1
|
Scull JC, Lopez-Terrada D. Cancer Predisposition Syndromes Associated with Most Common Pediatric Solid Tumors. Surg Pathol Clin 2025; 18:359-369. [PMID: 40412832 DOI: 10.1016/j.path.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
In the pediatric setting, cancer predisposition syndromes account for about 8% to 20% of all cancer diagnoses, and these numbers can be higher depending on the tumor type. In this study, we describe a selection of the most common cancer predisposition syndromes related to solid tumors in the pediatric population, which were included in the first edition of the World Health Organization Classification of Tumours: Paediatric Tumours. Certain tumors are so closely linked to a particular syndrome that their diagnosis should prompt a referral to genetics or cancer genetics providers for counseling and follow-up.
Collapse
Affiliation(s)
- Jennifer C Scull
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Dolores Lopez-Terrada
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Weijers DD, Hinić S, Kroeze E, Gorris MA, Schreibelt G, Middelkamp S, Mensenkamp AR, Bladergroen R, Verrijp K, Hoogerbrugge N, Wesseling P, van der Post RS, Loeffen JL, Gidding CE, van Kouwen MC, de Vries IJM, van Boxtel R, de Voer RM, Jongmans MC, Kuiper RP. Unraveling mutagenic processes influencing the tumor mutational patterns of individuals with constitutional mismatch repair deficiency. Nat Commun 2025; 16:4459. [PMID: 40368937 PMCID: PMC12078508 DOI: 10.1038/s41467-025-59775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
Constitutional mismatch repair deficiency (CMMRD), caused by bi-allelic germline variants in mismatch repair (MMR) genes, is associated with high cancer incidence early in life. A better understanding of mutational processes driving sequential CMMRD tumors can advance optimal treatment. Here, we describe a genomic characterization on a representative collection of CMMRD-associated tumors consisting of 41 tumors from 17 individuals. Mutational patterns in these tumors appear to be influenced by multiple factors, including the affected MMR gene and tumor type. Somatic polymerase proofreading mutations, commonly present in brain tumors, are also found in a T-cell lymphoblastic lymphoma displaying associated mutational patterns. We show prominent mutational patterns in two second primary hematological malignancies after temozolomide treatment. Furthermore, an indel signature, characterized by one-base pair cytosine insertions in cytosine homopolymers, is found in 54% of tumors. In conclusion, analysis of sequential CMMRD tumors reveals diverse mutational patterns influenced by the affected MMR gene, tumor type and treatment history.
Collapse
Affiliation(s)
- Dilys D Weijers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Snežana Hinić
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Emma Kroeze
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mark Aj Gorris
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud university medical center, Nijmegen, The Netherlands
| | - Gerty Schreibelt
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Sjors Middelkamp
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Reno Bladergroen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kiek Verrijp
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud university medical center, Nijmegen, The Netherlands
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Jan Lc Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Corrie Em Gidding
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mariëtte Ca van Kouwen
- Department of Gastroenterology and Hepatology, Radboud university medical center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolijn Cj Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Kang E, Suh JK, Kim SD. Constitutional Mismatch Repair Deficiency, the Most Aggressive Cancer Predisposition Syndrome : Clinical Presentation, Surveillance, and Management. J Korean Neurosurg Soc 2025; 68:294-304. [PMID: 40289693 PMCID: PMC12062528 DOI: 10.3340/jkns.2025.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025] Open
Abstract
Constitutional mismatch repair deficiency (CMMRD) is a rare and highly aggressive cancer predisposition syndrome caused by biallelic germline mutations in mismatch repair genes. This condition is characterized by early-onset malignancies across multiple organ systems, including central nervous system tumors, hematological cancers, and gastrointestinal malignancies. CMMRD-associated tumors exhibit hypermutation and microsatellite instability, resulting in a high tumor mutation burden and rendering these malignancies responsive to immune checkpoint inhibitors (ICIs). ICIs targeting programmed cell death protein-1 and programmed cell death ligand 1 have demonstrated remarkable efficacy, particularly in hypermutated tumors, providing durable responses and improving survival outcomes. Advances in genetic and molecular diagnostics have enhanced the ability to identify CMMRD early, allowing for the implementation of comprehensive surveillance programs and improved management strategies. A multidisciplinary and individualized approach is essential for managing CMMRD patients. This review underscores the importance of early diagnosis, surveillance, and emerging therapeutic approaches to improve outcomes and quality of life for individuals and families affected by this devastating syndrome.
Collapse
Affiliation(s)
- Eungu Kang
- Department of Pediatrics, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Jin Kyung Suh
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Dae Kim
- Department of Neurosurgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| |
Collapse
|
4
|
Stewart BL, Helber H, Bannon SA, Deuitch NT, Ferguson M, Fiala E, Hamilton KV, Malcolmson J, Pencheva B, Smith-Simmer K. Risk assessment and genetic counseling for hematologic malignancies-Practice resource of the National Society of Genetic Counselors. J Genet Couns 2025; 34:e1959. [PMID: 39189353 DOI: 10.1002/jgc4.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Hematologic malignancies (HMs) are a heterogeneous group of cancers impacting individuals of all ages that have been increasingly recognized in association with various germline predisposition syndromes. Given the myriad of malignancy subtypes, expanding differential diagnoses, and unique sample selection requirements, evaluation for hereditary predisposition to HM presents both challenges as well as exciting opportunities in the ever-evolving field of genetic counseling. This practice resource has been developed as a foundational resource for genetic counseling approaches to hereditary HMs and aims to empower genetic counselors who encounter individuals and families with HMs in their practice.
Collapse
Affiliation(s)
| | - Hannah Helber
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Hematology and Cancer Center, Texas Children's Hospital, Houston, Texas, USA
| | - Sarah A Bannon
- National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Elise Fiala
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kayla V Hamilton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Janet Malcolmson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bojana Pencheva
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelcy Smith-Simmer
- Academic Affairs, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, UW Health, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Negm L, Chung J, Nobre L, Bennett J, Fernandez NR, Nunes NM, Liu ZA, Komosa M, Aronson M, Zhang C, Stengs L, Bianchi V, Edwards M, Doherty S, Ercan AB, Cardenas MF, Macias M, Lueder MR, Ku M, Johnson M, Chang Y, Dimayacyac JR, Kraya AA, Guo Y, Naky S, Keith J, Gao AF, Munoz DG, Nguyen L, Tsang DS, Lim-Fat MJ, Das S, Shlien A, Ramaswamy V, Huang A, Malkin D, Villani A, Ertl-Wagner B, Levine A, Robinson GW, Pollock BH, Spector LG, Sei S, Dirks PB, Getz G, Nichols KE, Resnick AC, Wheeler DA, Das A, Maruvka YE, Hawkins C, Tabori U. The landscape of primary mismatch repair deficient gliomas in children, adolescents, and young adults: a multi-cohort study. Lancet Oncol 2025; 26:123-135. [PMID: 39701117 DOI: 10.1016/s1470-2045(24)00640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Gliomas are a major cause of cancer-related death among children, adolescents, and young adults (age 0-40 years). Primary mismatch repair deficiency (MMRD) is a pan-cancer mechanism with unique biology and therapeutic opportunities. We aimed to determine the extent and impact of primary MMRD in gliomas among children, adolescents, and young adults. METHODS Clinical and molecular data were collected from a population-based cohort of children, adolescents, and young adults with gliomas from Toronto (TOR-Ped, age 0-18 years, collected Jan 1, 2000, to Dec 31, 2021; and TOR-AYA, age 18-40 years, collected Jan 1, 2000, to June 30, 2019). Additional validation paediatric cohorts from St Jude Children's Research Hospital (0-18 years, 2015-21) and the Children's Brain Tumor Network (0-18 years, 1981-2021) were used. Functional genomic tools were applied with the primary aim of assessing primary MMRD prevalence among glioma subgroups and germline impact. To evaluate the effect of primary MMRD on therapy and overall survival, Kaplan-Meier estimates were used on an additional cohort of patients with primary MMRD gliomas treated with immunotherapy. FINDINGS 1389 gliomas were included in the study. The prevalence of primary MMRD ranged between 3·7% and 12·4% in high-grade gliomas (overall 30 of 483; 6·2%, 95% CI 4·2-8·7) and less than 1% in low-grade gliomas (four of 899; 0·4%, 0·1-1·1; p<0·0001 by χ2 test). Specific molecular analysis for all gliomas showed that primary MMRD was absent among oligodendrogliomas (none of 67) and uncommon in BRAFV600E gliomas (one of 110) and histone mutant-driven gliomas (one of 150). In the paediatric age group (<18 years), primary MMRD was common in IDHWT and H3WT gliomas harbouring pathogenic TP53 variants (21 of 61; 34·4%, 22·7-47·7) and in malignant IDHmut gliomas (five of eight; 62·5%, 24·5-91·5). Germline aetiology accounted for 33 (94·3%) of 35 primary MMRD gliomas, including children, adolescents, and young adults with previously unrecognised Lynch syndrome. Survival was poor for patients with primary MMRD gliomas. Particularly poor survival was observed for those with IDHmut astrocytomas with primary MMRD when compared with those with mismatch repair-proficient gliomas (HR 12·6, 95% CI 2·8-57·5; p=0·0011 by multivariable Cox regression). Immune checkpoint blockade was associated with improved survival for patients with primary MMRD gliomas compared with conventional chemoradiotherapy regimens (HR 0·4, 0·3-0·7; p=0·0017 by multivariable Cox regression), regardless of age or germline status. INTERPRETATION Primary MMRD is more common than previously reported in gliomas in children, adolescents, and young adults, is enriched in specific molecular subgroups, and is associated with poor outcomes. Accurate detection, genetic testing, early diagnosis through surveillance, and implementation of immunotherapy might improve survival for these patients. FUNDING The Canadian Institutes for Health Research, Stand Up to Cancer-Bristol Myers Squibb Catalyst, US National Institutes of Health, Canadian Cancer Society, Brain Canada, The V Foundation for Cancer Research, BioCanRx, Canada's Immunotherapy Network, Harry and Agnieszka Hall, Meagan's Hug, BRAINchild Canada, and the LivWise Foundation.
Collapse
Affiliation(s)
- Logine Negm
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiil Chung
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Liana Nobre
- Department of Pediatric Hematology-Oncology, Stollery Children Hospital, University of Alberta, Edmonton, AB, Canada
| | - Julie Bennett
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nicholas R Fernandez
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nuno Miguel Nunes
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Martin Komosa
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Sinai Health System, Toronto, ON, Canada
| | - Cindy Zhang
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lucie Stengs
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vanessa Bianchi
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Melissa Edwards
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sheradan Doherty
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ayse Bahar Ercan
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | - Matthew R Lueder
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michelle Ku
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Monique Johnson
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yuan Chang
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jose Rafael Dimayacyac
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam A Kraya
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stav Naky
- Faculty of Biotechnology and Food Engineering, TECHNION-Israel Institute of Technology, Haifa, Israel
| | - Julia Keith
- Department of Laboratory Medicine & Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrew F Gao
- Department of Laboratory Medicine & Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David G Munoz
- Department of Laboratory Medicine & Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lananh Nguyen
- Department of Laboratory Medicine & Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Derek S Tsang
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Mary Jane Lim-Fat
- Neuro-oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, St Michael's Hospital, Toronto, ON, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vijay Ramaswamy
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - David Malkin
- Division of Haematology & Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anita Villani
- Division of Haematology & Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Birgit Ertl-Wagner
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adrian Levine
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Brad H Pollock
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Logan G Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter B Dirks
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kim E Nichols
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Anirban Das
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yosef E Maruvka
- Faculty of Biotechnology and Food Engineering, TECHNION-Israel Institute of Technology, Haifa, Israel
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Uri Tabori
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
6
|
Colas C, Guerrini-Rousseau L, Suerink M, Gallon R, Kratz CP, Ayuso É, Brugières L, Wimmer K. ERN GENTURIS guidelines on constitutional mismatch repair deficiency diagnosis, genetic counselling, surveillance, quality of life, and clinical management. Eur J Hum Genet 2024; 32:1526-1541. [PMID: 39420201 PMCID: PMC11607302 DOI: 10.1038/s41431-024-01708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Constitutional mismatch repair deficiency (CMMRD), first described 25 years ago, confers an extremely high and lifelong cancer risk, including haematologic, brain, and gastrointestinal tract malignancies, and is associated with several non-neoplastic features. Our understanding of this condition has improved and novel assays to assist CMMRD diagnosis have been developed. Surveillance protocols need adjustment taking into account recent observational prospective studies assessing their effectiveness. Response to immune checkpoint inhibitors and the effectiveness and toxicity of other treatments have been described. An update and merging of the different guidelines on diagnosis and clinical management of CMMRD into one comprehensive guideline was needed. Seventy-two expert members of the European Reference Network GENTURIS and/or the European care for CMMRD consortium and one patient representative developed recommendations for CMMRD diagnosis, genetic counselling, surveillance, quality of life, and clinical management based on a systematic literature search and comprehensive literature review and a modified Delphi process. Recommendations for the diagnosis of CMMRD provide testing criteria, propose strategies for CMMRD testing, and define CMMRD diagnostic criteria. Recommendations for surveillance cover each CMMRD-associated tumour type and contain information on starting age, frequency, and surveillance modality. Recommendations for clinical management cover cancer treatment, management of benign tumours or non-neoplastic features, and chemoprevention. Recommendations also address genetic counselling and quality of life. Based on existing guidelines and currently available data, we present 82 recommendations to improve and standardise the care of CMMRD patients in Europe. These recommendations are not meant to be prescriptive and may be adjusted based on individual decisions.
