1
|
Jonas F, Navon Y, Barkai N. Intrinsically disordered regions as facilitators of the transcription factor target search. Nat Rev Genet 2025; 26:424-435. [PMID: 39984675 DOI: 10.1038/s41576-025-00816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2025] [Indexed: 02/23/2025]
Abstract
Transcription factors (TFs) contribute to organismal development and function by regulating gene expression. Despite decades of research, the factors determining the specificity and speed at which eukaryotic TFs detect their target binding sites remain poorly understood. Recent studies have pointed to intrinsically disordered regions (IDRs) within TFs as key regulators of the process by which TFs find their target sites on DNA (the TF target search). However, IDRs are challenging to study because they can confer specificity despite low sequence complexity and can be functionally conserved despite rapid sequence divergence. Nevertheless, emerging computational and experimental approaches are beginning to elucidate the sequence-function relationship within the IDRs of TFs. Additional insights are informing potential mechanisms underlying the IDR-directed search for the DNA targets of TFs, including incorporation into biomolecular condensates, facilitating TF co-localization, and the hypothesis that IDRs recognize and directly interact with specific genomic regions.
Collapse
Affiliation(s)
- Felix Jonas
- School of Science, Constructor University, Bremen, Germany.
| | - Yoav Navon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Bull EC, Singh A, Harden AM, Soanes K, Habash H, Toracchio L, Carrabotta M, Schreck C, Shah KM, Riestra PV, Chantoiseau M, Da Costa MEM, Moquin-Beaudry G, Pantziarka P, Essiet EA, Gerrand C, Gartland A, Bojmar L, Fahlgren A, Marchais A, Papakonstantinou E, Tomazou EM, Surdez D, Heymann D, Cidre-Aranaz F, Fromigue O, Sexton DW, Herold N, Grünewald TGP, Scotlandi K, Nathrath M, Green D. Targeting metastasis in paediatric bone sarcomas. Mol Cancer 2025; 24:153. [PMID: 40442778 PMCID: PMC12121159 DOI: 10.1186/s12943-025-02365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/22/2025] [Indexed: 06/02/2025] Open
Abstract
Paediatric bone sarcomas (e.g. Ewing sarcoma, osteosarcoma) comprise significant biological and clinical heterogeneity. This extreme heterogeneity affects response to systemic therapy, facilitates inherent and acquired drug resistance and possibly underpins the origins of metastatic disease, a key component implicit in cancer related death. Across all cancers, metastatic models have offered competing accounts on when dissemination occurs, either early or late during tumorigenesis, whether metastases at different foci arise independently and directly from the primary tumour or give rise to each other, i.e. metastases-to-metastases dissemination, and whether cell exchange occurs between synchronously growing lesions. Although it is probable that all the above mechanisms can lead to metastatic disease, clinical observations indicate that distinct modes of metastasis might predominate in different cancers. Around 70% of patients with bone sarcoma experience metastasis during their disease course but the fundamental molecular and cell mechanisms underlying spread are equivocal. Newer therapies such as tyrosine kinase inhibitors have shown promise in reducing metastatic relapse in trials, nonetheless, not all patients respond and 5-year overall survival remains at ~ 50%. Better understanding of potential bone sarcoma biological subgroups, the role of the tumour immune microenvironment, factors that promote metastasis and clinical biomarkers of prognosis and drug response are required to make progress. In this review, we provide a comprehensive overview of the approaches to manage paediatric patients with metastatic Ewing sarcoma and osteosarcoma. We describe the molecular basis of the tumour immune microenvironment, cell plasticity, circulating tumour cells and the development of the pre-metastatic niche, all required for successful distant colonisation. Finally, we discuss ongoing and upcoming patient clinical trials, biomarkers and gene regulatory networks amenable to the development of anti-metastasis medicines.
Collapse
Affiliation(s)
- Emma C Bull
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Archana Singh
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- Amity Institute of Biotechnology, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India
| | - Amy M Harden
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Kirsty Soanes
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hala Habash
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Toracchio
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna Carrabotta
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Christina Schreck
- Children's Cancer Research Center, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Karan M Shah
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Paulina Velasco Riestra
- Biomedical and Clinical Sciences, Division of Surgery, Orthopaedics and Oncology, Linköping University, Linköping, Sweden
| | | | - Maria Eugénia Marques Da Costa
- Gustave Roussy Institute, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Pan Pantziarka
- Anticancer Fund, Meise, Belgium
- The George Pantziarka TP53 Trust, London, UK
| | | | - Craig Gerrand
- Orthopaedic Oncology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Alison Gartland
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Linda Bojmar
- Biomedical and Clinical Sciences, Division of Surgery, Orthopaedics and Oncology, Linköping University, Linköping, Sweden
| | - Anna Fahlgren
- Biomedical and Clinical Sciences, Division of Cell and Neurobiology, Linköping University, Linköping, Sweden
| | | | - Evgenia Papakonstantinou
- Pediatric Hematology-Oncology, Ippokratio General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Eleni M Tomazou
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Didier Surdez
- Faculty of Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Dominique Heymann
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- UMR6286, Nantes Université, CNRS, US2B, Nantes, France
- Institut de Cancérologie de L'Ouest, Saint-Herblain, France
| | - Florencia Cidre-Aranaz
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Translational Pediatric Sarcoma Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Olivia Fromigue
- Inserm UMR981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Paediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas G P Grünewald
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Translational Pediatric Sarcoma Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michaela Nathrath
- Children's Cancer Research Center, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Pediatric Oncology, Klinikum Kassel, Kassel, Germany
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
3
|
Hou C, Tsodikov OV. Structure and cooperative formation of a FLI1 filament on contiguous GGAA DNA sites. Nucleic Acids Res 2025; 53:gkaf205. [PMID: 40131773 PMCID: PMC11934925 DOI: 10.1093/nar/gkaf205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Ewing sarcoma, a pediatric cancer of bone and soft tissue, is driven in most cases by an abnormal oncogenic fusion of the N-terminal region of EWS with the C-terminal region of FLI1 (EWS-FLI1). The FLI1 region contains a conserved DNA-binding domain (DBD) essential for the oncogenesis. Binding of EWS-FLI1 to microsatellites composed of contiguous GGAA sites, shown previously to be critical for the oncogenic program of this fusion, is not well understood. In this study, we demonstrate that the FLI1 DBD binds cooperatively to contiguous GGAA sites, thereby forming a nucleoprotein filament. A series of crystal structures of two, three, and four FLI1 DBD proteins in complexes with DNA oligomers containing two, three, and four contiguous GGAA sites, respectively, reveal the structure of this filament and the basis for its cooperative formation. We expect this mechanistic insight to be an important milestone in our understanding of the oncogenic function of EWS-FLI1 and exploiting it as a drug target.
