paternal and maternal haploids through temperature manipulation. NATURE PLANTS 2023; 9:699-705. [PMID: 37012429 DOI: 10.1038/s41477-023-01389-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/02/2023] [Indexed: 05/23/2023]
Abstract
Haploid production by outcrossing with inducers is one of the key technologies to revolutionize breeding. A promising approach for developing haploid inducers is by manipulating centromere-specific histone H3 (CENH3/CENPA)1. GFP-tailswap, a CENH3-based inducer, induces paternal haploids at around 30% and maternal haploids at around 5% (ref. 2). However, male sterility of GFP-tailswap makes high-demand maternal haploid induction more challenging. Our study describes a simple and highly effective method for improving both directions of haploid production. Lower temperatures dramatically enhance pollen vigour but reduce haploid induction efficiency, while higher temperatures act oppositely. Importantly, the effects of temperatures on pollen vigour and on haploid induction efficiency are independent. These features enable us to easily induce maternal haploids at around 24.8% by using pollen of inducers grown at lower temperatures to pollinate target plants, followed by switching to high temperatures for haploid induction. Moreover, paternal haploid induction can be simplified and enhanced by growing the inducer at higher temperatures pre- and post-pollination. Our findings provide new clues for developing and using CENH3-based haploid inducers in crops.
Collapse
Affiliation(s)
- Ze Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Min Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Zhengdao Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Youfeng Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Hao Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Shunping Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Li
- Sanya Nanfan Research Institute of Hainan University, Sanya, China.
- College of Tropical Crops, Hainan University, Haikou, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| |
Collapse
|
7
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
8
|
Heinemann JA, Clark K, Hiscox TC, McCabe AW, Agapito-Tenfen SZ. Are null segregants new combinations of heritable material and should they be regulated? Front Genome Ed 2023; 4:1064103. [PMID: 36704579 PMCID: PMC9871356 DOI: 10.3389/fgeed.2022.1064103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Through genome editing and other techniques of gene technology, it is possible to create a class of organism called null segregants. These genetically modified organisms (GMOs) are products of gene technology but are argued to have no lingering vestige of the technology after the segregation of chromosomes or deletion of insertions. From that viewpoint regulations are redundant because any unique potential for the use of gene technology to cause harm has also been removed. We tackle this question of international interest by reviewing the early history of the purpose of gene technology regulation. The active ingredients of techniques used for guided mutagenesis, e.g., site-directed nucleases, such as CRISPR/Cas, are promoted for having a lower potential per reaction to create a hazard. However, others see this as a desirable industrial property of the reagents that will lead to genome editing being used more and nullifying the promised hazard mitigation. The contest between views revolves around whether regulations could alter the risks in the responsible use of gene technology. We conclude that gene technology, even when used to make null segregants, has characteristics that make regulation a reasonable option for mitigating potential harm. Those characteristics are that it allows people to create more harm faster, even if it creates benefits as well; the potential for harm increases with increased use of the technique, but safety does not; and regulations can control harm scaling.
Collapse
Affiliation(s)
- Jack A. Heinemann
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Katrin Clark
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Tessa C. Hiscox
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Andrew W. McCabe
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sarah Z. Agapito-Tenfen
- Climate and Environment Division, NORCE Norwegian Research Centre AS, Tromsø, Norway,*Correspondence: Sarah Z. Agapito-Tenfen,
| |
Collapse
|
9
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
10
|
Calvo‐Baltanás V, De Jaeger‐Braet J, Cher WY, Schönbeck N, Chae E, Schnittger A, Wijnker E. Knock-down of gene expression throughout meiosis and pollen formation by virus-induced gene silencing in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:19-37. [PMID: 35340073 PMCID: PMC9543169 DOI: 10.1111/tpj.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Through the inactivation of genes that act during meiosis it is possible to direct the genetic make-up of plants in subsequent generations and optimize breeding schemes. Offspring may show higher recombination of parental alleles resulting from elevated crossover (CO) incidence, or by omission of meiotic divisions, offspring may become polyploid. However, stable mutations in genes essential for recombination, or for either one of the two meiotic divisions, can have pleiotropic effects on plant morphology and line stability, for instance by causing lower fertility. Therefore, it is often favorable to temporarily change gene expression during meiosis rather than relying on stable null mutants. It was previously shown that virus-induced gene silencing (VIGS) can be used to transiently reduce CO frequencies. We asked if VIGS could also be used to modify other processes throughout meiosis and during pollen formation in Arabidopsis thaliana. Here, we show that VIGS-mediated knock-down of FIGL1, RECQ4A/B, OSD1 and QRT2 can induce (i) an increase in chiasma numbers, (ii) unreduced gametes and (iii) pollen tetrads. We further show that VIGS can target both sexes and different genetic backgrounds and can simultaneously silence different gene copies. The successful knock-down of these genes in A. thaliana suggests that VIGS can be exploited to manipulate any process during or shortly after meiosis. Hence, the transient induction of changes in inheritance patterns can be used as a powerful tool for applied research and biotechnological applications.
Collapse
Affiliation(s)
- Vanesa Calvo‐Baltanás
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6700 AAthe Netherlands
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Joke De Jaeger‐Braet
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Wei Yuan Cher
- A*STAR, Institute of Molecular and Cell Biology (IMCB)61 Biopolis DriveProteos138673Singapore
| | - Nils Schönbeck
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
- UKEMartinistrasse 5220251HamburgGermany
| | - Eunyoung Chae
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Arp Schnittger
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Erik Wijnker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6700 AAthe Netherlands
| |
Collapse
|
11
|
Zhong Y, Wang Y, Chen B, Liu J, Wang D, Li M, Qi X, Liu C, Boutilier K, Chen S. Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1281-1294. [PMID: 35249255 DOI: 10.1111/jipb.13244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Doubled haploid (DH) technology is used to obtain homozygous lines in a single generation, a technique that significantly accelerates the crop breeding trajectory. Traditionally, in vitro culture is used to generate DHs, but this technique is limited by species and genotype recalcitrance. In vivo haploid induction (HI) through seed is widely and efficiently used in maize and was recently extended to several other crops. Here we show that in vivo HI can be triggered by mutation of DMP maternal haploid inducer genes in allopolyploid (allotetraploid) Brassica napus and Nicotiana tabacum. We developed a pipeline for selection of DMP orthologs for clustered regularly interspaced palindromic repeats mutagenesis and demonstrated average amphihaploid induction rates of 2.4% and 1.2% in multiple B. napus and N. tabacum genotypes, respectively. These results further confirmed the HI ability of DMP gene in polyploid dicot crops. The DMP-HI system offers a novel DH technology to facilitate breeding in these crops. The success of this approach and the conservation of DMP genes in dicots suggest the broad applicability of this technique in other dicot crops.