Collapse
Affiliation(s)
| | | | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Richard Gallon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | | | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Guerrini-Rousseau L, Gallon R, Pineda M, Brugières L, Baert-Desurmont S, Corsini C, Dangouloff-Ros V, Gorris MAJ, Haberler C, Hoarau P, Jongmans MC, Kloor M, Loeffen J, Rigaud C, Robbe J, Vibert R, Weijers D, Wimmer K, Colas C. Report of the sixth meeting of the European Consortium 'Care for CMMRD' (C 4CMMRD), Paris, France, November 16th 2022. Fam Cancer 2024; 23:447-457. [PMID: 39031223 PMCID: PMC11512820 DOI: 10.1007/s10689-024-00403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/22/2024]
Abstract
Biallelic germline pathogenic variants in one of the four mismatch repair genes (MSH2, MSH6, MLH1 and PMS2) cause a very rare, highly penetrant, childhood-onset cancer syndrome, called constitutional mismatch repair deficiency (CMMRD). The European consortium "Care for CMMRD" (C4CMMRD) was founded in Paris in 2013 to facilitate international collaboration and improve our knowledge of this rare cancer predisposition syndrome. Following initial publications on diagnostic criteria and surveillance guidelines for CMMRD, several partners collaborating within the C4CMMRD consortium have worked on and published numerous CMMRD-related clinical and biological projects. Since its formation, the C4CMMRD consortium held meetings every 1-2 years (except in 2020 and 2021 due to the Covid 19 pandemic). The sixth C4CMMRD meeting was held in Paris in November 2022, and brought together 42 participants from nine countries involved in various fields of CMMRD healthcare. The aim was to update members on the latest results and developments from ongoing research, and to discuss and initiate new study proposals. As previously done for the fifth meeting of the C4CMMRD group, this report summarizes data presented at this meeting.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- Molecular Predictors and New Targets in Oncology, INSERM U981, Gustave Roussy, Université Paris-Saclay, 114 Rue Edouard Vaillant, 94805, Villejuif, France.
| | - Richard Gallon
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology-IDIBELL, Barcelona, Spain
| | - Laurence Brugières
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | | | - Carole Corsini
- Medical Genetics Department, Centre Hospitalier Regional Universitaire de Montpellier, Montpellier, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, Hôpital Necker Enfants Malades, AP-HP, Paris, France
- UMR 1163, Institut Imagine and INSERM U1299, Université Paris Cité, Paris, France
| | - Mark A J Gorris
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Pauline Hoarau
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Marjolijn C Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, and Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Jan Loeffen
- Division of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Charlotte Rigaud
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Julie Robbe
- Department of Genetics, Institut Curie, PSL University, Paris, France
| | - Roseline Vibert
- Department of Genetics, Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Dilys Weijers
- Division of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Chrystelle Colas
- Department of Genetics, Institut Curie, PSL University, Paris, France
| |
Collapse
|
8
|
Tomkova M, McClellan MJ, Crevel G, Shahid AM, Mozumdar N, Tomek J, Shepherd E, Cotterill S, Schuster-Böckler B, Kriaucionis S. Human DNA polymerase ε is a source of C>T mutations at CpG dinucleotides. Nat Genet 2024; 56:2506-2516. [PMID: 39390083 PMCID: PMC11549043 DOI: 10.1038/s41588-024-01945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
C-to-T transitions in CpG dinucleotides are the most prevalent mutations in human cancers and genetic diseases. These mutations have been attributed to deamination of 5-methylcytosine (5mC), an epigenetic modification found on CpGs. We recently linked CpG>TpG mutations to replication and hypothesized that errors introduced by polymerase ε (Pol ε) may represent an alternative source of mutations. Here we present a new method called polymerase error rate sequencing (PER-seq) to measure the error spectrum of DNA polymerases in isolation. We find that the most common human cancer-associated Pol ε mutant (P286R) produces an excess of CpG>TpG errors, phenocopying the mutation spectrum of tumors carrying this mutation and deficiencies in mismatch repair. Notably, we also discover that wild-type Pol ε has a sevenfold higher error rate when replicating 5mCpG compared to C in other contexts. Together, our results from PER-seq and human cancers demonstrate that replication errors are a major contributor to CpG>TpG mutagenesis in replicating cells, fundamentally changing our understanding of this important disease-causing mutational mechanism.
Collapse
Affiliation(s)
- Marketa Tomkova
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK.
| | | | - Gilles Crevel
- Molecular and Cellular Sciences, St George's University London, London, UK
| | | | - Nandini Mozumdar
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Jakub Tomek
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Emelie Shepherd
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Sue Cotterill
- Molecular and Cellular Sciences, St George's University London, London, UK
| | | | | |
Collapse
|
9
|
Shilkin ES, Petrova DV, Novikova AA, Boldinova EO, Zharkov DO, Makarova AV. Methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases. DNA Repair (Amst) 2024; 141:103712. [PMID: 38959714 DOI: 10.1016/j.dnarep.2024.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
Epigenetic cytosine methylation covers most of genomic CpG dinucleotides in human cells. In addition to common deamination-mediated mutagenesis at CpG sites, an alternative deamination-independent pathway associated with DNA polymerase activity was previously described. This mutagenesis is characterized by the TCG→TTG mutational signature and is believed to arise from dAMP misincorporation opposite 5-methylcytosine (mC) or its oxidized derivative 5-hydroxymethylcytosine (hmC) by B-family replicative DNA polymerases with disrupted proofreading 3→5'-exonuclease activity. In addition to being less stable and pro-mutagenic themselves, cytosine modifications also increase the risk of adjacent nucleotides damage, including the formation of 8-oxo-2'-deoxyguanosine (8-oxoG), a well-known mutagenic lesion. The effect of cytosine methylation on error-prone DNA polymerases lacking proofreading activity and involved in repair and DNA translesion synthesis remains unexplored. Here we analyze the efficiency and fidelity of translesion Y-family polymerases (Pol κ, Pol η, Pol ι and REV1) and primase-polymerase PrimPol opposite mC and hmC as well as opposite 8-oxoG adjacent to mC in the TCG context. We demonstrate that epigenetic cytosine modifications suppress Pol ι and REV1 activities and lead to increasing dAMP misincorporation by PrimPol, Pol κ and Pol ι in vitro. Cytosine methylation also increases misincorporation of dAMP opposite the adjacent 8-oxoG by PrimPol, decreases the TLS activity of Pol η opposite the lesion but increases dCMP incorporation opposite 8-oxoG by REV1. Altogether, these data suggest that methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases.
Collapse
Affiliation(s)
- Evgeniy S Shilkin
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria V Petrova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 63009, Russia
| | - Anna A Novikova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | - Elizaveta O Boldinova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 63009, Russia.
| | - Alena V Makarova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
10
|
Sun X, Jia Q, Li K, Tian C, Yi L, Yan L, Zheng J, Jia X, Gu M. Comparative genomic landscape of lower-grade glioma and glioblastoma. PLoS One 2024; 19:e0309536. [PMID: 39208202 PMCID: PMC11361568 DOI: 10.1371/journal.pone.0309536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Biomarkers for classifying and grading gliomas have been extensively explored, whereas populations in public databases were mostly Western/European. Based on public databases cannot accurately represent Chinese population. To identify molecular characteristics associated with clinical outcomes of lower-grade glioma (LGG) and glioblastoma (GBM) in the Chinese population, we performed whole-exome sequencing (WES) in 16 LGG and 35 GBM tumor tissues. TP53 (36/51), TERT (31/51), ATRX (16/51), EFGLAM (14/51), and IDH1 (13/51) were the most common genes harboring mutations. IDH1 mutation (c.G395A; p.R132H) was significantly enriched in LGG, whereas PCDHGA10 mutation (c.A265G; p.I89V) in GBM. IDH1-wildtype and PCDHGA10 mutation were significantly related to poor prognosis. IDH1 is an important biomarker in gliomas, whereas PCDHGA10 mutation has not been reported to correlate with gliomas. Different copy number variations (CNVs) and oncogenic signaling pathways were identified between LGG and GBM. Differential genomic landscapes between LGG and GBM were revealed in the Chinese population, and PCDHGA10, for the first time, was identified as the prognostic factor of gliomas. Our results might provide a basis for molecular classification and identification of diagnostic biomarkers and even potential therapeutic targets for gliomas.
Collapse
Affiliation(s)
- Xinxin Sun
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Qingbin Jia
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Kun Li
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Conghui Tian
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Lili Yi
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Lili Yan
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| |
Collapse
|
11
|
Kapsetaki SE, Compton ZT, Mellon W, Vincze O, Giraudeau M, Harrison TM, Abegglen LM, Boddy AM, Maley CC, Schiffman JD. Germline mutation rate predicts cancer mortality across 37 vertebrate species. Evol Med Public Health 2024; 12:122-128. [PMID: 39233763 PMCID: PMC11372239 DOI: 10.1093/emph/eoae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Background and objectives Cancer develops across nearly every species. However, cancer occurs at unexpected and widely different rates throughout the animal kingdom. The reason for this variation in cancer susceptibility remains an area of intense investigation. Cancer evolves in part through the accumulation of mutations, and therefore, we hypothesized that germline mutation rates would be associated with cancer prevalence and mortality across species. Methodology We collected previously published data on germline mutation rate and cancer mortality data for 37 vertebrate species. Results Germline mutation rate was positively correlated with cancer mortality (P-value = 0.0008; R2 = 0.13). Controlling for species' average parental age, maximum longevity, adult body mass or domestication did not improve the model fit (the change (Δ) in Akaike Information Criterion (AIC) was less than 2). However, this model fit was better than a model controlling for species trophic level (ΔAIC > 2). Conclusions and implications The increased death rate from cancer in animals with increased germline mutation rates may suggest underlying hereditary cancer predisposition syndromes similar to those diagnosed in human patients. Species with higher germline mutation rates may benefit from close monitoring for tumors due to increased genetic risk for cancer development. Early diagnoses of cancer in these species may increase their chances of overall survival, especially for threatened and endangered species.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, USA
| | - Zachary T Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
- University of Arizona College of Medicine, Tucson, AZ, USA
| | - Walker Mellon
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
| | - Orsolya Vincze
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Institute of Aquatic Ecology, Centre for Ecological Research, Debrecen, Hungary
| | - Mathieu Giraudeau
- Littoral Environnement Et Sociétés (LIENSs), UMR7266, CNRS Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex, France
| | - Tara M Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC 27607, USA
| | - Lisa M Abegglen
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC 27607, USA
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Amy M Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC 27607, USA
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Joshua D Schiffman
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| |
Collapse
|
12
|
Das A, MacFarland SP, Meade J, Hansford JR, Schneider KW, Kuiper RP, Jongmans MCJ, Lesmana H, Schultz KAP, Nichols KE, Durno C, Zelley K, Porter CC, States LJ, Ben-Shachar S, Savage SA, Kalish JM, Walsh MF, Scott HS, Plon SE, Tabori U. Clinical Updates and Surveillance Recommendations for DNA Replication Repair Deficiency Syndromes in Children and Young Adults. Clin Cancer Res 2024; 30:3378-3387. [PMID: 38860976 DOI: 10.1158/1078-0432.ccr-23-3994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024]
Abstract
Replication repair deficiency (RRD) is a pan-cancer mechanism characterized by abnormalities in the DNA mismatch repair (MMR) system due to pathogenic variants in the PMS2, MSH6, MSH2, or MLH1 genes, and/or in the polymerase-proofreading genes POLE and POLD1. RRD predisposition syndromes (constitutional MMR deficiency, Lynch, and polymerase proofreading-associated polyposis) share overlapping phenotypic and biological characteristics. Moreover, cancers stemming from germline defects of one mechanism can acquire somatic defects in another, leading to complete RRD. Here we describe the recent advances in the diagnostics, surveillance, and clinical management for children with RRD syndromes. For patients with constitutional MMR deficiency, new data combining clinical insights and cancer genomics have revealed genotype-phenotype associations and helped in the development of novel functional assays, diagnostic guidelines, and surveillance recommendations. Recognition of non-gastrointestinal/genitourinary malignancies, particularly aggressive brain tumors, in select children with Lynch and polymerase proofreading-associated polyposis syndromes harboring an RRD biology have led to new management considerations. Additionally, universal hypermutation and microsatellite instability have allowed immunotherapy to be a paradigm shift in the treatment of RRD cancers independent of their germline etiology. These advances have also stimulated a need for expert recommendations about genetic counseling for these patients and their families. Future collaborative work will focus on newer technologies such as quantitative measurement of circulating tumor DNA and functional genomics to tailor surveillance and clinical care, improving immune surveillance; develop prevention strategies; and deliver these novel discoveries to resource-limited settings to maximize benefits for patients globally.
Collapse
Affiliation(s)
- Anirban Das
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Suzanne P MacFarland
- Division of Oncology, Cancer Predisposition Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Julia Meade
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jordan R Hansford
- Michael Rice Centre for Hematology and Oncology, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Kami W Schneider
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Harry Lesmana
- Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, Ohio
| | - Kris Ann P Schultz
- Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Carol Durno
- Division of Gastroenterology and Hepatology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Zane Cohen Center, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kristin Zelley
- Hereditary Cancer Predisposition Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Lisa J States
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shay Ben-Shachar
- Clalit Research Institute, Ramat-Gan, Tel Aviv University, Tel-Aviv, Israel
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael F Walsh
- Divisions of Solid Tumor and Clinical Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hamish S Scott
- Center for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Sharon E Plon
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Uri Tabori
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Singer L, Singer J, Horbinski C, Penas-Prado M, Lukas RV. Immunotherapy for Solitary Fibrous Tumor (Hemangiopericytoma): A Unique Treatment Approach for a Rare Central Nervous System Tumor. Neurologist 2024; 29:250-253. [PMID: 38797934 DOI: 10.1097/nrl.0000000000000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Solitary fibrous tumors (SFTs) of the central nervous system represent a unique entity with limited data on best treatment practices. CASE REPORT Here, we present a case of multiply recurrent central nervous system SFT treated with radiation and immunotherapy. Immunotherapy was chosen based on mutations of genes encoding DNA repair enzymes detected through next-generation sequencing of the tumor, DNA polymerase epsilon catalytic subunit ( POLE ) and mutL homolog 1. The use of radiation and immunotherapy led to slight shrinkage and no recurrence of the tumor for over 2 years. CONCLUSION The presence of somatic DNA repair enzyme gene mutations in SFT may suggest a benefit from a combination of radiotherapy and immunotherapy. This may serve as a biomarker for guiding management in patients with this rare tumor.
Collapse
Affiliation(s)
- Lauren Singer
- Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center
- Department of Neurology at Northwestern University, Chicago, IL
| | - Jorie Singer
- Tulane University School of Medicine, New Orleans, LA
| | - Craig Horbinski
- Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center
- Department of Neurological Surgery at Northwestern University, Chicago, IL
- Department of Pathology, at The Feinberg School of Medicine/Northwestern University, Chicago, IL
| | | | - Rimas V Lukas
- Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center
- Department of Neurology at Northwestern University, Chicago, IL
| |
Collapse
|
14
|
Slack JC, Church AJ. Molecular Alterations in Pediatric Solid Tumors. Clin Lab Med 2024; 44:277-304. [PMID: 38821645 DOI: 10.1016/j.cll.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Pediatric tumors can be divided into hematologic malignancies, central nervous system tumors, and extracranial solid tumors of bone, soft tissue, or other organ systems. Molecular alterations that impact diagnosis, prognosis, treatment, and familial cancer risk have been described in many pediatric solid tumors. In addition to providing a concise summary of clinically relevant molecular alterations in extracranial pediatric solid tumors, this review discusses conventional and next-generation sequencing-based molecular techniques, relevant tumor predisposition syndromes, and the increasing integration of molecular data into the practice of diagnostic pathology for children with solid tumors.