Collapse
Affiliation(s)
- Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States
| |
Collapse
|
4
|
Kratz CP. Re-envisioning genetic predisposition to childhood and adolescent cancers. Nat Rev Cancer 2025; 25:109-128. [PMID: 39627375 DOI: 10.1038/s41568-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Although cancer is rare in children and adolescents, it remains a leading cause of death within this age range, and genetic predisposition is the main known risk factor. Since the discovery of retinoblastoma-predisposing RB1 pathogenic germline variants in 1985, several additional high-penetrance cancer predisposition genes (CPGs) have been identified. Although few clinically recognizable genetic conditions display moderate cancer phenotypes, burden testing has revealed low-to-moderate penetrance CPGs. In addition to germline pathogenic variants in CPGs, postzygotic somatic mosaic CPG pathogenic variants acquired during embryonic development are increasingly recognized as factors that predispose children and adolescents to malignancies. Genome-wide association studies of various childhood and adolescent cancer types have identified some common low-risk cancer susceptibility alleles. Although the clinical utility of polygenic risk scores is currently limited in children and adolescents, polygenic risk scores developed for adults can predict subsequent cancer risks in childhood and adolescent cancer survivors. In this Review, I describe our current knowledge of genetic predisposition to childhood and adolescent cancers. Survival rates in children and adolescents with cancer and CPGs are often poor, necessitating better integration of genomic testing into clinical care to improve cancer prevention, surveillance and therapies.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
DSouza D, Bik L, Giwa O, Cohen S, Barazany H, Siegal T, Frenkel-Morgenstern M. ChiTaRS 8.0: the comprehensive database of chimeric transcripts and RNA-seq data with applications in liquid biopsy. Nucleic Acids Res 2025; 53:D1302-D1312. [PMID: 39676654 PMCID: PMC11701575 DOI: 10.1093/nar/gkae1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Gene fusions are nucleotide sequences formed due to errors in replication and transcription control. These errors, resulting from chromosomal translocation, transcriptional errors or trans-splicing, vary from cell to cell. The identification of fusions has become critical as key biomarkers for disease diagnosis and therapy in various cancers, significantly influencing modern medicine. Chimeric Transcripts and RNA-Sequencing database version 8.0 (ChiTaRS 8.0; http://biosrv.org/chitars) is a specialized repository for human chimeric transcripts, containing 47 445 curated RNA transcripts and over 100 000 chimeric sequences in humans. This updated database provides unique information on 1055 chimeric breakpoints derived from public datasets using chromosome conformation capture techniques (the Hi-C datasets). It also includes an expanded list of gene fusions that are potential drug targets, and chimeric breakpoints across 934 cell lines, positioning ChiTaRS 8.0 as a valuable resource for testing personalized cancer therapies. By utilizing text mining on a curated selection of disease-specific RNA-sequencing data from public datasets, as well as patient blood and plasma samples, we have identified novel chimeras-particularly in diseases such as oral squamous cell carcinoma and glioblastoma-now catalogued in ChiTaRS. Thus, ChiTaRS 8.0 serves as an enhanced fusion transcript repository that incorporates insights into the functional landscape of chimeras in cancers and other complex diseases, based on liquid biopsy results.
Collapse
Affiliation(s)
- Dylan DSouza
- Azrieli Faculty of Medicine, Bar Ilan University, Henrieta Szold 8, Safed, 1311502, Israel
| | - Lihi Bik
- Scojen Institute of Synthetic Biology, Reichman University, Hauniversita 8, Herzliya, 4010101, Israel
| | - Olawumi Giwa
- Azrieli Faculty of Medicine, Bar Ilan University, Henrieta Szold 8, Safed, 1311502, Israel
| | - Shahaf Cohen
- Scojen Institute of Synthetic Biology, Reichman University, Hauniversita 8, Herzliya, 4010101, Israel
| | - Hilit Levy Barazany
- Scojen Institute of Synthetic Biology, Reichman University, Hauniversita 8, Herzliya, 4010101, Israel
| | - Tali Siegal
- Rabin Medical Center (Beilinson Campus), Zeev Jabotinsky St 39, Petah Tikva, 49100, Israel
| | - Milana Frenkel-Morgenstern
- Azrieli Faculty of Medicine, Bar Ilan University, Henrieta Szold 8, Safed, 1311502, Israel
- Scojen Institute of Synthetic Biology, Reichman University, Hauniversita 8, Herzliya, 4010101, Israel
| |
Collapse
|
6
|
Wells ME, Eckhoff MD, Davis W, Singh V, Rajani R, Polfer EM. Ewing Sarcoma in the Pediatric Population: Predictors of Survival Within the United States. J Am Acad Orthop Surg Glob Res Rev 2024; 8:01979360-202410000-00017. [PMID: 39436736 PMCID: PMC11498927 DOI: 10.5435/jaaosglobal-d-24-00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Bone and joint tumors are the third most common cause of pediatric cancer-related deaths in the United States. Although there have been improvements in survival rates among pediatric cancer patients over the past few decades, bone and joint cancers remain the exception. Considering current clinical trials involving novel targeted therapies, the establishment of updated mortality rates and predictors of survival for this cancer would be prudent. This investigation sought to determine updated 5-year survival rates and predictors of survival among pediatric Ewing sarcoma (ES) of bone treated within the United States. METHODS The National Cancer Database was retrospectively inquired for all pediatric ES cases within the most updated bone and joint public use file available in September 2022. The reported data were truncated to only include patients with reported 5-year vital (ie, survival) status. Cox proportional hazard regression was conducted on both the truncated data and the entire cohort to validate the findings. The patients were then separated into alive versus deceased cohorts, and univariate regression analysis was done followed by multivariable regression of notable variables of interest. RESULTS Overall, an aggregated 5-year survival rate of 74.5% was found in the included patient cohort. Patients with localized cancer had a comparatively improved 5-year survival rate of 84.70% as opposed to those with macrometastatic disease on presentation with a survival rate of 50.4%. Patient demographic-, tumor-, and treatment-specific variables all demonstrated an effect on survival. The multivariable predictors of worse mortality were found to include older age, larger tumor size (>8 cm), macrometastatic disease on presentation, and positive surgical margins. CONCLUSION This analysis serves to establish updated survival rates of pediatric ES treated within the United States to set standards for comparison among future studies. Continued multi-institutional and international collaboration is needed to optimize current treatment results and develop novel targeted therapies.
