1
|
Mathivanan RK, Pedersen C, Turkus J, Shrestha N, Ali W, Torres-Rodriguez JV, Mural RV, Obata T, Schnable JC. Transcripts and genomic intervals associated with variation in metabolite abundance in maize leaves under field conditions. BMC Genomics 2025; 26:434. [PMID: 40312298 PMCID: PMC12046723 DOI: 10.1186/s12864-025-11580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/08/2025] [Indexed: 05/03/2025] Open
Abstract
Plants exhibit extensive environment-dependent intraspecific metabolic variation, which likely plays a role in determining variation in whole plant phenotypes. However, much of the work seeking to use natural variation to link genes and transcript's impacts on plant metabolism has employed data from controlled environments. Here, we generated and analyzed data on the variation in the abundance of 26 metabolites across 660 maize inbred lines under field conditions. We employ these data and previously published transcript and whole plant phenotype data reported for the same field experiment to identify both genomic intervals (through genome-wide association studies (GWAS)) and transcripts (using both transcriptome-wide association studies (TWAS) and an explainable artificial intelligence (AI) approach based on random forest (RF)) associated with variation in metabolite abundance. Both genome-wide association and random forest-based methods identified substantial numbers of significant associations including genes with plausible links to the metabolites they are associated with. In contrast, the transcriptome-wide association identified only six significant associations. In three cases, genetic markers associated with metabolic variation in our study colocalized with markers linked to variation in non-metabolic traits scored in the same experiment. We speculate that the poor performance of transcriptome-wide association studies in identifying transcript-metabolite associations may reflect a high prevalence of non-linear interactions between transcripts and metabolites and/or a bias towards rare transcripts playing a large role in determining intraspecific metabolic variation.
Collapse
Affiliation(s)
- Ramesh Kanna Mathivanan
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Connor Pedersen
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jonathan Turkus
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nikee Shrestha
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Waqar Ali
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - J Vladimir Torres-Rodriguez
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ravi V Mural
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Toshihiro Obata
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - James C Schnable
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
2
|
Wang J, Liu S, Pu J, Li J, He C, Zhang L, Zhou X, Xu D, Zhou L, Guo Y, Zhang Y, Wang Y, Yang B, Wang P, Deng X, Sun C. Comprehensive Analysis of Ghd7 Variations Using Pan-Genomics and Prime Editing in Rice. Genes (Basel) 2025; 16:462. [PMID: 40282422 PMCID: PMC12027456 DOI: 10.3390/genes16040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The Ghd7 gene in rice plays a crucial role in determining heading date, plant height, and grain yield. However, the variations in Ghd7 and their functional implications across different rice accessions are not fully understood. Based on the release of a large amount of rice genome data in recent years, we investigated Ghd7 through pan-genome analysis of 372 diverse rice varieties and figured out the structural variations (SVs) in the Ghd7 locus. However, due to the high cost of pan-genomes, most genomes are based on next-generation sequencing (NGS) data now. Therefore, we developed a method for identifying SVs using NGS data and Polymerase Chain Reaction (PCR) based on the results of pan-genome analysis and identified 977 accessions carrying such SVs of Ghd7. Furthermore, we identified 46 single-nucleotide polymorphisms (SNPs) and one insertion-deletion (InDel) in the coding region of Ghd7. They are classified into 49 haplotypes. Notably, a splice-site mutation in haplotype H6 causes aberrant mRNA splicing. Using prime editing (PE) technology, we successfully restored the functional of Ghd7 in Yixiang 1B (YX1B), delaying the heading date by approximately 16 days. This modification synchronized the heading date between YX1B and the restorer line Yahui 2115 (YH2115R), enhancing the hybrid rice seed production efficiency. In conclusion, our findings highlight the potential of integrating pan-genomics and precision gene editing to accelerate crop improvement and enhance agronomic traits.
Collapse
Affiliation(s)
- Jiarui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Shihang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Jisong Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Jun Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Changcai He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Lanjing Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Xu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Dongyu Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Luyao Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Yuting Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Yuxiu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Yang Wang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan 615000, China;
| | - Bin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| |
Collapse
|
3
|
Li C, Li Z, Lu B, Shi Y, Xiao S, Dong H, Zhang R, Liu H, Jiao Y, Xu L, Su A, Wang X, Zhao Y, Wang S, Fan Y, Luo M, Xi S, Yu A, Wang F, Ge J, Tian H, Yi H, Lv Y, Li H, Wang R, Song W, Zhao J. Large-scale metabolomic landscape of edible maize reveals convergent changes in metabolite differentiation and facilitates its breeding improvement. MOLECULAR PLANT 2025; 18:619-638. [PMID: 40025737 DOI: 10.1016/j.molp.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Edible maize is an important food crop that provides energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures and human activity have shaped the metabolome of edible maize remains unclear. In this study, we collected 452 diverse edible maize accessions worldwide, including waxy, sweet, and field maize. A total of 3020 non-redundant metabolites, including 802 annotated metabolites, were identified using a two-step optimized approach, which generated the most comprehensive annotated metabolite dataset in plants to date. Although specific metabolite differentiation was detected between field and sweet maize and between field and waxy maize, convergent metabolite differentiation was the dominant pattern. We identified hub genes in all metabolite classes by hotspot analysis in a metabolite genome-wide association study. Seventeen and 15 hub genes were selected as the key differentiation genes for flavonoids and lipids, respectively. Surprisingly, almost all of these genes were under diversifying selection, suggesting that diversifying selection was the main genetic mechanism of convergent metabolic differentiation. Further genetic and molecular studies revealed the roles and genetic diversifying selection mechanisms of ZmGPAT11 in convergent metabolite differentiation in the lipid pathway. On the basis of our research, we established the first edible maize metabolome database, EMMDB (https://www.maizemdb.site/home/). We successfully used EMMDB for precision improvement of nutritional and flavor traits and bred the elite inbred line 6644_2, with greatly increased contents of flavonoids, lysophosphatidylcholines, lysophosphatidylethanolamines, and vitamins. Collectively, our study sheds light on the genetic mechanisms of metabolite differentiation in edible maize and provides a database for breeding improvement of flavor and nutritional traits in edible maize by metabolome precision design.
Collapse
Affiliation(s)
- Chunhui Li
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhiyong Li
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Baishan Lu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yaxing Shi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Senlin Xiao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Dong
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ruyang Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Liu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanyan Jiao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li Xu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Aiguo Su
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaqing Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shuai Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanli Fan
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Meijie Luo
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shengli Xi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ainian Yu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengge Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianrong Ge
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongli Tian
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongmei Yi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ronghuan Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
4
|
Liu D, Fan W, Yang Y, Guo Z, Xu Y, Hu J, Liu T, Yu S, Zhang H, Tang J, Hou S, Zhou Z. Metabolome genome-wide association analyses identify a splice mutation in AADAT affects lysine degradation in duck skeletal muscle. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2882-x. [PMID: 40208415 DOI: 10.1007/s11427-024-2882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/21/2025] [Indexed: 04/11/2025]
Abstract
Metabolites in skeletal muscles play an important role in their growth, development, immunity and other physiological activities. However, the genetic basis of metabolites in skeletal muscle remains poorly understood. Here, we identified 247 candidate divergent regions containing 905 protein-coding genes closely related to metabolic pathways, including lysine degradation and fatty acid biosynthesis. We then profiled 3,060 metabolites in 246 skeletal muscle samples from F2 segregating population generated by mallard×Pekin duck crosses using metabolomic approaches. We identified 2,044 significant metabolome-based GWAS signals and 21 candidate genes potentially modulating metabolite contents in skeletal muscle. Among them, the levels of 2-aminoadipic acid in skeletal muscle were significantly correlated with body weight and intramuscular fat content, determined by a 939-bp CR1 LINE insertion in AADAT. We further found that the CR1 LINE insertion most possibly led to a splice mutation in AADAT, resulting in the downregulation of the lysine degradation pathway in skeletal muscle. Moreover, intramuscular fat content and fatty acids biosynthesis pathway was significantly increased in individuals with CR1 LINE insertion. This study enhances our understanding of the genetic basis of skeletal muscle metabolic traits and promotes the efficient utilization of metabolite traits in the genetic improvement of animals.
Collapse
Affiliation(s)
- Dapeng Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenlei Fan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Youyou Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaxi Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Hu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tong Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Simeng Yu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - He Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Tang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
5
|
Lang H, Jia X, He B, Yu X. Advances and Future Prospects of Pigment Deposition in Pigmented Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:963. [PMID: 40265906 PMCID: PMC11945685 DOI: 10.3390/plants14060963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
Pigmented rice, particularly the black and red varieties, is popular due to its better nutritional value. Anthocyanins and proanthocyanidins are two major flavonoid subcategories with broad physiological functions and therapeutic significance. However, pigment deposition is a complex process, and the molecular mechanism involved remains unknown. This review explores the metabolites responsible for the pigmentation in various rice tissues. Moreover, the current challenges, feasible strategies, and potential future directions in pigmented rice research are reported.
Collapse
Affiliation(s)
- Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (B.H.); (X.Y.)
| | - Xingtian Jia
- Tongliao Institute of Agricultural and Animal Husbandry Sciences, Tongliao 028000, China;
| | - Bing He
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (B.H.); (X.Y.)
| | - Xiaoming Yu
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (B.H.); (X.Y.)
| |
Collapse
|
6
|
Xu S, He Y, Zhou Z, Chen H, Zhao C, Mao H. Transcriptome analysis reveals the key roles of TaSMP1 and ABA signaling pathway in wheat seed dormancy and germination. PLANTA 2025; 261:91. [PMID: 40090975 DOI: 10.1007/s00425-025-04667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
MAIN CONCLUSION This study analyzed dynamic transcriptome profiles to reveal differential expression patterns of ABA related and LEA protein family genes and verified that TaSMP1 affects seed germination by interacting with TaABI5. Seed dormancy is a crucial survival strategy for plants to cope with environmental stresses. High levels of seed dormancy result in uneven germination, while low levels of seed dormancy increase the risk of pre-harvest sprouting (PHS), which threatens crop yield and quality. Therefore, achieving the optimal balance between seed dormancy and germination is vital for maximum potential crop yield and quality. This study constructed dynamic transcriptome expression profiles of the germination process for the weakly dormant wheat variety Jing 411 (J411) and the strongly dormant landrace variety Hongsuibai (HSB), revealing the temporal expression of differentially expressed genes. Plant hormone-related genes played a crucial role in the early germination response, particularly the abscisic acid (ABA) signaling gene TaABI5 and the ABA catabolism gene TaCYP707A1. The late embryogenesis abundant (LEA) protein family genes exhibited differential expression patterns during the germination of seeds with varying levels of dormancy. The TaSMP1 gene, a member of the LEA protein family, was identified as a negative regulator of seed dormancy, interacting directly with the key transcription factor TaABI5 in the ABA signaling pathway and influencing the expression of the seed germination gene TaDOG1L1. This study provides essential insights into the molecular mechanisms balancing seed dormancy and germination, offering potential targets for enhancing wheat resistance to PHS.
Collapse
Affiliation(s)
- Shuhao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yuqin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ziru Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Chunjie Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Tan X, Zeng W, Yang Y, Lin Z, Li F, Liu J, Chen S, Liu YG, Xie W, Xie X. Genome-wide profiling of polymorphic short tandem repeats and their influence on gene expression and trait variation in diverse rice populations. J Genet Genomics 2025:S1673-8527(25)00078-5. [PMID: 40089018 DOI: 10.1016/j.jgg.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Short tandem repeats (STRs) modulate gene expression and contribute to trait variation. However, a systematic evaluation of the genomic characteristics of STRs has not been conducted, and their influence on gene expression in rice remains unclear. Here, we construct a map of 137,629 polymorphic STRs in the rice (Oryza sativa L.) genome using a population-scale resequencing dataset. A genome-wide survey encompassing 4726 accessions shows that the occurrence frequency, mutational patterns, chromosomal distribution, and functional properties of STRs are correlated with the sequences and lengths of repeat motifs. Leveraging a transcriptome dataset from 127 rice accessions, we identify 44,672 expression STRs (eSTRs) by modeling gene expression in response to the length variation of STRs. These eSTRs are notably enriched in the regulatory regions of genes with active transcriptional signatures. Population analysis identifies numerous STRs that have undergone genetic divergence among different rice groups and 1726 tagged STRs that may be associated with agronomic traits. By editing the (ACT)7 STR in OsFD1 promoter, we further experimentally validate its role in regulating gene expression and phenotype. Our study highlights the contribution of STRs to transcriptional regulation in plants and establishes the foundation for their potential use as alternative targets for genetic improvement.