Collapse
Affiliation(s)
- Jonathan C Slack
- Pathology & Laboratory Medicine Institute (Robert J. Tomsich), Cleveland Clinic, Cleveland, OH, USA
| | - Alanna J Church
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Chen X, Yang W, Roberts CWM, Zhang J. Developmental origins shape the paediatric cancer genome. Nat Rev Cancer 2024; 24:382-398. [PMID: 38698126 PMCID: PMC11571274 DOI: 10.1038/s41568-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
In the past two decades, technological advances have brought unprecedented insights into the paediatric cancer genome revealing characteristics distinct from those of adult cancer. Originating from developing tissues, paediatric cancers generally have low mutation burden and are driven by variants that disrupt the transcriptional activity, chromatin state, non-coding cis-regulatory regions and other biological functions. Within each tumour, there are multiple populations of cells with varying states, and the lineages of some can be tracked to their fetal origins. Genome-wide genetic screening has identified vulnerabilities associated with both the cell of origin and transcription deregulation in paediatric cancer, which have become a valuable resource for designing new therapeutic approaches including those for small molecules, immunotherapy and targeted protein degradation. In this Review, we present recent findings on these facets of paediatric cancer from a pan-cancer perspective and provide an outlook on future investigations.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
16
|
Liu MH, Costa BM, Bianchini EC, Choi U, Bandler RC, Lassen E, Grońska-Pęski M, Schwing A, Murphy ZR, Rosenkjær D, Picciotto S, Bianchi V, Stengs L, Edwards M, Nunes NM, Loh CA, Truong TK, Brand RE, Pastinen T, Wagner JR, Skytte AB, Tabori U, Shoag JE, Evrony GD. DNA mismatch and damage patterns revealed by single-molecule sequencing. Nature 2024; 630:752-761. [PMID: 38867045 PMCID: PMC11216816 DOI: 10.1038/s41586-024-07532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.
Collapse
Affiliation(s)
- Mei Hong Liu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin M Costa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilia C Bianchini
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Una Choi
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Rachel C Bandler
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilie Lassen
- Cryos International Sperm and Egg Bank, Aarhus, Denmark
| | - Marta Grońska-Pęski
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Adam Schwing
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Zachary R Murphy
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Shany Picciotto
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vanessa Bianchi
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucie Stengs
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nuno Miguel Nunes
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Caitlin A Loh
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Tina K Truong
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Uri Tabori
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gilad D Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Galant N, Krawczyk P, Monist M, Obara A, Gajek Ł, Grenda A, Nicoś M, Kalinka E, Milanowski J. Molecular Classification of Endometrial Cancer and Its Impact on Therapy Selection. Int J Mol Sci 2024; 25:5893. [PMID: 38892080 PMCID: PMC11172295 DOI: 10.3390/ijms25115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Endometrial cancer (EC) accounts for 90% of uterine cancer cases. It is considered not only one of the most common gynecological malignancies but also one of the most frequent cancers among women overall. Nowadays, the differentiation of EC subtypes is based on immunohistochemistry and molecular techniques. It is considered that patients' prognosis and the implementation of the appropriate treatment depend on the cancer subtype. Patients with pathogenic variants in POLE have the most favorable outcome, while those with abnormal p53 protein have the poorest. Therefore, in patients with POLE mutation, the de-escalation of postoperative treatment may be considered, and patients with abnormal p53 protein should be subjected to intensive adjuvant therapy. Patients with a DNA mismatch repair (dMMR) deficiency are classified in the intermediate prognosis group as EC patients without a specific molecular profile. Immunotherapy has been recognized as an effective treatment method in patients with advanced or recurrent EC with a mismatch deficiency. Thus, different adjuvant therapy approaches, including targeted therapy and immunotherapy, are being proposed depending on the EC subtype, and international guidelines, such as those published by ESMO and ESGO/ESTRO/ESP, include recommendations for performing the molecular classification of all EC cases. The decision about adjuvant therapy selection has to be based not only on clinical data and histological type and stage of cancer, but, following international recommendations, has to include EC molecular subtyping. This review describes how molecular classification could support more optimal therapeutic management in endometrial cancer patients.
Collapse
Affiliation(s)
- Natalia Galant
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (N.G.); (P.K.); (M.N.); (J.M.)
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (N.G.); (P.K.); (M.N.); (J.M.)
| | - Marta Monist
- II Department of Gynecology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Adrian Obara
- Institute of Genetics and Immunology GENIM LCC, 20-609 Lublin, Poland; (A.O.); (Ł.G.)
| | - Łukasz Gajek
- Institute of Genetics and Immunology GENIM LCC, 20-609 Lublin, Poland; (A.O.); (Ł.G.)
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (N.G.); (P.K.); (M.N.); (J.M.)
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (N.G.); (P.K.); (M.N.); (J.M.)
| | - Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Łódź, Poland;
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (N.G.); (P.K.); (M.N.); (J.M.)
| |
Collapse
|
18
|
Gallon R, Brekelmans C, Martin M, Bours V, Schamschula E, Amberger A, Muleris M, Colas C, Dekervel J, De Hertogh G, Coupier J, Colleye O, Sepulchre E, Burn J, Brems H, Legius E, Wimmer K. Constitutional mismatch repair deficiency mimicking Lynch syndrome is associated with hypomorphic mismatch repair gene variants. NPJ Precis Oncol 2024; 8:119. [PMID: 38789506 PMCID: PMC11126593 DOI: 10.1038/s41698-024-00603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Lynch syndrome (LS) and constitutional mismatch repair deficiency (CMMRD) are distinct cancer syndromes caused, respectively, by mono- and bi-allelic germline mismatch repair (MMR) variants. LS predisposes to mainly gastrointestinal and genitourinary cancers in adulthood. CMMRD predisposes to brain, haematological, and LS-spectrum cancers from childhood. Two suspected LS patients with first cancer diagnosis aged 27 or 38 years were found to be homozygous for an MMR (likely) pathogenic variant, MSH6 c.3226C>T (p.(Arg1076Cys)), or variant of uncertain significance (VUS), MLH1 c.306G>A (p.(Glu102=)). MLH1 c.306G>A was shown to cause leaky exon 3 skipping. The apparent genotype-phenotype conflict was resolved by detection of constitutional microsatellite instability in both patients, a hallmark feature of CMMRD. A hypomorphic effect of these and other variants found in additional late onset CMMRD cases, identified by literature review, likely explains a LS-like phenotype. CMMRD testing in carriers of compound heterozygous or homozygous MMR VUS may find similar cases and novel hypomorphic variants. Individualised management of mono- and bi-allelic carriers of hypomorphic MMR variants is needed until we better characterise the associated phenotypes.
Collapse
Affiliation(s)
- Richard Gallon
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | - Esther Schamschula
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Albert Amberger
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Martine Muleris
- Département de Génétique, AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
- Inserm UMRS_938, Sorbonne Université, Centre de Recherche Saint Antoine, Paris, France
| | - Chrystelle Colas
- Département de Génétique, Institut Curie, Paris, France
- INSERM U830, Université de Paris, Paris, France
| | - Jeroen Dekervel
- Department of Digestive Oncology, University Hospital Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | | | | | | | - John Burn
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hilde Brems
- Centre for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Eric Legius
- Centre for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
19
|
Ercan AB, Aronson M, Fernandez NR, Chang Y, Levine A, Liu ZA, Negm L, Edwards M, Bianchi V, Stengs L, Chung J, Al-Battashi A, Reschke A, Lion A, Ahmad A, Lassaletta A, Reddy AT, Al-Darraji AF, Shah AC, Van Damme A, Bendel A, Rashid A, Margol AS, Kelly BL, Pencheva B, Heald B, Lemieux-Anglin B, Crooks B, Koschmann C, Gilpin C, Porter CC, Gass D, Samuel D, Ziegler DS, Blumenthal DT, Kuo DJ, Hamideh D, Basel D, Khuong-Quang DA, Stearns D, Opocher E, Carceller F, Baris Feldman H, Toledano H, Winer I, Scheers I, Fedorakova I, Su JM, Vengoechea J, Sterba J, Knipstein J, Hansford JR, Gonzales-Santos JR, Bhatia K, Bielamowicz KJ, Minhas K, Nichols KE, Cole KA, Penney L, Hjort MA, Sabel M, Gil-da-Costa MJ, Murray MJ, Miller M, Blundell ML, Massimino M, Al-Hussaini M, Al-Jadiry MF, Comito MA, Osborn M, Link MP, Zapotocky M, Ghalibafian M, Shaheen N, Mushtaq N, Waespe N, Hijiya N, Fuentes-Bolanos N, Ahmad O, Chamdine O, Roy P, Pichurin PN, Nyman P, Pearlman R, Auer RC, Sukumaran RK, Kebudi R, Dvir R, Raphael R, Elhasid R, McGee RB, Chami R, Noss R, Tanaka R, Raskin S, Sen S, Lindhorst S, Perreault S, Caspi S, Riaz S, et alErcan AB, Aronson M, Fernandez NR, Chang Y, Levine A, Liu ZA, Negm L, Edwards M, Bianchi V, Stengs L, Chung J, Al-Battashi A, Reschke A, Lion A, Ahmad A, Lassaletta A, Reddy AT, Al-Darraji AF, Shah AC, Van Damme A, Bendel A, Rashid A, Margol AS, Kelly BL, Pencheva B, Heald B, Lemieux-Anglin B, Crooks B, Koschmann C, Gilpin C, Porter CC, Gass D, Samuel D, Ziegler DS, Blumenthal DT, Kuo DJ, Hamideh D, Basel D, Khuong-Quang DA, Stearns D, Opocher E, Carceller F, Baris Feldman H, Toledano H, Winer I, Scheers I, Fedorakova I, Su JM, Vengoechea J, Sterba J, Knipstein J, Hansford JR, Gonzales-Santos JR, Bhatia K, Bielamowicz KJ, Minhas K, Nichols KE, Cole KA, Penney L, Hjort MA, Sabel M, Gil-da-Costa MJ, Murray MJ, Miller M, Blundell ML, Massimino M, Al-Hussaini M, Al-Jadiry MF, Comito MA, Osborn M, Link MP, Zapotocky M, Ghalibafian M, Shaheen N, Mushtaq N, Waespe N, Hijiya N, Fuentes-Bolanos N, Ahmad O, Chamdine O, Roy P, Pichurin PN, Nyman P, Pearlman R, Auer RC, Sukumaran RK, Kebudi R, Dvir R, Raphael R, Elhasid R, McGee RB, Chami R, Noss R, Tanaka R, Raskin S, Sen S, Lindhorst S, Perreault S, Caspi S, Riaz S, Constantini S, Albert S, Chaleff S, Bielack S, Chiaravalli S, Cramer SL, Roy S, Cahn S, Penna S, Hamid SA, Ghafoor T, Imam U, Larouche V, Magimairajan Issai V, Foulkes WD, Lee YY, Nathan PC, Maruvka YE, Greer MLC, Durno C, Shlien A, Ertl-Wagner B, Villani A, Malkin D, Hawkins C, Bouffet E, Das A, Tabori U. Clinical and biological landscape of constitutional mismatch-repair deficiency syndrome: an International Replication Repair Deficiency Consortium cohort study. Lancet Oncol 2024; 25:668-682. [PMID: 38552658 DOI: 10.1016/s1470-2045(24)00026-3] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare and aggressive cancer predisposition syndrome. Because a scarcity of data on this condition contributes to management challenges and poor outcomes, we aimed to describe the clinical spectrum, cancer biology, and impact of genetics on patient survival in CMMRD. METHODS In this cohort study, we collected cross-sectional and longitudinal data on all patients with CMMRD, with no age limits, registered with the International Replication Repair Deficiency Consortium (IRRDC) across more than 50 countries. Clinical data were extracted from the IRRDC database, medical records, and physician-completed case record forms. The primary objective was to describe the clinical features, cancer spectrum, and biology of the condition. Secondary objectives included estimations of cancer incidence and of the impact of the specific mismatch-repair gene and genotype on cancer onset and survival, including after cancer surveillance and immunotherapy interventions. FINDINGS We analysed data from 201 patients (103 males, 98 females) enrolled between June 5, 2007 and Sept 9, 2022. Median age at diagnosis of CMMRD or a related cancer was 8·9 years (IQR 5·9-12·6), and median follow-up from diagnosis was 7·2 years (3·6-14·8). Endogamy among minorities and closed communities contributed to high homozygosity within countries with low consanguinity. Frequent dermatological manifestations (117 [93%] of 126 patients with complete data) led to a clinical overlap with neurofibromatosis type 1 (35 [28%] of 126). 339 cancers were reported in 194 (97%) of 201 patients. The cumulative cancer incidence by age 18 years was 90% (95% CI 80-99). Median time between cancer diagnoses for patients with more than one cancer was 1·9 years (IQR 0·8-3·9). Neoplasms developed in 15 organs and included early-onset adult cancers. CNS tumours were the most frequent (173 [51%] cancers), followed by gastrointestinal (75 [22%]), haematological (61 [18%]), and other cancer types (30 [9%]). Patients with CNS tumours had the poorest overall survival rates (39% [95% CI 30-52] at 10 years from diagnosis; log-rank p<0·0001 across four cancer types), followed by those with haematological cancers (67% [55-82]), gastrointestinal cancers (89% [81-97]), and other solid tumours (96% [88-100]). All cancers showed high mutation and microsatellite indel burdens, and pathognomonic mutational signatures. MLH1 or MSH2 variants caused earlier cancer onset than PMS2 or MSH6 variants, and inferior survival (overall survival at age 15 years 63% [95% CI 55-73] for PMS2, 49% [35-68] for MSH6, 19% [6-66] for MLH1, and 0% for MSH2; p<0·0001). Frameshift or truncating variants within the same gene caused earlier cancers and inferior outcomes compared with missense variants (p<0·0001). The greater deleterious effects of MLH1 and MSH2 variants as compared with PMS2 and MSH6 variants persisted despite overall improvements in survival after surveillance or immune checkpoint inhibitor interventions. INTERPRETATION The very high cancer burden and unique genomic landscape of CMMRD highlight the benefit of comprehensive assays in timely diagnosis and precision approaches toward surveillance and immunotherapy. These data will guide the clinical management of children and patients who survive into adulthood with CMMRD. FUNDING The Canadian Institutes for Health Research, Stand Up to Cancer, Children's Oncology Group National Cancer Institute Community Oncology Research Program, Canadian Cancer Society, Brain Canada, The V Foundation for Cancer Research, BioCanRx, Harry and Agnieszka Hall, Meagan's Walk, BRAINchild Canada, The LivWise Foundation, St Baldrick Foundation, Hold'em for Life, and Garron Family Cancer Center.