Collapse
Affiliation(s)
- Matthew E. Wells
- From the Department of Orthopedic Surgery, William Beaumont Army Medical Center (Dr. Wells, Dr. Eckhoff, and Dr. Polfer); the Department of Orthopedic Surgery, Texas Tech University Health Sciences Center El Paso (Dr. Wells, Dr. Eckhoff, Dr. Davis, Dr. Rajani, and Dr. Polfer); and Biostatistics and Epidemiology Consulting Lab, Texas Tech University Health Sciences Center El Paso, El Paso, TX (Dr. Singh)
| | - Michael D. Eckhoff
- From the Department of Orthopedic Surgery, William Beaumont Army Medical Center (Dr. Wells, Dr. Eckhoff, and Dr. Polfer); the Department of Orthopedic Surgery, Texas Tech University Health Sciences Center El Paso (Dr. Wells, Dr. Eckhoff, Dr. Davis, Dr. Rajani, and Dr. Polfer); and Biostatistics and Epidemiology Consulting Lab, Texas Tech University Health Sciences Center El Paso, El Paso, TX (Dr. Singh)
| | - William Davis
- From the Department of Orthopedic Surgery, William Beaumont Army Medical Center (Dr. Wells, Dr. Eckhoff, and Dr. Polfer); the Department of Orthopedic Surgery, Texas Tech University Health Sciences Center El Paso (Dr. Wells, Dr. Eckhoff, Dr. Davis, Dr. Rajani, and Dr. Polfer); and Biostatistics and Epidemiology Consulting Lab, Texas Tech University Health Sciences Center El Paso, El Paso, TX (Dr. Singh)
| | - Vishwajeet Singh
- From the Department of Orthopedic Surgery, William Beaumont Army Medical Center (Dr. Wells, Dr. Eckhoff, and Dr. Polfer); the Department of Orthopedic Surgery, Texas Tech University Health Sciences Center El Paso (Dr. Wells, Dr. Eckhoff, Dr. Davis, Dr. Rajani, and Dr. Polfer); and Biostatistics and Epidemiology Consulting Lab, Texas Tech University Health Sciences Center El Paso, El Paso, TX (Dr. Singh)
| | - Rajiv Rajani
- From the Department of Orthopedic Surgery, William Beaumont Army Medical Center (Dr. Wells, Dr. Eckhoff, and Dr. Polfer); the Department of Orthopedic Surgery, Texas Tech University Health Sciences Center El Paso (Dr. Wells, Dr. Eckhoff, Dr. Davis, Dr. Rajani, and Dr. Polfer); and Biostatistics and Epidemiology Consulting Lab, Texas Tech University Health Sciences Center El Paso, El Paso, TX (Dr. Singh)
| | - Elizabeth M. Polfer
- From the Department of Orthopedic Surgery, William Beaumont Army Medical Center (Dr. Wells, Dr. Eckhoff, and Dr. Polfer); the Department of Orthopedic Surgery, Texas Tech University Health Sciences Center El Paso (Dr. Wells, Dr. Eckhoff, Dr. Davis, Dr. Rajani, and Dr. Polfer); and Biostatistics and Epidemiology Consulting Lab, Texas Tech University Health Sciences Center El Paso, El Paso, TX (Dr. Singh)
| |
Collapse
|
7
|
Zhang W, Li Z, Wang X, Sun T. Phase separation is regulated by post-translational modifications and participates in the developments of human diseases. Heliyon 2024; 10:e34035. [PMID: 39071719 PMCID: PMC11279762 DOI: 10.1016/j.heliyon.2024.e34035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of intracellular proteins has emerged as a hot research topic in recent years. Membrane-less and liquid-like condensates provide dense spaces that ensure cells to high efficiently regulate genes transcription and rapidly respond to burst changes from the environment. The fomation and activity of LLPS are not only modulated by the cytosol conditions including but not limited to salt concentration and temperture. Interestingly, recent studies have shown that phase separation is also regulated by various post-translational modifications (PTMs) through modulating proteins multivalency, such as solubility and charge interactions. The regulation mechanism is crucial for normal functioning of cells, as aberrant protein aggregates are often closely related with the occurrence and development of human diseases including cancer and nurodegenerative diseases. Therefore, studying phase separation in the perspective of protein PTMs has long-term significance for human health. In this review, we summarized the properties and cellular physiological functions of LLPS, particularly its relationships with PTMs in human diseases according to recent researches.
Collapse
Affiliation(s)
- Weibo Zhang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Zhengfeng Li
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Xianju Wang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Ting Sun
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| |
Collapse
|
8
|
Tanudisastro HA, Deveson IW, Dashnow H, MacArthur DG. Sequencing and characterizing short tandem repeats in the human genome. Nat Rev Genet 2024; 25:460-475. [PMID: 38366034 DOI: 10.1038/s41576-024-00692-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
Short tandem repeats (STRs) are highly polymorphic sequences throughout the human genome that are composed of repeated copies of a 1-6-bp motif. Over 1 million variable STR loci are known, some of which regulate gene expression and influence complex traits, such as height. Moreover, variants in at least 60 STR loci cause genetic disorders, including Huntington disease and fragile X syndrome. Accurately identifying and genotyping STR variants is challenging, in particular mapping short reads to repetitive regions and inferring expanded repeat lengths. Recent advances in sequencing technology and computational tools for STR genotyping from sequencing data promise to help overcome this challenge and solve genetically unresolved cases and the 'missing heritability' of polygenic traits. Here, we compare STR genotyping methods, analytical tools and their applications to understand the effect of STR variation on health and disease. We identify emergent opportunities to refine genotyping and quality-control approaches as well as to integrate STRs into variant-calling workflows and large cohort analyses.
Collapse
Affiliation(s)
- Hope A Tanudisastro
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Ira W Deveson
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Fan Z, Dong S, Wang N, Khawar MB, Wang J, Sun H. Unlocking epigenetics for precision treatment of Ewing's sarcoma. Chin J Cancer Res 2024; 36:322-340. [PMID: 38988487 PMCID: PMC11230886 DOI: 10.21147/j.issn.1000-9604.2024.03.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 07/12/2024] Open
Abstract
Ewing's sarcoma (EWS) is a highly aggressive malignant bone tumor primarily affecting adolescents and young adults. Despite the efficacy of chemoradiotherapy in some cases, the cure rate for patients with metastatic and recurrent disease remains low. Therefore, there is an urgent need for innovative therapeutic approaches to address the challenges associated with EWS treatment. Epigenetic regulation, a crucial factor in physiological processes, plays a significant role in controlling cell proliferation, maintaining gene integrity, and regulating transcription. Recent studies highlight the importance of abnormal epigenetic regulation in the initiation and progression of EWS. A comprehensive understanding of the intricate interactions between EWS and aberrant epigenetic regulation is essential for advancing clinical drug development. This review aims to provide a comprehensive overview of both epigenetic targets implicated in EWS, integrating various therapeutic modalities to offer innovative perspectives for the clinical diagnosis and treatment of EWS.
Collapse
Affiliation(s)
- Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| | - Shuangshuang Dong
- Department of Pathology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| | - Jingcheng Wang
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| |
Collapse
|
10
|
Bayanjargal A, Taslim C, Showpnil IA, Selich-Anderson J, Crow JC, Lessnick SL, Theisen ER. DBD-α4 helix of EWSR1::FLI1 is required for GGAA microsatellite binding that underlies genome regulation in Ewing sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578127. [PMID: 38352344 PMCID: PMC10862889 DOI: 10.1101/2024.01.31.578127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ewing sarcoma is the second most common bone cancer in children and young adults. In 85% of patients, a translocation between chromosomes 11 and 22 results in a potent fusion oncoprotein, EWSR1::FLI1. EWSR1::FLI1 is the only genetic alteration in an otherwise unaltered genome of Ewing sarcoma tumors. The EWSR1 portion of the protein is an intrinsically disordered domain involved in transcriptional regulation by EWSR1::FLI1. The FLI portion of the fusion contains a DNA binding domain shown to bind core GGAA motifs and GGAA repeats. A small alpha-helix in the DNA binding domain of FLI1, DBD-𝛼4 helix, is critical for the transcription function of EWSR1::FLI1. In this study, we aimed to understand the mechanism by which the DBD-𝛼4 helix promotes transcription, and therefore oncogenic transformation. We utilized a multi-omics approach to assess chromatin organization, active chromatinmarks, genome binding, and gene expression in cells expressing EWSR1::FLI1 constructs with and without the DBD-𝛼4 helix. Our studies revealed DBD-𝛼4 helix is crucial for cooperative binding of EWSR1::FLI1 at GGAA microsatellites. This binding underlies many aspects of genome regulation by EWSR1::FLI1 such as formation of TADs, chromatin loops, enhancers and productive transcription hubs.