Collapse
Affiliation(s)
- Yu Zhong
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuwen Wang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Baojian Chen
- Bioscience, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Jinchu Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Dong Wang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mengran Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaolong Qi
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chenxu Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Shaojiang Chen
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Wang Y, van Rengs WMJ, Zaidan MWAM, Underwood CJ. Meiosis in crops: from genes to genomes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6091-6109. [PMID: 34009331 PMCID: PMC8483783 DOI: 10.1093/jxb/erab217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Meiosis is a key feature of sexual reproduction. During meiosis homologous chromosomes replicate, recombine, and randomly segregate, followed by the segregation of sister chromatids to produce haploid cells. The unique genotypes of recombinant gametes are an essential substrate for the selection of superior genotypes in natural populations and in plant breeding. In this review we summarize current knowledge on meiosis in diverse monocot and dicot crop species and provide a comprehensive resource of cloned meiotic mutants in six crop species (rice, maize, wheat, barley, tomato, and Brassica species). Generally, the functional roles of meiotic proteins are conserved between plant species, but we highlight notable differences in mutant phenotypes. The physical lengths of plant chromosomes vary greatly; for instance, wheat chromosomes are roughly one order of magnitude longer than those of rice. We explore how chromosomal distribution for crossover recombination can vary between species. We conclude that research on meiosis in crops will continue to complement that in Arabidopsis, and alongside possible applications in plant breeding will facilitate a better understanding of how the different stages of meiosis are controlled in plant species.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| |
Collapse
|
13
|
Bhowmik P, Bilichak A. Advances in Gene Editing of Haploid Tissues in Crops. Genes (Basel) 2021; 12:1410. [PMID: 34573392 PMCID: PMC8468125 DOI: 10.3390/genes12091410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/14/2023] Open
Abstract
Emerging threats of climate change require the rapid development of improved varieties with a higher tolerance to abiotic and biotic factors. Despite the success of traditional agricultural practices, novel techniques for precise manipulation of the crop's genome are needed. Doubled haploid (DH) methods have been used for decades in major crops to fix desired alleles in elite backgrounds in a short time. DH plants are also widely used for mapping of the quantitative trait loci (QTLs), marker-assisted selection (MAS), genomic selection (GS), and hybrid production. Recent discoveries of genes responsible for haploid induction (HI) allowed engineering this trait through gene editing (GE) in non-inducer varieties of different crops. Direct editing of gametes or haploid embryos increases GE efficiency by generating null homozygous plants following chromosome doubling. Increased understanding of the underlying genetic mechanisms responsible for spontaneous chromosome doubling in haploid plants may allow transferring this trait to different elite varieties. Overall, further improvement in the efficiency of the DH technology combined with the optimized GE could accelerate breeding efforts of the major crops.
Collapse
Affiliation(s)
- Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
| | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
14
|
Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021970118. [PMID: 34385313 PMCID: PMC8379953 DOI: 10.1073/pnas.2021970118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays a fundamental role in shaping genetic diversity in eukaryotes. Extensive variation in crossover rate exists between populations and species. The identity of modifier loci and their roles in genome evolution remain incompletely understood. We explored natural variation in Arabidopsis crossover and identified SNI1 as the causal gene underlying a major modifier locus. To date, SNI1 had no known role in crossover. SNI1 is a component of the SMC5/6 complex that is closely related to cohesin and condensin. Arabidopsis sni1 and other SMC5/6 mutants show similar effects on the interference-independent crossover pathway. Hence, our findings demonstrate that the SMC5/6 complex, which is known for its role in DNA damage repair, is also important for control of meiotic crossover. The frequency and distribution of meiotic crossovers are tightly controlled; however, variation in this process can be observed both within and between species. Using crosses of two natural Arabidopsis thaliana accessions, Col and Ler, we mapped a crossover modifier locus to semidominant polymorphisms in SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), which encodes a component of the SMC5/6 complex. The sni1 mutant exhibits a modified pattern of recombination across the genome with crossovers elevated in chromosome distal regions but reduced in pericentromeres. Mutations in SNI1 result in reduced crossover interference and can partially restore the fertility of a Class I crossover pathway mutant, which suggests that the protein affects noninterfering crossover repair. Therefore, we tested genetic interactions between SNI1 and both RECQ4 and FANCM DNA helicases, which showed that additional Class II crossovers observed in the sni1 mutant are FANCM independent. Furthermore, genetic analysis of other SMC5/6 mutants confirms the observations of crossover redistribution made for SNI1. The study reveals the importance of the SMC5/6 complex in ensuring the proper progress of meiotic recombination in plants.
Collapse
|
15
|
Ceballos H, Hershey C, Iglesias C, Zhang X. Fifty years of a public cassava breeding program: evolution of breeding objectives, methods, and decision-making processes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2335-2353. [PMID: 34086085 PMCID: PMC8277603 DOI: 10.1007/s00122-021-03852-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 06/01/2023]
Abstract
This paper reviews and analyzes key features from cassava breeding at the International Center for Tropical Agriculture (CIAT) over 50 years and draws lessons for public breeding efforts broadly. The breeding team, jointly with national program partners and the private processing sector, defined breeding objectives and guiding business plans. These have evolved through the decades and currently focus on four global product profiles. The recurrent selection method also evolved and included innovations such as estimation of phenotypic breeding values, increasing the number of locations in the first stage of agronomic evaluations, gradual reduction of the duration of breeding cycles (including rapid cycling for high-heritability traits), the development of protocols for the induction of flowering, and the introduction of genome-wide predictions. The impact of cassava breeding depends significantly on the type of target markets. When roots are used for large processing facilities for starch, animal feeding or ethanol production (such as in SE Asia), the adoption of improved varieties is nearly universal and productivity at the regional scale increases significantly. When markets and relevant infrastructure are weak or considerable proportion of the production goes for local artisanal processing and on-farm consumption, the impact has been lower. The potential of novel breeding tools needs to be properly assessed for the most effective allocation of resources. Finally, a brief summary of challenges and opportunities for the future of cassava breeding is presented. The paper describes multiple ways that public and private sector breeding programs can learn from each other to optimize success.
Collapse
Affiliation(s)
- Hernán Ceballos
- International Center for Tropical Agriculture (CIAT), Cali, USA.
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Alliance, Rome, Italy.
| | | | | | - Xiaofei Zhang
- International Center for Tropical Agriculture (CIAT), Cali, USA
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Alliance, Rome, Italy
| |
Collapse
|
16
|
Kuo P, Da Ines O, Lambing C. Rewiring Meiosis for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:708948. [PMID: 34349775 PMCID: PMC8328115 DOI: 10.3389/fpls.2021.708948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
Meiosis is a specialized cell division that contributes to halve the genome content and reshuffle allelic combinations between generations in sexually reproducing eukaryotes. During meiosis, a large number of programmed DNA double-strand breaks (DSBs) are formed throughout the genome. Repair of meiotic DSBs facilitates the pairing of homologs and forms crossovers which are the reciprocal exchange of genetic information between chromosomes. Meiotic recombination also influences centromere organization and is essential for proper chromosome segregation. Accordingly, meiotic recombination drives genome evolution and is a powerful tool for breeders to create new varieties important to food security. Modifying meiotic recombination has the potential to accelerate plant breeding but it can also have detrimental effects on plant performance by breaking beneficial genetic linkages. Therefore, it is essential to gain a better understanding of these processes in order to develop novel strategies to facilitate plant breeding. Recent progress in targeted recombination technologies, chromosome engineering, and an increasing knowledge in the control of meiotic chromosome segregation has significantly increased our ability to manipulate meiosis. In this review, we summarize the latest findings and technologies on meiosis in plants. We also highlight recent attempts and future directions to manipulate crossover events and control the meiotic division process in a breeding perspective.
Collapse
Affiliation(s)
- Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Thondehaalmath T, Kulaar DS, Bondada R, Maruthachalam R. Understanding and exploiting uniparental genome elimination in plants: insights from Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4646-4662. [PMID: 33851980 DOI: 10.1093/jxb/erab161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Uniparental genome elimination (UGE) refers to the preferential exclusion of one set of the parental chromosome complement during embryogenesis following successful fertilization, giving rise to uniparental haploid progeny. This artificially induced phenomenon was documented as one of the consequences of distant (wide) hybridization in plants. Ten decades since its discovery, attempts to unravel the molecular mechanism behind this process remained elusive due to a lack of genetic tools and genomic resources in the species exhibiting UGE. Hence, its successful adoption in agronomic crops for in planta (in vivo) haploid production remains implausible. Recently, Arabidopsis thaliana has emerged as a model system to unravel the molecular basis of UGE. It is now possible to simulate the genetic consequences of distant crosses in an A. thaliana intraspecific cross by a simple modification of centromeres, via the manipulation of the centromere-specific histone H3 variant gene, CENH3. Thus, the experimental advantages conferred by A. thaliana have been used to elucidate and exploit the benefits of UGE in crop breeding. In this review, we discuss developments and prospects of CENH3 gene-mediated UGE and other in planta haploid induction strategies to illustrate its potential in expediting plant breeding and genetics in A. thaliana and other model plants.