Collapse
Affiliation(s)
- Ayse Bahar Ercan
- Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON, Canada
| | - Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Sinai Health System, Toronto, ON, Canada
| | | | - Yuan Chang
- Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON, Canada
| | - Adrian Levine
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Logine Negm
- Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON, Canada
| | - Melissa Edwards
- Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON, Canada
| | - Vanessa Bianchi
- Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON, Canada
| | - Lucie Stengs
- Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON, Canada
| | - Jiil Chung
- Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON, Canada
| | - Abeer Al-Battashi
- Department of Pediatric Hematology and Oncology, The Royal Hospital, Muscat, Oman
| | - Agnes Reschke
- Division of Pediatric Hematology/Oncology, Stanford Medicine, Stanford, CA, USA
| | - Alex Lion
- Department of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alia Ahmad
- University of Child Health Sciences, Children's Hospital Lahore, Lahore, Pakistan
| | - Alvaro Lassaletta
- Department of Pediatric Hematology-Oncology, Hospital Infantil Universitario Nino Jesus, Madrid, Spain
| | | | - Amir F Al-Darraji
- College of Medicine, University of Baghdad, Paediatric Oncology Unit, Baghdad, Iraq
| | - Amish C Shah
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - An Van Damme
- Division of Pediatric Hematology and Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Aqeela Rashid
- Department of Pediatric Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Ashley S Margol
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA, USA
| | | | - Bojana Pencheva
- Alfac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Brandie Heald
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brianna Lemieux-Anglin
- Departments of Oncology and Human Genetics, McGill University Health Centre, Cancer Genetics Program, Montreal, QC, Canada
| | - Bruce Crooks
- Division of Hematology-Oncology, IWK Health, Halifax, NS, Canada
| | - Carl Koschmann
- Department of Pediatric Hematology-Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Catherine Gilpin
- Children's Hospital of Eastern Ontario, Genetics, Ottawa, ON, Canada
| | - Christopher C Porter
- Alfac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - David Gass
- Department of Pediatric Hematology and Oncology, Atrium Health, Charlotte, NC, USA
| | | | - David S Ziegler
- Kid's Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Deborah T Blumenthal
- Neuro-Oncology Division, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Dennis John Kuo
- Division of Pediatric Hematology/Oncology, University of California, San Diego, CA, USA
| | - Dima Hamideh
- Division of Pediatric Hematology-Oncology, American University of Beirut, Beirut, Lebanon
| | - Donald Basel
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Duncan Stearns
- UH Rainbow Babies and Children's Hospital Division of Pediatrics, Pediatric Neuro-oncology, Cleveland, OH, USA
| | - Enrico Opocher
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Fernando Carceller
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, UK; Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Helen Toledano
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Ira Winer
- Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Isabelle Scheers
- Division of Pediatric Gastroenterology and Hepatology, Cliniques Universitaires Saint-Luc, IREC Universite Catholique de Louvain, Brussels, Belgium
| | - Ivana Fedorakova
- Clinic of Pediatric Oncology and Hematology, University Children's Hospital, Banská Bystrica, Slovakia
| | - Jack M Su
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - Jaime Vengoechea
- Associate Professor of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jaroslav Sterba
- Pediatric Oncology Department, University Hospital Brno, Masaryk Univerzity, Faculty of Medicine, Brno, Czech Republic
| | - Jeffrey Knipstein
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jordan R Hansford
- Michael Rice Children's Hematology and Oncology Centre, Women's and Children's Hospital, Adelaide, SA, Australia; South Australia Health and Medical Research Institute Adelaide, SA, Australia; South Australia Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | | | - Kanika Bhatia
- Children's Cancer Centre, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kevin J Bielamowicz
- Department of Pediatrics, Division of Hematology/Oncology, University of Arkansas for Medical Sciences/Arkansas Children's Hospital, Little Rock, AR, USA
| | - Khurram Minhas
- Division of Histopathology, Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Kim E Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristina A Cole
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynette Penney
- Division of Medical Genetics, Department of Pediatrics, IWK Health Centre, Halifax, NS, Canada
| | | | - Magnus Sabel
- Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Matthew Miller
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR, USA
| | | | - Maura Massimino
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Mazin F Al-Jadiry
- College of Medicine, University of Baghdad, Paediatric Oncology Unit, Baghdad, Iraq
| | | | - Michael Osborn
- Michael Rice Children's Hematology and Oncology Centre, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Michael P Link
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michal Zapotocky
- Department of Paediatric Haematology and Oncology, University Hospital Motol and Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Najma Shaheen
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | | | - Nicolas Waespe
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Nobuko Hijiya
- Pediatric Hematology Oncology and Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Olfat Ahmad
- Hopp Children's Cancer Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Omar Chamdine
- Department of Pediatric Hematology Oncology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Paromita Roy
- Department of Pathology, Tata Medical Center, Rajarhat, Kolkata, India
| | - Pavel N Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Per Nyman
- Crown Princess Victoria Children's Hospital, Linköping University Hospital, Linköping, Sweden; Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Rachel Pearlman
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Reghu K Sukumaran
- Department of Pediatric Hemato-oncology, Tata Medical Center, Kolkata, India
| | - Rejin Kebudi
- Department of Pediatric Hematology-Oncology, Istanbul University, Oncology Institute, Istanbul, Türkiye
| | - Rina Dvir
- Department of Pediatric Hemato-Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Robert Raphael
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Ronit Elhasid
- Department of Pediatric Hemato-Oncology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Rose B McGee
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rose Chami
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ryan Noss
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, USA
| | - Ryuma Tanaka
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Salmo Raskin
- Department of Pediatrics, Federal University of Parana, Curitiba, Parana
| | - Santanu Sen
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, India
| | - Scott Lindhorst
- Department of Neurosurgery, Division of Neuro-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Sebastien Perreault
- Division of Child Neurology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Shani Caspi
- Sheba Medical Center, Cancer Research Center, Tel Hashomer, Israel
| | - Shazia Riaz
- Department of Hematology and Oncology, The Children's Hospital and University of Child Health Sciences, Lahore, Pakistan
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sophie Albert
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC Canada
| | | | - Stefan Bielack
- Padiatrie 5 (Onkologie, Hamatologie, Immunologie), Zentrum fur Kinder-, Jugend- und Frauenmedizin, Stuttgart Cancer Center, Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Stefano Chiaravalli
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stuart Louis Cramer
- Department of Pediatric Hematology/Oncology, Prisma Health, Columbia, SC, USA
| | - Sumita Roy
- Central Michigan University, Mount Pleasant, MI, USA; Division of Genetics, Genomic & Metabolic Disorders, Pediatric Cancer Genetics Clinic, Children's Hospital of Michigan, Detroit, MI, USA
| | - Suzanne Cahn
- Winship Cancer Institute, Emory University Hospital, Atlanta, GA, USA
| | - Suzanne Penna
- Division of Rehabilitation Neuropsychology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Tariq Ghafoor
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center, National Institute of Blood and Marrow Transplant, Rawalpindi, Pakistan
| | - Uzma Imam
- Pediatric Oncology Department, National Institute of Child Health, Karachi, Pakistan
| | - Valerie Larouche
- Department of Hematology-Oncology, CHU de Quebec-Universite Laval, Quebec, QC, Canada
| | | | - William D Foulkes
- Departments of Oncology and Human Genetics, McGill University Health Centre, Cancer Genetics Program, Montreal, QC, Canada
| | - Yi Yen Lee
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Paul C Nathan
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yosef E Maruvka
- Faculty of Biotechnology and Food Engineering, The Lokey Center for Life Science and Engineering, TECHNION-Israel Institute of Technology, Haifa, Israel
| | - Mary-Louise C Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Durno
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Birgit Ertl-Wagner
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Anita Villani
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - David Malkin
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia Hawkins
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eric Bouffet
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anirban Das
- Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON, Canada; Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Uri Tabori
- Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON, Canada; Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
20
|
Kroeze E, Weijers DD, Kleisman MM, Ilan U, Bladergroen RS, Hagelaar R, Meijerink JPP, Jongmans MCJ, Loeffen JLC, Kuiper RP. T-cell lymphoblastic lymphoma in constitutional mismatch repair deficiency (CMMRD): Exploring treatment opportunities. Hemasphere 2024; 8:e73. [PMID: 38741596 PMCID: PMC11089271 DOI: 10.1002/hem3.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Emma Kroeze
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Dilys D. Weijers
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | - Uri Ilan
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | - Rico Hagelaar
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Jules P. P. Meijerink
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Present address:
Acerta‐Pharma (AstraZeneca)OssThe Netherlands
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Genetics, Utrecht University Medical CenterUtrecht UniversityUtrechtThe Netherlands
| | | | - Roland P. Kuiper
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Genetics, Utrecht University Medical CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
21
|
Wang J, Zhang Z, Cai Y, Lu J, Zhang H, Pang J, Wu H, Liang Z. A Comprehensive Study of Heterogeneous Mismatch Repair Expression in Solid Tumors Reveals Different Immunohistochemical Patterns and Distinct Genetic Mechanisms. Am J Surg Pathol 2024; 48:417-425. [PMID: 37997470 DOI: 10.1097/pas.0000000000002158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
OBJECTIVE Immunohistochemistry is routinely performed to detect mismatch repair deficiency in solid tumors. Heterogeneous MMR expression (MMR-het) has been reported occasionally but not systemically studied. METHODS In this study, we depicted MMR-het patterns of 40 tumors of different anatomical sites and analyzed MMR genetic alterations and tumor mutational burdens (TMB) through comprehensive genomic profiling. RESULTS The MMR-het patterns were classified into 4 subgroups: "single-loss" (3 cases), "MLH1/PMS2 double-loss" (16 cases), "MSH2/MSH6 double-loss" (8 cases), and "triple/tetra-loss" (13 cases). Seventeen MMR-het cases exhibited histological heterogeneity, in which MMR protein loss was generally confined to either poorly differentiated or well-differentiated tumor areas. All "single-loss" tumors had MMR somatic mutations and coexisting POLE exonuclease domain mutations. "MLH1/PMS2 double-loss" tumors unexceptionally harbored MLH1 hypermethylation without MMR germline mutations. In the "MSH2/MSH6 double-loss" subgroup, 4 cases had MSH2/MSH6 germline mutations, while another 4 cases had multiple MSH2/MSH6 somatic mutations. Additional POLE exonuclease domain mutations were identified in 2 cases. Tumors in the "triple/tetra-loss" subgroup generally had MLH1 abnormalities (8 MLH1 hypermethylation, 4 MLH1 germline mutation, 1 MLH1 double somatic mutations), and coexistent somatic mutations on MSH2/MSH6 . Thirty-one cases (83.8%) were TMB-H, and all POLE -mutated cases exhibited ultra-high TMB (111.4 to 524.2 mut/Mb). CONCLUSION Our findings highlighted the importance of accurately interpreting heterogeneous MMR protein staining patterns for developing a more efficient personalized genetic investigation strategy.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Forster VJ, Aronson M, Zhang C, Chung J, Sudhaman S, Galati MA, Kelly J, Negm L, Ercan AB, Stengs L, Durno C, Edwards M, Komosa M, Oldfield LE, Nunes NM, Pedersen S, Wellum J, Siddiqui I, Bianchi V, Weil BR, Fox VL, Pugh TJ, Kamihara J, Tabori U. Biallelic EPCAM deletions induce tissue-specific DNA repair deficiency and cancer predisposition. NPJ Precis Oncol 2024; 8:69. [PMID: 38467830 PMCID: PMC10928233 DOI: 10.1038/s41698-024-00537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
We report a case of Mismatch Repair Deficiency (MMRD) caused by germline homozygous EPCAM deletion leading to tissue-specific loss of MSH2. Through the use of patient-derived cells and organoid technologies, we performed stepwise in vitro differentiation of colonic and brain organoids from reprogrammed EPCAMdel iPSC derived from patient fibroblasts. Differentiation of iPSC to epithelial-colonic organoids exhibited continuous increased EPCAM expression and hypermethylation of the MSH2 promoter. This was associated with loss of MSH2 expression, increased mutational burden, MMRD signatures and MS-indel accumulation, the hallmarks of MMRD. In contrast, maturation into brain organoids and examination of blood and fibroblasts failed to show similar processes, preserving MMR proficiency. The combined use of iPSC, organoid technologies and functional genomics analyses highlights the potential of cutting-edge cellular and molecular analysis techniques to define processes controlling tumorigenesis and uncovers a new paradigm of tissue-specific MMRD, which affects the clinical management of these patients.