Collapse
|
11
|
Xiong J, He Z, Wang L, Fan C, Chao J. DNA Origami-Enabled Gene Localization of Repetitive Sequences. J Am Chem Soc 2024; 146:6317-6325. [PMID: 38391280 DOI: 10.1021/jacs.4c00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Repetitive sequences, which make up over 50% of human DNA, have diverse applications in disease diagnosis, forensic identification, paternity testing, and population genetic analysis due to their crucial functions for gene regulation. However, representative detection technologies such as sequencing and fluorescence imaging suffer from time-consuming protocols, high cost, and inaccuracy of the position and order of repetitive sequences. Here, we develop a precise and cost-effective strategy that combines the high resolution of atomic force microscopy with the shape customizability of DNA origami for repetitive sequence-specific gene localization. "Tri-block" DNA structures were specifically designed to connect repetitive sequences to DNA origami tags, thereby revealing precise genetic information in terms of position and sequence for high-resolution and high-precision visualization of repetitive sequences. More importantly, we achieved the results of simultaneous detection of different DNA repetitive sequences on the gene template with a resolution of ∼6.5 nm (19 nt). This strategy is characterized by high efficiency, high precision, low operational complexity, and low labor/time costs, providing a powerful complement to sequencing technologies for gene localization of repetitive sequences.
Collapse
Affiliation(s)
- Jinxin Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhimei He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
12
|
Margoliash J, Fuchs S, Li Y, Zhang X, Massarat A, Goren A, Gymrek M. Polymorphic short tandem repeats make widespread contributions to blood and serum traits. CELL GENOMICS 2023; 3:100458. [PMID: 38116119 PMCID: PMC10726533 DOI: 10.1016/j.xgen.2023.100458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/09/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Short tandem repeats (STRs) are genomic regions consisting of repeated sequences of 1-6 bp in succession. Single-nucleotide polymorphism (SNP)-based genome-wide association studies (GWASs) do not fully capture STR effects. To study these effects, we imputed 445,720 STRs into genotype arrays from 408,153 White British UK Biobank participants and tested for association with 44 blood phenotypes. Using two fine-mapping methods, we identify 119 candidate causal STR-trait associations and estimate that STRs account for 5.2%-7.6% of causal variants identifiable from GWASs for these traits. These are among the strongest associations for multiple phenotypes, including a coding CTG repeat associated with apolipoprotein B levels, a promoter CGG repeat with platelet traits, and an intronic poly(A) repeat with mean platelet volume. Our study suggests that STRs make widespread contributions to complex traits, provides stringently selected candidate causal STRs, and demonstrates the need to consider a more complete view of genetic variation in GWASs.
Collapse
Affiliation(s)
- Jonathan Margoliash
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shai Fuchs
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yang Li
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xuan Zhang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arya Massarat
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alon Goren
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Melissa Gymrek
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Benabdallah NS, Dalal V, Scott RW, Marcous F, Sotiriou A, Kommoss FKF, Pejkovska A, Gaspar L, Wagner L, Sánchez-Rivera FJ, Ta M, Thornton S, Nielsen TO, Underhill TM, Banito A. Aberrant gene activation in synovial sarcoma relies on SSX specificity and increased PRC1.1 stability. Nat Struct Mol Biol 2023; 30:1640-1652. [PMID: 37735617 PMCID: PMC10643139 DOI: 10.1038/s41594-023-01096-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
The SS18-SSX fusion drives oncogenic transformation in synovial sarcoma by bridging SS18, a member of the mSWI/SNF (BAF) complex, to Polycomb repressive complex 1 (PRC1) target genes. Here we show that the ability of SS18-SSX to occupy H2AK119ub1-rich regions is an intrinsic property of its SSX C terminus, which can be exploited by fusion to transcriptional regulators beyond SS18. Accordingly, SS18-SSX recruitment occurs in a manner that is independent of the core components and catalytic activity of BAF. Alternative SSX fusions are also recruited to H2AK119ub1-rich chromatin and reproduce the expression signatures of SS18-SSX by engaging with transcriptional activators. Variant Polycomb repressive complex 1.1 (PRC1.1) acts as the main depositor of H2AK119ub1 and is therefore required for SS18-SSX occupancy. Importantly, the SSX C terminus not only depends on H2AK119ub1 for localization, but also further increases it by promoting PRC1.1 complex stability. Consequently, high H2AK119ub1 levels are a feature of murine and human synovial sarcomas. These results uncover a critical role for SSX-C in mediating gene deregulation in synovial sarcoma by providing specificity to chromatin and further enabling oncofusion binding by enhancing PRC1.1 stability and H2AK119ub1 deposition.
Collapse
Affiliation(s)
- Nezha S Benabdallah
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vineet Dalal
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Wilder Scott
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Fady Marcous
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Afroditi Sotiriou
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix K F Kommoss
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Anastasija Pejkovska
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ludmila Gaspar
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Wagner
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, USA
| | - Monica Ta
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shelby Thornton
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ana Banito
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
14
|
Ding T, Zhang J, Xu H, Zhang X, Yang F, Shi Y, Bai Y, Yang J, Chen C, Zhang H. In-depth understanding of higher-order genome architecture in orphan cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188948. [PMID: 37394019 DOI: 10.1016/j.bbcan.2023.188948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The human genome is intertwined, folded, condensed, and gradually constitutes the 3D architecture, thereby affecting transcription and widely involving in tumorigenesis. Incidence and mortality rates for orphan cancers increase due to poor early diagnosis and lack of effective medical treatments, which are now getting attention. In-depth understanding in tumorigenesis has fast-tracked over the last decade, however, the further role and mechanism of 3D genome organization in variant orphan tumorigenesis remains to be fully understood. We summarize for the first time that higher-order genome organization can provide novel insights into the occurrence mechanisms of orphan cancers, and discuss probable future research directions for drug development and anti-tumor therapies.