Collapse
Affiliation(s)
- Tejas Thondehaalmath
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Dilsher Singh Kulaar
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ramesh Bondada
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| |
Collapse
|
18
|
Abbas A, Yu P, Sun L, Yang Z, Chen D, Cheng S, Cao L. Exploiting Genic Male Sterility in Rice: From Molecular Dissection to Breeding Applications. FRONTIERS IN PLANT SCIENCE 2021; 12:629314. [PMID: 33763090 PMCID: PMC7982899 DOI: 10.3389/fpls.2021.629314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Rice (Oryza sativa L.) occupies a very salient and indispensable status among cereal crops, as its vast production is used to feed nearly half of the world's population. Male sterile plants are the fundamental breeding materials needed for specific propagation in order to meet the elevated current food demands. The development of the rice varieties with desired traits has become the ultimate need of the time. Genic male sterility is a predominant system that is vastly deployed and exploited for crop improvement. Hence, the identification of new genetic elements and the cognizance of the underlying regulatory networks affecting male sterility in rice are crucial to harness heterosis and ensure global food security. Over the years, a variety of genomics studies have uncovered numerous mechanisms regulating male sterility in rice, which provided a deeper and wider understanding on the complex molecular basis of anther and pollen development. The recent advances in genomics and the emergence of multiple biotechnological methods have revolutionized the field of rice breeding. In this review, we have briefly documented the recent evolution, exploration, and exploitation of genic male sterility to the improvement of rice crop production. Furthermore, this review describes future perspectives with focus on state-of-the-art developments in the engineering of male sterility to overcome issues associated with male sterility-mediated rice breeding to address the current challenges. Finally, we provide our perspectives on diversified studies regarding the identification and characterization of genic male sterility genes, the development of new biotechnology-based male sterility systems, and their integrated applications for hybrid rice breeding.
Collapse
Affiliation(s)
- Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Northern Center of China National Rice Research Institute, Shuangyashan, China
| |
Collapse
|
19
|
Labroo MR, Studer AJ, Rutkoski JE. Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. Front Genet 2021; 12:643761. [PMID: 33719351 PMCID: PMC7943638 DOI: 10.3389/fgene.2021.643761] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Although hybrid crop varieties are among the most popular agricultural innovations, the rationale for hybrid crop breeding is sometimes misunderstood. Hybrid breeding is slower and more resource-intensive than inbred breeding, but it allows systematic improvement of a population by recurrent selection and exploitation of heterosis simultaneously. Inbred parental lines can identically reproduce both themselves and their F1 progeny indefinitely, whereas outbred lines cannot, so uniform outbred lines must be bred indirectly through their inbred parents to harness heterosis. Heterosis is an expected consequence of whole-genome non-additive effects at the population level over evolutionary time. Understanding heterosis from the perspective of molecular genetic mechanisms alone may be elusive, because heterosis is likely an emergent property of populations. Hybrid breeding is a process of recurrent population improvement to maximize hybrid performance. Hybrid breeding is not maximization of heterosis per se, nor testing random combinations of individuals to find an exceptional hybrid, nor using heterosis in place of population improvement. Though there are methods to harness heterosis other than hybrid breeding, such as use of open-pollinated varieties or clonal propagation, they are not currently suitable for all crops or production environments. The use of genomic selection can decrease cycle time and costs in hybrid breeding, particularly by rapidly establishing heterotic pools, reducing testcrossing, and limiting the loss of genetic variance. Open questions in optimal use of genomic selection in hybrid crop breeding programs remain, such as how to choose founders of heterotic pools, the importance of dominance effects in genomic prediction, the necessary frequency of updating the training set with phenotypic information, and how to maintain genetic variance and prevent fixation of deleterious alleles.
Collapse
Affiliation(s)
| | | | - Jessica E. Rutkoski
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
20
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
21
|
Calvo‐Baltanás V, Wijnen CL, Yang C, Lukhovitskaya N, de Snoo CB, Hohenwarter L, Keurentjes JJB, de Jong H, Schnittger A, Wijnker E. Meiotic crossover reduction by virus-induced gene silencing enables the efficient generation of chromosome substitution lines and reverse breeding in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1437-1452. [PMID: 32955759 PMCID: PMC7756339 DOI: 10.1111/tpj.14990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 05/16/2023]
Abstract
Plant breeding applications exploiting meiotic mutant phenotypes (like the increase or decrease of crossover (CO) recombination) have been proposed over the last years. As recessive meiotic mutations in breeding lines may affect fertility or have other pleiotropic effects, transient silencing techniques may be preferred. Reverse breeding is a breeding technique that would benefit from the transient downregulation of CO formation. The technique is essentially the opposite of plant hybridization: a method to extract parental lines from a hybrid. The method can also be used to efficiently generate chromosome substitution lines (CSLs). For successful reverse breeding, the two homologous chromosome sets of a heterozygous plant must be divided over two haploid complements, which can be achieved by the suppression of meiotic CO recombination and the subsequent production of doubled haploid plants. Here we show the feasibility of transiently reducing CO formation using virus-induced gene silencing (VIGS) by targeting the meiotic gene MSH5 in a wild-type heterozygote of Arabidopsis thaliana. The application of VIGS (rather than using lengthy stable transformation) generates transgene-free offspring with the desired genetic composition: we obtained parental lines from a wild-type heterozygous F1 in two generations. In addition, we obtained 20 (of the 32 possible) CSLs in one experiment. Our results demonstrate that meiosis can be modulated at will in A. thaliana to generate CSLs and parental lines rapidly for hybrid breeding. Furthermore, we illustrate how the modification of meiosis using VIGS can open routes to develop efficient plant breeding strategies.
Collapse
Affiliation(s)
- Vanesa Calvo‐Baltanás
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Present address:
Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Cris L. Wijnen
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Chao Yang
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Nina Lukhovitskaya
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Centre National de la Recherche ScientifiqueInstitut de Biologie Moléculaire des PlantesUniversité de Strasbourg12, rue du général ZimmerStrasbourg67084France
- Present address:
Division of VirologyDepartment of PathologyUniversity of CambridgeTennis Court RdCambridgeCB2 1QPUK
| | - C. Bastiaan de Snoo
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Rijk Zwaan R&D FijnaartEerste Kruisweg 9Fijnaart4793 RSthe Netherlands
| | - Linus Hohenwarter
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Joost J. B. Keurentjes
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Hans de Jong
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Arp Schnittger
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Erik Wijnker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
22
|
Taagen E, Bogdanove AJ, Sorrells ME. Counting on Crossovers: Controlled Recombination for Plant Breeding. TRENDS IN PLANT SCIENCE 2020; 25:455-465. [PMID: 31959421 DOI: 10.1016/j.tplants.2019.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 05/02/2023]
Abstract
Crossovers (COs), that drive genetic exchange between homologous chromosomes, are strongly biased toward subtelomeric regions in plant species. Manipulating the rate and positions of COs to increase the genetic variation accessible to breeders is a longstanding goal. Use of genome editing reagents that induce double-stranded breaks (DSBs) or modify the epigenome at desired sites of recombination, and manipulation of CO factors, are increasingly applicable approaches for achieving this goal. These strategies for 'controlled recombination' have potential to reduce the time and expense associated with traditional breeding, reveal currently inaccessible genetic diversity, and increase control over the inheritance of preferred haplotypes. Considerable challenges to address include translating knowledge from models to crop species and determining the best stages of the breeding cycle at which to control recombination.
Collapse
Affiliation(s)
- Ella Taagen
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Ahmadi B, Ebrahimzadeh H. In vitro androgenesis: spontaneous vs. artificial genome doubling and characterization of regenerants. PLANT CELL REPORTS 2020; 39:299-316. [PMID: 31974735 DOI: 10.1007/s00299-020-02509-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/13/2020] [Indexed: 05/11/2023]
Abstract
Androgenesis has become the most frequently chosen method of doubled haploid (DH) production in major crops. Theoretically, plantlets derived from in vitro cultured microspore encompass half of the normal chromosome number of donor plants and thus, considered to be haploid. However, depending on species/genotype and the method of haploid production, either via anther or isolated microspore culture, different ratios of spontaneous DHs and diploid (2n) or even polyploid plants originating from somatic tissues or unreduced gametes may also arise in the cultures. Adopting the method of haploid identification, anti-microtubular agent for restoring fertility, and discriminating spontaneous DHs from undesired heterozygote plants will substantially affect the success of androgenesis in breeding programs. The recent advances in the last 2 decades have made it possible to characterize the in vitro regenerants efficiently either prior to genome duplication or using in breeding programs. The herein described approaches and antimicotubular agents are, therefore, expected to improve the efficiency of DH-based breeding pipeline through the in vitro androgenesis.