Collapse
Affiliation(s)
- Xiyu Tan
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wanyong Zeng
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yujian Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhansheng Lin
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fuquan Li
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianhong Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shaotong Chen
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yao-Guang Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xianrong Xie
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
8
|
Feng H, Li Y, Dai G, Yang Z, Song J, Lu B, Gao Y, Chen Y, Shi J, Mur LAJ, Yu L, Luo J, Yang W. Integrative phenomics, metabolomics and genomics analysis provides new insights for deciphering the genetic basis of metabolism in polished rice. Genome Biol 2025; 26:55. [PMID: 40075492 PMCID: PMC11905631 DOI: 10.1186/s13059-025-03513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Metabolomics is one of the most widely used omics tools for deciphering the functional networks of the metabolites for crop improvement. However, it is technically demanding and costly. RESULTS We propose a relatively inexpensive approach for metabolomics analysis in which metabolomics is combined with hyperspectral imaging via machine learning. This approach can be used to target important steps in flavonoid and lipid biosynthesis in rice. We extract 1848 hyperspectral indices and 887 metabolites from polished grains of 533 Oryza sativa accessions. Hyperspectral indices are then linked to metabolites through correlation analysis and modelling. Based on this, a total of 554 metabolites and 1313 hyperspectral indices are identified for further genome-wide association study (GWAS). By GWAS, we detect 17,509 significant locus-trait associations with 2882 single nucleotide polymorphisms (SNPs). Colocalization analysis links these SNPs to the corresponding metabolites and hyperspectral indices. We detect 6415 pairs of metabolites and hyperspectral indices within a linkage disequilibrium of 300 kb in the Oryza sativa genome. We then characterize 1761 candidate genes colocalized to these loci by transcriptomic analysis. We further verify novel candidate genes encoding a novel flavonoid (LOC_Os09g18450) and a flavonoid/lipid (LOC_Os07g11020) respectively by gene editing and overexpression in rice. CONCLUSION Our findings indicate that hyperspectral imaging combined with machine learning methods could serve as a powerful tool for quickly and inexpensively assessing crop metabolites.
Collapse
Affiliation(s)
- Hui Feng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufei Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Guoxin Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuang Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Jingyan Song
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingjie Lu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongqi Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawei Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Luis A J Mur
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Lejun Yu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Prescott J, Keyser AJ, Litwin P, Dunbar MD, McClelland R, Ruple A, Ernst H, Butler BL, Kauffman M, Avery A, Harrison BR, Partida-Aguilar M, McCoy BM, Slikas E, Greenier AK, Muller E, Algavi YM, Bamberger T, Creevy KE, Borenstein E, Snyder-Mackler N, Promislow DEL. Rationale and design of the Dog Aging Project precision cohort: a multi-omic resource for longitudinal research in geroscience. GeroScience 2025:10.1007/s11357-025-01571-3. [PMID: 40038157 DOI: 10.1007/s11357-025-01571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
A significant challenge in multi-omic geroscience research is the collection of high quality, fit-for-purpose biospecimens from a diverse and well-characterized study population with sufficient sample size to detect age-related changes in physiological biomarkers. The Dog Aging Project designed the precision cohort to study the mechanisms underlying age-related change in the metabolome, microbiome, and epigenome in companion dogs, an emerging model system for translational geroscience research. One thousand dog-owner pairs were recruited into cohort strata based on life stage, sex, size, and geography. We designed and built a novel implementation of the REDCap electronic data capture system to manage study participants, logistics, and biospecimen and survey data collection in a secure online platform. In collaboration with primary care veterinarians, we collected and processed blood, urine, fecal, and hair samples from 976 dogs. The resulting data include complete blood count, chemistry profile, immunophenotyping by flow cytometry, metabolite quantification, fecal microbiome characterization, epigenomic profile, urinalysis, and associated metadata characterizing sample conditions at collection and during lab processing. The project, which has already begun collecting second- and third-year samples from precision cohort dogs, demonstrates that scientifically useful biospecimens can be collected from a geographically dispersed population through collaboration with private veterinary clinics and downstream labs. The data collection infrastructure developed for the precision cohort can be leveraged for future studies. Most important, the Dog Aging Project is an open data project. We encourage researchers around the world to apply for data access and utilize this rich, constantly growing dataset in their own work.
Collapse
Affiliation(s)
- Jena Prescott
- Department of Small Animal Clinical Sciences, Texas a&M University, College Station, TX, USA
| | - Amber J Keyser
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Paul Litwin
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Matthew D Dunbar
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Robyn McClelland
- Biostatistics and Collaborative Health Studies Coordinating Center, University of Washington, Seattle, WA, USA
| | - Audrey Ruple
- Department of Population Health Science, Virginia Tech, Blacksburg, VA, USA
| | - Holley Ernst
- Department of Small Animal Clinical Sciences, Texas a&M University, College Station, TX, USA
| | - Brianna L Butler
- Department of Small Animal Clinical Sciences, Texas a&M University, College Station, TX, USA
| | - Mandy Kauffman
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Anne Avery
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Benjamin R Harrison
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maria Partida-Aguilar
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Brianah M McCoy
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Elizabeth Slikas
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Efrat Muller
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Yadid M Algavi
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Bamberger
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kate E Creevy
- Department of Small Animal Clinical Sciences, Texas a&M University, College Station, TX, USA
| | - Elhanan Borenstein
- Blavatnik School of Computer Science and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Daniel E L Promislow
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| |
Collapse
|
10
|
Yan Y, Wen Y, Zhang Z, Zhang J, Wu X, Wang C, Zhao Y. Integrating ATAC-seq and RNA-seq to reveal the dynamics of chromatin accessibility and gene expression in regulating aril coloration of Taxus mairei. Genomics 2025; 117:111011. [PMID: 39894182 DOI: 10.1016/j.ygeno.2025.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Fruit coloration results from a complex process. Maire yew (Taxus mairei) is an evergreen tree with red, purple, and yellow fruits (arils). While significant progress has been made in understanding pigment biosynthesis in arils, the role of chromatin accessibility in color development remains less well understood. To gain deeper insights into the genetic and epigenetic factors involved, we employed RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin sequencing (ATAC-seq). By integrating the results, we identified 723 differentially expressed genes (DEGs) with chromatin changes in P vs. R, including 312 up- and 411 down-regulated genes. In Y vs. R, we found 159 DEGs, with 97 up- and 62 down-regulated. KEGG enrichment analysis highlighted the flavonoid and carotenoid pathways as major contributors to color variation. When the arils turned purple, the expression levels of C4H, CHS, C3'H, F3'H, F3H, DFR, PSY, PDS, β-OHase, CYP97A3, and LUT1 were significantly up-regulated, while ZDS was down-regulated. The transition to yellow arils was characterized by the up-regulation of F3H, DFR, ZDS, CYP97A3, β-OHase, and LUT1, accompanied by the down-regulation of C4H, CHS, PSY, and PDS. Additionally, 27 transcription factors (TFs) were identified, including MYB, bHLH, and bZIP. These TFs may potentially influence variation in aril color by regulating downstream genes. In total, eight genes were selected for qRT-PCR validation, indicating the reliability of the transcriptome sequencing data. Our results provide in-depth information regarding the coloration of the arils in Maire yew. The study could provide insights for further genetic improvement in Taxus.
Collapse
Affiliation(s)
- Yadan Yan
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China; Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| | - Yafeng Wen
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China; Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China.
| | - Zejun Zhang
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China; Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| | - Jun Zhang
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China; Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| | - Xingtong Wu
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China; Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| | - Chuncheng Wang
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China; Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| | - Yanghui Zhao
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China; Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| |
Collapse
|
11
|
Huang S, Li X, An K, Xu C, Liu Z, Wang G, Hou H, Zhang R, Wang Y, Yuan H, Luo J. Metabolomic Analysis Reveals the Diversity of Defense Metabolites in Nine Cereal Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:629. [PMID: 40006888 PMCID: PMC11859589 DOI: 10.3390/plants14040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Cereal crops are important staple foods, and their defense metabolites hold significant research importance. In this study, we employed LC-MS-based untargeted and widely-targeted metabolomics to profile the leaf metabolome of nine cereal species, including rice, wheat, maize, barley, sorghum, common oat, foxtail millet, broomcorn millet, and adlay. A total of 9869 features were detected, among them, 1131 were annotated, encompassing 18 classes such as flavonoids, lipids, and alkaloids. Results revealed that 531 metabolites were detected in all species, while each cereal crop possessed 4 to 12 unique metabolites. Focusing on defense metabolites, we identified eight benzoxazinoids uniquely present in maize, wheat, and adlay. Hierarchical clustering based on metabolite abundance divided all metabolites into nine clusters, and subsequent pathway enrichment analysis revealed that the stress-related flavonoid biosynthesis pathway was enriched in multiple clusters. Further analysis showed that four downstream compounds of HBOA (2-hydroxy-1,4-benzoxazin-3-one) in the benzoxazinoid biosynthesis pathway were enriched in maize. Wheat uniquely accumulated the 4'-methylated product of tricin, trimethoxytricetin, whereas adlay accumulated the tricin precursor tricetin in the flavonoid biosynthesis pathway. In summary, this study elucidates the metabolic diversity in defense metabolites among various cereal crops, providing valuable background information for the improvement of stress resistance in cereal crops.
Collapse
Affiliation(s)
- Sishu Huang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Xindong Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Kejin An
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Congping Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Zhenhuan Liu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Guan Wang
- Yazhouwan National Laboratory, Sanya 572025, China;
| | - Huanteng Hou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Ran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Yutong Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Honglun Yuan
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
- Yazhouwan National Laboratory, Sanya 572025, China;
| |
Collapse
|
12
|
Khan M, Hu D, Dai S, Li H, Peng Z, He S, Awais M, Du X, Geng X. Unraveling key genes and pathways involved in Verticillium wilt resistance by integrative GWAS and transcriptomic approaches in Upland cotton. Funct Integr Genomics 2025; 25:39. [PMID: 39955705 DOI: 10.1007/s10142-025-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Verticillium dahliae Kleb, the cause of Verticillium wilt, is a particularly destructive soil-borne vascular disease that affects cotton, resulting in serious decline in fiber quality and causing significant losses in cotton production worldwide. However, the progress in identification of wilt-resistance loci or genes in cotton has been limited, most probably due to the highly complex genetic nature of the trait. Nevertheless, the molecular mechanism behind the Verticillium wilt resistance remains poorly understood. In the present study, we investigated the phenotypic variations in Verticillium tolerance and conducted a genome wide association study (GWAS) among a natural population containing 383 accessions of upland cotton germplasm and performed transcriptomic analysis of cotton genotypes with differential responses to Verticillium wilt. GWAS detected 70 significant SNPs and 116 genes associated with resistance loci in two peak signals on D02 and D11 in E1. The transcriptome analysis identified a total of 2689 and 13289 differentially expressed genes (DEGs) among the Verticillium wilt-tolerant (J46) and wilt-susceptible (J11) genotypes, respectively. The DEGs were predominantly enriched in metabolism, plant hormone signal transduction, phenylpropanoid pathway, MAPK cascade pathway and plant-pathogen interaction pathway in GO and KEGG analyses. The identified DEGs were found to comprise several transcription factor (TF) gene families, primarily including AP2/ERF, ZF, WRKY, NAC and MYB, in addition to pentatricopeptide repeat (PPR) proteins and Resistance (R) genes. Finally, by integrating the two results, 34 candidate genes were found to overlap between GWAS and RNA-seq analyses, associated with Verticillium-wilt resistance, including WRKY, MYB, CYP and RGA. This work contributes to our knowledge of the molecular processes underlying cotton responses to Verticillium wilt, offering crucial insights for additional research into the genes and pathways implicated in these responses and paving the way for developing Verticillium wilt-resistant cotton varieties through accelerated breeding by providing a plethora of candidate genes.
Collapse
Affiliation(s)
- Majid Khan
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China
| | - Shuai Dai
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongge Li
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen Peng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Awais
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China.