Collapse
Affiliation(s)
- Tianyi Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Jixing Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Haowen Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Xiaoyu Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Fan Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Yibing Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Yiran Bai
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Jiaqi Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Chaoqun Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China.
| |
Collapse
|
15
|
Gong H, Xue B, Ru J, Pei G, Li Y. Targeted Therapy for EWS-FLI1 in Ewing Sarcoma. Cancers (Basel) 2023; 15:4035. [PMID: 37627063 PMCID: PMC10452796 DOI: 10.3390/cancers15164035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Ewing sarcoma (EwS) is a rare and predominantly pediatric malignancy of bone and soft tissue in children and adolescents. Although international collaborations have greatly improved the prognosis of most EwS, the occurrence of macrometastases or relapse remains challenging. The prototypic oncogene EWS-FLI1 acts as an aberrant transcription factor that drives the cellular transformation of EwS. In addition to its involvement in RNA splicing and the DNA damage response, this chimeric protein directly binds to GGAA repeats, thereby modifying the transcriptional profile of EwS. Direct pharmacological targeting of EWS-FLI1 is difficult because of its intrinsically disordered structure. However, targeting the EWS-FLI1 protein complex or downstream pathways provides additional therapeutic options. This review describes the EWS-FLI1 protein partners and downstream pathways, as well as the related target therapies for the treatment of EwS.
Collapse
Affiliation(s)
- Helong Gong
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China;
| | - Busheng Xue
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764 Neuherberg, Germany;
| | - Guoqing Pei
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Yan Li
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China;
| |
Collapse
|
16
|
Ren N, Dai S, Ma S, Yang F. Strategies for activity analysis of single nucleotide polymorphisms associated with human diseases. Clin Genet 2023; 103:392-400. [PMID: 36527336 DOI: 10.1111/cge.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Genome-wide association studies (GWAS) have identified a large number of single nucleotide polymorphism (SNP) sites associated with human diseases. In the annotation of human diseases, especially cancers, SNPs, as an important component of genetic factors, have gained increasing attention. Given that most of the SNPs are located in non-coding regions, the functional verification of these SNPs is a great challenge. The key to functional annotation for risk SNPs is to screen SNPs with regulatory activity from thousands of disease associated-SNPs. In this review, we systematically recapitulate the characteristics and functional roles of SNP sites, discuss three parallel reporter screening strategies in detail based on barcode tag classification, and recommend the common in silico strategies to help supplement the annotation of SNP sites with epigenetic activity analysis, prediction of target genes and trans-acting factors. We hope that this review will contribute to this exuberant research field by providing robust activity analysis strategies that can facilitate the translation of GWAS results into personalized diagnosis and prevention measures for human diseases.
Collapse
Affiliation(s)
- Naixia Ren
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shangkun Dai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shumin Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
17
|
Lee OW, Rodrigues C, Lin SH, Luo W, Jones K, Brown DW, Zhou W, Karlins E, Khan SM, Baulande S, Raynal V, Surdez D, Reynaud S, Rubio RA, Zaidi S, Grossetête S, Ballet S, Lapouble E, Laurence V, Pierron G, Gaspar N, Corradini N, Marec-Bérard P, Rothman N, Dagnall CL, Burdett L, Manning M, Wyatt K, Yeager M, Chari R, Leisenring WM, Kulozik AE, Kriebel J, Meitinger T, Strauch K, Kirchner T, Dirksen U, Mirabello L, Tucker MA, Tirode F, Armstrong GT, Bhatia S, Robison LL, Yasui Y, Romero-Pérez L, Hartmann W, Metzler M, Diver WR, Lori A, Freedman ND, Hoover RN, Morton LM, Chanock SJ, Grünewald TGP, Delattre O, Machiela MJ. Targeted long-read sequencing of the Ewing sarcoma 6p25.1 susceptibility locus identifies germline-somatic interactions with EWSR1-FLI1 binding. Am J Hum Genet 2023; 110:427-441. [PMID: 36787739 PMCID: PMC10027473 DOI: 10.1016/j.ajhg.2023.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Ewing sarcoma (EwS) is a rare bone and soft tissue malignancy driven by chromosomal translocations encoding chimeric transcription factors, such as EWSR1-FLI1, that bind GGAA motifs forming novel enhancers that alter nearby expression. We propose that germline microsatellite variation at the 6p25.1 EwS susceptibility locus could impact downstream gene expression and EwS biology. We performed targeted long-read sequencing of EwS blood DNA to characterize variation and genomic features important for EWSR1-FLI1 binding. We identified 50 microsatellite alleles at 6p25.1 and observed that EwS-affected individuals had longer alleles (>135 bp) with more GGAA repeats. The 6p25.1 GGAA microsatellite showed chromatin features of an EWSR1-FLI1 enhancer and regulated expression of RREB1, a transcription factor associated with RAS/MAPK signaling. RREB1 knockdown reduced proliferation and clonogenic potential and reduced expression of cell cycle and DNA replication genes. Our integrative analysis at 6p25.1 details increased binding of longer GGAA microsatellite alleles with acquired EWSR-FLI1 to promote Ewing sarcomagenesis by RREB1-mediated proliferation.
Collapse
Affiliation(s)
- Olivia W Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Calvin Rodrigues
- Inserm U830, PSL Université, Research Center, Institut Curie, 75005 Paris, France; SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Shu-Hong Lin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Sairah M Khan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sylvain Baulande
- ICGex Next-Generation Sequencing Platform, PSL Université, Research Center, Institut Curie, 75005 Paris, France
| | - Virginie Raynal
- ICGex Next-Generation Sequencing Platform, PSL Université, Research Center, Institut Curie, 75005 Paris, France
| | - Didier Surdez
- Inserm U830, PSL Université, Research Center, Institut Curie, 75005 Paris, France; SIREDO Oncology Centre, Institut Curie, 75005 Paris, France; Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Stephanie Reynaud
- SIREDO Oncology Centre, Institut Curie, 75005 Paris, France; Unité de Génétique Somatique, Department of Genetics, Institut Curie Hospital, 75005 Paris, France
| | - Rebeca Alba Rubio
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU, 80337 Munich, Germany
| | - Sakina Zaidi
- Inserm U830, PSL Université, Research Center, Institut Curie, 75005 Paris, France; SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Sandrine Grossetête
- Inserm U830, PSL Université, Research Center, Institut Curie, 75005 Paris, France; SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Stelly Ballet
- SIREDO Oncology Centre, Institut Curie, 75005 Paris, France; Unité de Génétique Somatique, Department of Genetics, Institut Curie Hospital, 75005 Paris, France
| | - Eve Lapouble
- SIREDO Oncology Centre, Institut Curie, 75005 Paris, France; Unité de Génétique Somatique, Department of Genetics, Institut Curie Hospital, 75005 Paris, France
| | | | - Gaelle Pierron
- SIREDO Oncology Centre, Institut Curie, 75005 Paris, France; Unité de Génétique Somatique, Department of Genetics, Institut Curie Hospital, 75005 Paris, France
| | - Nathalie Gaspar
- Department of Oncology for Child and Adolescent, Institut Gustave Roussy, 94800 Villejuif, France
| | - Nadège Corradini
- Institute for Paediatric Haematology and Oncology, Leon Bérard Cancer Centre, University of Lyon, 69008 Lyon, France
| | - Perrine Marec-Bérard
- Institute for Paediatric Haematology and Oncology, Leon Bérard Cancer Centre, University of Lyon, 69008 Lyon, France
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Casey L Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Michelle Manning
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Kathleen Wyatt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Raj Chari
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA; Genome Modification Core Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Wendy M Leisenring
- Cancer Prevention and Clinical Statistics Programs, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andreas E Kulozik
- University Children's Hospital of Heidelberg, 69120 Heidelberg, Germany
| | - Jennifer Kriebel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 80333 Munich, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU, 80539 Munich, Germany
| | - Thomas Kirchner
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Institute of Pathology, Faculty of Medicine, LMU, 80337 Munich, Germany
| | - Uta Dirksen
- University Children's Hospital of Essen, 45147 Essen, Germany
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Franck Tirode
- Inserm U830, PSL Université, Research Center, Institut Curie, 75005 Paris, France; SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama, Birmingham, AL 35294, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU, 80337 Munich, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Wolfgang Hartmann
- Gerhard- Domagk Institute of Pathology, University Hospital of Münster, 48149 Münster, Germany
| | - Markus Metzler
- University Children's Hospital of Erlangen, 91054 Erlangen, Germany
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Adriana Lori
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU, 80337 Munich, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olivier Delattre
- Inserm U830, PSL Université, Research Center, Institut Curie, 75005 Paris, France; SIREDO Oncology Centre, Institut Curie, 75005 Paris, France.