Collapse
Affiliation(s)
- Behzad Ahmadi
- Department of Maize and Forage Crops Research, Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institute (SPII), Karaj, Iran.
| | - Hamed Ebrahimzadeh
- Department of Tissue and Cell Culture, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| |
Collapse
|
24
|
Yang C, Sofroni K, Wijnker E, Hamamura Y, Carstens L, Harashima H, Stolze SC, Vezon D, Chelysheva L, Orban‐Nemeth Z, Pochon G, Nakagami H, Schlögelhofer P, Grelon M, Schnittger A. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis. EMBO J 2020; 39:e101625. [PMID: 31556459 PMCID: PMC6996576 DOI: 10.15252/embj.2019101625] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Meiosis is key to sexual reproduction and genetic diversity. Here, we show that the Arabidopsis cyclin-dependent kinase Cdk1/Cdk2 homolog CDKA;1 is an important regulator of meiosis needed for several aspects of meiosis such as chromosome synapsis. We identify the chromosome axis protein ASYNAPTIC 1 (ASY1), the Arabidopsis homolog of Hop1 (homolog pairing 1), essential for synaptonemal complex formation, as a target of CDKA;1. The phosphorylation of ASY1 is required for its recruitment to the chromosome axis via ASYNAPTIC 3 (ASY3), the Arabidopsis reductional division 1 (Red1) homolog, counteracting the disassembly activity of the AAA+ ATPase PACHYTENE CHECKPOINT 2 (PCH2). Furthermore, we have identified the closure motif in ASY1, typical for HORMA domain proteins, and provide evidence that the phosphorylation of ASY1 regulates the putative self-polymerization of ASY1 along the chromosome axis. Hence, the phosphorylation of ASY1 by CDKA;1 appears to be a two-pronged mechanism to initiate chromosome axis formation in meiosis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Kostika Sofroni
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Erik Wijnker
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Present address:
Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | - Yuki Hamamura
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Lena Carstens
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Present address:
Plant Developmental Biology & Plant PhysiologyKiel UniversityKielGermany
| | - Hirofumi Harashima
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Present address:
Solution Research LaboratoryAS ONE CorporationKawasakiku, KawasakiJapan
| | | | - Daniel Vezon
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Liudmila Chelysheva
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Zsuzsanna Orban‐Nemeth
- Department of Chromosome BiologyMax F. Perutz LaboratoriesVienna BiocenterUniversity of ViennaViennaAustria
- Present address:
Institute of Molecular PathologyVienna BiocenterViennaAustria
| | - Gaëtan Pochon
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | | | - Peter Schlögelhofer
- Department of Chromosome BiologyMax F. Perutz LaboratoriesVienna BiocenterUniversity of ViennaViennaAustria
| | - Mathilde Grelon
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
25
|
Abstract
Little is known how patterns of cross-over (CO) numbers and distribution during meiosis are established. Here, we reveal that cyclin-dependent kinase A;1 (CDKA;1), the homolog of human Cdk1 and Cdk2, is a major regulator of meiotic recombination in Arabidopsis Arabidopsis plants with reduced CDKA;1 activity experienced a decrease of class I COs, especially lowering recombination rates in centromere-proximal regions. Interestingly, this reduction of type I CO did not affect CO assurance, a mechanism by which each chromosome receives at least one CO, resulting in all chromosomes exhibiting similar genetic lengths in weak loss-of-function cdka ;1 mutants. Conversely, an increase of CDKA;1 activity resulted in elevated recombination frequencies. Thus, modulation of CDKA;1 kinase activity affects the number and placement of COs along the chromosome axis in a dose-dependent manner.
Collapse
|
26
|
Yang C, Hamamura Y, Sofroni K, Böwer F, Stolze SC, Nakagami H, Schnittger A. SWITCH 1/DYAD is a WINGS APART-LIKE antagonist that maintains sister chromatid cohesion in meiosis. Nat Commun 2019; 10:1755. [PMID: 30988453 PMCID: PMC6465247 DOI: 10.1038/s41467-019-09759-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Mitosis and meiosis both rely on cohesin, which embraces the sister chromatids and plays a crucial role for the faithful distribution of chromosomes to daughter cells. Prior to the cleavage by Separase at anaphase onset, cohesin is largely removed from chromosomes by the non-proteolytic action of WINGS APART-LIKE (WAPL), a mechanism referred to as the prophase pathway. To prevent the premature loss of sister chromatid cohesion, WAPL is inhibited in early mitosis by Sororin. However, Sororin homologs have only been found to function as WAPL inhibitors during mitosis in vertebrates and Drosophila. Here we show that SWITCH 1/DYAD defines a WAPL antagonist that acts in meiosis of Arabidopsis. Crucially, SWI1 becomes dispensable for sister chromatid cohesion in the absence of WAPL. Despite the lack of any sequence similarities, we found that SWI1 is regulated and functions in a similar manner as Sororin hence likely representing a case of convergent molecular evolution across the eukaryotic kingdom.
Collapse
Affiliation(s)
- Chao Yang
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Yuki Hamamura
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Kostika Sofroni
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Franziska Böwer
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | | | - Hirofumi Nakagami
- Max-Planck-Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany.
| |
Collapse
|
27
|
Eckerstorfer MF, Dolezel M, Heissenberger A, Miklau M, Reichenbecher W, Steinbrecher RA, Waßmann F. An EU Perspective on Biosafety Considerations for Plants Developed by Genome Editing and Other New Genetic Modification Techniques (nGMs). Front Bioeng Biotechnol 2019; 7:31. [PMID: 30891445 PMCID: PMC6413072 DOI: 10.3389/fbioe.2019.00031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/05/2019] [Indexed: 12/23/2022] Open
Abstract
The question whether new genetic modification techniques (nGM) in plant development might result in non-negligible negative effects for the environment and/or health is significant for the discussion concerning their regulation. However, current knowledge to address this issue is limited for most nGMs, particularly for recently developed nGMs, like genome editing, and their newly emerging variations, e.g., base editing. This leads to uncertainties regarding the risk/safety-status of plants which are developed with a broad range of different nGMs, especially genome editing, and other nGMs such as cisgenesis, transgrafting, haploid induction or reverse breeding. A literature survey was conducted to identify plants developed by nGMs which are relevant for future agricultural use. Such nGM plants were analyzed for hazards associated either (i) with their developed traits and their use or (ii) with unintended changes resulting from the nGMs or other methods applied during breeding. Several traits are likely to become particularly relevant in the future for nGM plants, namely herbicide resistance (HR), resistance to different plant pathogens as well as modified composition, morphology, fitness (e.g., increased resistance to cold/frost, drought, or salinity) or modified reproductive characteristics. Some traits such as resistance to certain herbicides are already known from existing GM crops and their previous assessments identified issues of concern and/or risks, such as the development of herbicide resistant weeds. Other traits in nGM plants are novel; meaning they are not present in agricultural plants currently cultivated with a history of safe use, and their underlying physiological mechanisms are not yet sufficiently elucidated. Characteristics of some genome editing applications, e.g., the small extent of genomic sequence change and their higher targeting efficiency, i.e., precision, cannot be considered an indication of safety per se, especially in relation to novel traits created by such modifications. All nGMs considered here can result in unintended changes of different types and frequencies. However, the rapid development of nGM plants can compromise the detection and elimination of unintended effects. Thus, a case-specific premarket risk assessment should be conducted for nGM plants, including an appropriate molecular characterization to identify unintended changes and/or confirm the absence of unwanted transgenic sequences.