Collapse
Affiliation(s)
- V J Forster
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Aronson
- Zane Cohen Centre, Sinai Health System and Faculty of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - C Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - J Chung
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - S Sudhaman
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - M A Galati
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - J Kelly
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - L Negm
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - A B Ercan
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - L Stengs
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - C Durno
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Edwards
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Komosa
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - N M Nunes
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - S Pedersen
- University Health Network, Toronto, ON, Canada
| | - J Wellum
- University Health Network, Toronto, ON, Canada
| | - I Siddiqui
- Department of Paediatric Laboratory Medicine and Pathobiology, Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - V Bianchi
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - B R Weil
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - V L Fox
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - T J Pugh
- University Health Network, Toronto, ON, Canada
| | - J Kamihara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - U Tabori
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Perotti D, Williams RD, Wegert J, Brzezinski J, Maschietto M, Ciceri S, Gisselsson D, Gadd S, Walz AL, Furtwaengler R, Drost J, Al-Saadi R, Evageliou N, Gooskens SL, Hong AL, Murphy AJ, Ortiz MV, O'Sullivan MJ, Mullen EA, van den Heuvel-Eibrink MM, Fernandez CV, Graf N, Grundy PE, Geller JI, Dome JS, Perlman EJ, Gessler M, Huff V, Pritchard-Jones K. Hallmark discoveries in the biology of Wilms tumour. Nat Rev Urol 2024; 21:158-180. [PMID: 37848532 DOI: 10.1038/s41585-023-00824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Richard D Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Campinas, São Paulo, Brazil
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Gisselsson
- Cancer Cell Evolution Unit, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Skåne, Sweden
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Amy L Walz
- Division of Hematology,Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rhoikos Furtwaengler
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, Inselspital Bern University, Bern, Switzerland
| | - Jarno Drost
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Nicholas Evageliou
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, CHOP Specialty Care Center, Vorhees, NJ, USA
| | - Saskia L Gooskens
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael V Ortiz
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Conrad V Fernandez
- Division of Paediatric Hematology Oncology, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Norbert Graf
- Department of Paediatric Oncology and Hematology, Saarland University Hospital, Homburg, Germany
| | - Paul E Grundy
- Department of Paediatrics Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital and the Department of Paediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elizabeth J Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
24
|
Das A, Fernandez NR, Levine A, Bianchi V, Stengs LK, Chung J, Negm L, Dimayacyac JR, Chang Y, Nobre L, Ercan AB, Sanchez-Ramirez S, Sudhaman S, Edwards M, Larouche V, Samuel D, Van Damme A, Gass D, Ziegler DS, Bielack SS, Koschmann C, Zelcer S, Yalon-Oren M, Campino GA, Sarosiek T, Nichols KE, Loret De Mola R, Bielamowicz K, Sabel M, Frojd CA, Wood MD, Glover JM, Lee YY, Vanan M, Adamski JK, Perreault S, Chamdine O, Hjort MA, Zapotocky M, Carceller F, Wright E, Fedorakova I, Lossos A, Tanaka R, Osborn M, Blumenthal DT, Aronson M, Bartels U, Huang A, Ramaswamy V, Malkin D, Shlien A, Villani A, Dirks PB, Pugh TJ, Getz G, Maruvka YE, Tsang DS, Ertl-Wagner B, Hawkins C, Bouffet E, Morgenstern DA, Tabori U. Combined Immunotherapy Improves Outcome for Replication-Repair-Deficient (RRD) High-Grade Glioma Failing Anti-PD-1 Monotherapy: A Report from the International RRD Consortium. Cancer Discov 2024; 14:258-273. [PMID: 37823831 PMCID: PMC10850948 DOI: 10.1158/2159-8290.cd-23-0559] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Immune checkpoint inhibition (ICI) is effective for replication-repair-deficient, high-grade gliomas (RRD-HGG). The clinical/biological impact of immune-directed approaches after failing ICI monotherapy is unknown. We performed an international study on 75 patients treated with anti-PD-1; 20 are progression free (median follow-up, 3.7 years). After second progression/recurrence (n = 55), continuing ICI-based salvage prolonged survival to 11.6 months (n = 38; P < 0.001), particularly for those with extreme mutation burden (P = 0.03). Delayed, sustained responses were observed, associated with changes in mutational spectra and the immune microenvironment. Response to reirradiation was explained by an absence of deleterious postradiation indel signatures (ID8). CTLA4 expression increased over time, and subsequent CTLA4 inhibition resulted in response/stable disease in 75%. RAS-MAPK-pathway inhibition led to the reinvigoration of peripheral immune and radiologic responses. Local (flare) and systemic immune adverse events were frequent (biallelic mismatch-repair deficiency > Lynch syndrome). We provide a mechanistic rationale for the sustained benefit in RRD-HGG from immune-directed/synergistic salvage therapies. Future approaches need to be tailored to patient and tumor biology. SIGNIFICANCE Hypermutant RRD-HGG are susceptible to checkpoint inhibitors beyond initial progression, leading to improved survival when reirradiation and synergistic immune/targeted agents are added. This is driven by their unique biological and immune properties, which evolve over time. Future research should focus on combinatorial regimens that increase patient survival while limiting immune toxicity. This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Anirban Das
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatric Haematology and Oncology, Tata Medical Center, Kolkata, India
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Nicholas R. Fernandez
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Adrian Levine
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Vanessa Bianchi
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Lucie K. Stengs
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Jiil Chung
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Logine Negm
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Jose Rafael Dimayacyac
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Yuan Chang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Liana Nobre
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Ayse B. Ercan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Santiago Sanchez-Ramirez
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Sumedha Sudhaman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Valerie Larouche
- Pediatric Haematology/Oncology Department, CHU de Québec-Université Laval, Quebec City, Canada
| | - David Samuel
- Department of Paediatric Oncology, Valley Children's Hospital, Madera, California
| | - An Van Damme
- Department of Paediatric Haematology and Oncology, Saint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - David Gass
- Atrium Health/Levine Children's Hospital, Charlotte, North Carolina
| | - David S. Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, Australia
| | - Stefan S. Bielack
- Department of Pediatric Oncology, Hematology and Immunology, Center for Childhood, Adolescent, and Women's Medicine, Stuttgart Cancer Center, Klinikum Stuttgart, Stuttgart, Germany
| | - Carl Koschmann
- Pediatric Hematology/Oncology, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, Michigan
| | - Shayna Zelcer
- Department of Pediatrics, London Health Sciences Centre, London, Canada
| | - Michal Yalon-Oren
- Department of Paediatric Haematology-Oncology, Sheba Medical Centre, Ramat Gan, Israel
| | - Gadi Abede Campino
- Department of Paediatric Haematology-Oncology, Sheba Medical Centre, Ramat Gan, Israel
| | | | - Kim E. Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Kevin Bielamowicz
- Department of Pediatrics, Section of Pediatric Hematology/Oncology, The University of Arkansas for Medical Sciences/Arkansas Children's Hospital, Little Rock, Arkansas
| | - Magnus Sabel
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg & Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Charlotta A. Frojd
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthew D. Wood
- Neuropathology, Oregon Health & Science University Department of Pathology, Portland, Oregon
| | - Jason M. Glover
- Department of Pediatric Hematology/Oncology, Randall Children's Hospital, Portland, Oregon
| | - Yi-Yen Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Magimairajan Vanan
- Pediatric Hematology-Oncology, CancerCare Manitoba, Winnipeg, Canada
- CancerCare Manitoba Research Institute, Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Jenny K. Adamski
- Neuro-oncology Division, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Sebastien Perreault
- Neurosciences Department, Child Neurology Division, CHU Sainte-Justine, Montreal, Canada
| | - Omar Chamdine
- Pediatric Hematology Oncology, King Fahad Specialist Hospital Dammam, Eastern Province, Saudi Arabia
| | - Magnus Aasved Hjort
- Department of Paediatric Haematology and Oncology, St. Olav's University Hospital, Trondheim, Norway
| | - Michal Zapotocky
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Fernando Carceller
- Paediatric and Adolescent Neuro-Oncology and Drug Development, The Royal Marsden NHS Foundation Trust & Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Erin Wright
- Division of Neuro-Oncology, Akron Children's Hospital, Akron, Ohio
| | - Ivana Fedorakova
- Clinic of Pediatric Oncology and Hematology, University Children's Hospital, Banská Bystrica, Slovakia
| | - Alexander Lossos
- Department of Oncology, Leslie and Michael Gaffin Centre for Neuro-Oncology, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel
| | - Ryuma Tanaka
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Osborn
- Women's and Children's Hospital, North Adelaide, Australia
| | - Deborah T. Blumenthal
- Neuro-Oncology Service, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Canada
| | - Ute Bartels
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Annie Huang
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Anita Villani
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Peter B. Dirks
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Trevor J. Pugh
- Ontario Institute for Cancer Research, Princess Margaret Cancer Centre, Toronto, Canada
| | - Gad Getz
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Derek S. Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Birgit Ertl-Wagner
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Eric Bouffet
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Daniel A. Morgenstern
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Uri Tabori
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Lehmann U, Stenzinger A. [The biomarker POLE in tumor pathology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:67-68. [PMID: 38051340 DOI: 10.1007/s00292-023-01284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Affiliation(s)
- Ulrich Lehmann
- Institut für Pathologie, Molekularpathologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, OE5110, 30625, Hannover, Deutschland.
| | - Albrecht Stenzinger
- Molekularpathologisches Zentrum, Pathologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Deutschland.
| |
Collapse
|
26
|
Ostroverkhova D, Tyryshkin K, Beach AK, Moore EA, Masoudi-Sobhanzadeh Y, Barbari SR, Rogozin IB, Shaitan KV, Panchenko AR, Shcherbakova PV. DNA polymerase ε and δ variants drive mutagenesis in polypurine tracts in human tumors. Cell Rep 2024; 43:113655. [PMID: 38219146 PMCID: PMC10830898 DOI: 10.1016/j.celrep.2023.113655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
Alterations in the exonuclease domain of DNA polymerase ε cause ultramutated cancers. These cancers accumulate AGA>ATA transversions; however, their genomic features beyond the trinucleotide motifs are obscure. We analyze the extended DNA context of ultramutation using whole-exome sequencing data from 524 endometrial and 395 colorectal tumors. We find that G>T transversions in POLE-mutant tumors predominantly affect sequences containing at least six consecutive purines, with a striking preference for certain positions within polypurine tracts. Using this signature, we develop a machine-learning classifier to identify tumors with hitherto unknown POLE drivers and validate two drivers, POLE-E978G and POLE-S461L, by functional assays in yeast. Unlike other pathogenic variants, the E978G substitution affects the polymerase domain of Pol ε. We further show that tumors with POLD1 drivers share the extended signature of POLE ultramutation. These findings expand the understanding of ultramutation mechanisms and highlight peculiar mutagenic properties of polypurine tracts in the human genome.
Collapse
Affiliation(s)
- Daria Ostroverkhova
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Annette K Beach
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yosef Masoudi-Sobhanzadeh
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Stephanie R Barbari
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada.
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
27
|
Zheng S, Donnelly ED, Strauss JB. Race, Prevalence of POLE and POLD1 Alterations, and Survival Among Patients With Endometrial Cancer. JAMA Netw Open 2024; 7:e2351906. [PMID: 38231514 PMCID: PMC10794941 DOI: 10.1001/jamanetworkopen.2023.51906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
Importance Black patients with endometrial cancer (EC) in the United States have higher mortality than patients of other races with EC. The prevalence of POLE and POLD1 pathogenic alterations in patients of different races with EC are not well studied. Objective To explore the prevalence of and outcomes associated with POLE and POLD1 alterations in differential racial groups. Design, Setting, and Participants This retrospective cohort study incorporated the largest available data set of patients with EC, including American Association for Cancer Research Project GENIE (Genomics Evidence Neoplasia Information Exchange; 5087 participants), Memorial Sloan Kettering-Metastatic Events and Tropisms (1315 participants), and the Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (517 participants), collected from 2015 to 2023, 2013 to 2021, and 2006 to 2012, respectively. The prevalence of and outcomes associated with POLE or POLD1 alterations in EC were evaluated across self-reported racial groups. Exposure Patients of different racial groups with EC and with or without POLE or POLD1 alterations. Main Outcomes and Measures The main outcome was overall survival. Data on demographic characteristics, POLE and POLD1 alteration status, histologic subtype, tumor mutation burden, fraction of genome altered, and microsatellite instability score were collected. Results A total of 6919 EC cases were studied, of whom 444 (6.4%), 694 (10.0%), and 4869 (70.4%) patients were self-described as Asian, Black, and White, respectively. Within these large data sets, Black patients with EC exhibited a lower weighted average prevalence of pathogenic POLE alterations (0.5% [3 of 590 cases]) compared with Asian (6.1% [26 of 424]) or White (4.6% [204 of 4520]) patients. By contrast, the prevalence of POLD1 pathogenic alterations was 5.0% (21 cases), 3.2% (19 cases), and 5.6% (255 cases) in Asian, Black, and White patients with EC, respectively. Patients with POLD1 alterations had better outcomes regardless of race, histology, and TP53 alteration status. For a total of 241 clinically annotated Black patients with EC, a composite biomarker panel of either POLD1 or POLE alterations identified 7.1% (17 patients) with positive outcomes (1 event at 70 months follow up) in the small sample of available patients. Conclusions and Relevance In this retrospective clinicopathological study of patients of different racial groups with EC, a composite biomarker panel of either POLD1 or POLE alteration could potentially guide treatment de-escalation, which is especially relevant for Black patients.
Collapse
Affiliation(s)
- Shuhua Zheng
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Eric D. Donnelly
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Jonathan B. Strauss
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| |
Collapse
|
28
|
Das A, Ercan AB, Tabori U. An update on central nervous system tumors in germline replication-repair deficiency syndromes. Neurooncol Adv 2024; 6:vdae102. [PMID: 39022642 PMCID: PMC11253203 DOI: 10.1093/noajnl/vdae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
DNA replication-repair deficiency (RRD) arises from pathogenic variants in the mismatch repair and/or polymerase-proofreading genes. Multiple germline cancer predisposition syndromes in children and young adults, including constitutional mismatch repair deficiency (CMMRD), Lynch, polymerase-proofreading deficiency, and rare digenic syndromes can lead to RRD cancers. The most frequent brain tumors in these children are high-grade gliomas. Embryonal tumors like medulloblastoma have also been described. Lower-grade tumors are reported from cancer surveillance initiatives. The latter has an extremely high rate of malignant transformation. Novel functional assays quantifying the genomic microsatellite indel load have been demonstrated to be highly sensitive and specific for the diagnosis of RRD cancers and children with germline CMMRD. Importantly, RRD brain tumors uniformly harbor high mutation and microsatellite burden. High T-cell infiltration makes these aggressive cancers amenable to immune checkpoint inhibition, irrespective of their germline genetic background. Synergistic combinations are reported to be successful in patients failing checkpoint inhibitor monotherapy. Future directions include the development of innovative approaches to improve immune surveillance for RRD brain cancers. Additionally, the use of novel tools including circulating tumor DNA and quantifying microsatellite indel load over time can be useful to monitor disease burden and treatment responses in patients.
Collapse
Affiliation(s)
- Anirban Das
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, SickKids Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ayse Bahar Ercan
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, SickKids Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, SickKids Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Selves J, de Castro E Gloria H, Brunac AC, Saffi J, Guimbaud R, Brousset P, Hoffmann JS. Exploring the basis of heterogeneity of cancer aggressiveness among the mutated POLE variants. Life Sci Alliance 2024; 7:e202302290. [PMID: 37891003 PMCID: PMC10610022 DOI: 10.26508/lsa.202302290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Germline pathogenic variants in the exonuclease domain of the replicative DNA polymerase Pol ε encoded by the POLE gene, predispose essentially to colorectal and endometrial tumors by inducing an ultramutator phenotype. It is still unclear whether all the POLE alterations influence similar strength tumorigenesis, immune microenvironment, and treatment response. In this review, we summarize the current understanding of the mechanisms and consequences of POLE mutations in human malignancies; we highlight the heterogeneity of mutation rate and cancer aggressiveness among POLE variants, propose some mechanistic basis underlining such heterogeneity, and discuss novel considerations for the choice and efficacy of therapies of POLE tumors.
Collapse
Affiliation(s)
- Janick Selves
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
| | - Helena de Castro E Gloria
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Anne-Cécile Brunac
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Rosine Guimbaud
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
- Department of Digestive Oncology, Centre Hospitalier Universitaire (CHU), Toulouse, France
- Department of Digestive Surgery, Centre Hospitalier Universitaire (CHU), Toulouse, France
| | - Pierre Brousset
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Jean-Sébastien Hoffmann
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| |
Collapse
|
30
|
Guerrini-Rousseau L, Merlevede J, Denizeau P, Andreiuolo F, Varlet P, Puget S, Beccaria K, Blauwblomme T, Cabaret O, Hamzaoui N, Bourdeaut F, Faure-Conter C, Muleris M, Colas C, Adam de Beaumais T, Castel D, Rouleau E, Brugières L, Grill J, Debily MA. Glioma oncogenesis in the Constitutional mismatch repair deficiency (CMMRD) syndrome. Neurooncol Adv 2024; 6:vdae120. [PMID: 39233831 PMCID: PMC11372297 DOI: 10.1093/noajnl/vdae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Background Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition due to biallelic mutations in one of the mismatch repair (MMR) genes associated with early onset of cancers, especially high-grade gliomas. Our aim was to decipher the molecular specificities of these gliomas. Methods Clinical, histopathological, and whole exome sequencing data were analyzed in 12 children with genetically proven CMMRD and a high-grade glioma. Results PDL1 expression was present in immunohistochemistry in 50% of the samples. In 9 patients, the glioma harbored an ultra-hypermutated phenotype (104-635 coding single nucleotide variants (SNV) per Mb, median 204). Driver mutations in POLE and POLD1 exonuclease domains were described for 8 and 1 patients respectively and were always present in the mutation burst with the highest variant allele frequency (VAF). The mutational signatures were dominated by MMR-related ones and similar in the different mutation bursts of a same patient without subsequent enrichment of the mutation signatures with POL-driven ones. Median number of coding SNV with VAF above one of the driving polymerase mutation per Mb was 57 (17-191). Our findings suggest that somatic polymerase alterations does not entirely explain the ultra-hypermutant phenotype. SETD2, TP53, NF1, EPHB2, PRKDC, and DICER1 genes were frequently mutated with higher VAF than the deleterious somatic polymerase mutation. Conclusions CMMRD-associated gliomas have a specific oncogenesis that does not involve usual pathways and mutations seen in sporadic pediatric or adult glioblastomas. Frequent alterations in other pathways such as MAPK may suggest the use of other targeted therapies along with PD1 inhibitors.