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Bhattacharyya S, Kollipara RK, Orquera-Tornakian G, Goetsch S, Zhang M, Perry C, Li B, Shelton JM, Bhakta M, Duan J, Xie Y, Xiao G, Evers BM, Hon GC, Kittler R, Munshi NV. Global chromatin landscapes identify candidate noncoding modifiers of cardiac rhythm. J Clin Invest 2023; 133:e153635. [PMID: 36454649 PMCID: PMC9888383 DOI: 10.1172/jci153635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Comprehensive cis-regulatory landscapes are essential for accurate enhancer prediction and disease variant mapping. Although cis-regulatory element (CRE) resources exist for most tissues and organs, many rare - yet functionally important - cell types remain overlooked. Despite representing only a small fraction of the heart's cellular biomass, the cardiac conduction system (CCS) unfailingly coordinates every life-sustaining heartbeat. To globally profile the mouse CCS cis-regulatory landscape, we genetically tagged CCS component-specific nuclei for comprehensive assay for transposase-accessible chromatin-sequencing (ATAC-Seq) analysis. Thus, we established a global CCS-enriched CRE database, referred to as CCS-ATAC, as a key resource for studying CCS-wide and component-specific regulatory functions. Using transcription factor (TF) motifs to construct CCS component-specific gene regulatory networks (GRNs), we identified and independently confirmed several specific TF sub-networks. Highlighting the functional importance of CCS-ATAC, we also validated numerous CCS-enriched enhancer elements and suggested gene targets based on CCS single-cell RNA-Seq data. Furthermore, we leveraged CCS-ATAC to improve annotation of existing human variants related to cardiac rhythm and nominated a potential enhancer-target pair that was dysregulated by a specific SNP. Collectively, our results established a CCS-regulatory compendium, identified novel CCS enhancer elements, and illuminated potential functional associations between human genomic variants and CCS component-specific CREs.
Collapse
Affiliation(s)
| | | | | | - Sean Goetsch
- Department of Internal Medicine, Division of Cardiology
| | - Minzhe Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Cameron Perry
- Department of Internal Medicine, Division of Cardiology
| | - Boxun Li
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
| | | | - Minoti Bhakta
- Department of Internal Medicine, Division of Cardiology
| | - Jialei Duan
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
- Department of Bioinformatics
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
- Department of Bioinformatics
| | - Bret M. Evers
- Department of Internal Medicine, Division of Cardiology
| | - Gary C. Hon
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
- Department of Bioinformatics
- Hamon Center for Regenerative Science and Medicine, and
| | - Ralf Kittler
- McDermott Center for Human Growth and Development
| | - Nikhil V. Munshi
- Department of Internal Medicine, Division of Cardiology
- McDermott Center for Human Growth and Development
- Hamon Center for Regenerative Science and Medicine, and
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Chavan M, Dhakal S, Singh A, Rai V, Arora S, C Mallipeddi M, Das A. Ewing sarcoma genomics and recent therapeutic advancements. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2023. [DOI: 10.1016/j.phoj.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
20
|
Yu L, Davis IJ, Liu P. Regulation of EWSR1-FLI1 Function by Post-Transcriptional and Post-Translational Modifications. Cancers (Basel) 2023; 15:382. [PMID: 36672331 PMCID: PMC9857208 DOI: 10.3390/cancers15020382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ewing sarcoma is the second most common bone tumor in childhood and adolescence. Currently, first-line therapy includes multidrug chemotherapy with surgery and/or radiation. Although most patients initially respond to chemotherapy, recurrent tumors become treatment refractory. Pathologically, Ewing sarcoma consists of small round basophilic cells with prominent nuclei marked by expression of surface protein CD99. Genetically, Ewing sarcoma is driven by a fusion oncoprotein that results from one of a small number of chromosomal translocations composed of a FET gene and a gene encoding an ETS family transcription factor, with ~85% of tumors expressing the EWSR1::FLI1 fusion. EWSR1::FLI1 regulates transcription, splicing, genome instability and other cellular functions. Although a tumor-specific target, EWSR1::FLI1-targeted therapy has yet to be developed, largely due to insufficient understanding of EWSR1::FLI1 upstream and downstream signaling, and the challenges in targeting transcription factors with small molecules. In this review, we summarize the contemporary molecular understanding of Ewing sarcoma, and the post-transcriptional and post-translational regulatory mechanisms that control EWSR1::FLI1 function.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian J. Davis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Mercher T. ETS Fight Club on Microsatellite Enhancers. Blood Cancer Discov 2023; 4:2-4. [PMID: 36538046 PMCID: PMC9816819 DOI: 10.1158/2643-3230.bcd-22-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this issue of Blood Cancer Discovery, Kodgule, Goldman, Monovichet al. cleverly analyzed the transcription regulatory elements to investigate why the second copy of ETV6 is often lost in ETV6::RUNX1-translocated in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). It turns out that ETV6 suppresses the enhancer activity of GGAA microsatellite repeats, preventing ERG from subverting them to activate aberrant oncogene transcription. See related article by Kodgule, Goldman, Monovich et al., p. 34 (5).