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
13
|
Zhang X, Tian X, Luo J, Wang X, He S, Sun G, Dong R, Dai P, Wang X, Pan Z, Chen B, Hu D, Wang L, Pang B, Xing A, Fu G, Wang B, Cui J, Ma L, Du X. Identification of UDP-glucosyltransferase involved in the biosynthesis of phloridzin in Gossypium hirsutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17248. [PMID: 39935137 DOI: 10.1111/tpj.17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
Phloridzin has various functions, including antioxidant properties and the treatment of diabetes, and has long been used in pharmaceutical and physiological research. The glycosylation of phloretin is a key step in the biosynthesis of phloridzin. In this study, a genome-wide association study (GWAS) based on phloridzin content was applied, and the key gene GhUGT88F3 for phloridzin-specific biosynthesis was identified in cotton. A single-base deletion in GhUGT88F3 in haplotype I caused a frameshift mutation, leading to premature translation termination and a significant reduction in phloridzin content. Molecular docking revealed important amino acid residues for GhUGT88F3's UDP-glucose transfer activity. Additionally, the transcription factor GhMYB330 was found to positively regulate GhUGT88F3 expression through population transcriptome analysis and LUC experiment. Moreover, phloridzin content was significantly elevated in both GhUGT88F3 and GhMYB330 overexpression transgenic plants. This study expands the diversity of UDP-glucosyltransferases in plants and offers a potential strategy for the sustainable production of bioactive compounds with therapeutic potential.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xinquan Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Junyu Luo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 572024, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Ruidan Dong
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Panhong Dai
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Liru Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Baoyin Pang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aishuang Xing
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Guoyong Fu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Baoquan Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lei Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 572024, China
| |
Collapse
|
14
|
Liu D, Lu S, Tian R, Zhang X, Dong Q, Ren H, Chen L, Hu YG. Mining genomic regions associated with stomatal traits and their candidate genes in bread wheat through genome-wide association study (GWAS). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:20. [PMID: 39774685 DOI: 10.1007/s00122-024-04814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
KEY MESSAGE 112 candidate quantitative trait loci (QTLs) and 53 key candidate genes have been identified as associated with stomatal traits in wheat. These include bHLH, MADS-box transcription factors, and mitogen-activated protein kinases (MAPKs). Stomata is a common feature of the leaf surface of plants and serve as vital conduits for the exchange of gases (primarily CO₂ and water vapor) between plants and the external environment. In this study, a comprehensive genome analysis was conducted by integrating genome-wide association study (GWAS) and genome prediction to identify the genomic regions and candidate genes of stomatal traits associated with drought resistance and water-saving properties in a panel of 184 diverse bread wheat genotypes. There were significant variations on stomatal traits in the wheat panel across different environmental conditions. GWAS was conducted with the genotypic data from the wheat 660 K single-nucleotide polymorphism (SNP) chip, and the stomatal traits conducted across three environments during two growing seasons. The final GWAS identified 112 candidate QTLs that exhibited at least two significant marker-trait associations. Subsequent analysis identified 53 key candidate genes, including 13 bHLH transcription factor, 2 MADS-box transcription factors, and 4 mitogen-activated protein kinase genes, which may be strongly associated with stomatal traits. The application of Bayesian ridge regression for genomic prediction yielded an accuracy rate exceeding 60% for all four stomatal traits in both SNP matrices, with stomatal width achieving a rate in excess of 70%. Additionally, three Kompetitive allele-specific PCR markers were developed and validated, representing a significant advancement in marker-assisted prediction. Overall, these results will contribute to a more comprehensive understanding of wheat stomatal traits and provide a valuable reference for germplasm screening and innovation in wheat germplasm with novel stomatal traits.
Collapse
Affiliation(s)
- Dezheng Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Renmei Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xubin Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Dong
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Ren
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
15
|
Liu T, Dong K, He J, Wang M, Ren R, Zhang L, Li Y, Liu M, Yang T. Genetic dissection of a major locus SC9.1 conferring seed color in broomcorn millet (Panicum miliaceum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:17. [PMID: 39760849 DOI: 10.1007/s00122-024-04773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/24/2024] [Indexed: 01/07/2025]
Abstract
KEY MESSAGE A major locus SC9.1 was identified and finely mapped into a 92.68 Kb region, and longmi004412 was identified as the casual gene regulating brown seed color in broomcorn millet. Broomcorn millet is a cereal crop with abundant genetic variations in morphology, agronomy, and yield-related traits. The diversity of seed color is among the most distinctive morphological characteristics. However, genetic determinants governing seed coloration have rarely been reported. Here, the F2 and F3 populations from a cross between Longmi12 and Zhang778 were employed to elucidate the genetic basis of seed color. Statistical analysis conducted on the seed color in F1, F2, and F3 progeny conclusively demonstrated that brown seed color was controlled by a single dominant locus in broomcorn millet. The genetic control locus, SC9.1, was preliminarily located on chromosome 9 in the 32,175,878-44,281,406 bp region through bulked segregant analysis sequencing (BSA-seq). Furthermore, SC9.1 was narrowed down to a 92.68 kb interval harboring 11 genes using fine mapping with 260 recessive individual genotypes. Combined with gene structural variation, the transcriptome profile, and functional comparison, longmi004412 was identified as the causal gene resulting in brown seed color formation in broomcorn millet. In addition, haplotype analysis of the longmi004412 gene in 516 accessions was performed to clarify the types for broomcorn millet seed color. These findings lay the foundation for precise identification of germplasm at the molecular level, molecular-assisted selection breeding, and the application of gene editing technology in broomcorn millet.
Collapse
Affiliation(s)
- Tianpeng Liu
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Lanzhou, 730070, China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Lanzhou, 730070, China
| | - Jihong He
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Lanzhou, 730070, China
| | - Mei Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ruiyu Ren
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Lanzhou, 730070, China
| | - Lei Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Lanzhou, 730070, China
| | - Yawei Li
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Lanzhou, 730070, China
| | - Minxuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Tianyu Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China.
- Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Lanzhou, 730070, China.
| |
Collapse
|
16
|
Sun C, Jing Z, Chen X, Chen J, Shang Q, Jin H, Jia J, Ren Y, Zhao L, Gao L, He Z, Chen F. Reconciliation of wheat 660K and 90K SNP arrays and their utilization in dough rheological properties of bread wheat. J Adv Res 2025:S2090-1232(25)00030-X. [PMID: 39765327 DOI: 10.1016/j.jare.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/14/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION High-density Wheat 660K and 90K SNP arrays are powerful tools for understanding the genetic basis of wheat traits. However, their inconsistantly physical positions that were caused by different versions of Chinese Spring genome during developing arrays are confused and inconvenient for further application. OBJECTIVE With the repid development of wheat geonome sequencing, we aim to reconciliate Wheat 660K and 90K SNP arrays in modern cultivar and reveal the genetic basis of dough rheological properties in bread wheat. METHODS We refined physical positions of Wheat 660K and 90K SNP arrays in the currently popular wheat cultivar AK58 genome that was released more recently. We next performed genome-wide association studies (GWAS) and linkage analysis to identify important genetic loci related to quality traits using updated and un-updated arrays, respectively. RESULTS Refining results showed that 92.3% and 83% of SNPs in the Wheat 660K and 90K SNP arrays were precisely mapped to the AK58 genome, respective. GWAS results by the updated 660K and 90K arrays indicated that 26 intervals composed of 1032 significant SNPs were associated with 9 quality traits in multiple environments. The significant interval for stability time on 1D was narrowed into an 8.4-Mb region using the updated arrays, whereas the interval is 405 Mb using the un-updated arrays. Linkage analysis revealed an important QTL QST.henau-1D.2 for stability time with 1.64 Mb. Integration of GWAS and QTL results narrowed the significant interval into 6.46 Mb containing 35 annotation genes by collinearity analysis. After T-test, gene expression analysis, seven of them are potential candidate genes and thus favorable haplotypes are identified to benefit marker-assisted selection. CONCLUSION A reconciliation of Wheat 660K and 90K arrays promote their efficient applications. Important genetic loci and favorable haplotypes identified in this study provided valuable information for wheat quality breeding.
Collapse
Affiliation(s)
- Congwei Sun
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Zhenhai Jing
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Xiaoqian Chen
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Jiahui Chen
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Qiaoqiao Shang
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Hui Jin
- State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081 China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081 China
| | - Yan Ren
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Lei Zhao
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081 China.
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081 China.
| | - Feng Chen
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China.
| |
Collapse
|
17
|
Yan T, Kuang L, Gao F, Chen J, Li L, Wu D. Differentiation of genome-wide DNA methylation between japonica and indica rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17218. [PMID: 39887541 DOI: 10.1111/tpj.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025]
Abstract
Rice (Oryza sativa L.) subspecies japonica and indica show distinct morphological and genetic differentiation. However, the differences in the genome-wide DNA methylation and its effects on gene expression and metabolic levels between japonica and indica rice remain unclear. In this study, we investigated the genome-wide DNA methylation, transcriptomes and metabolomes of 12 representative japonica and indica rice accessions, to reveal the differentiation between rice subspecies. We detected 83 327 differentially methylated regions (DMRs) and 14 903 DMR-associated genes between two subspecies. Indica rice showed significantly lower levels of the CG, CHG, and CHH methylation compared with japonica rice. Subsequently, we identified 5596 differentially expressed genes between the two subspecies, predominantly enriched in pathways related to carbohydrate and amino acid metabolism. By integrating DNA methylation with transcriptomic data, a significant correlation was established between methylation patterns and the expression level of key agronomic genes in rice. Furthermore, multi-omics analyses reveal that carbohydrate metabolism pathways, especially the tricarboxylic acid (TCA) cycle metabolites, are remarkable differentiation between rice subspecies. These results provide a foundation for future studies in rice domestication and genetic improvement.
Collapse
Affiliation(s)
- Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Jian Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| |
Collapse
|
18
|
Höfer M, Schäfer M, Wang Y, Wink S, Xu S. Genome-wide association study of metabolic traits in the giant duckweed Spirodela polyrhiza. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:18-28. [PMID: 39630110 DOI: 10.1111/plb.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024]
Abstract
The exceptionally high growth rate and high flavonoid content make the giant duckweed Spirodela polyrhiza (L.) Schleid. (Arales: Lemnaceae Martinov) an ideal organism for food production and metabolic engineering. To facilitate this, identification of the genetic basis underlying growth and metabolic traits is essential. Here, we analysed growth and content of 42 metabolites in 137 S. polyrhiza genotypes and characterized the genetics underpinning these traits using a genome-wide association (GWA) approach. We found that biomass positively correlated with the content of many free amino acids, including L-glutamine, L-tryptophan, and L-serine, but negatively correlated with specialized metabolites, such as flavonoids. GWA analysis showed that several candidate genes involved in processes such as photosynthesis, protein degradation, and organ development were jointly associated with multiple metabolic traits. The results suggest the above genes are suitable targets for simultaneous optimization of duckweed growth and metabolite levels. This study provides insights into the metabolic diversity of S. polyrhiza and its underlying genetic architecture, paving the way for industrial applications of this plant via targeted breeding or genetic engineering.
Collapse
Affiliation(s)
- M Höfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - M Schäfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Y Wang
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - S Wink
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - S Xu
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, Mainz, Germany
- Institute for Quantitative and Computer Biosciences, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
19
|
Mohammed J, Thyssen GN, Hinze L, Zhang J, Zeng L, Fang DD. A GWAS identified loci and candidate genes associated with fiber quality traits in a new cotton MAGIC population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:10. [PMID: 39714714 DOI: 10.1007/s00122-024-04800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
KEY MESSAGE GWAS of a new MAGIC population containing alleles from five tetraploid Gossypium species identified novel fiber QTL and confirmed previously identified stable QTL. Identification of loci and underlying genes for fiber quality traits will facilitate genetic improvement in cotton fiber quality. In this research, a genome-wide association study (GWAS) was carried out for fiber quality attributes using a new multi-parent advanced generation inter-cross (MAGIC) population consisting of 372 recombinant inbred lines (RILs). Sixteen parents including 12 exotic germplasm lines derived from five tetraploid Gossypium species and 4 Upland cotton varieties were intercrossed to develop the population. Both RILs and parental lines were evaluated at three locations, College Station, Texas; Las Cruses, New Mexico; and Stoneville, Mississippi, from 2016 through 2023. Fiber length (UHM) had positive correlation with strength (STR) and length uniformity (UNI) and a negative correlation with micronaire (MIC) and elongation (ELO). By combining all the data from all locations, we identified significant SNPs for ELO, UHM, and UNI while STR and MIC were location dependent. These results suggest an important role of genotype by environment interaction in a GWAS of fiber traits. Twenty possible novel fiber QTL were identified: 10 for STR, three for UNI, and seven for MIC. The QTL for ELO (Chr.D04: 53-Mb), UHM (Chr.D11: 24-Mb), and UNI (Chr.D04: 34-Mb) were stable across multiple environments and may be useful for marker-assisted selection to improve fiber quality. For STR, we found candidate genes Gh_A07G1574 and Gh_A07G1581 to be present in the previously identified QTL region (Chr.A07: 77-Mb) on chromosome A07. Identified loci and their corresponding candidate genes will be useful to improve fiber quality via marker-assisted selection in a cotton breeding.