Collapse
Affiliation(s)
- Lea Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jane Merlevede
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | | | - Felipe Andreiuolo
- Neuropathology and INSERM UMR1266 IMA-Brain, GHU-Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Pascale Varlet
- Neuropathology and INSERM UMR1266 IMA-Brain, GHU-Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Stéphanie Puget
- Neurosurgery, Necker Hospital, Paris University, Paris, France
| | - Kevin Beccaria
- Neurosurgery, Necker Hospital, Paris University, Paris, France
| | | | - Odile Cabaret
- Department of Medical Genetics, Gustave Roussy, Villejuif, France
| | - Nadim Hamzaoui
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, APHP Centre Université de Paris, Paris, France
- Inserm UMR_S1016, Institut Cochin, Université de Paris, Paris, France
| | - Franck Bourdeaut
- Translational Research in Pediatric Oncology (RTOP), INSERM U830 Laboratory of Genetics and Biology of Cancers, SIREDO: Care, Innovation, and Research for Children, Adolescents and Young Adults with Cancer, Curie Institute, Paris University, Paris, France
| | - Cécile Faure-Conter
- Pediatric Hematology and Oncology Institute (IHOPE), Centre Leon Berard, Lyon, France
| | - Martine Muleris
- Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Chrystelle Colas
- Département de Génétique, Institut Curie, Université Paris Sciences Lettres, Paris, France
| | | | - David Castel
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Etienne Rouleau
- Department of Medical Genetics, Gustave Roussy, Villejuif, France
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jacques Grill
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie-Anne Debily
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Biologie, Université Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
31
|
Haynes T, Gilbert MR, Breen K, Yang C. Pathways to hypermutation in high-grade gliomas: Mechanisms, syndromes, and opportunities for immunotherapy. Neurooncol Adv 2024; 6:vdae105. [PMID: 39022645 PMCID: PMC11252568 DOI: 10.1093/noajnl/vdae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Despite rapid advances in the field of immunotherapy, including the success of immune checkpoint inhibition in treating multiple cancer types, clinical response in high-grade gliomas (HGGs) has been disappointing. This has been in part attributed to the low tumor mutational burden (TMB) of the majority of HGGs. Hypermutation is a recently characterized glioma signature that occurs in a small subset of cases, which may open an avenue to immunotherapy. The substantially elevated TMB of these tumors most commonly results from alterations in the DNA mismatch repair pathway in the setting of extensive exposure to temozolomide or, less frequently, from inherited cancer predisposition syndromes. In this review, we discuss the genetics and etiology of hypermutation in HGGs, with an emphasis on the resulting genomic signatures, and the state and future directions of immuno-oncology research in these patient populations.
Collapse
Affiliation(s)
- Tuesday Haynes
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Kevin Breen
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| |
Collapse
|
32
|
Hadad S, Gupta R, Oberheim Bush NA, Taylor JW, Villanueva-Meyer JE, Young JS, Wu J, Ravindranathan A, Zhang Y, Warrier G, McCoy L, Shai A, Pekmezci M, Perry A, Bollen AW, Phillips JJ, Braunstein SE, Raleigh DR, Theodosopoulos P, Aghi MK, Chang EF, Hervey-Jumper SL, Costello JF, de Groot J, Butowski NA, Clarke JL, Chang SM, Berger MS, Molinaro AM, Solomon DA. "De novo replication repair deficient glioblastoma, IDH-wildtype" is a distinct glioblastoma subtype in adults that may benefit from immune checkpoint blockade. Acta Neuropathol 2023; 147:3. [PMID: 38079020 PMCID: PMC10713691 DOI: 10.1007/s00401-023-02654-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Glioblastoma is a clinically and molecularly heterogeneous disease, and new predictive biomarkers are needed to identify those patients most likely to respond to specific treatments. Through prospective genomic profiling of 459 consecutive primary treatment-naïve IDH-wildtype glioblastomas in adults, we identified a unique subgroup (2%, 9/459) defined by somatic hypermutation and DNA replication repair deficiency due to biallelic inactivation of a canonical mismatch repair gene. The deleterious mutations in mismatch repair genes were often present in the germline in the heterozygous state with somatic inactivation of the remaining allele, consistent with glioblastomas arising due to underlying Lynch syndrome. A subset of tumors had accompanying proofreading domain mutations in the DNA polymerase POLE and resultant "ultrahypermutation". The median age at diagnosis was 50 years (range 27-78), compared with 63 years for the other 450 patients with conventional glioblastoma (p < 0.01). All tumors had histologic features of the giant cell variant of glioblastoma. They lacked EGFR amplification, lacked combined trisomy of chromosome 7 plus monosomy of chromosome 10, and only rarely had TERT promoter mutation or CDKN2A homozygous deletion, which are hallmarks of conventional IDH-wildtype glioblastoma. Instead, they harbored frequent inactivating mutations in TP53, NF1, PTEN, ATRX, and SETD2 and recurrent activating mutations in PDGFRA. DNA methylation profiling revealed they did not align with known reference adult glioblastoma methylation classes, but instead had unique globally hypomethylated epigenomes and mostly classified as "Diffuse pediatric-type high grade glioma, RTK1 subtype, subclass A". Five patients were treated with immune checkpoint blockade, four of whom survived greater than 3 years. The median overall survival was 36.8 months, compared to 15.5 months for the other 450 patients (p < 0.001). We conclude that "De novo replication repair deficient glioblastoma, IDH-wildtype" represents a biologically distinct subtype in the adult population that may benefit from prospective identification and treatment with immune checkpoint blockade.
Collapse
Affiliation(s)
- Sara Hadad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Rohit Gupta
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jasper Wu
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Ajay Ravindranathan
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Gayathri Warrier
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Arie Perry
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Philip Theodosopoulos
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - John de Groot
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
33
|
Das A, Tabori U, Sambira Nahum LC, Collins NB, Deyell R, Dvir R, Faure-Conter C, Hassall TE, Minturn JE, Edwards M, Brookes E, Bianchi V, Levine A, Stone SC, Sudhaman S, Sanchez Ramirez S, Ercan AB, Stengs L, Chung J, Negm L, Getz G, Maruvka YE, Ertl-Wagner B, Ohashi PS, Pugh T, Hawkins C, Bouffet E, Morgenstern DA. Efficacy of Nivolumab in Pediatric Cancers with High Mutation Burden and Mismatch Repair Deficiency. Clin Cancer Res 2023; 29:4770-4783. [PMID: 37126021 PMCID: PMC10690097 DOI: 10.1158/1078-0432.ccr-23-0411] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE Checkpoint inhibitors have limited efficacy for children with unselected solid and brain tumors. We report the first prospective pediatric trial (NCT02992964) using nivolumab exclusively for refractory nonhematologic cancers harboring tumor mutation burden (TMB) ≥5 mutations/megabase (mut/Mb) and/or mismatch repair deficiency (MMRD). PATIENTS AND METHODS Twenty patients were screened, and 10 were ultimately included in the response cohort of whom nine had TMB >10 mut/Mb (three initially eligible based on MMRD) and one patient had TMB between 5 and 10 mut/Mb. RESULTS Delayed immune responses contributed to best overall response of 50%, improving on initial objective responses (20%) and leading to 2-year overall survival (OS) of 50% [95% confidence interval (CI), 27-93]. Four children, including three with refractory malignant gliomas are in complete remission at a median follow-up of 37 months (range, 32.4-60), culminating in 2-year OS of 43% (95% CI, 18.2-100). Biomarker analyses confirmed benefit in children with germline MMRD, microsatellite instability, higher activated and lower regulatory circulating T cells. Stochastic mutation accumulation driven by underlying germline MMRD impacted the tumor microenvironment, contributing to delayed responses. No benefit was observed in the single patient with an MMR-proficient tumor and TMB 7.4 mut/Mb. CONCLUSIONS Nivolumab resulted in durable responses and prolonged survival for the first time in a pediatric trial of refractory hypermutated cancers including malignant gliomas. Novel biomarkers identified here need to be translated rapidly to clinical care to identify children who can benefit from checkpoint inhibitors, including upfront management of cancer. See related commentary by Mardis, p. 4701.
Collapse
Affiliation(s)
- Anirban Das
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Uri Tabori
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Lauren C. Sambira Nahum
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Natalie B. Collins
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | | | - Rina Dvir
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | - Jane E. Minturn
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Melissa Edwards
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Elissa Brookes
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Vanessa Bianchi
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Adrian Levine
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Simone C. Stone
- Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario
| | - Sumedha Sudhaman
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Santiago Sanchez Ramirez
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Ayse B. Ercan
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Lucie Stengs
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Jill Chung
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Logine Negm
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Gad Getz
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Birgit Ertl-Wagner
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario
| | - Trevor Pugh
- Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario
| | - Cynthia Hawkins
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Eric Bouffet
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Daniel A. Morgenstern
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| |
Collapse
|
34
|
Weber CAM, Krönke N, Volk V, Auber B, Förster A, Trost D, Geffers R, Esmaeilzadeh M, Lalk M, Nabavi A, Samii A, Krauss JK, Feuerhake F, Hartmann C, Wiese B, Brand F, Weber RG. Rare germline variants in POLE and POLD1 encoding the catalytic subunits of DNA polymerases ε and δ in glioma families. Acta Neuropathol Commun 2023; 11:184. [PMID: 37990341 PMCID: PMC10664377 DOI: 10.1186/s40478-023-01689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023] Open
Abstract
Pathogenic germline variants in the DNA polymerase genes POLE and POLD1 cause polymerase proofreading-associated polyposis, a dominantly inherited disorder with increased risk of colorectal carcinomas and other tumors. POLE/POLD1 variants may result in high somatic mutation and neoantigen loads that confer susceptibility to immune checkpoint inhibitors (ICIs). To explore the role of POLE/POLD1 germline variants in glioma predisposition, whole-exome sequencing was applied to leukocyte DNA of glioma patients from 61 tumor families with at least one glioma case each. Rare heterozygous POLE/POLD1 missense variants predicted to be deleterious were identified in glioma patients from 10 (16%) families, co-segregating with the tumor phenotype in families with available DNA from several tumor patients. Glioblastoma patients carrying rare POLE variants had a mean overall survival of 21 months. Additionally, germline variants in POLD1, located at 19q13.33, were detected in 2/34 (6%) patients with 1p/19q-codeleted oligodendrogliomas, while POLE variants were identified in 2/4 (50%) glioblastoma patients with a spinal metastasis. In 13/15 (87%) gliomas from patients carrying POLE/POLD1 variants, features of defective polymerase proofreading, e.g. hypermutation, POLE/POLD1-associated mutational signatures, multinucleated cells, and increased intratumoral T cell response, were observed. In a CRISPR/Cas9-derived POLE-deficient LN-229 glioblastoma cell clone, a mutator phenotype and delayed S phase progression were detected compared to wildtype POLE cells. Our data provide evidence that rare POLE/POLD1 germline variants predispose to gliomas that may be susceptible to ICIs. Data compiled here suggest that glioma patients carrying POLE/POLD1 variants may be recognized by cutaneous manifestations, e.g. café-au-lait macules, and benefit from surveillance colonoscopy.
Collapse
Affiliation(s)
- Christine A M Weber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Nicole Krönke
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Valery Volk
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alisa Förster
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Michael Lalk
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hannover, Germany
| | - Arya Nabavi
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hannover, Germany
| | - Amir Samii
- Department of Neurosurgery, International Neuroscience Institute, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Friedrich Feuerhake
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
- Institute for Neuropathology, University Clinic Freiburg, Freiburg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Bettina Wiese
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Department of Neurology, Henriettenstift, Diakovere Krankenhaus gGmbH, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
35
|
Matteucci L, Bittoni A, Gallo G, Ridolfi L, Passardi A. Immunocheckpoint Inhibitors in Microsatellite-Stable or Proficient Mismatch Repair Metastatic Colorectal Cancer: Are We Entering a New Era? Cancers (Basel) 2023; 15:5189. [PMID: 37958363 PMCID: PMC10648369 DOI: 10.3390/cancers15215189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second leading cause of cancer-related deaths in Europe. About 5% of metastatic CRC (mCRC) are characterized by high microsatellite instability (MSI) due to a deficient DNA mismatch repair (dMMR), and this condition has been related to a high sensitivity to immunotherapy, in particular to the Immune Checkpoint Inhibitors (ICIs). In fact, in MSI-H or dMMR mCRC, treatment with ICIs induced remarkable response rates and prolonged survival. However, the majority of mCRC cases are mismatch-repair-proficient (pMMR) and microsatellite-stable (MSS), and unfortunately these conditions involve resistance to ICIs. This review aims to provide an overview of the strategies implemented to overcome ICI resistance and/or define subgroups of patients with MSS or dMMR mCRC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Laura Matteucci
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Bittoni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Graziana Gallo
- Operative Unit of Pathologic Anatomy, Azienda USL della Romagna, “Maurizio Bufalini” Hospital, 47521 Cesena, Italy
| | - Laura Ridolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
36
|
Bedics G, Szőke P, Bátai B, Nagy T, Papp G, Kránitz N, Rajnai H, Reiniger L, Bödör C, Scheich B. Novel, clinically relevant genomic patterns identified by comprehensive genomic profiling in ATRX-deficient IDH-wildtype adult high-grade gliomas. Sci Rep 2023; 13:18436. [PMID: 37891325 PMCID: PMC10611758 DOI: 10.1038/s41598-023-45786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastomas are the most common IDH-wildtype adult high-grade gliomas, frequently harboring mutations in the TERT gene promoter (pTERT) and utilizing the subsequent telomerase overexpression for telomere length maintenance. However, some rare cases show loss of ATRX and use alternative mechanisms of telomere lengthening. In this study, we performed the first complex genomic analysis specifically concentrating on the latter subgroup. Comprehensive genomic profiling of 12 ATRX-deficient and 13 ATRX-intact IDH-wildtype adult high-grade gliomas revealed that ATRX and pTERT mutations are mutually exclusive. DNMT3A alterations were confined to ATRX-deficient, while PTEN mutations to ATRX-intact cases. RAS-MAPK pathway alterations, including NF1 mutations, were more characteristic in the ATRX-deficient group. Variants of genes related to homologous recombination repair showed different patterns of affected genes. Two ATRX-deficient tumors with high tumor mutational burden and mismatch repair deficiency were found. One of these contained a novel fusion involving the NTRK2 and LRRFIP2 genes, while the other showed loss of MSH2 and MSH6 without genetic alterations in the encoding genes suggesting an epigenetic background. Genetic characteristics of ATRX-deficient IDH-wildtype adult high-grade gliomas suggest that these tumors are particularly intriguing targets of potential future therapeutic interventions including immunotherapies combined with MAPK pathway inhibition and DNA repair inhibitors.