Collapse
Affiliation(s)
| | - Marion Dolezel
- Department Landuse & Biosafety, Environment Agency Austria, Vienna, Austria
| | | | - Marianne Miklau
- Department Landuse & Biosafety, Environment Agency Austria, Vienna, Austria
| | - Wolfram Reichenbecher
- Department GMO Regulation, Biosafety, Federal Agency for Nature Conservation, Bonn, Germany
| | | | - Friedrich Waßmann
- Department GMO Regulation, Biosafety, Federal Agency for Nature Conservation, Bonn, Germany
| |
Collapse
|
28
|
Wang S, Jin W, Wang K. Centromere histone H3- and phospholipase-mediated haploid induction in plants. PLANT METHODS 2019; 15:42. [PMID: 31057661 PMCID: PMC6485145 DOI: 10.1186/s13007-019-0429-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/24/2019] [Indexed: 05/14/2023]
Abstract
Simple and consistent production of haploid is always an appealing pursuit for both crop breeders and researchers. Although diverse strategies have been developed to produce haploids over the past decades, most of them are applicable in only a limited number of plant species. In 2010, Ravi and Chan reported that haploid Arabidopsis thaliana plants can be efficiently induced through the introduction of a single genetic alteration in centromere histone H3 (CENH3). Subsequent studies demonstrated that haploids can be efficiently induced either through genetic engineering of CENH3 N-terminal tail or histone fold domain or by replacing CENH3 with an ortholog. The mutation of a pollen-specific phospholipase gene, MATRILINEAL (MTL) has been revealed to trigger the haploid induction (HI) in maize, which present another promising HI approach by the editing of MTL in plant. Here, we review the progress of the CENH3-medialed HI and propose a revised centromere-size model by suggesting a competitive loading process between wild-type and mutant CENH3 during HI. This model can explain both the findings of HI failure when wild-type and mutant CENH3 genes are coexpressed and the alien centromere loading of CENH3 in stable hybrids. In addition, we review the current understanding of MTL-mediated HI in plant. The conservation of CENH3 and MTL in plants indicates wide potential application for HI. We discuss the utility and potential of these two methods in crops by comparing their mechanisms and applications to date in plants. This review will promote the study and application of both CENH3- and MTL-mediated haploid induction in plants.
Collapse
Affiliation(s)
- Song Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Weiwei Jin
- College of Agriculture, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing, 100193 China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
29
|
Rudolf-Pilih K, Petkovšek M, Jakše J, Štajner N, Murovec J, Bohanec B. Proposal of a New Hybrid Breeding Method Based on Genotyping, Inter-Pollination, Phenotyping and Paternity Testing of Selected Elite F 1 Hybrids. FRONTIERS IN PLANT SCIENCE 2019; 10:1111. [PMID: 31620149 PMCID: PMC6759491 DOI: 10.3389/fpls.2019.01111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
Testing inbred lines for their combining ability is, due to high numbers of line to line testing needed for determination of hybrid performance, the most limiting factor in the F1 hybrid breeding procedure. We propose a novel method of F1 hybrid breeding that enables evaluation of large number of line to line crosses for their hybrid performance. Inbred lines (preferably doubled haploid - DH) are produced from heterozygous populations, genotyped and maintained. A group of lines is inter-pollinated randomly and their progeny examined. To identify elite F1 hybrids, these individual plants are selected by their superior phenotypic characteristics. Finally using paternity testing only of selected hybrids, the origin of paternal lines is revealed. To predict the number of F1 offspring needed in relation to the number of inbred lines being inter-pollinated, a mathematical formula was developed. For instance, using this formula for the inter-pollination of 60 distinct lines, the probability of obtaining all descendants of paternal-parent lines in a maternal-parent row represented at least once is achieved with 420 F1 plants in a row (p = 0.95). In a practical experiment with white cabbage, DH lines were produced using microspore culture; plants were grown to maturity and genotyped at eight polymorphic SSR loci. Two groups of lines (36 and 33 lines per group) were inter-pollinated by two methods, either using cage pollination with bumblebees or using open pollination in isolated field. A total of 9,858 F1 plants were planted and based on their phenotypic characteristics 213 were selected as elite phenotypes. 99 of them were genetically diverse and 5 of them were selected as super elite. Selected plants were analysed by the same SSR markers and the paternal origin of selected F1 plants was determined. Out of 213 selected elite plants 48 were reciprocals thus exhibiting power of selection based on single plant. We demonstrate that this new approach to hybrid development is efficient in white cabbage and we propose breeders to test it in various vegetable and crop species. Moreover, some other aspects of the proposed technique need to be tested and verified both for practical and economic criteria.
Collapse
Affiliation(s)
| | - Marko Petkovšek
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Štajner
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Murovec
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Bohanec
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Borut Bohanec,
| |
Collapse
|
30
|
Ji D, Manavski N, Meurer J, Zhang L, Chi W. Regulated chloroplast transcription termination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:69-77. [PMID: 30414934 DOI: 10.1016/j.bbabio.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
Transcription termination by the RNA polymerase (RNAP) is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of the RNAP from the DNA template. However, the functional importance of termination extends beyond the mere definition of the gene borders. Chloroplasts originate from cyanobacteria and possess their own gene expression system. Plastids have a unique hybrid transcription system consisting of two different types of RNAPs of dissimilar phylogenetic origin together with several additional nuclear encoded components. Although the basic components involved in chloroplast transcription have been identified, little attention has been paid to the chloroplast transcription termination. Recent identification and functional characterization of novel factors in regulating transcription termination in Arabidopsis chloroplasts via genetic and biochemical approaches have provided insights into the mechanisms and significance of transcription termination in chloroplast gene expression. This review provides an overview of the current knowledge of the transcription termination in chloroplasts.
Collapse
Affiliation(s)
- Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Nikolay Manavski
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg, France
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
31
|
Liu S, Schnable JC, Ott A, Yeh CTE, Springer NM, Yu J, Muehlbauer G, Timmermans MCP, Scanlon MJ, Schnable PS. Intragenic Meiotic Crossovers Generate Novel Alleles with Transgressive Expression Levels. Mol Biol Evol 2018; 35:2762-2772. [PMID: 30184112 PMCID: PMC6231493 DOI: 10.1093/molbev/msy174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Meiotic recombination is an evolutionary force that generates new genetic diversity upon which selection can act. Whereas multiple studies have assessed genome-wide patterns of recombination and specific cases of intragenic recombination, few studies have assessed intragenic recombination genome-wide in higher eukaryotes. We identified recombination events within or near genes in a population of maize recombinant inbred lines (RILs) using RNA-sequencing data. Our results are consistent with case studies that have shown that intragenic crossovers cluster at the 5′ ends of some genes. Further, we identified cases of intragenic crossovers that generate transgressive transcript accumulation patterns, that is, recombinant alleles displayed higher or lower levels of expression than did nonrecombinant alleles in any of ∼100 RILs, implicating intragenic recombination in the generation of new variants upon which selection can act. Thousands of apparent gene conversion events were identified, allowing us to estimate the genome-wide rate of gene conversion at SNP sites (4.9 × 10−5). The density of syntenic genes (i.e., those conserved at the same genomic locations since the divergence of maize and sorghum) exhibits a substantial correlation with crossover frequency, whereas the density of nonsyntenic genes (i.e., those which have transposed or been lost subsequent to the divergence of maize and sorghum) shows little correlation, suggesting that crossovers occur at higher rates in syntenic genes than in nonsyntenic genes. Increased rates of crossovers in syntenic genes could be either a consequence of the evolutionary conservation of synteny or a biological process that helps to maintain synteny.