Collapse
Affiliation(s)
- Jamal Mohammed
- Cotton Fiber Bioscience and Utilization Research Unit, USDA-ARS-SRRC, New Orleans, 70124, LA, USA
| | - Gregory N Thyssen
- Cotton Fiber Bioscience and Utilization Research Unit, USDA-ARS-SRRC, New Orleans, 70124, LA, USA
| | - Lori Hinze
- Crop Germplasm Research Unit, USDA-ARS, College Station, 77845, TX, USA
| | - Jinfa Zhang
- Plant and Environmental Sciences Department, New Mexico State University, Las Cruces, 88003, NM, USA
| | - Linghe Zeng
- Crop Genetics Research Unit, USDA-ARS, Stoneville, 38776, MS, USA.
| | - David D Fang
- Cotton Fiber Bioscience and Utilization Research Unit, USDA-ARS-SRRC, New Orleans, 70124, LA, USA.
| |
Collapse
|
20
|
Shi T, Gao Y, Song J, Ao M, Hu X, Yang W, Chen W, Liu Y, Feng H. Using VIS-NIR hyperspectral imaging and deep learning for non-destructive high-throughput quantification and visualization of nutrients in wheat grains. Food Chem 2024; 461:140651. [PMID: 39154465 DOI: 10.1016/j.foodchem.2024.140651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
High-throughput and low-cost quantification of the nutrient content in crop grains is crucial for food processing and nutritional research. However, traditional methods are time-consuming and destructive. A high-throughput and low-cost method of quantification of wheat nutrients with VIS-NIR (400-1700 nm) hyperspectral imaging is proposed in this study. Stepwise linear regression (SLR) was used to predict hundreds of nutrients accurately (R2 > 0.6); results improved when the hyperspectral data was processed with the first derivative. Knockout materials were also used to verify their practical application value. Various nutrients' characteristic wavelengths were mainly concentrated in the visible regions of 400-500 nm and 900-1000 nm. Finally, we proposed an improved pix2pix conditional generative network model to visualize the nutrients distribution and showed better results compared with the original. This research highlights the potential of hyperspectral technology in high-throughput and non-destructive determination and visualization of grain nutrients with deep learning.
Collapse
Affiliation(s)
- Taotao Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yuan Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Jingyan Song
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Min Ao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
21
|
Luo J, He C, Yan S, Jiang C, Chen A, Li K, Zhu Y, Gui S, Yang N, Xiao Y, Wu S, Zhang F, Liu T, Wang J, Huang W, Yang Y, Wang H, Yang W, Li W, Zhuo L, Fernie AR, Zhan J, Wang L, Yan J. A metabolic roadmap of waxy corn flavor. MOLECULAR PLANT 2024; 17:1883-1898. [PMID: 39533712 DOI: 10.1016/j.molp.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/16/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
As well as being a popular vegetable crop worldwide, waxy corn represents an important amylopectin source, but little is known about its breeding history and flavor characteristics. In this study, through comparative-omic analyses between 318 diverse waxy corn and 507 representative field corn inbred lines we revealed that many metabolic pathways and genes exhibited selection characteristics during the breeding history of waxy corn, contributing to the divergence between waxy and field corn. We showed that waxy corn is not only altered in its glutinous property but also its sweetness, aroma, and palatability are all significantly affected. A substantial proportion (43%) of flavor-related metabolites have pleiotropic effects, affecting both flavor and yield characteristics, and 27% of these metabolites are related to antagonistic outcomes on yield and flavor. Furthermore, through multiple concrete examples, we demonstrated how yield and quality are coordinately or antagonistically regulated at the genetic level. In particular, some sweet molecules, such as DIMBOA and raffinose, which do not participate in the starch biosynthesis pathway, were identified as potential targets for breeding a new type of "sweet-waxy" corn. Taken together, our findings shed light on the historical selection of waxy corn and demonstrate the genetic and metabolic basis of waxy corn flavor, collectively providing valuable resources and knowledge for future crop breeding for improved nutritional quality.
Collapse
Affiliation(s)
- Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Wuhan GrandOmics Biosciences Co., Ltd, Wuhan, China
| | - Chunmei He
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chenglin Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - An Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Li
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, China
| | - Yongli Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Songtao Gui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tieshan Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Juan Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanhua Yang
- Anhui Fengda Seed Industry Co., Ltd, Hefei, China
| | - Haiyan Wang
- Anhui Fengda Seed Industry Co., Ltd, Hefei, China
| | - Wenyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lin Zhuo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Junpeng Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liming Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Yazhouwan National Laboratory, Sanya 572024, China.
| |
Collapse
|
22
|
Li Y, Miao Y, Yuan H, Huang F, Sun M, He L, Liu X, Luo J. Volatilome-based GWAS identifies OsWRKY19 and OsNAC021 as key regulators of rice aroma. MOLECULAR PLANT 2024; 17:1866-1882. [PMID: 39533713 DOI: 10.1016/j.molp.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Aromatic rice is globally favored for its distinctive scent, which not only increases its nutritional value but also enhances its economic importance. However, apart from 2-acetyl-1-pyrroline (2-AP), the metabolic basis of aroma remains to be clarified, and the genetic basis of the accumulation of fragrance metabolites is largely unknown. In this study, we revealed 2-AP and fatty acid-derived volatiles (FAVs) as key contributors to rice aroma by combining aroma rating with molecular docking. Using a volatilome-based genome-wide association study, we identified two regulatory genes that determine the natural variation of these fragrance metabolites. Genetic and molecular analyses showed that OsWRKY19 not only enhances fragrance by negatively regulating OsBADH2 but also improves agricultural traits in rice. Furthermore, we revealed that OsNAC021 negatively regulates FAV contents via the lipoxygenase pathway, and its knockout resulted in over-accumulation of grain FAVs without a yield penalty. Collectively, our study not only identifies two key regulators of rice aroma but also provides a compelling example about how to deciphering the genetic regulatory mechanisms that underlie rice fragrance, thereby paving the way for the creation of aromatic rice varieties.
Collapse
Affiliation(s)
- Yan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yuanyuan Miao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Honglun Yuan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Fengkun Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Mingqi Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Liqiang He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Yazhouwan National Laboratory, Sanya 572025, China.
| |
Collapse
|
23
|
Zhang J, Che J, Ouyang Y. Engineering rice genomes towards green super rice. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102664. [PMID: 39591902 DOI: 10.1016/j.pbi.2024.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Rice, cultivated for millennia across diverse geographical regions, has witnessed tremendous advancements in recent decades, epitomized by the emergence of Green Super Rice. These efforts aim to address challenges such as climate change, pest and disease threats, and sustainable agriculture. Driven by the advent of multiomics big data, breakthroughs in genomic tools and resources, hybrid rice breeding techniques, and the extensive utilization of green genes, rice genomes are undergoing delicate modifications to produce varieties with high yield, superior quality, enhanced nutrient efficiency, and resilience to pests and environmental stresses, leading to the development of green agriculture in China. Additionally, the utilization of wild relatives and the promotion of genomic breeding approaches have further enriched our understanding of rice improvement. In the future, international efforts to develop next-generation green rice varieties remain both challenging and imperative for the whole community.
Collapse
Affiliation(s)
- Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Che
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
24
|
Aggarwal PR, Mehanathan M, Choudhary P. Exploring genetics and genomics trends to understand the link between secondary metabolic genes and agronomic traits in cereals under stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154379. [PMID: 39549316 DOI: 10.1016/j.jplph.2024.154379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
The plant metabolome is considered an important interface between the genome and its phenome, where it plays a significant role in regulating plant growth in response to various environmental cues. A wide array of specialized metabolites is produced by plants, which are essential for mediating environmental interactions and their adaptation. Notably, enhanced accumulation of these specialized metabolites, particularly plant secondary metabolites (PSMs), is a part of the chemical defense response that is directly linked to improved stress tolerance. Therefore, exploring the genetic diversity underlying the immense variation of the secondary metabolite pool could unravel the adaptation mechanisms in plants against different environmental stresses. The post-genomic profiling platforms have enabled the exploration of the link between metabolic diversity and important agronomic traits. The current review focuses on the major achievements and future challenges associated with plant secondary metabolite (PSM) research in graminaceous crops using advanced omics approaches. Given this, we briefly summarize different strategies adopted to explore the genetic diversity and evolution of PSMs in cereal crops. Further, we have discussed the recent technological advancements to integrate multi-omics approaches linking the metabolome diversity with the genome, transcriptome, and proteome of these crops under stress. Combining these data with phenomics (the omics of phenotypes) provides a holistic view of how plants respond to stress. Next, we outlined the genetic manipulation studies performed so far in cereals to engineer secondary metabolic pathways for enhanced stress tolerance. In summary, our review provides new insight into developing genetic and genomic trends in exploring the secondary metabolite diversity in graminaceous crops and discusses how this information can be utilized in designing strategies to generate future stress-resilient crops.
Collapse
Affiliation(s)
- Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Muthamilarasan Mehanathan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
25
|
Hou H, Li Y, Zhou S, Zhang R, Wang Y, Lei L, Yang C, Huang S, Xu H, Liu X, Gao M, Luo J. Compositional Analysis of Grape Berries: Mapping the Global Metabolism of Grapes. Foods 2024; 13:3716. [PMID: 39682788 DOI: 10.3390/foods13233716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
To characterize the nutrients and bioactive compounds in grape berries and to explore the real cause of the "French paradox" phenomenon, we performed metabolomic analysis of 66 grape varieties worldwide using liquid chromatography-tandem mass spectrometry (LC-MS). A nontargeted metabolomics approach detected a total of 4889 metabolite signals. From these, 964 bioactive and nutrient compounds were identified and quantified, including modified flavonoids, medicinal pentacyclic triterpenoids, vitamins, amino acids, lipids, etc. Interestingly, metabolic variations between varieties are not explained by geography or subspecies but can be significantly distinguished by grapes' color, even after excluding flavonoids and anthocyanins. In our analysis, we found that purple grape varieties had the highest levels of key bioactive components such as flavonoids, pentacyclic triterpenes, and polyphenols, which are thought to have a variety of health benefits such as antioxidant, anti-inflammatory, and antitumor properties, when compared to grapes of other colors. In addition, we found higher levels of vitamins in red and pink grapes, possibly explaining their role in preventing anemia and scurvy and protecting the skin. These findings may be a major factor in the greater health benefits of wines made from purple grapes. Our study provides comprehensive metabolic profiling data of grape berries that may contribute to future research on the French paradox.