Collapse
Affiliation(s)
- Thomas Mercher
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, Program PEDIAC, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,Corresponding Author: Thomas Mercher, U1170, INSERM, 39 rue Camille Desmoulins, Paris 94800, France. Phone: 33-6-34-61-10-58; E-mail:
| |
Collapse
|
22
|
Bustos BI, Billingsley K, Blauwendraat C, Gibbs JR, Gan-Or Z, Krainc D, Singleton AB, Lubbe SJ, International Parkinson’s Disease Genomics Consortium (IPDGC). Genome-wide contribution of common short-tandem repeats to Parkinson's disease genetic risk. Brain 2023; 146:65-74. [PMID: 36347471 PMCID: PMC10060720 DOI: 10.1093/brain/awac301] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is a complex neurodegenerative disorder with a strong genetic component, for which most known disease-associated variants are single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels). DNA repetitive elements account for >50% of the human genome; however, little is known of their contribution to Parkinson's disease aetiology. While select short tandem repeats (STRs) within candidate genes have been studied in Parkinson's disease, their genome-wide contribution remains unknown. Here we present the first genome-wide association study of STRs in Parkinson's disease. Through a meta-analysis of 16 imputed genome-wide association study cohorts from the International Parkinson's Disease Genomic Consortium (IPDGC), totalling 39 087 individuals (16 642 cases and 22 445 controls of European ancestry), we identified 34 genome-wide significant STR loci (P < 5.34 × 10-6), with the strongest signal located in KANSL1 [chr17:44 205 351:[T]11, P = 3 × 10-39, odds ratio = 1.31 (95% confidence interval = 1.26-1.36)]. Conditional-joint analyses suggested that four significant STRs mapping nearby NDUFAF2, TRIML2, MIRNA-129-1 and NCOR1 were independent from known risk SNPs. Including STRs in heritability estimates increased the variance explained by SNPs alone. Gene expression analysis of STRs (eSTRs) in RNA sequencing data from 13 brain regions identified significant associations of STRs influencing the expression of multiple genes, including known Parkinson's disease genes. Further functional annotation of candidate STRs revealed that significant eSTRs within NUDFAF2 and ZSWIM7 overlap with regulatory features and are associated with change in the expression levels of nearby genes. Here, we show that STRs at known and novel candidate loci contribute to Parkinson's disease risk and have functional effects in disease-relevant tissues and pathways, supporting previously reported disease-associated genes and giving further evidence for their functional prioritization. These data represent a valuable resource for researchers currently dissecting Parkinson's disease risk loci.
Collapse
Affiliation(s)
- Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kimberley Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
23
|
Mo J, Tan K, Dong Y, Lu W, Liu F, Mei Y, Huang H, Zhao K, Lv Z, Ye Y, Tang Y. Therapeutic targeting the oncogenic driver EWSR1::FLI1 in Ewing sarcoma through inhibition of the FACT complex. Oncogene 2023; 42:11-25. [PMID: 36357572 DOI: 10.1038/s41388-022-02533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022]
Abstract
EWS/ETS fusion transcription factors, most commonly EWSR1::FLI1, drives initiation and progression of Ewing sarcoma (EwS). Even though direct targeting EWSR1::FLI1 is a formidable challenge, epigenetic/transcriptional modulators have been proved to be promising therapeutic targets for indirectly disrupting its expression and/or function. Here, we identified structure-specific recognition protein 1 (SSRP1), a subunit of the Facilitates Chromatin Transcription (FACT) complex, to be an essential tumor-dependent gene directly induced by EWSR1::FLI1 in EwS. The FACT-targeted drug CBL0137 exhibits potent therapeutic efficacy against multiple EwS preclinical models both in vitro and in vivo. Mechanistically, SSRP1 and EWSR1::FLI1 form oncogenic positive feedback loop via mutual transcriptional regulation and activation, and cooperatively promote cell cycle/DNA replication process and IGF1R-PI3K-AKT-mTOR pathway to drive EwS oncogenesis. The FACT inhibitor drug CBL0137 effectively targets the EWSR1::FLI1-FACT circuit, resulting in transcriptional disruption of EWSR1::FLI1, SSRP1 and their downstream effector oncogenic signatures. Our study illustrates a crucial role of the FACT complex in facilitating the expression and function of EWSR1::FLI1 and demonstrates FACT inhibition as a novel and effective epigenetic/transcriptional-targeted therapeutic strategy against EwS, providing preclinical support for adding EwS to CBL0137's future clinical trials.
Collapse
Affiliation(s)
- Jialin Mo
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China
| | - Yu Dong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenjie Lu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Fang Liu
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yanqing Mei
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hongting Huang
- Department of Hepatic Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Kewen Zhao
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China.
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yujie Tang
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
24
|
Rare tandem repeat expansions associate with genes involved in synaptic and neuronal signaling functions in schizophrenia. Mol Psychiatry 2023; 28:475-482. [PMID: 36380236 PMCID: PMC9812781 DOI: 10.1038/s41380-022-01857-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022]
Abstract
Tandem repeat expansions (TREs) are associated with over 60 monogenic disorders and have recently been implicated in complex disorders such as cancer and autism spectrum disorder. The role of TREs in schizophrenia is now emerging. In this study, we have performed a genome-wide investigation of TREs in schizophrenia. Using genome sequence data from 1154 Swedish schizophrenia cases and 934 ancestry-matched population controls, we have detected genome-wide rare (<0.1% population frequency) TREs that have motifs with a length of 2-20 base pairs. We find that the proportion of individuals carrying rare TREs is significantly higher in the schizophrenia group. There is a significantly higher burden of rare TREs in schizophrenia cases than in controls in genic regions, particularly in postsynaptic genes, in genes overlapping brain expression quantitative trait loci, and in brain-expressed genes that are differentially expressed between schizophrenia cases and controls. We demonstrate that TRE-associated genes are more constrained and primarily impact synaptic and neuronal signaling functions. These results have been replicated in an independent Canadian sample that consisted of 252 schizophrenia cases of European ancestry and 222 ancestry-matched controls. Our results support the involvement of rare TREs in schizophrenia etiology.
Collapse
|
25
|
Recurrent repeat expansions in human cancer genomes. Nature 2023; 613:96-102. [PMID: 36517591 DOI: 10.1038/s41586-022-05515-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2022] [Indexed: 12/16/2022]
Abstract
Expansion of a single repetitive DNA sequence, termed a tandem repeat (TR), is known to cause more than 50 diseases1,2. However, repeat expansions are often not explored beyond neurological and neurodegenerative disorders. In some cancers, mutations accumulate in short tracts of TRs, a phenomenon termed microsatellite instability; however, larger repeat expansions have not been systematically analysed in cancer3-8. Here we identified TR expansions in 2,622 cancer genomes spanning 29 cancer types. In seven cancer types, we found 160 recurrent repeat expansions (rREs), most of which (155/160) were subtype specific. We found that rREs were non-uniformly distributed in the genome with enrichment near candidate cis-regulatory elements, suggesting a potential role in gene regulation. One rRE, a GAAA-repeat expansion, located near a regulatory element in the first intron of UGT2B7 was detected in 34% of renal cell carcinoma samples and was validated by long-read DNA sequencing. Moreover, in preliminary experiments, treating cells that harbour this rRE with a GAAA-targeting molecule led to a dose-dependent decrease in cell proliferation. Overall, our results suggest that rREs may be an important but unexplored source of genetic variation in human cancer, and we provide a comprehensive catalogue for further study.