Collapse
Affiliation(s)
- Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS.,Department of Agronomy, Iowa State University, Ames, IA
| | - James C Schnable
- Department of Agriculture and Horticulture, University of Nebraska-Lincoln, Lincoln, NE
| | - Alina Ott
- Department of Agronomy, Iowa State University, Ames, IA.,Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI
| | | | - Nathan M Springer
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA
| | - Gary Muehlbauer
- Department of Agronomy and Plant Genetics, Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN
| | | | | | | |
Collapse
|
32
|
Abstract
Meiosis halves diploid chromosome numbers to haploid levels that are essential for sexual reproduction in most eukaryotes. Meiotic recombination ensures the formation of bivalents between homologous chromosomes (homologs) and their subsequent proper segregation. It also results in genetic diversity among progeny that influences evolutionary responses to selection. Moreover, crop breeding depends upon the action of meiotic recombination to rearrange elite traits between parental chromosomes. An understanding of the molecular mechanisms that drive meiotic recombination is important for both fundamental research and practical applications. This review emphasizes advances made during the past 5 years, primarily in Arabidopsis and rice, by summarizing newly characterized genes and proteins and examining the regulatory mechanisms that modulate their action.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
33
|
van Tol N, Rolloos M, van Loon P, van der Zaal BJ. MeioSeed: a CellProfiler-based program to count fluorescent seeds for crossover frequency analysis in Arabidopsis thaliana. PLANT METHODS 2018; 14:32. [PMID: 29692862 PMCID: PMC5905130 DOI: 10.1186/s13007-018-0298-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/07/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND The formation of crossovers during meiosis is pivotal for the redistribution of traits among the progeny of sexually reproducing organisms. In plants the molecular mechanisms underlying the formation of crossovers have been well established, but relatively little is known about the factors that determine the exact location and the frequency of crossover events in the genome. In the model plant species Arabidopsis, research on these factors has been greatly facilitated by reporter lines containing linked fluorescence marker genes under control of promoters active in seeds or pollen, allowing for the visualization of crossover events by fluorescence microscopy. However, the usefulness of these reporter lines to screen for novel modulators of crossover frequency in a high throughput manner relies on the availability of programs that can accurately count fluorescent seeds. Such a program was previously not available in scientific literature. RESULTS Here we present MeioSeed, a novel CellProfiler-based program that accurately counts GFP and RFP fluorescent Arabidopsis seeds with adjustable detection thresholds for fluorescence intensity, making use of a robust seed classifier which was trained by machine learning in Ilastik. Using the previously published reporter line Col3-4/20 as an example, we explain the use of MeioSeed and the steps taken to optimize the thresholding settings of the program to fit the published model for recombination frequency and transgene segregation. The use of MeioSeed is illustrated by investigating salt stress as a novel abiotic trigger for changes in crossover frequency in Col3-4/20 (♂) × Ler-0 (♀) F1 hybrids. Salt stress was found to trigger increases in crossover frequency between the marker genes of up to 70% compared to the control treatment without salt stress. Genotyping of control and salt treated populations revealed that the changes in crossover frequency were not limited to the region between the marker genes, but that fluctuations in crossover frequency are likely to occur genome-wide after treatment with high salt concentrations. CONCLUSIONS MeioSeed allows for the high throughput recognition and counting of fluorescent Arabidopsis seeds and can facilitate the screening for novel abiotic and biotic modulators of crossover frequency using reporter lines in Arabidopsis.
Collapse
Affiliation(s)
- Niels van Tol
- Faculty of Science, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Martijn Rolloos
- Faculty of Science, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Peter van Loon
- Rijk Zwaan Breeding BV, Eerste Kruisweg, 4793 RS Fijnaart, The Netherlands
| | - Bert J. van der Zaal
- Faculty of Science, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
34
|
Ren J, Wu P, Trampe B, Tian X, Lübberstedt T, Chen S. Novel technologies in doubled haploid line development. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1361-1370. [PMID: 28796421 PMCID: PMC5633766 DOI: 10.1111/pbi.12805] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 05/18/2023]
Abstract
haploid inducer line can be transferred (DH) technology can not only shorten the breeding process but also increase genetic gain. Haploid induction and subsequent genome doubling are the two main steps required for DH technology. Haploids have been generated through the culture of immature male and female gametophytes, and through inter- and intraspecific via chromosome elimination. Here, we focus on haploidization via chromosome elimination, especially the recent advances in centromere-mediated haploidization. Once haploids have been induced, genome doubling is needed to produce DH lines. This study has proposed a new strategy to improve haploid genome doubling by combing haploids and minichromosome technology. With the progress in haploid induction and genome doubling methods, DH technology can facilitate reverse breeding, cytoplasmic male sterile (CMS) line production, gene stacking and a variety of other genetic analysis.
Collapse
Affiliation(s)
- Jiaojiao Ren
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijingChina
- Department of AgronomyIowa State UniversityAmesIAUSA
| | - Penghao Wu
- College of AgronomyXinjiang Agriculture UniversityUrumqiChina
| | | | - Xiaolong Tian
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijingChina
| | | | - Shaojiang Chen
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijingChina
| |
Collapse
|
35
|
Abstract
Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits.
Collapse
Affiliation(s)
- Christian R Boehm
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Bernardo Pollak
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | | | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
36
|
Ziolkowski PA, Underwood CJ, Lambing C, Martinez-Garcia M, Lawrence EJ, Ziolkowska L, Griffin C, Choi K, Franklin FCH, Martienssen RA, Henderson IR. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev 2017; 31:306-317. [PMID: 28223312 PMCID: PMC5358726 DOI: 10.1101/gad.295501.116] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 11/24/2022]
Abstract
During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Charles J Underwood
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Liliana Ziolkowska
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Catherine Griffin
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
37
|
Yan G, Liu H, Wang H, Lu Z, Wang Y, Mullan D, Hamblin J, Liu C. Accelerated Generation of Selfed Pure Line Plants for Gene Identification and Crop Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:1786. [PMID: 29114254 PMCID: PMC5660708 DOI: 10.3389/fpls.2017.01786] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Production of pure lines is an important step in biological studies and breeding of many crop plants. The major types of pure lines for biological studies and breeding include doubled haploid (DH) lines, recombinant inbred lines (RILs), and near isogenic lines (NILs). DH lines can be produced through microspore and megaspore culture followed by chromosome doubling while RILs and NILs can be produced through introgressions or repeated selfing of hybrids. DH approach was developed as a quicker method than conventional method to produce pure lines. However, its drawbacks of genotype-dependency and only a single chance of recombination limited its wider application. A recently developed fast generation cycling system (FGCS) achieved similar times to those of DH for the production of selfed pure lines but is more versatile as it is much less genotype-dependent than DH technology and does not restrict recombination to a single event. The advantages and disadvantages of the technologies and their produced pure line populations for different purposes of biological research and breeding are discussed. The development of a concept of complete in vitro meiosis and mitosis system is also proposed. This could integrate with the recently developed technologies of single cell genomic sequencing and genome wide selection, leading to a complete laboratory based pre-breeding scheme.
Collapse
Affiliation(s)
- Guijun Yan
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Guijun Yan
| | - Hui Liu
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - Haibo Wang
- Hebei Centre of Plant Genetic Engineering, Institute of Genetics and Physiology, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Huhhot, China
| | - Yanxia Wang
- Hebei Province Wheat Engineering Technical Research Center, Shijiazhuang Academy of Agricultural Sciences, Shijiazhuang, China
| | - Daniel Mullan
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- InterGrain Pty. Ltd., Bibra Lake, WA, Australia
| | - John Hamblin
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- SuperSeeds Technologies Pty. Ltd., Perth, WA, Australia
| | - Chunji Liu
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, St. Lucia, QLD, Australia
| |
Collapse
|
38
|
Flood PJ, van Heerwaarden J, Becker F, de Snoo CB, Harbinson J, Aarts MG. Whole-Genome Hitchhiking on an Organelle Mutation. Curr Biol 2016; 26:1306-11. [DOI: 10.1016/j.cub.2016.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/22/2016] [Accepted: 03/10/2016] [Indexed: 10/21/2022]
|
39
|
Ishii T, Karimi-Ashtiyani R, Houben A. Haploidization via Chromosome Elimination: Means and Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:421-38. [PMID: 26772657 DOI: 10.1146/annurev-arplant-043014-114714] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The ability to generate haploids and subsequently induce chromosome doubling significantly accelerates the crop breeding process. Haploids have been induced through the generation of plants from haploid tissues (in situ gynogenesis and androgenesis) and through the selective loss of a parental chromosome set via inter- or intraspecific hybridization. Here, we focus on the mechanisms responsible for this selective chromosome elimination. CENH3, a variant of the centromere-specific histone H3, has been exploited to create an efficient method of haploid induction, and we discuss this approach in some detail. Parallels have been drawn with chromosome-specific elimination, which occurs as a normal part of differentiation and sex determination in many plant and animal systems.