Collapse
Affiliation(s)
- Huanteng Hou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yufei Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Shen Zhou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Ran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yuanyue Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Long Lei
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Chenkun Yang
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Sishu Huang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Hang Xu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Xianqing Liu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Min Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
26
|
Naake T, D'Auria JC, Fernie AR, Scossa F. Phylogenomic and synteny analysis of BAHD and SCP/SCPL gene families reveal their evolutionary histories in plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230349. [PMID: 39343028 PMCID: PMC11449225 DOI: 10.1098/rstb.2023.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/12/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024] Open
Abstract
Plant chemical diversity is largely owing to a number of enzymes which catalyse reactions involved in the assembly, and in the subsequent chemical modifications, of the core structures of major classes of plant specialized metabolites. One such reaction is acylation. With this in mind, to study the deep evolutionary history of BAHD and the serine-carboxypeptidase-like (SCPL) acyltransferase genes, we assembled phylogenomic synteny networks based on a large-scale inference analysis of orthologues across whole-genome sequences of 126 species spanning Stramenopiles and Archaeplastida, including Arabidopsis thaliana, tomato (Solanum lycopersicum) and maize (Zea mays). As such, this study combined the study of genomic location with changes in gene sequences. Our analyses revealed that serine-carboxypeptidase (SCP)/serine-carboxypeptidase-like (SCPL) genes had a deeper evolutionary origin than BAHD genes, which expanded massively on the transition to land and with the development of the vascular system. The two gene families additionally display quite distinct patterns of copy number variation across phylogenies as well as differences in cross-phylogenetic syntenic network components. In unlocking the above observations, our analyses demonstrate the possibilities afforded by modern phylogenomic (syntenic) networks, but also highlight their current limitations, as demonstrated by the inability of phylogenetic methods to separate authentic SCPL acyltransferases from standard SCP peptide hydrolases.This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Thomas Naake
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - John C D'Auria
- Leibniz Institute of Crop Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics, Rome, Italy
| |
Collapse
|
27
|
Zhou S, Zhang R, Wang Q, Zhu J, Zhou J, Sun Y, Shen S, Luo J. OsbHLH5 Synergically Regulates Phenolamide and Diterpenoid Phytoalexins Involved in the Defense of Rice Against Pathogens. Int J Mol Sci 2024; 25:12152. [PMID: 39596224 PMCID: PMC11595221 DOI: 10.3390/ijms252212152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Rice (Oryza sativa) produces phenolamides and diterpenoids as major phytoalexins. Although the biosynthetic pathways of phenolamides and diterpenoids in plants have been revealed, knowledge of their accumulation regulatory mechanisms remains limited, and, in particular, no co-regulatory factor has been identified to date. Here, using a combined co-expression and evolutionary analysis, we identified the basic helix-loop-helix (bHLH) transcription factor OsbHLH5 as a positive bifunctional regulator of phenolamide and diterpenoid biosynthesis in rice. Metabolomic analysis revealed that OsbHLH5 significantly increased the content of phenolamides (such as feruloyl tryptamine (Fer-Trm) and p-coumaroyl tyramine (Cou-Tyr)) and diterpenoid phytoalexins (such as momilactones A, momilactones B) in the overexpression lines, while their content was reduced in the OsbHLH5 knockout lines. Gene expression and dual-luciferase assays revealed that OsbHLH5 activates phenolamide biosynthetic genes (including putrescine hydroxycinnamoyltransferase 3 (OsPHT3), tyramine hydroxycinnamoyltransferases 1/2 (OsTHT1/2), and tryptamine benzoyltransferase 2 (OsTBT2)) as well as diterpenoid biosynthetic genes (including copalyl diphosphate synthase 4 (OsCPS4) and kaurene synthase-like 4/7/10/11 (OsKSL4/7/10/11)). Furthermore, we have demonstrated that OsbHLH5 is induced by jasmonic acid (JA), while pathogen inoculation assays indicated that the overexpression of OsbHLH5 in transgenic rice plants leads to enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo). Overall, we have identified a positive regulator of phenolamide and diterpenoid biosynthesis and have demonstrated that biotic stress induces phytoalexin accumulation partly in an OsbHLH5-dependent manner, providing new insights into the metabolic interactions involved in pathogen response and offering valuable gene resources for the development, through genetic improvement, of new rice varieties that are resistant to diseases.
Collapse
Affiliation(s)
- Shen Zhou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.Z.); (R.Z.); (Q.W.); (J.Z.); (J.Z.); (Y.S.)
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Ran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.Z.); (R.Z.); (Q.W.); (J.Z.); (J.Z.); (Y.S.)
| | - Qiming Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.Z.); (R.Z.); (Q.W.); (J.Z.); (J.Z.); (Y.S.)
| | - Jinjin Zhu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.Z.); (R.Z.); (Q.W.); (J.Z.); (J.Z.); (Y.S.)
| | - Junjie Zhou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.Z.); (R.Z.); (Q.W.); (J.Z.); (J.Z.); (Y.S.)
| | - Yangyang Sun
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.Z.); (R.Z.); (Q.W.); (J.Z.); (J.Z.); (Y.S.)
| | | | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.Z.); (R.Z.); (Q.W.); (J.Z.); (J.Z.); (Y.S.)
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
28
|
Kumar R, Das SP, Choudhury BU, Kumar A, Prakash NR, Verma R, Chakraborti M, Devi AG, Bhattacharjee B, Das R, Das B, Devi HL, Das B, Rawat S, Mishra VK. Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing. Biol Res 2024; 57:80. [PMID: 39506826 PMCID: PMC11542492 DOI: 10.1186/s40659-024-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Conventional pre-genomics breeding methodologies have significantly improved crop yields since the mid-twentieth century. Genomics provides breeders with advanced tools for whole-genome study, enabling a direct genotype-phenotype analysis. This shift has led to precise and efficient crop development through genomics-based approaches, including molecular markers, genomic selection, and genome editing. Molecular markers, such as SNPs, are crucial for identifying genomic regions linked to important traits, enhancing breeding accuracy and efficiency. Genomic resources viz. genetic markers, reference genomes, sequence and protein databases, transcriptomes, and gene expression profiles, are vital in plant breeding and aid in the identification of key traits, understanding genetic diversity, assist in genomic mapping, support marker-assisted selection and speeding up breeding programs. Advanced techniques like CRISPR/Cas9 allow precise gene modification, accelerating breeding processes. Key techniques like Genome-Wide Association study (GWAS), Marker-Assisted Selection (MAS), and Genomic Selection (GS) enable precise trait selection and prediction of breeding outcomes, improving crop yield, disease resistance, and stress tolerance. These tools are handy for complex traits influenced by multiple genes and environmental factors. This paper explores new genomic technologies like molecular markers, genomic selection, and genome editing for plant breeding showcasing their impact on developing new plant varieties.
Collapse
Affiliation(s)
- Rahul Kumar
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India.
| | | | - Burhan Uddin Choudhury
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Amit Kumar
- ICAR Research Complex for NEH Region, Umiam, 793103, Meghalaya, India
| | | | - Ramlakhan Verma
- ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Ayam Gangarani Devi
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bijoya Bhattacharjee
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Rekha Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bapi Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | | | - Biswajit Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Santoshi Rawat
- Department of Food Science and Technology, College of Agriculture, G.B.P.U.A.&T., Pantnagar, India
| | | |
Collapse
|
29
|
Du Q, Yu H, Zhang Y, Qiao Q, Wang J, Zhang T, Xue L, Lei J. Uncovering fruit flavor and genetic diversity across diploid wild Fragaria species via comparative metabolomics profiling. Food Chem 2024; 456:140013. [PMID: 38878536 DOI: 10.1016/j.foodchem.2024.140013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Wild Fragaria resources exhibit extensive genetic diversity and desirable edible traits, such as high soluble solid content and flavor compounds. However, specific metabolites in different wild strawberry fruits remain unknown. In this study, we characterized 1008 metabolites covering 11 subclasses among 13 wild diploid resources representing eight species, including F. vesca, F. nilgerrensis, F. viridis, F. nubicola, F. pentaphylla, F. mandschurica, F. chinensis, and F. emeiensis. Fifteen potential metabolite biomarkers were identified to distinguish fruit flavors among the 13 diploid wild Fragaria accessions. A total of nine distinct modules were employed to explore key metabolites related to fruit quality through weighted gene co-expression module analysis, with significant enrichment in amino acid biosynthesis pathway. Notably, the identified significantly different key metabolites highlighted the close association of amino acids, sugars, and anthocyanins with flavor formation. These findings offer valuable resources for improving fruit quality through metabolome-assisted breeding.
Collapse
Affiliation(s)
- Qiuling Du
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Haoming Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Jian Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ticao Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
30
|
Zhang G, Yang Z, Zhou S, Zhu J, Liu X, Luo J. Cellulose synthase-like OsCSLD4: a key regulator of agronomic traits, disease resistance, and metabolic indices in rice. PLANT CELL REPORTS 2024; 43:264. [PMID: 39414689 DOI: 10.1007/s00299-024-03356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
KEY MESSAGE Cellulose synthase-like OsCSLD4 plays a pivotal role in regulating diverse agronomic traits, enhancing resistance against bacterial leaf blight, and modulating metabolite indices based on the multi-omics analysis in rice. To delve deeper into this complex network between agronomic traits and metabolites in rice, we have compiled a dataset encompassing genome, phenome, and metabolome, including 524 diverse accessions, 11 agronomic traits, and 841 metabolites, enabling us to pinpoint eight hotspots through GWAS. We later discovered four distinct metabolite categories, encompassing 15 metabolites that are concurrently present on the QTL qC12.1, associated with leaf angle of flag and spikelet length, and finally focused the cellulose synthase-like OsCSLD4, which was pinpointed through a rigorous process encompassing sequence variation, haplotype, ATAC, and differential expression across diverse tissues. Compared to the wild type, csld4 exhibited significant reductions in the plant height, flag leaf length, leaf width, spikelet length, 1000-grain weight, grain width, grain thickness, fertility, yield per plant, and bacterial blight resistance. However, there were significant increase in tiller numbers, degree of leaf rolling, flowering period, growth period, grain length, and empty kernel rate. Furthermore, the content of four polyphenol metabolites, excluding metabolite N-feruloyltyramine (mr1268), notably rose, whereas the levels of the other three polyphenol metabolites, smiglaside C (mr1498), 4-coumaric acid (mr1622), and smiglaside A (mr1925) decreased significantly in mutant csld4. The content of amino acid L-tyramine (mr1446) exhibited a notable increase, whereas the alkaloid trigonelline (mr1188) displayed a substantial decrease among the mutants. This study offered a comprehensive multi-omics perspective to analyze the genetic mechanism of OsCSLD4, and breeders can potentially enhance rice's yield, bacterial leaf blight resistance, and metabolite content, leading to more sustainable and profitable rice production.
Collapse
Affiliation(s)
- Guofang Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zhuang Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Shen Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Jinjin Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Xianqing Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Jie Luo
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China.
- Yazhou Bay National Laboratory, Sanya, 572025, China.
| |
Collapse
|
31
|
Feng J, Dan X, Cui Y, Gong Y, Peng M, Sang Y, Ingvarsson PK, Wang J. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. PLANT COMMUNICATIONS 2024; 5:101044. [PMID: 39095989 PMCID: PMC11573912 DOI: 10.1016/j.xplc.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Global climate change is leading to rapid and drastic shifts in environmental conditions, posing threats to biodiversity and nearly all life forms worldwide. Forest trees serve as foundational components of terrestrial ecosystems and play a crucial and leading role in combating and mitigating the adverse effects of extreme climate events, despite their own vulnerability to these threats. Therefore, understanding and monitoring how natural forests respond to rapid climate change is a key priority for biodiversity conservation. Recent progress in evolutionary genomics, driven primarily by cutting-edge multi-omics technologies, offers powerful new tools to address several key issues. These include precise delineation of species and evolutionary units, inference of past evolutionary histories and demographic fluctuations, identification of environmentally adaptive variants, and measurement of genetic load levels. As the urgency to deal with more extreme environmental stresses grows, understanding the genomics of evolutionary history, local adaptation, future responses to climate change, and conservation and restoration of natural forest trees will be critical for research at the nexus of global change, population genomics, and conservation biology. In this review, we explore the application of evolutionary genomics to assess the effects of global climate change using multi-omics approaches and discuss the outlook for breeding of climate-adapted trees.
Collapse
Affiliation(s)
- Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yangkai Cui
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Gong
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minyue Peng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Kazemzadeh S, Farrokhi N, Ahmadikhah A, Tabar Heydar K, Gilani A, Askari H, Ingvarsson PK. Genome-wide association study and genotypic variation for the major tocopherol content in rice grain. FRONTIERS IN PLANT SCIENCE 2024; 15:1426321. [PMID: 39439508 PMCID: PMC11493719 DOI: 10.3389/fpls.2024.1426321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Rice tocopherols, vitamin E compounds with antioxidant activity, play essential roles in human health. Even though the key genes involved in vitamin E biosynthetic pathways have been identified in plants, the genetic architecture of vitamin E content in rice grain remains unclear. A genome-wide association study (GWAS) on 179 genotypically diverse rice accessions with 34,323 SNP markers was conducted to detect QTLs that define total and α- tocopherol contents in rice grains. Total and α-tocopherol contents had a strong positive correlation and varied greatly across the accessions, ranging from 0.230-31.76 and 0.011-30.83 (μg/g), respectively. A total of 13 QTLs were identified, which were spread across five of the rice chromosomes. Among the 13 QTLs, 11 were considered major with phenotypic variation explained (PVE) greater than 10%. Twelve transcription factor (TF) genes, one microprotein (miP), and a transposon were found to be associated with the QTLs with putative roles in controlling tocopherol contents. Moreover, intracellular transport proteins, ABC transporters, nonaspanins, and SNARE, were identified as associated genes on chromosomes 1 and 8. In the vicinity of seven QTLs, protein kinases were identified as key signaling factors. Haplotype analysis revealed the QTLs qAlph1.1, qTot1.1, qAlph2.1, qAlph6.1, qTot6.1, and qTot8.3 to have significant haplogroups. Quantitative RT-PCR validated the expression direction and magnitude of WRKY39 (Os02g0265200), PIP5Ks (Os08g0450800), and MADS59 (Os06g0347700) in defining the major tocopherol contents. This study provides insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in rice and other cereals.