Collapse
Affiliation(s)
- Gábor Bedics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Péter Szőke
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Bence Bátai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Tibor Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Life Science Building, Debrecen, 4032, Hungary
| | - Gergő Papp
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Noémi Kránitz
- Department of Pathology, County Hospital Győr, Petz Aladár Hospital, Vasvári Pál út 2-4, Győr, 9024, Hungary
| | - Hajnalka Rajnai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Lilla Reiniger
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.
| |
Collapse
|
37
|
Zhang Y, Wang X, Zhu Y, Liang C, Zhao L, Meng Q, Yin JC, Shi Y, Wang F, Qin F, Xuan J. Case Report: Cancer spectrum and genetic characteristics of a de novo germline POLD1 p.L606M variant-induced polyposis syndrome. Front Oncol 2023; 13:1222873. [PMID: 37746257 PMCID: PMC10516538 DOI: 10.3389/fonc.2023.1222873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/20/2023] [Indexed: 09/26/2023] Open
Abstract
Germline variations in the DNA polymerase genes, POLE and POLD1, can lead to a hereditary cancer syndrome that is characterized by frequent gastrointestinal polyposis and multiple primary malignant tumors. However, because of its rare occurrence, this disorder has not been extensively studied. In this report, we present the case of a 22-year-old female patient who had been diagnosed with gastrointestinal polyposis, breast fibroadenoma, multiple primary colorectal cancers, and glioblastoma (grade IV) within a span of 4 years. Next-generation sequencing analysis revealed a germline variant in POLD1 (c.1816C>A; p.L606M). In silico analysis using protein functional predicting software, including SIFT, Polyphen, GERP++, and CADD, further confirmed the pathogenicity of POLD1 p.L606M (classified as ACMG grade Class 4). In line with polymerase deficiency, both rectal cancer and glioblastoma tissues exhibited a high tumor mutation burden, with 16.9 muts/Mb and 347.1 muts/Mb, respectively. Interestingly, the patient has no family history of cancer, and gene examination of both parents confirms that this is a de novo germline variant. Therefore, molecular screening for POLD1 may be necessary for patients with such a cancer spectrum, regardless of their family history.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Xiaolu Wang
- Department of Oncology, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuning Zhu
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Chong Liang
- Department of Neurosurgery Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Lijun Zhao
- Medical Science Liaison, Genetron Health Inc., Beijing, China
| | - Qi Meng
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Jiani C. Yin
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yuqian Shi
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Fufeng Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Feng Qin
- Cancer Center, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ji Xuan
- Department of Gastroenterology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, China
| |
Collapse
|
38
|
Strauss JD, Pursell ZF. Replication DNA polymerases, genome instability and cancer therapies. NAR Cancer 2023; 5:zcad033. [PMID: 37388540 PMCID: PMC10304742 DOI: 10.1093/narcan/zcad033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
It has been over a decade since the initial identification of exonuclease domain mutations in the genes encoding the catalytic subunits of replication DNA polymerases ϵ and δ (POLE and POLD1) in tumors from highly mutated endometrial and colorectal cancers. Interest in studying POLE and POLD1 has increased significantly since then. Prior to those landmark cancer genome sequencing studies, it was well documented that mutations in replication DNA polymerases that reduced their DNA synthesis accuracy, their exonuclease activity or their interactions with other factors could lead to increased mutagenesis, DNA damage and even tumorigenesis in mice. There are several recent, well-written reviews of replication DNA polymerases. The aim of this review is to gather and review in some detail recent studies of DNA polymerases ϵ and δ as they pertain to genome instability, cancer and potential therapeutic treatments. The focus here is primarily on recent informative studies on the significance of mutations in genes encoding their catalytic subunits (POLE and POLD1), mutational signatures, mutations in associated genes, model organisms, and the utility of chemotherapy and immune checkpoint inhibition in polymerase mutant tumors.
Collapse
Affiliation(s)
- Juliet D Strauss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70118 LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70118 LA, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, 70118 LA, USA
| |
Collapse
|
39
|
Noll A, Myers C, Biery MC, Meechan M, Tahiri S, Rajendran A, Berens ME, Paine D, Byron S, Zhang J, Winter C, Pakiam F, Leary SES, Cole BL, Jackson ER, Dun MD, Foster JB, Evans MK, Pattwell SS, Olson JM, Vitanza NA. Therapeutic HDAC inhibition in hypermutant diffuse intrinsic pontine glioma. Neoplasia 2023; 43:100921. [PMID: 37603953 PMCID: PMC10465940 DOI: 10.1016/j.neo.2023.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition syndrome associated with the development of hypermutant pediatric high-grade glioma, and confers a poor prognosis. While therapeutic histone deacetylase (HDAC) inhibition of diffuse intrinsic pontine glioma (DIPG) has been reported; here, we use a clinically relevant biopsy-derived hypermutant DIPG model (PBT-24FH) and a CRISPR-Cas9 induced genetic model to evaluate the efficacy of HDAC inhibition against hypermutant DIPG. We screened PBT-24FH cells for sensitivity to a panel of HDAC inhibitors (HDACis) in vitro, identifying two HDACis associated with low nanomolar IC50s, quisinostat (27 nM) and romidepsin (2 nM). In vivo, quisinostat proved more efficacious, inducing near-complete tumor regression in a PBT-24FH flank model. RNA sequencing revealed significant quisinostat-driven changes in gene expression, including upregulation of neural and pro-inflammatory genes. To validate the observed potency of quisinostat in vivo against additional hypermutant DIPG models, we tested quisinostat in genetically-induced mismatch repair (MMR)-deficient DIPG flank tumors, demonstrating that loss of MMR function increases sensitivity to quisinostat in vivo. Here, we establish the preclinical efficacy of quisinostat against hypermutant DIPG, supporting further investigation of epigenetic targeting of hypermutant pediatric cancers with the potential for clinical translation. These findings support further investigation of HDAC inhibitors against pontine high-grade gliomas, beyond only those with histone mutations, as well as against other hypermutant central nervous system tumors.
Collapse
Affiliation(s)
- Alyssa Noll
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Carrie Myers
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Matthew C Biery
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Meechan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sophie Tahiri
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Molecular Mechanisms of Disease Graduate Program, University of Washington, Seattle, WA, USA
| | - Asmitha Rajendran
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Biomedical Informatics and Medical Education Graduate Program, University of Washington, Seattle, WA, USA
| | - Michael E Berens
- Cancer & Cell Biology Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Danyelle Paine
- Cancer & Cell Biology Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Sara Byron
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Jiaming Zhang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Conrad Winter
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Fiona Pakiam
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sarah E S Leary
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Bonnie L Cole
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Jessica B Foster
- Division of Oncology, The Children's Hospital of Philadelphia, Philidelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Myron K Evans
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Siobhan S Pattwell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - James M Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
40
|
Stefan-van Staden RI, Bratei AA, Ilie-Mihai RM, Gheorghe DC, Tuchiu BM, Gurzu S. Miniplatforms for Screening Biological Samples for KRAS and Four Mismatch Repair Proteins as New Tools for Fast Screening for Gastric and Colon Cancers. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2023; 170:057510. [DOI: 10.1149/1945-7111/acd358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Two miniplatforms based on stochastic microsensors designed using Nitrogen (9.3%) and Boron (2.4%) - dopped graphene (NB-DG) modified with frutafit HD and frutafit TEX were designed and validated for the assay of MLH1, MSH2, MSH6, PMS2, and of KRAS in whole blood, urine, saliva, and tumoral tissues. The sensitivities recorded using the miniplatform based on frutafit TEX were higher (MLH1:1.07 × 104, MSH2: 5.31; MSH6: 1.58 × 103; KRAS: 1.36 × 10−2 s−1
μg−1 ml) than those recorded when frutafit HD was used. A lower value of the limit of determination (0.32 fg ml−1) was recorded for the frutafit HD based miniplatform when used for the assay of MLH1, while the lowest value of the limit of determination for the assay of KRAS (2.2 fg ml−1) was recorded when the frutafit TEX was used in the design of the miniplatform. The % recoveries of MLH1, MSH2, MSH6, PMS2, and of KRAS in whole blood, urine, saliva, and tumoral tissues were higher than 99.00 with RSD (%) values lower than 0.08%.
Collapse
|
41
|
Demidova EV, Serebriiskii IG, Vlasenkova R, Kelow S, Andrake MD, Hartman TR, Kent T, Virtucio J, Rosen GL, Pomerantz RT, Dunbrack RL, Golemis EA, Hall MJ, Chen DYT, Daly MB, Arora S. Candidate variants in DNA replication and repair genes in early-onset renal cell carcinoma patients referred for germline testing. BMC Genomics 2023; 24:212. [PMID: 37095444 PMCID: PMC10123997 DOI: 10.1186/s12864-023-09310-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Early-onset renal cell carcinoma (eoRCC) is typically associated with pathogenic germline variants (PGVs) in RCC familial syndrome genes. However, most eoRCC patients lack PGVs in familial RCC genes and their genetic risk remains undefined. METHODS Here, we analyzed biospecimens from 22 eoRCC patients that were seen at our institution for genetic counseling and tested negative for PGVs in RCC familial syndrome genes. RESULTS Analysis of whole-exome sequencing (WES) data found enrichment of candidate pathogenic germline variants in DNA repair and replication genes, including multiple DNA polymerases. Induction of DNA damage in peripheral blood monocytes (PBMCs) significantly elevated numbers of [Formula: see text]H2AX foci, a marker of double-stranded breaks, in PBMCs from eoRCC patients versus PBMCs from matched cancer-free controls. Knockdown of candidate variant genes in Caki RCC cells increased [Formula: see text]H2AX foci. Immortalized patient-derived B cell lines bearing the candidate variants in DNA polymerase genes (POLD1, POLH, POLE, POLK) had DNA replication defects compared to control cells. Renal tumors carrying these DNA polymerase variants were microsatellite stable but had a high mutational burden. Direct biochemical analysis of the variant Pol δ and Pol η polymerases revealed defective enzymatic activities. CONCLUSIONS Together, these results suggest that constitutional defects in DNA repair underlie a subset of eoRCC cases. Screening patient lymphocytes to identify these defects may provide insight into mechanisms of carcinogenesis in a subset of genetically undefined eoRCCs. Evaluation of DNA repair defects may also provide insight into the cancer initiation mechanisms for subsets of eoRCCs and lay the foundation for targeting DNA repair vulnerabilities in eoRCC.
Collapse
Affiliation(s)
- Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Kazan Federal University, Kazan, 420008, Russia
| | - Ilya G Serebriiskii
- Kazan Federal University, Kazan, 420008, Russia
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ramilia Vlasenkova
- Kazan Federal University, Kazan, 420008, Russia
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Simon Kelow
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark D Andrake
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Tiffiney R Hartman
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Arcadia University, Glenside, PA, USA
| | - Tatiana Kent
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - James Virtucio
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Roland L Dunbrack
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Michael J Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Clinical Genetics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - David Y T Chen
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Mary B Daly
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Clinical Genetics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
42
|
Ban S, Jung JH. Somatic Mutations in Fruit Trees: Causes, Detection Methods, and Molecular Mechanisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:1316. [PMID: 36987007 PMCID: PMC10056856 DOI: 10.3390/plants12061316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Somatic mutations are genetic changes that occur in non-reproductive cells. In fruit trees, such as apple, grape, orange, and peach, somatic mutations are typically observed as "bud sports" that remain stable during vegetative propagation. Bud sports exhibit various horticulturally important traits that differ from those of their parent plants. Somatic mutations are caused by internal factors, such as DNA replication error, DNA repair error, transposable elements, and deletion, and external factors, such as strong ultraviolet radiation, high temperature, and water availability. There are several methods for detecting somatic mutations, including cytogenetic analysis, and molecular techniques, such as PCR-based methods, DNA sequencing, and epigenomic profiling. Each method has its advantages and limitations, and the choice of method depends on the research question and the available resources. The purpose of this review is to provide a comprehensive understanding of the factors that cause somatic mutations, techniques used to identify them, and underlying molecular mechanisms. Furthermore, we present several case studies that demonstrate how somatic mutation research can be leveraged to discover novel genetic variations. Overall, considering the diverse academic and practical value of somatic mutations in fruit crops, especially those that require lengthy breeding efforts, related research is expected to become more active.
Collapse
|
43
|
Zhu LH, Dong J, Li WL, Kou ZY, Yang J. Genotype-Phenotype Correlations in Autosomal Dominant and Recessive APC Mutation-Negative Colorectal Adenomatous Polyposis. Dig Dis Sci 2023:10.1007/s10620-023-07890-9. [PMID: 36862359 DOI: 10.1007/s10620-023-07890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
The most prevalent type of intestinal polyposis, colorectal adenomatous polyposis (CAP), is regarded as a precancerous lesion of colorectal cancer with obvious genetic characteristics. Early screening and intervention can significantly improve patients' survival and prognosis. The adenomatous polyposis coli (APC) mutation is believed to be the primary cause of CAP. There is, however, a subset of CAP with undetectable pathogenic mutations in APC, known as APC (-)/CAP. The genetic predisposition to APC (-)/CAP has largely been associated with germline mutations in some susceptible genes, including the human mutY homologue (MUTYH) gene and the Nth-like DNA glycosylase 1 (NTHL1) gene, and DNA mismatch repair (MMR) can cause autosomal recessive APC (-)/CAP. Furthermore, autosomal dominant APC (-)/CAP could occur as a result of DNA polymerase epsilon (POLE)/DNA polymerase delta 1 (POLD1), axis inhibition protein 2 (AXIN2), and dual oxidase 2 (DUOX2) mutations. The clinical phenotypes of these pathogenic mutations vary greatly depending on their genetic characteristics. Therefore, in this study, we present a comprehensive review of the association between autosomal recessive and dominant APC (-)/CAP genotypes and clinical phenotypes and conclude that APC (-)/CAP is a disease caused by multiple genes with different phenotypes and interaction exists in the pathogenic genes.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jian Dong
- Department of Internal Medicine-Oncology, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Wen-Liang Li
- Colorectal Cancer Clinical Research Center, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Zhi-Yong Kou
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China.
| |
Collapse
|
44
|
Jaksik R, Wheeler DA, Kimmel M. Detection and characterization of constitutive replication origins defined by DNA polymerase epsilon. BMC Biol 2023; 21:41. [PMID: 36829160 PMCID: PMC9960419 DOI: 10.1186/s12915-023-01527-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/24/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Despite the process of DNA replication being mechanistically highly conserved, the location of origins of replication (ORI) may vary from one tissue to the next, or between rounds of replication in eukaryotes, suggesting flexibility in the choice of locations to initiate replication. Lists of human ORI therefore vary widely in number and location, and there are currently no methods available to compare them. Here, we propose a method of detection of ORI based on somatic mutation patterns generated by the mutator phenotype of damaged DNA polymerase epsilon (POLE). RESULTS We report the genome-wide localization of constitutive ORI in POLE-mutated human tumors using whole genome sequencing data. Mutations accumulated after many rounds of replication of unsynchronized dividing cell populations in tumors allow to identify constitutive origins, which we show are shared with high fidelity between individuals and tumor types. Using a Smith-Waterman-like dynamic programming approach, we compared replication origin positions obtained from multiple different methods. The comparison allowed us to define a consensus set of replication origins, identified consistently by multiple ORI detection methods. Many DNA features co-localized with the consensus set of ORI, including chromatin loop anchors, G-quadruplexes, S/MARs, and CpGs. Among all features, the H2A.Z histone exhibited the most significant association. CONCLUSIONS Our results show that mutation-based detection of replication origins is a viable approach to determining their location and associated sequence features.