Collapse
Affiliation(s)
- Takayoshi Ishii
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Stadt Seeland, Germany;
| | - Raheleh Karimi-Ashtiyani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Stadt Seeland, Germany;
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Stadt Seeland, Germany;
| |
Collapse
|
40
|
Fulcher N, Riha K. Using Centromere Mediated Genome Elimination to Elucidate the Functional Redundancy of Candidate Telomere Binding Proteins in Arabidopsis thaliana. Front Genet 2016; 6:349. [PMID: 26779251 PMCID: PMC4700174 DOI: 10.3389/fgene.2015.00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/29/2015] [Indexed: 12/23/2022] Open
Abstract
Proteins that bind to telomeric DNA form the key structural and functional constituents of telomeres. While telomere binding proteins have been described in the majority of organisms, their identity in plants remains unknown. Several protein families containing a telomere binding motif known as the telobox have been previously described in Arabidopsis thaliana. Nonetheless, functional evidence for their involvement at telomeres has not been obtained, likely due to functional redundancy. Here we performed genetic analysis on the TRF-like family consisting of six proteins (TRB1, TRP1, TRFL1, TRFL2, TRFL4, and TRF9) which have previously shown to bind telomeric DNA in vitro. We used haploid genetics to create multiple knock-out plants deficient for all six proteins of this gene family. These plants did not exhibit changes in telomere length, or phenotypes associated with telomere dysfunction. This data demonstrates that this telobox protein family is not involved in telomere maintenance in Arabidopsis. Phylogenetic analysis in major plant lineages revealed early diversification of telobox proteins families indicating that telomere function may be associated with other telobox proteins.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Austria
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, Brno Czech Republic
| |
Collapse
|
41
|
Ravi M, Bondada R. Genome Elimination by Tailswap CenH3: In Vivo Haploid Production in Arabidopsis thaliana. Methods Mol Biol 2016; 1469:77-99. [PMID: 27557687 DOI: 10.1007/978-1-4939-4931-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Artificial production of haploids is one of the important sought-after goals of plant breeding and crop improvement programs. Conventionally, haploid plants are generated by in vitro (tissue) culture of haploid plant gametophytes, pollen (male), and embryo sac (female). Here, we describe a facile, nontissue culture-based in vivo method of haploid production through seeds in the model plant, Arabidopsis thaliana. This method involves simple crossing of any desired genotype of interest to a haploid-inducing strain (GFP-tailswap) to directly obtain haploid F1 seeds. The described protocol can be practiced by anyone with basic experience in growing A. thaliana plants and will be of interest to Arabidopsis research community.
Collapse
Affiliation(s)
- Maruthachalam Ravi
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Thiruvananthapuram, Kerala, India.
| | - Ramesh Bondada
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
42
|
Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L, Chan SWL, Britt AB. Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance. PLoS Genet 2015; 11:e1005494. [PMID: 26352591 PMCID: PMC4564284 DOI: 10.1371/journal.pgen.1005494] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/12/2015] [Indexed: 12/04/2022] Open
Abstract
The centromeric histone 3 variant (CENH3, aka CENP-A) is essential for the segregation of sister chromatids during mitosis and meiosis. To better define CENH3 functional constraints, we complemented a null allele in Arabidopsis with a variety of mutant alleles, each inducing a single amino acid change in conserved residues of the histone fold domain. Many of these transgenic missense lines displayed wild-type growth and fertility on self-pollination, but exhibited frequent post-zygotic death and uniparental inheritance when crossed with wild-type plants. The failure of centromeres marked by these missense mutation in the histone fold domain of CENH3 reproduces the genome elimination syndromes described with chimeric CENH3 and CENH3 from diverged species. Additionally, evidence that a single point mutation is sufficient to generate a haploid inducer provide a simple one-step method for the identification of non-transgenic haploid inducers in existing mutagenized collections of crop species. As proof of the extreme simplicity of this approach to create haploid-inducing lines, we performed an in silico search for previously identified point mutations in CENH3 and identified an Arabidopsis line carrying the A86V substitution within the histone fold domain. This A87V non-transgenic line, while fully fertile on self-pollination, produced postzygotic death and uniparental haploids when crossed to wild type. The centromeric histone protein, CENH3, plays an important role in chromosome segregation during mitosis and meiosis. Here we show that single amino acid changes in CENH3, while producing no obvious effect on mitosis or meiosis, affect segregation postzygotically upon outcrossing to plants carrying wild-type centromeres. This results in uniparental inheritance among some progeny, and seed death in a larger fraction of progeny. Interestingly, changes competent to induce haploid in Arabidopsis existed in a TILLING population and in unrelated plant species. Our findings have two major consequences. First, uniparental inheritance facilitates the production of haploid plants that can easily be doubled to produce completely homozygous lines in a single generation. Secondly, our findings suggest that natural variation in CENH3 may result in partial reproductive isolation, because chromosomes of the mutant parent from F1 hybrid progeny are culled during embryonic development, while no reproductive defects are observed in self-pollinated plants. We do not know if the same mutations are haploid-inducing in other species, but uniparental chromosome loss, and the seed abortion that accompanies it results in an outcrossing-specific penalty that could potentially be involved in reproductive isolation.
Collapse
Affiliation(s)
- Sundaram Kuppu
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Ek Han Tan
- Plant Biology and Genome Center, University of California Davis, Davis, California, United States of America
| | - Hanh Nguyen
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Andrea Rodgers
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Luca Comai
- Plant Biology and Genome Center, University of California Davis, Davis, California, United States of America
| | - Simon W. L. Chan
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Anne B. Britt
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Palmgren MG, Edenbrandt AK, Vedel SE, Andersen MM, Landes X, Østerberg JT, Falhof J, Olsen LI, Christensen SB, Sandøe P, Gamborg C, Kappel K, Thorsen BJ, Pagh P. Are we ready for back-to-nature crop breeding? TRENDS IN PLANT SCIENCE 2015; 20:155-64. [PMID: 25529373 DOI: 10.1016/j.tplants.2014.11.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/05/2014] [Accepted: 11/10/2014] [Indexed: 05/03/2023]
Abstract
Sustainable agriculture in response to increasing demands for food depends on development of high-yielding crops with high nutritional value that require minimal intervention during growth. To date, the focus has been on changing plants by introducing genes that impart new properties, which the plants and their ancestors never possessed. By contrast, we suggest another potentially beneficial and perhaps less controversial strategy that modern plant biotechnology may adopt. This approach, which broadens earlier approaches to reverse breeding, aims to furnish crops with lost properties that their ancestors once possessed in order to tolerate adverse environmental conditions. What molecular techniques are available for implementing such rewilding? Are the strategies legally, socially, economically, and ethically feasible? These are the questions addressed in this review.