Collapse
Affiliation(s)
- Sara Kazemzadeh
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Asadollah Ahmadikhah
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Abdolali Gilani
- Agricultural and Natural Resources Research Institute of Khuzestan, Ahwaz, Iran
| | - Hossein Askari
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Pär K. Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
33
|
Jin F, Huang W, Xie P, Wu B, Zhao Q, Fang Z. Amino acid permease OsAAP12 negatively regulates rice tillers and grain yield by transporting specific amino acids to affect nitrogen and cytokinin pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112202. [PMID: 39069009 DOI: 10.1016/j.plantsci.2024.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Amino acids are necessary nutrients for the growth of Oryza sativa (rice), which can be mediated by amino acid transporter; however, our understanding of these transporters is still limited. This study found that the expression levels of amino acid permease gene OsAAP12 differed between indica and japonica rice. Altered expression of OsAAP12 negatively regulated tillering and yield in transgenic rice lines. Subcellular localization revealed that OsAAP12 was primarily localized to the plasma membrane. Moreover, it was indicated that OsAAP12 transported polar neutral amino acids asparagine (Asn), threonine (Thr), and serine (Ser) through experiments involving yeast heterologous complementation, fluorescence amino acid uptake, and amino acid content determination. Additionally, exogenous application of amino acids Asn, Thr, and Ser suppressed axillary buds outgrowth in OsAAP12 overexpression lines compared with wild-type ZH11. Conversely, the opposite trend was observed in CRISPR mutant lines. RNA-seq analysis showed that the expression patterns of genes involved in the nitrogen and cytokinin pathways were generally altered in OsAAP12 modified lines. Hormone assays indicated that OsAAP12 mutant lines accumulated cytokinins in the basal part of rice, whereas overexpression lines had the opposite effect. In summary, CRISPR mutant of OsAAP12 boosted rice tillering and grain yield by coordinating the content of amino acids and cytokinins, which has potential application value in high-yield rice breeding.
Collapse
Affiliation(s)
- Feng Jin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Pengfei Xie
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Quanzhi Zhao
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
34
|
Huang LJ, Zhang J, Lin Z, Yu P, Lu M, Li N. The AP2/ERF transcription factor ORA59 regulates ethylene-induced phytoalexin synthesis through modulation of an acyltransferase gene expression. J Cell Physiol 2024; 239:e30935. [PMID: 36538653 DOI: 10.1002/jcp.30935] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The gaseous ethylene (ET) and the oxylipin-derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of the ET/JA-mediated defense pathway in Arabidopsis thaliana. The Arabidopsis agmatine coumaroyltransferase (AtACT) catalyzes the formation of hydroxycinnamic acid amides (HCAAs) which are effective toxic antimicrobial substances known as phytoalexins and play an important role in plant defense response. However, induction and regulation of AtACT gene expression and HCAAs synthesis in plants remain less understood. Through gene coexpression network analysis, we identified a list of GCC-box cis-element containing genes that were coexpressed with ORA59 under diverse biotic stress conditions and might be potential downstream targets of this AP2/ERF-domain transcription factor. Particularly, ORA59 directly binds to AtACT gene promoter via the GCC-boxes and activates AtACT gene expression. The ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-treatment significantly induces AtACT gene expression. Both ORA59 and members of the class II TGA transcription factors are indispensable for ACC-induced AtACT expression. Interestingly, the expression of AtACT is also subject to the signaling crosstalk of the salicylic acid- and ET/JA-mediated defense response pathways. In addition, we found that genes of the phenylpropanoid metabolism pathway were specifically induced by Botrytis cinerea. Taking together, these evidence suggest that the ET/JA signaling pathway activate the expression of AtACT to increase antimicrobial HCAAs production through the transcription factor ORA59 in response to the infection of necrotrophic plant pathogens.
Collapse
Affiliation(s)
- Li-Jun Huang
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Jiayi Zhang
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Peiyao Yu
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Mengzhu Lu
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A and F University, Zhejiang, China
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Hunan, China
| |
Collapse
|
35
|
Yue Z, Wang Z, Yao Y, Liang Y, Li J, Yin K, Li R, Li Y, Ouyang Y, Xiong L, Hu H. Variation in WIDTH OF LEAF AND GRAIN contributes to grain and leaf size by controlling LARGE2 stability in rice. THE PLANT CELL 2024; 36:3201-3218. [PMID: 38701330 PMCID: PMC11371194 DOI: 10.1093/plcell/koae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Grain and flag leaf size are two important agronomic traits that influence grain yield in rice (Oryza sativa). Many quantitative trait loci (QTLs) and genes that regulate these traits individually have been identified, however, few QTLs and genes that simultaneously control these two traits have been identified. In this study, we conducted a genome-wide association analysis in rice and detected a major locus, WIDTH OF LEAF AND GRAIN (WLG), that was associated with both grain and flag leaf width. WLG encodes a RING-domain E3 ubiquitin ligase. WLGhap.B, which possesses five single nucleotide polymophysim (SNP) variations compared to WLGhap.A, encodes a protein with enhanced ubiquitination activity that confers increased rice leaf width and grain size, whereas mutation of WLG leads to narrower leaves and smaller grains. Both WLGhap.A and WLGhap.B interact with LARGE2, a HETC-type E3 ligase, however, WLGhap.B exhibits stronger interaction with LARGE2, thus higher ubiquitination activity toward LARGE2 compared with WLGhap.A. Lysine1021 is crucial for the ubiquitination of LARGE2 by WLG. Loss-of-function of LARGE2 in wlg-1 phenocopies large2-c in grain and leaf width, suggesting that WLG acts upstream of LARGE2. These findings reveal the genetic and molecular mechanism by which the WLG-LARGE2 module mediates grain and leaf size in rice and suggest the potential of WLGhap.B in improving rice yield.
Collapse
Affiliation(s)
- Zhichuang Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanlin Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaili Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
36
|
Zhang F, Yang C, Guo H, Li Y, Shen S, Zhou Q, Li C, Wang C, Zhai T, Qu L, Zhang C, Liu X, Luo J, Chen W, Wang S, Yang J, Yu C, Liu Y. Dissecting the genetic basis of UV-B responsive metabolites in rice. Genome Biol 2024; 25:234. [PMID: 39210441 PMCID: PMC11360312 DOI: 10.1186/s13059-024-03372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND UV-B, an important environmental factor, has been shown to affect the yield and quality of rice (Oryza sativa) worldwide. However, the molecular mechanisms underlying the response to UV-B stress remain elusive in rice. RESULTS We perform comprehensive metabolic profiling of leaves from 160 diverse rice accessions under UV-B and normal light conditions using a widely targeted metabolomics approach. Our results reveal substantial differences in metabolite accumulation between the two major rice subspecies indica and japonica, especially after UV-B treatment, implying the possible role and mechanism of metabolome changes in subspecies differentiation and the stress response. We next conduct a transcriptome analysis from four representative rice varieties under UV-B stress, revealing genes from amino acid and flavonoid pathways involved in the UV-B response. We further perform a metabolite-based genome-wide association study (mGWAS), which reveals 3307 distinct loci under UV-B stress. Identification and functional validation of candidate genes show that OsMYB44 regulates tryptamine accumulation to mediate UV-B tolerance, while OsUVR8 interacts with OsMYB110 to promote flavonoid accumulation and UV-B tolerance in a coordinated manner. Additionally, haplotype analysis suggests that natural variation of OsUVR8groupA contributes to UV-B resistance in rice. CONCLUSIONS Our study reveals the complex biochemical and genetic foundations that govern the metabolite dynamics underlying the response, tolerance, and adaptive strategies of rice to UV-B stress. These findings provide new insights into the biochemical and genetic basis of the metabolome underlying the crop response, tolerance, and adaptation to UV-B stress.
Collapse
Affiliation(s)
- Feng Zhang
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chenkun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Hao Guo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Yufei Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Shuangqian Shen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Chao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Ting Zhai
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cheng Zhang
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
- Yazhouwan National Laboratory, Sanya, Hainan, 572025, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
- Yazhouwan National Laboratory, Sanya, Hainan, 572025, China
| | - Jun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China.
| | - Cui Yu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China.
| | - Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China.
| |
Collapse
|
37
|
Yang C, Shen S, Zhan C, Li Y, Zhang R, Lv Y, Yang Z, Zhou J, Shi Y, Liu X, Shi J, Zhang D, Fernie AR, Luo J. Variation in a Poaceae-conserved fatty acid metabolic gene cluster controls rice yield by regulating male fertility. Nat Commun 2024; 15:6663. [PMID: 39107344 PMCID: PMC11303549 DOI: 10.1038/s41467-024-51145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
A wide variety of metabolic gene clusters exist in eukaryotic genomes, but fatty acid metabolic gene clusters have not been discovered. Here, combining with metabolic and phenotypic genome-wide association studies, we identify a major locus containing a six-gene fatty acid metabolic gene cluster on chromosome 3 (FGC3) that controls the cutin monomer hydroxymonoacylglycerols (HMGs) contents and rice yield, possibly through variation in the transcription of FGC3 members. We show that HMGs are sequentially synthesized in the endoplasmic reticulum by OsFAR2, OsKCS11, OsGPAT6, OsCYP704B2 and subsequently transported to the apoplast by OsABCG22 and OsLTPL82. Mutation of FGC3 members reduces HMGs, leading to defective male reproductive development and a significant decrease in yield. OsMADS6 and OsMADS17 directly regulate FGC3 and thus influence male reproduction and yield. FGC3 is conserved in Poaceae and likely formed prior to the divergence of Pharus latifolius. The eukaryotic fatty acid and plant primary metabolic gene cluster we identified show a significant impact on the origin and evolution of Poaceae and has potential for application in hybrid crop breeding.
Collapse
Affiliation(s)
- Chenkun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- Yazhouwan National Laboratory, Sanya, China
| | | | | | - Yufei Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- Hainan Seed Industry Laboratory, Sanya, China
| | - Ran Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | | | - Zhuang Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Junjie Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yuheng Shi
- Yazhouwan National Laboratory, Sanya, China
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci- Tech, Shanghai Jiao Tong University, Sanya, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci- Tech, Shanghai Jiao Tong University, Sanya, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China.
- Yazhouwan National Laboratory, Sanya, China.
| |
Collapse
|
38
|
Lou H, Zheng S, Chen W, Yu W, Jiang H, Farag MA, Xiao J, Wu J, Song L. Transcriptome-referenced association study provides insights into the regulation of oil and fatty acid biosynthesis in Torreya grandis kernel. J Adv Res 2024; 62:1-14. [PMID: 36639025 PMCID: PMC11331172 DOI: 10.1016/j.jare.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Torreya grandis is a gymnosperm belonging to Taxodiaceae. As an economically important tree, its kernels are edible and rich in oil with high unsaturated fatty acids, such as sciadonic acid. However, the kernels from different T. grandis landraces exhibit fatty acid and oil content variations. OBJECTIVES As a gymnosperm, does T. grandis have special regulation mechanisms for oil biosynthesis? The aim of this study was to dissect the genetic architecture of fatty acid and oil content and the underlying mechanism in T. grandis. METHODS We constructed a high integrity reference sequence of expressed regions of the genome in T. grandis and performed transcriptome-referenced association study (TRAS) for 10 fatty acid and oil traits of kernels in the 170 diverse T. grandis landraces. To confirm the TRAS result, we performed functional validation and molecular biology experiments for oil significantly associated genes. RESULTS We identified 41 SNPs from 34 transcripts significantly associated with 7 traits by TRAS (-log10 (P) greater than 6.0). Results showed that LOB domain-containing protein 40 (LBD40) and surfeit locus protein 1 (SURF1) may be indirectly involved in the regulation of oil and sciadonic acid biosynthesis, respectively. Moreover, overexpression of TgLBD40 significantly increased seed oil content. The nonsynonymous variant in the TgLBD40 coding region discovered by TRAS could alter the oil content in plants. Pearson's correlation analysis and dual-luciferase assay indicated that TgLBD40 positively enhanced oil accumulation by affecting oil biosynthesis pathway genes, such as TgDGAT1. CONCLUSION Our study provides new insights into the genetic basis of oil biosynthesis in T. grandis and demonstrates that integrating RNA sequencing and TRAS is a powerful strategy to perform association study independent of a reference genome for dissecting important traits in T. grandis.