Collapse
Affiliation(s)
- Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| | - David A. Wheeler
- grid.39382.330000 0001 2160 926XHuman Genome Sequencing Centre, Baylor College of Medicine, Houston, TX USA ,grid.240871.80000 0001 0224 711XPresent Address: Clinical Genomics Group, Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN 38103 USA
| | - Marek Kimmel
- grid.6979.10000 0001 2335 3149Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland ,grid.21940.3e0000 0004 1936 8278Department of Statistics, Rice University, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, Houston, TX USA
| |
Collapse
|
45
|
Liu MH, Costa B, Choi U, Bandler RC, Lassen E, Grońska-Pęski M, Schwing A, Murphy ZR, Rosenkjær D, Picciotto S, Bianchi V, Stengs L, Edwards M, Loh CA, Truong TK, Brand RE, Pastinen T, Wagner JR, Skytte AB, Tabori U, Shoag JE, Evrony GD. Single-strand mismatch and damage patterns revealed by single-molecule DNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.526140. [PMID: 36824744 PMCID: PMC9949150 DOI: 10.1101/2023.02.19.526140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other genetic diseases1-4. Almost all of these mosaic mutations begin as nucleotide mismatches or damage in only one of the two strands of the DNA prior to becoming double-strand mutations if unrepaired or misrepaired5. However, current DNA sequencing technologies cannot resolve these initial single-strand events. Here, we developed a single-molecule, long-read sequencing method that achieves single-molecule fidelity for single-base substitutions when present in either one or both strands of the DNA. It also detects single-strand cytosine deamination events, a common type of DNA damage. We profiled 110 samples from diverse tissues, including from individuals with cancer-predisposition syndromes, and define the first single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumors deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples deficient in only polymerase proofreading. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. Since the double-strand DNA mutations interrogated by prior studies are only the endpoint of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable new studies of how mutations arise in a variety of contexts, especially in cancer and aging.
Collapse
Affiliation(s)
- Mei Hong Liu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Benjamin Costa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Una Choi
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Rachel C. Bandler
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
| | | | - Marta Grońska-Pęski
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Adam Schwing
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Zachary R. Murphy
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | | | - Shany Picciotto
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, USA
| | - Vanessa Bianchi
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Lucie Stengs
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Caitlin A. Loh
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Tina K. Truong
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Randall E. Brand
- Department of Medicine, University of Pittsburgh School of Medicine, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children’s Mercy Kansas City, USA
| | - J. Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Canada
| | | | - Uri Tabori
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
- Division of Haematology/Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Canada
| | - Jonathan E. Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, USA
| | - Gilad D. Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| |
Collapse
|
46
|
Using comprehensive genomic and functional analyses for resolving genotype-phenotype mismatches in children with suspected CMMRD in Lebanon: an IRRDC study. Hum Genet 2023; 142:563-576. [PMID: 36790526 DOI: 10.1007/s00439-023-02530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023]
Abstract
Constitutional mismatch repair deficiency (CMMRD) is an aggressive and highly penetrant cancer predisposition syndrome. Because of its variable clinical presentation and phenotypical overlap with neurofibromatosis, timely diagnosis remains challenging, especially in countries with limited resources. Since current tests are either difficult to implement or interpret or both we used a novel and relatively inexpensive functional genomic assay (LOGIC) which has been recently reported to have high sensitivity and specificity in diagnosing CMMRD. Here we report the clinical and molecular characteristics of nine patients diagnosed with cancer and suspected to have CMMRD and highlight the challenges with variant interpretation and immunohistochemical analysis that led to an uncertain interpretation of genetic findings in 6 of the 9 patients. Using LOGIC, we were able to confirm the diagnosis of CMMRD in 7 and likely exclude it in 2 patients, resolving ambiguous result interpretation. LOGIC also enabled predictive testing of asymptomatic siblings for early diagnosis and implementation of surveillance. This study highlights the varied manifestations and practical limitations of current diagnostic criteria for CMMRD, and the importance of international collaboration for implementing robust and low-cost functional assays for resolving diagnostic challenges.
Collapse
|
47
|
Cui J, Chen X, Zhai Q, Chen N, Li X, Zhang Y, Wang H, Bian X, Gao N, Chen D, Chen Z, Zhang S, Chen Y. A novel somatic mutation in POLE exonuclease domain associated with ultra-mutational signature and MMR deficiency in endometrial cancer: a case report. Diagn Pathol 2023; 18:19. [PMID: 36765365 PMCID: PMC9912575 DOI: 10.1186/s13000-023-01287-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Defect in proofreading exonuclease activity of polymerases epsilon and delta (Pols ε and δ) leads to mutagenesis and genomic instability and has been described in several cancer types. Somatic POLE exonuclease domain mutations (EDMs) have been reported in 7-12% endometrial cancers (ECs) and defined a subgroup of endometrial cancers with ultrahigh somatic mutation frequencies, high tumor infiltrated lymphocytes and favorable outcomes. CASE PRESENTATION Herein, we presented a novel somatic mutation in POLE exonuclease domain associated with ultra-mutational signature and MMR deficiency in endometrial cancer. A novel POLE EDM (p.T278K) was found by a 11-gene NGS panel. The MSS status detected by the MSI test was inconsistent with the dMMR status by IHC. The loss of MSH6 expression in the tumor could be interpreted by the two nonsense mutations (p.E1234* and p.E1322*) of the MSH6 gene which may lead to truncated proteins. The T278K mutation was pathogenic identified by a 602-gene NGS panel with 27.3% of C > A substitution, 0.6% of indels, 0.6% of C > G substitution and a high TMB of 203.8 mut/Mb. CONCLUSIONS We report an endometrial cancer patient harbored a novel somatic POLE T278K mutation. This mutation was a novel pathogenic POLE EDM should be considered as "POLE (ultramutated)" in clinical practice for the molecular classification of EC.
Collapse
Affiliation(s)
- Jiantao Cui
- Department of gynaecology, Cangzhou Hospital of Intergarted TCM-WM, 061000 Cangzhou, Hebei China
| | - Xiuying Chen
- Department of gynaecology, Cangzhou Hospital of Intergarted TCM-WM, 061000 Cangzhou, Hebei China
| | - Qian Zhai
- Department of gynaecology, Cangzhou Hospital of Intergarted TCM-WM, 061000 Cangzhou, Hebei China
| | - Na Chen
- Department of gynaecology, Cangzhou Hospital of Intergarted TCM-WM, 061000 Cangzhou, Hebei China
| | - Xiaodan Li
- Department of gynaecology, Cangzhou Hospital of Intergarted TCM-WM, 061000 Cangzhou, Hebei China
| | - Yuli Zhang
- Department of gynaecology, Cangzhou Hospital of Intergarted TCM-WM, 061000 Cangzhou, Hebei China
| | - Hui Wang
- Department of gynaecology, Cangzhou Hospital of Intergarted TCM-WM, 061000 Cangzhou, Hebei China
| | - Xin Bian
- Department of gynaecology, Cangzhou Hospital of Intergarted TCM-WM, 061000 Cangzhou, Hebei China
| | - Na Gao
- Department of gynaecology, Cangzhou Hospital of Intergarted TCM-WM, 061000 Cangzhou, Hebei China
| | - Deyi Chen
- Xiamen Spacegen Co.,Ltd, 361100 Xiamen, China
| | | | - Shibiao Zhang
- Department of gynaecology, Cangzhou Hospital of Intergarted TCM-WM, 061000, Cangzhou, Hebei, China.
| | - Yan Chen
- Xiamen Spacegen Co.,Ltd, 361100, Xiamen, China.
| |
Collapse
|
48
|
Chung J, Negm L, Bianchi V, Stengs L, Das A, Liu ZA, Sudhaman S, Aronson M, Brunga L, Edwards M, Forster V, Komosa M, Davidson S, Lees J, Tomboc P, Samuel D, Farah R, Bendel A, Knipstein J, Schneider KW, Reschke A, Zelcer S, Zorzi A, McWilliams R, Foulkes WD, Bedgood R, Peterson L, Rhode S, Van Damme A, Scheers I, Gardner S, Robbins G, Vanan MI, Meyn MS, Auer R, Leach B, Burke C, Villani A, Malkin D, Bouffet E, Huang A, Taylor MD, Durno C, Shlien A, Hawkins C, Getz G, Maruvka YE, Tabori U. Genomic Microsatellite Signatures Identify Germline Mismatch Repair Deficiency and Risk of Cancer Onset. J Clin Oncol 2023; 41:766-777. [PMID: 36240479 PMCID: PMC10489375 DOI: 10.1200/jco.21.02873] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Diagnosis of Mismatch Repair Deficiency (MMRD) is crucial for tumor management and early detection in patients with the cancer predisposition syndrome constitutional mismatch repair deficiency (CMMRD). Current diagnostic tools are cumbersome and inconsistent both in childhood cancers and in determining germline MMRD. PATIENTS AND METHODS We developed and analyzed a functional Low-pass Genomic Instability Characterization (LOGIC) assay to detect MMRD. The diagnostic performance of LOGIC was compared with that of current established assays including tumor mutational burden, immunohistochemistry, and the microsatellite instability panel. LOGIC was then applied to various normal tissues of patients with CMMRD with comprehensive clinical data including age of cancer presentation. RESULTS Overall, LOGIC was 100% sensitive and specific in detecting MMRD in childhood cancers (N = 376). It was more sensitive than the microsatellite instability panel (14%, P = 4.3 × 10-12), immunohistochemistry (86%, P = 4.6 × 10-3), or tumor mutational burden (80%, P = 9.1 × 10-4). LOGIC was able to distinguish CMMRD from other cancer predisposition syndromes using blood and saliva DNA (P < .0001, n = 277). In normal cells, MMRDness scores differed between tissues (GI > blood > brain), increased over time in the same individual, and revealed genotype-phenotype associations within the mismatch repair genes. Importantly, increased MMRDness score was associated with younger age of first cancer presentation in individuals with CMMRD (P = 2.2 × 10-5). CONCLUSION LOGIC was a robust tool for the diagnosis of MMRD in multiple cancer types and in normal tissues. LOGIC may inform therapeutic cancer decisions, provide rapid diagnosis of germline MMRD, and support tailored surveillance for individuals with CMMRD.
Collapse
Affiliation(s)
- Jiil Chung
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Logine Negm
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa Bianchi
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lucie Stengs
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anirban Das
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Department of Pediatric Hematology/Oncology, Tata Medical Centre, Kolkata, India
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Sumedha Sudhaman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ledia Brunga
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Victoria Forster
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Komosa
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Scott Davidson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jodi Lees
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Tomboc
- Department of Pediatrics, West Virginia University, Morgantown, WV
| | | | - Roula Farah
- Lebanese American University Medical Center-Rizk, Beirut, Lebanon
| | - Anne Bendel
- Department of Pediatric Hematology-Oncology, Children's Minnesota, Minneapolis, MN
| | - Jeffrey Knipstein
- Division of Pediatric Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, WI
| | - Kami Wolfe Schneider
- Department of Pediatric Hematology-Oncology, Children's Hospital Colorado, Aurora, CO
| | - Agnes Reschke
- Department of Pediatric Hematology/Oncology, Stanford University, Palo Alto, CA
| | - Shayna Zelcer
- Department of Pediatrics, London Health Sciences Centre, London, ON, Canada
| | - Alexandra Zorzi
- Division of Haematology/Oncology, Western University, London, ON, Canada
| | | | - William D. Foulkes
- Departments of Oncology and Human Genetics, McGill University Health Centre, Cancer Genetics Program, Montreal, QC, Canada
| | | | - Lindsay Peterson
- Division of Medical Oncology, Washington University, St Louis, MO
| | - Sara Rhode
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, OH
| | - An Van Damme
- Pediatric Gastroenterology and Hepatology Unit, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Isabelle Scheers
- Universite Catholique de Louvain La Faculte de Medecine, Bruxelles, Belgium
| | - Sharon Gardner
- Department of Pediatric Hematology-Oncology, NYU Langone Health, New York, NY
| | - Gabriel Robbins
- Department of Pediatric Hematology-Oncology, NYU Langone Health, New York, NY
| | - Magimairajan Issai Vanan
- Department of Pediatric Hematology-Oncology, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - M. Stephen Meyn
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Center for Human Genomics and Precision Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Rebecca Auer
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Brandie Leach
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH
| | - Carol Burke
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH
| | - Anita Villani
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Eric Bouffet
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Annie Huang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Durno
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, 250 Longwood Avenue, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Yosef E. Maruvka
- Faculty of Biotechnology and Food Engineering, The Lokey Center for Life Science and Engineering, TECHNION – Israel Institute of Technology, Haifa, Israel
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Briggs M, Das A, Firth H, Levine A, Sánchez-Ramírez S, Negm L, Ercan AB, Chung J, Bianchi V, Jalloh I, Phyu P, Thorp N, Grundy RG, Hawkins C, Trotman J, Tarpey P, Tabori U, Allinson K, Murray MJ. Recurrent posterior fossa group A (PFA) ependymoma in a young child with constitutional mismatch repair deficiency (CMMRD). Neuropathol Appl Neurobiol 2023; 49:e12862. [PMID: 36341503 PMCID: PMC10099894 DOI: 10.1111/nan.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/04/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mayen Briggs
- Department of Neuropathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anirban Das
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Helen Firth
- Department of Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Adrian Levine
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Santiago Sánchez-Ramírez
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Logine Negm
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ayse B Ercan
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jill Chung
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vanessa Bianchi
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ibrahim Jalloh
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Poe Phyu
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nicky Thorp
- Department of Radiation Oncology, The Christie Proton Beam Therapy Centre, Manchester, UK
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, Biodiscovery Unit, University of Nottingham, Nottingham, UK
| | - Cynthia Hawkins
- Division of Neuropathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jamie Trotman
- East-Genomics Laboratory Hub (GLH) Genetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Patrick Tarpey
- East-Genomics Laboratory Hub (GLH) Genetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Uri Tabori
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kieren Allinson
- Department of Neuropathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Cambridge, UK.,Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | |
Collapse
|
50
|
San-Román-Gil M, Torres-Jiménez J, Pozas J, Esteban-Villarrubia J, Albarrán-Fernández V, Álvarez-Ballesteros P, Chamorro-Pérez J, Rosero-Rodríguez D, Orejana-Martín I, Martínez-Delfrade Í, Reguera-Puertas P, Fuentes-Mateos R, Ferreiro-Monteagudo R. Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma. Cancers (Basel) 2023; 15:863. [PMID: 36765821 PMCID: PMC9913409 DOI: 10.3390/cancers15030863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second most common cause of cancer-related death in Europe. High microsatellite instability (MSI-H) due to a deficient DNA mismatch repair (dMMR) system can be found in 5% of metastatic CRC (mCRC) and has been established as a biomarker of response to immunotherapy in these tumors. Therefore, immune checkpoint inhibitors (ICIs) in mCRC with these characteristics were evaluated with results showing remarkable response rates and durations of response. The majority of mCRC cases have high levels of DNA mismatch repair proteins (pMMR) with consequent microsatellite stability or low instability (MSS or MSI-low), associated with an inherent resistance to ICIs. This review aims to provide a comprehensive analysis of the possible approaches to overcome the mechanisms of resistance and evaluates potential biomarkers to establish the role of ICIs in pMMR/MSS/MSI-L (MSS) mCRC.
Collapse
Affiliation(s)
- María San-Román-Gil
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Javier Torres-Jiménez
- Medical Oncology Department, Clínico San Carlos University Hospital, 28040 Madrid, Spain
| | - Javier Pozas
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | - Jesús Chamorro-Pérez
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|