Collapse
Affiliation(s)
- Michael G Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Anna Kristina Edenbrandt
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Suzanne Elizabeth Vedel
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Martin Marchman Andersen
- Department of Media, Cognition, and Communication, University of Copenhagen, Karen Blixens Vej 4, DK-2300 Copenhagen S, Denmark
| | - Xavier Landes
- Department of Media, Cognition, and Communication, University of Copenhagen, Karen Blixens Vej 4, DK-2300 Copenhagen S, Denmark
| | - Jeppe Thulin Østerberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Janus Falhof
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Lene Irene Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Søren Brøgger Christensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Peter Sandøe
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark; Department of Large Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Christian Gamborg
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Klemens Kappel
- Department of Media, Cognition, and Communication, University of Copenhagen, Karen Blixens Vej 4, DK-2300 Copenhagen S, Denmark
| | - Bo Jellesmark Thorsen
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Peter Pagh
- Centre for Public Regulation and Administration, Faculty of Law, University of Copenhagen, Studiestræde 6, DK-1455 Copenhagen K, Denmark
| |
Collapse
|
44
|
Histone variants: the artists of eukaryotic chromatin. SCIENCE CHINA-LIFE SCIENCES 2015; 58:232-9. [DOI: 10.1007/s11427-015-4817-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
45
|
Barcelos E, Rios SDA, Cunha RNV, Lopes R, Motoike SY, Babiychuk E, Skirycz A, Kushnir S. Oil palm natural diversity and the potential for yield improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:190. [PMID: 25870604 PMCID: PMC4375979 DOI: 10.3389/fpls.2015.00190] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/09/2015] [Indexed: 05/07/2023]
Abstract
African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.
Collapse
Affiliation(s)
- Edson Barcelos
- Embrapa Amazonia Ocidental, Empresa Brasileira de Pesquisa Agropecuária, Manaus, Brazil
- *Correspondence: Edson Barcelos, Embrapa Amazonia Ocidental, Empresa Brasileira de Pesquisa Agropecuária, Rodovia AM 010, Km 29, Manaus, Amazonas 69011-970, Brazil
| | - Sara de Almeida Rios
- Embrapa Amazonia Ocidental, Empresa Brasileira de Pesquisa Agropecuária, Manaus, Brazil
| | - Raimundo N. V. Cunha
- Embrapa Amazonia Ocidental, Empresa Brasileira de Pesquisa Agropecuária, Manaus, Brazil
| | - Ricardo Lopes
- Embrapa Amazonia Ocidental, Empresa Brasileira de Pesquisa Agropecuária, Manaus, Brazil
| | - Sérgio Y. Motoike
- Department of Phytotechnology, Federal University of Viçosa, Viçosa, Brazil
| | - Elena Babiychuk
- Department of Sustainable Development, Vale Institute of Technology, Belém, Brazil
| | - Aleksandra Skirycz
- Department of Sustainable Development, Vale Institute of Technology, Belém, Brazil
| | - Sergei Kushnir
- Department of Sustainable Development, Vale Institute of Technology, Belém, Brazil
| |
Collapse
|
46
|
Whelan AI, Lema MA. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM CROPS & FOOD 2015; 6:253-65. [PMID: 26552666 PMCID: PMC5033209 DOI: 10.1080/21645698.2015.1114698] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
Abstract
"New Breeding Techniques" (NBTs) are a group of recent innovations in plant breeding using molecular biology tools. It is becoming evident that NBTs can introduce advantageous traits for agriculture that could be commercially available very soon However, there is still a need of clarifying its regulatory status, particularly in regards to worldwide regulations on Genetically Modified Organisms (GMOs). This article reviews the meaning of the NBTs concept, performs an overall regulatory analysis of these technologies and reports the first regulation in the world that is applied to these technologies, which was issued by the Argentine Government.
Collapse
Key Words
- CPB, Cartagena Protocol on Biosafety;
- DNA, Deoxyribonucleic acid;
- GMO regulation
- GMO, genetically modified organisms;
- LMO, Living modified organism;
- MNs, Mega Nucleases;
- NBTs
- NBTs, New Breeding Techniques;
- ODM, Oligonucleotide-Directed Mutation;
- RNA, Ribonucleic acid;
- RNAi, RNA interference
- RdDM, RNA-Dependent DNA Methylation;
- SDN, Site –Directed Nucleases;
- TALENs, TAL Effector Nucleases;
- ZFNs, Zinc Finger Nucleases;
- agriculture
- biosafety
- gene editing
- gene targeting
- genetic modification
Collapse
Affiliation(s)
- Agustina I Whelan
- Biotechnology Directorate; Secretariat of Agriculture; Livestock and Fisheries; Buenos Aires, Argentina
- National University of Quilmes; Bernal, Argentina
| | - Martin A Lema
- Biotechnology Directorate; Secretariat of Agriculture; Livestock and Fisheries; Buenos Aires, Argentina
- National University of Quilmes; Bernal, Argentina
| |
Collapse
|
47
|
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:297-327. [PMID: 25494464 DOI: 10.1146/annurev-arplant-050213-035923] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.
Collapse
Affiliation(s)
- Raphaël Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; , , , ,
| | | | | | | | | |
Collapse
|
48
|
A haploid genetics toolbox for Arabidopsis thaliana. Nat Commun 2014; 5:5334. [PMID: 25358957 DOI: 10.1038/ncomms6334] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/21/2014] [Indexed: 11/09/2022] Open
Abstract
Genetic analysis in haploids provides unconventional yet powerful advantages not available in diploid organisms. In Arabidopsis thaliana, haploids can be generated through seeds by crossing a wild-type strain to a transgenic strain with altered centromeres. Here we report the development of an improved haploid inducer (HI) strain, SeedGFP-HI, that aids selection of haploid seeds prior to germination. We also show that haploids can be used as a tool to accelerate a variety of genetic analyses, specifically pyramiding multiple mutant combinations, forward mutagenesis screens, scaling down a tetraploid to lower ploidy levels and swapping of nuclear and cytoplasmic genomes. Furthermore, the A. thaliana HI can be used to produce haploids from a related species A. suecica and generate homozygous mutant plants from strong maternal gametophyte lethal alleles, which is not possible via conventional diploid genetics. Taken together, our results demonstrate the utility and power of haploid genetics in A. thaliana.
Collapse
|
49
|
Abstract
During the course of our history, humankind has been through different periods of agricultural improvement aimed at enhancing our food supply and the performance of food crops. In recent years, it has become apparent that future crop improvement efforts will require new approaches to address the local challenges of farmers while empowering discovery across industry and academia. New plant breeding approaches are needed to meet this challenge to help feed a growing world population. Here I discuss how a basic research discovery is being translated into a potential future tool for plant breeding, and share the story of researcher Simon Chan, who recognized the potential application of this new approach--genome elimination--for the breeding of staple food crops in Africa and South America.
Collapse
Affiliation(s)
- Luca Comai
- Plant Biology and Genome Center, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Hartung F, Schiemann J. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:742-52. [PMID: 24330272 DOI: 10.1111/tpj.12413] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 05/04/2023]
Abstract
Several new plant breeding techniques (NPBTs) have been developed during the last decade, and make it possible to precisely perform genome modifications in plants. The major problem, other than technical aspects, is the vagueness of regulation concerning these new techniques. Since the definition of eight NPBTs by a European expert group in 2007, there has been an ongoing debate on whether the resulting plants and their products are covered by GMO legislation. Obviously, cover by GMO legislation would severely hamper the use of NPBT, because genetically modified plants must pass a costly and time-consuming GMO approval procedure in the EU. In this review, we compare some of the NPBTs defined by the EU expert group with classical breeding techniques and conventional transgenic plants. The list of NPBTs may be shortened (or extended) during the international discussion process initiated by the Organization for Economic Co-operation and Development. From the scientific point of view, it may be argued that plants developed by NPBTs are often indistinguishable from classically bred plants and are not expected to possess higher risks for health and the environment. In light of the debate on the future regulation of NPBTs and the accumulated evidence on the biosafety of genetically modified plants that have been commercialized and risk-assessed worldwide, it may be suggested that plants modified by crop genetic improvement technologies, including genetic modification, NPBTs or other future techniques, should be evaluated according to the new trait and the resulting end product rather than the technique used to create the new plant variety.
Collapse
Affiliation(s)
- Frank Hartung
- Julius Kühn Institut, Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin Baur Straße 27, D-06484, Quedlinburg, Germany
| | | |
Collapse
|