Collapse
Affiliation(s)
- Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
39
|
Chen J, Zhang Y, Wei J, Hu X, Yin H, Liu W, Li D, Tian W, Hao Y, He Z, Fernie AR, Chen W. Beyond pathways: Accelerated flavonoids candidate identification and novel exploration of enzymatic properties using combined mapping populations of wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2033-2050. [PMID: 38408119 PMCID: PMC11182594 DOI: 10.1111/pbi.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Although forward-genetics-metabolomics methods such as mGWAS and mQTL have proven effective in providing myriad loci affecting metabolite contents, they are somehow constrained by their respective constitutional flaws such as the hidden population structure for GWAS and insufficient recombinant rate for QTL. Here, the combination of mGWAS and mQTL was performed, conveying an improved statistical power to investigate the flavonoid pathways in common wheat. A total of 941 and 289 loci were, respectively, generated from mGWAS and mQTL, within which 13 of them were co-mapped using both approaches. Subsequently, the mGWAS or mQTL outputs alone and their combination were, respectively, utilized to delineate the metabolic routes. Using this approach, we identified two MYB transcription factor encoding genes and five structural genes, and the flavonoid pathway in wheat was accordingly updated. Moreover, we have discovered some rare-activity-exhibiting flavonoid glycosyl- and methyl-transferases, which may possess unique biological significance, and harnessing these novel catalytic capabilities provides potentially new breeding directions. Collectively, we propose our survey illustrates that the forward-genetics-metabolomics approaches including multiple populations with high density markers could be more frequently applied for delineating metabolic pathways in common wheat, which will ultimately contribute to metabolomics-assisted wheat crop improvement.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Yazhouwan National LaboratorySanyaChina
| | - Yueqi Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Jiaqi Wei
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Wuhan Academy of Agricultural SciencesWuhanChina
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Wenfei Tian
- National Wheat Improvement Center, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuanfeng Hao
- National Wheat Improvement Center, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | | | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
40
|
Liu C, Gu W, Liu C, Shi X, Li B, Chen B, Zhou Y. Tryptophan regulates sorghum root growth and enhances low nitrogen tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108737. [PMID: 38763003 DOI: 10.1016/j.plaphy.2024.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Over evolutionary time, plants have developed sophisticated regulatory mechanisms to adapt to fluctuating nitrogen (N) environments, ensuring that their growth is balanced with their responses to N stress. This study explored the potential of L-tryptophan (Trp) in regulating sorghum root growth under conditions of N limitation. Here, two distinct sorghum genotypes (low-N tolerance 398B and low-N sensitive CS3541) were utilized for investigating effect of low-N stress on root morphology and conducting a comparative transcriptomics analysis. Our foundings indicated that 398B exhibited longer roots, greater root dry weights, and a higher Trp content compared to CS3541 under low-N conditions. Furthermore, transcriptome analysis revealed substantial differences in gene expression profiles related to Trp pathway and carbon (C) and N metabolism pathways between the two genotypes. Additional experiments were conducted to assess the effects of exogenous Trp treatment on the interplay between sorghum root growth and low-N tolerance. Our observations showed that Trp-treated plants developed longer root and had elevated levels of Trp and IAA under low-N conditons. Concurrently, these plants demonstrated stronger physiological activities in C and N metabolism when subjected to low-N stress. These results underscored the pivotal role of Trp on root growth and low-N stress responses by balancing IAA levels and C and N metabolism. This study not only deepens our understanding of how plants maintain growth plasticity during environmental stress but also provides valuable insights into the availability of amino acid in crops, which could be instrumental in developing strategies for promoting crop resilience to N deficiency.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Wendong Gu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Chang Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Xiaolong Shi
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bang Li
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bingru Chen
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, PR China
| | - Yufei Zhou
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China.
| |
Collapse
|
41
|
Song X, Zhu G, Su X, Yu Y, Duan Y, Wang H, Shang X, Xu H, Chen Q, Guo W. Combined genome and transcriptome analysis of elite fiber quality in Gossypium barbadense. PLANT PHYSIOLOGY 2024; 195:2158-2175. [PMID: 38513701 DOI: 10.1093/plphys/kiae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Gossypium barbadense, which is one of several species of cotton, is well known for its superior fiber quality. However, the genetic basis of its high-quality fiber remains largely unexplored. Here, we resequenced 269 G. barbadense accessions. Phylogenetic structure analysis showed that the set of accessions was clustered into 3 groups: G1 and G2 mainly included modern cultivars from Xinjiang, China, and G3 was related to widely introduced accessions in different regions worldwide. A genome-wide association study of 5 fiber quality traits across multiple field environments identified a total of 512 qtls (main-effect QTLs) and 94 qtlEs (QTL-by-environment interactions) related to fiber quality, of which 292 qtls and 57 qtlEs colocated with previous studies. We extracted the genes located in these loci and performed expression comparison, local association analysis, and introgression segment identification. The results showed that high expression of hormone-related genes during fiber development, introgressions from Gossypium hirsutum, and the recombination of domesticated elite allelic variation were 3 major contributors to improve the fiber quality of G. barbadense. In total, 839 candidate genes with encoding region variations associated with elite fiber quality were mined. We confirmed that haplotype GB_D03G0092H traced to G. hirsutum introgression, with a 1-bp deletion leading to a frameshift mutation compared with GB_D03G0092B, significantly improved fiber quality. GB_D03G0092H is localized in the plasma membrane, while GB_D03G0092B is in both the nucleus and plasma membrane. Overexpression of GB_D03G0092H in Arabidopsis (Arabidopsis thaliana) significantly improved the elongation of longitudinal cells. Our study systematically reveals the genetic basis of the superior fiber quality of G. barbadense and provides elite segments and gene resources for breeding high-quality cotton cultivars.
Collapse
Affiliation(s)
- Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiujuan Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yujia Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujia Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijiang Xu
- Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Chen Y, Huang JP, Wang YJ, Tu ML, Li J, Xu B, Peng G, Yang J, Huang SX. Identification and characterization of camptothecin tailoring enzymes in Nothapodytes tomentosa. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1158-1169. [PMID: 38517054 DOI: 10.1111/jipb.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Camptothecin is a complex monoterpenoid indole alkaloid with remarkable antitumor activity. Given that two C-10 modified camptothecin derivatives, topotecan and irinotecan, have been approved as potent anticancer agents, there is a critical need for methods to access other aromatic ring-functionalized congeners (e.g., C-9, C-10, etc.). However, contemporary methods for chemical oxidation are generally harsh and low-yielding when applied to the camptothecin scaffold, thereby limiting the development of modified derivatives. Reported herein, we have identified four tailoring enzymes responsible for C-9 modifications of camptothecin from Nothapodytes tomentosa, via metabolomic and transcriptomic analysis. These consist of a cytochrome P450 (NtCPT9H) which catalyzes the regioselective oxidation of camptothecin to 9-hydroxycamptothecin, as well as two methyltransferases (NtOMT1/2, converting 9-hydroxycamptothecin to 9-methoxycamptothecin), and a uridine diphosphate-glycosyltransferase (NtUGT5, decorating 9-hydroxycamptothecin to 9-β-D-glucosyloxycamptothecin). Importantly, the critical residues that contribute to the specific catalytic activity of NtCPT9H have been elucidated through molecular docking and mutagenesis experiments. This work provides a genetic basis for producing camptothecin derivatives through metabolic engineering. This will hasten the discovery of novel C-9 modified camptothecin derivatives, with profound implications for pharmaceutical manufacture.
Collapse
Affiliation(s)
- Yin Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yong-Jiang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Meng-Ling Tu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Junheng Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bingyan Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqing Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
43
|
Jin F, Xie P, Li Z, Wu B, Huang W, Fang Z. Blocking of amino acid transporter OsAAP7 promoted tillering and yield by determining basic and neutral amino acids accumulation in rice. BMC PLANT BIOLOGY 2024; 24:447. [PMID: 38783192 PMCID: PMC11112796 DOI: 10.1186/s12870-024-05159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Amino acids are not only the main form of N in rice, but also are vital for its growth and development. These processes are facilitated by amino acid transporters within the plant. Despite their significance, only a few AAP amino acid transporters have been reported. RESULTS In this study, we observed that there were differences in the expression of amino acid transporter OsAAP7 among 521 wild cultivated rice varieties, and it directly negatively correlated with tillering and grain yield per plant. We revealed that OsAAP7 protein was localized to the endoplasmic reticulum and had absorption and transport affinity for amino acids such as phenylalanine (Phe), lysine (Lys), leucine (Leu), and arginine (Arg) using subcellular localization, yeast substrate testing, fluorescent amino acid uptake, and amino acid content determination. Further hydroponic studies showed that exogenous application of amino acids Phe, Lys and Arg inhibited the growth of axillary buds in the overexpression lines, and promoted the elongation of axillary buds in the mutant lines. Finally, RNA-seq analysis showed that the expression patterns of genes related to nitrogen, auxin and cytokinin pathways were changed in axillary buds of OsAAP7 transgenic plants. CONCLUSIONS This study revealed the gene function of OsAAP7, and found that blocking of amino acid transporter OsAAP7 with CRISPR/Cas9 technology promoted tillering and yield by determining basic and neutral amino acids accumulation in rice.
Collapse
Affiliation(s)
- Feng Jin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Pengfei Xie
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhenghan Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
44
|
Lv S, Tang X, Jiang L, Zhang J, Sun B, Liu Q, Mao X, Yu H, Chen P, Chen W, Fan Z, Li C. OsLSC6 Regulates Leaf Sheath Color and Cold Tolerance in Rice Revealed by Metabolite Genome Wide Association Study. RICE (NEW YORK, N.Y.) 2024; 17:34. [PMID: 38739288 DOI: 10.1186/s12284-024-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Plant metabolites including anthocyanins play an important role in the growth of plants, as well as in regulating biotic and abiotic stress responses to the environment. Here we report comprehensive profiling of 3315 metabolites and a further metabolic-based genome-wide association study (mGWAS) based on 292,485 SNPs obtained from 311 rice accessions, including 160 wild and 151 cultivars. We identified hundreds of common variants affecting a large number of secondary metabolites with large effects at high throughput. Finally, we identified a novel gene namely OsLSC6 (Oryza sativa leaf sheath color 6), which encoded a UDP 3-O-glucosyltransferase and involved in the anthocyanin biosynthesis of Cyanidin-3-Galc (sd1825) responsible for leaf sheath color, and resulted in significant different accumulation of sd1825 between wild (purple) and cultivars (green). The results of knockout transgenic experiments showed that OsLSC6 regulated the biosynthesis and accumulation of sd1825, controlled the purple leaf sheath. Our further research revealed that OsLSC6 also confers resistance to cold stress during the seedling stage in rice. And we identified that a SNP in OsLSC6 was responsible for the leaf sheath color and chilling tolerance, supporting the importance of OsLSC6 in plant adaption. Our study could not only demonstrate that OsLSC6 is a vital regulator during anthocyanin biosynthesis and abiotic stress responses, but also provide a powerful complementary tool based on metabolites-to-genes analysis by mGWAS for functional gene identification andpromising candidate in future rice breeding and improvement.
Collapse
Affiliation(s)
- Shuwei Lv
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Xuan Tang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| |
Collapse
|
45
|
Zeng S, Yu L, He P, Feng H, Wang J, Zhang H, Song Y, Liu R, Li Y. Integrated transcriptome and metabolome analysis reveals the regulation of phlorizin synthesis in Lithocarpus polystachyus under nitrogen fertilization. BMC PLANT BIOLOGY 2024; 24:366. [PMID: 38711037 DOI: 10.1186/s12870-024-05090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Nitrogen (N) is essential for plant growth and development. In Lithocarpus polystachyus Rehd., a species known for its medicinal and food value, phlorizin is the major bioactive compound with pharmacological activity. Research has revealed a positive correlation between plant nitrogen (N) content and phlorizin synthesis in this species. However, no study has analyzed the effect of N fertilization on phlorizin content and elucidated the molecular mechanisms underlying phlorizin synthesis in L. polystachyus. RESULTS A comparison of the L. polystachyus plants grown without (0 mg/plant) and with N fertilization (25, 75, 125, 175, 225, and 275 mg/plant) revealed that 75 mg N/plant fertilization resulted in the greatest seedling height, ground diameter, crown width, and total phlorizin content. Subsequent analysis of the leaves using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detected 150 metabolites, including 42 flavonoids, that were differentially accumulated between the plants grown without and with 75 mg/plant N fertilization. Transcriptomic analysis of the L. polystachyus plants via RNA sequencing revealed 162 genes involved in flavonoid biosynthesis, among which 53 significantly differed between the N-treated and untreated plants. Fertilization (75 mg N/plant) specifically upregulated the expression of the genes phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), and phlorizin synthase (PGT1) but downregulated the expression of trans-cinnamate 4-monooxygenase (C4H), shikimate O-hydroxycinnamoyltransferase (HCT), and chalcone isomerase (CHI), which are related to phlorizin synthesis. Finally, an integrated analysis of the transcriptome and metabolome revealed that the increase in phlorizin after N fertilization was consistent with the upregulation of phlorizin biosynthetic genes. Quantitative real-time PCR (qRT‒PCR) was used to validate the RNA sequencing data. Thus, our results indicated that N fertilization increased phlorizin metabolism in L. polystachyus by regulating the expression levels of the PAL, PGT1, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase (C3'H), C4H, and HCT genes. CONCLUSIONS Our results demonstrated that the addition of 75 mg/plant N to L. polystachyus significantly promoted the accumulation of flavonoids, including phlorizin, and the expression of flavonoid synthesis-related genes. Under these conditions, the genes PAL, 4CL, and PGT1 were positively correlated with phlorizin accumulation, while C4H, CHI, and HCT were negatively correlated with phlorizin accumulation. Therefore, we speculate that PAL, 4CL, and PGT1 participate in the phlorizin pathway under an optimal N environment, regulating phlorizin biosynthesis. These findings provide a basis for improving plant bioactive constituents and serve as a reference for further pharmacological studies.
Collapse
Affiliation(s)
- Suping Zeng
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, 336600, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Longhua Yu
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, 336600, China
| | - Ping He
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, 336600, China
| | - Hui Feng
- Xinyu University, School of Public Health and Health, Xinyu, 338004, China
| | - Jia Wang
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, 336600, China
| | - Huacong Zhang
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, 336600, China
| | - Yunxia Song
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, 336600, China
| | - Ren Liu
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, 336600, China
| | - Yueqiao Li
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, 336600, China.
| |
Collapse
|
46
|
Long Q, Zhang C, Zhu H, Zhou Y, Liu S, Liu Y, Ma X, An W, Zhou J, Zhao J, Zhang Y, Jin C. Comparative metabolomics combined with genome sequencing provides insights into novel wolfberry-specific metabolites and their formation mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1392175. [PMID: 38736439 PMCID: PMC11082402 DOI: 10.3389/fpls.2024.1392175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Wolfberry (Lycium, of the family Solanaceae) has special nutritional benefits due to its valuable metabolites. Here, 16 wolfberry-specific metabolites were identified by comparing the metabolome of wolfberry with those of six species, including maize, rice, wheat, soybean, tomato and grape. The copy numbers of the riboflavin and phenyllactate degradation genes riboflavin kinase (RFK) and phenyllactate UDP-glycosyltransferase (UGT1) were lower in wolfberry than in other species, while the copy number of the phenyllactate synthesis gene hydroxyphenyl-pyruvate reductase (HPPR) was higher in wolfberry, suggesting that the copy number variation of these genes among species may be the main reason for the specific accumulation of riboflavin and phenyllactate in wolfberry. Moreover, the metabolome-based neighbor-joining tree revealed distinct clustering of monocots and dicots, suggesting that metabolites could reflect the evolutionary relationship among those species. Taken together, we identified 16 specific metabolites in wolfberry and provided new insight into the accumulation mechanism of species-specific metabolites at the genomic level.
Collapse
Affiliation(s)
- Qiyuan Long
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Changjian Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Hui Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Yutong Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Shuo Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Yanchen Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Xuemin Ma
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Wei An
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jun Zhou
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Jianhua Zhao
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
47
|
He L, Sui Y, Che Y, Liu L, Liu S, Wang X, Cao G. New Insights into the Genetic Basis of Lysine Accumulation in Rice Revealed by Multi-Model GWAS. Int J Mol Sci 2024; 25:4667. [PMID: 38731885 PMCID: PMC11083390 DOI: 10.3390/ijms25094667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Lysine is an essential amino acid that cannot be synthesized in humans. Rice is a global staple food for humans but has a rather low lysine content. Identification of the quantitative trait nucleotides (QTNs) and genes underlying lysine content is crucial to increase lysine accumulation. In this study, five grain and three leaf lysine content datasets and 4,630,367 single nucleotide polymorphisms (SNPs) of 387 rice accessions were used to perform a genome-wide association study (GWAS) by ten statistical models. A total of 248 and 71 common QTNs associated with grain/leaf lysine content were identified. The accuracy of genomic selection/prediction RR-BLUP models was up to 0.85, and the significant correlation between the number of favorable alleles per accession and lysine content was up to 0.71, which validated the reliability and additive effects of these QTNs. Several key genes were uncovered for fine-tuning lysine accumulation. Additionally, 20 and 30 QTN-by-environment interactions (QEIs) were detected in grains/leaves. The QEI-sf0111954416 candidate gene LOC_Os01g21380 putatively accounted for gene-by-environment interaction was identified in grains. These findings suggested the application of multi-model GWAS facilitates a better understanding of lysine accumulation in rice. The identified QTNs and genes hold the potential for lysine-rich rice with a normal phenotype.
Collapse
Affiliation(s)
- Liqiang He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yao Sui
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yanru Che
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Lihua Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuo Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaobing Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Guangping Cao
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
48
|
Deng M, Zeng Q, Liu S, Jin M, Luo H, Luo J. Combining association with linkage mapping to dissect the phenolamides metabolism of the maize kernel. FRONTIERS IN PLANT SCIENCE 2024; 15:1376405. [PMID: 38681218 PMCID: PMC11047430 DOI: 10.3389/fpls.2024.1376405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Phenolamides are important secondary metabolites in plant species. They play important roles in plant defense responses against pathogens and insect herbivores, protection against UV irradiation and floral induction and development. However, the accumulation and variation in phenolamides content in diverse maize lines and the genes responsible for their biosynthesis remain largely unknown. Here, we combined genetic mapping, protein regulatory network and bioinformatics analysis to further enhance the understanding of maize phenolamides biosynthesis. Sixteen phenolamides were identified in multiple populations, and they were all significantly correlated with one or several of 19 phenotypic traits. By linkage mapping, 58, 58, 39 and 67 QTLs, with an average of 3.9, 3.6, 3.6 and 4.2 QTLs for each trait were mapped in BBE1, BBE2, ZYE1 and ZYE2, explaining 9.47%, 10.78%, 9.51% and 11.40% phenotypic variation for each QTL on average, respectively. By GWAS, 39 and 36 significant loci were detected in two different environments, 3.3 and 2.8 loci for each trait, explaining 10.00% and 9.97% phenotypic variation for each locus on average, respectively. Totally, 58 unique candidate genes were identified, 31% of them encoding enzymes involved in amine and derivative metabolic processes. Gene Ontology term analysis of the 358 protein-protein interrelated genes revealed significant enrichment in terms relating to cellular nitrogen metabolism, amine metabolism. GRMZM2G066142, GRMZM2G066049, GRMZM2G165390 and GRMZM2G159587 were further validated involvement in phenolamides biosynthesis. Our results provide insights into the genetic basis of phenolamides biosynthesis in maize kernels, understanding phenolamides biosynthesis and its nutritional content and ability to withstand biotic and abiotic stress.
Collapse
Affiliation(s)
- Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Qingping Zeng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Songqin Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
49
|
Hu D, Zhao Y, Zhu L, Li X, Zhang J, Cui X, Li W, Hao D, Yang Z, Wu F, Dong S, Su X, Huang F, Yu D. Genetic dissection of ten photosynthesis-related traits based on InDel- and SNP-GWAS in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:96. [PMID: 38589730 DOI: 10.1007/s00122-024-04607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
KEY MESSAGE A total of 416 InDels and 112 SNPs were significantly associated with soybean photosynthesis-related traits. GmIWS1 and GmCDC48 might be related to chlorophyll fluorescence and gas-exchange parameters, respectively. Photosynthesis is one of the main factors determining crop yield. A better understanding of the genetic architecture for photosynthesis is of great significance for soybean yield improvement. Our previous studies identified 5,410,112 single nucleotide polymorphisms (SNPs) from the resequencing data of 219 natural soybean accessions. Here, we identified 634,106 insertions and deletions (InDels) from these 219 accessions and used these InDel variations to perform principal component and linkage disequilibrium analysis of this population. The genome-wide association study (GWAS) were conducted on six chlorophyll fluorescence parameters (chlorophyll content, light energy absorbed per reaction center, quantum yield for electron transport, probability that a trapped exciton moves an electron into the electron transport chain beyond primary quinone acceptor, maximum quantum yield of photosystem II primary photochemistry in the dark-adapted state, performance index on absorption basis) and four gas-exchange parameters (intercellular carbon dioxide concentration, stomatal conductance, net photosynthesis rate, transpiration rate) and revealed 416 significant InDels and 112 significant SNPs. Based on GWAS results, GmIWS1 (encoding a transcription elongation factor) and GmCDC48 (encoding a cell division cycle protein) with the highest expression in the mapping region were determined as the candidate genes responsible for chlorophyll fluorescence and gas-exchange parameters, respectively. Further identification of favorable haplotypes with higher photosynthesis, seed weight and seed yield were carried out for GmIWS1 and GmCDC48. Overall, this study revealed the natural variations and candidate genes underlying the photosynthesis-related traits based on abundant phenotypic and genetic data, providing valuable insights into the genetic mechanisms controlling photosynthesis and yield in soybean.
Collapse
Affiliation(s)
- Dezhou Hu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yajun Zhao
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixun Zhu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Li
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, School of Agriculture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xuan Cui
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenlong Li
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Derong Hao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, 226012, China
| | - Zhongyi Yang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Wu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shupeng Dong
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyue Su
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Huang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Deyue Yu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
50
|
Gou Y, Heng Y, Ding W, Xu C, Tan Q, Li Y, Fang Y, Li X, Zhou D, Zhu X, Zhang M, Ye R, Wang H, Shen R. Natural variation in OsMYB8 confers diurnal floret opening time divergence between indica and japonica subspecies. Nat Commun 2024; 15:2262. [PMID: 38480732 PMCID: PMC10937712 DOI: 10.1038/s41467-024-46579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
The inter-subspecific indica-japonica hybrid rice confer potential higher yield than the widely used indica-indica intra-subspecific hybrid rice. Nevertheless, the utilization of this strong heterosis is currently hindered by asynchronous diurnal floret opening time (DFOT) of indica and japonica parental lines. Here, we identify OsMYB8 as a key regulator of rice DFOT. OsMYB8 induces the transcription of JA-Ile synthetase OsJAR1, thereby regulating the expression of genes related to cell osmolality and cell wall remodeling in lodicules to promote floret opening. Natural variations of OsMYB8 promoter contribute to its differential expression, thus differential transcription of OsJAR1 and accumulation of JA-Ile in lodicules of indica and japonica subspecies. Furthermore, introgression of the indica haplotype of OsMYB8 into japonica effectively promotes DFOT in japonica. Our findings reveal an OsMYB8-OsJAR1 module that regulates differential DFOT in indica and japonica, and provide a strategy for breeding early DFOT japonica to facilitate breeding of indica-japonica hybrids.
Collapse
Affiliation(s)
- Yajun Gou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yueqin Heng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyan Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Canhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiushuang Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yajing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yudong Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Degui Zhou
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xinyu Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mingyue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Rongjian Ye
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430073, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|