Collapse
|
26
|
Tan K, Mo J, Li M, Dong Y, Han Y, Sun X, Ma Y, Zhu K, Wu W, Lu L, Liu J, Zhao K, Zhang L, Tang Y, Lv Z. SMAD9-MYCN positive feedback loop represents a unique dependency for MYCN-amplified neuroblastoma. J Exp Clin Cancer Res 2022; 41:352. [PMID: 36539767 PMCID: PMC9764568 DOI: 10.1186/s13046-022-02563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor occurring during childhood and high-risk NB patients have a poor prognosis. The amplified MYCN gene serves as an important determinant of a high risk of NB. METHODS We performed an integrative screen using public NB tissue and cell line data, and identified that SMAD9 played an important role in high-risk NB. An investigation of the super-enhancers database (SEdb) and chromatin immunoprecipitation sequencing (ChIP-seq) dataset along with biological experiments of incorporating gene knockdown and CRISPR interference (CRISPRi) were performed to identify upstream regulatory mechanism of SMAD9. Gene knockdown and rescue, quantitative real-time PCR (Q-RT-PCR), cell titer Glo assays, colony formation assays, a subcutaneous xenograft model and immunohistochemistry were used to determine the functional role of SMAD9 in NB. An integrative analysis of ChIP-seq data with the validation of CRISPRi and dual-luciferase reporter assays and RNA sequencing (RNA-seq) data with Q-RT-PCR validation was conducted to analyze the downstream regulatory mechanism of SMAD9. RESULTS High expression of SMAD9 was specifically induced by the transcription factors including MYCN, PHOX2B, GATA3 and HAND2 at the enhancer region. Genetic suppression of SMAD9 inhibited MYCN-amplified NB cell proliferation and tumorigenicity both in vitro and in vivo. Further studies revealed that SMAD9 bound to the MYCN promoter and transcriptionally regulate MYCN expression, with MYCN reciprocally binding to the SMAD9 enhancer and transactivating SMAD9, thus forming a positive feedback loop along with the MYCN-associated cancer cell cycle. CONCLUSION This study delineates that SMAD9 forms a positive transcriptional feedback loop with MYCN and represents a unique tumor-dependency for MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Mo
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Li
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Dong
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Han
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Sun
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxuan Ma
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangbin Liu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kewen Zhao
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Tang
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
27
|
Orth MF, Surdez D, Faehling T, Ehlers AC, Marchetto A, Grossetête S, Volckmann R, Zwijnenburg DA, Gerke JS, Zaidi S, Alonso J, Sastre A, Baulande S, Sill M, Cidre-Aranaz F, Ohmura S, Kirchner T, Hauck SM, Reischl E, Gymrek M, Pfister SM, Strauch K, Koster J, Delattre O, Grünewald TGP. Systematic multi-omics cell line profiling uncovers principles of Ewing sarcoma fusion oncogene-mediated gene regulation. Cell Rep 2022; 41:111761. [PMID: 36476851 DOI: 10.1016/j.celrep.2022.111761] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown. The ESCLA shows hundreds of EWSR1-ETS-targets, the nature of EWSR1-ETS-preferred GGAA mSats, and putative indirect modes of EWSR1-ETS-mediated gene regulation, converging in the duality of a specific but plastic EwS signature. We identify heterogeneously regulated EWSR1-ETS-targets as potential prognostic EwS biomarkers. Our freely available ESCLA (http://r2platform.com/escla/) is a rich resource for EwS research and highlights the power of comprehensive datasets to unravel principles of heterogeneous gene regulation by chimeric transcription factors.
Collapse
Affiliation(s)
- Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Didier Surdez
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France; Balgrist University Hospital, Faculty of Medicine, University of Zürich, 8008 Zürich, Switzerland
| | - Tobias Faehling
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Anna C Ehlers
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Sandrine Grossetête
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Richard Volckmann
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Julia S Gerke
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Sakina Zaidi
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| | - Ana Sastre
- Unidad Hemato-oncología Pediátrica, Hospital Infantil Universitario La Paz, 28029 Madrid, Spain
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, 75005 Paris, France
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Shunya Ohmura
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, 80337 Munich, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Eva Reischl
- Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Melissa Gymrek
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Pediatric Hematology & Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Konstantin Strauch
- Institute of Medical Biometry, Epidemiology, and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Olivier Delattre
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Ewing Sarcoma as Secondary Malignant Neoplasm-Epidemiological and Clinical Analysis of an International Trial Registry. Cancers (Basel) 2022; 14:cancers14235935. [PMID: 36497417 PMCID: PMC9735743 DOI: 10.3390/cancers14235935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Ewing sarcoma (EwS) is the second most common bone and soft tissue tumor, affecting primarily adolescents and young adults. Patients with secondary EwS are excluded from risk stratification in several studies and therefore do not benefit from new therapies. More knowledge about patients with EwS as secondary malignant neoplasms (SMN) is needed to identify at-risk patients and adapt follow-up strategies. Epidemiology, clinical characteristics, and survival analyses of EwS as SMN were analyzed in 3844 patients treated in the last three consecutive international EwS trials, EICESS 92, Euro-E.W.I.N.G. 99, and EWING 2008. Forty-two cases of EwS as SMN (approximately 1.1% of all patients) were reported, preceded by a heterogeneous group of malignancies, mainly acute lymphoblastic leukemias (n = 7) and lymphomas (n = 7). Three cases of EwS as SMN occurred in the presumed radiation field of the primary tumor. The median age at diagnosis of EwS as SMN was 19.4 years (range, 5.9-72) compared with 10.8 years (range, 0.9-51.2) for primary EwS. The median interval between first malignancy and EwS diagnosis was 7.4 years. The 3-year overall survival (OS)/event-free survival (EFS) was 0.69 (SE = 0.09)/0.53 (SE = 0.10) for localized patients and 0.36 (SE = 0.13)/0.29 (SE = 0.12) for metastatic patients (OS: p = 0.02; EFS: p = 0.03). Survival in patients with EwS as SMN did not differ between hematologic or solid primary malignancies. EwS as SMN is rare; however, survival is similar to that of primary EwS, and its risk-adjusted treatment should be curative, especially in localized patients.
Collapse
|
29
|
Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: A review. Front Oncol 2022; 12:1044707. [PMID: 36505823 PMCID: PMC9727305 DOI: 10.3389/fonc.2022.1044707] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that despite clonal origins tumors eventually become complex communities comprised of phenotypically distinct cell subpopulations. This heterogeneity arises from both tumor cell intrinsic programs and signals from spatially and temporally dynamic microenvironments. While pediatric cancers usually lack the mutational burden of adult cancers, they still exhibit high levels of cellular heterogeneity that are largely mediated by epigenetic mechanisms. Ewing sarcomas are aggressive bone and soft tissue malignancies with peak incidence in adolescence and the prognosis for patients with relapsed and metastatic disease is dismal. Ewing sarcomas are driven by a single pathognomonic fusion between a FET protein and an ETS family transcription factor, the most common of which is EWS::FLI1. Despite sharing a single driver mutation, Ewing sarcoma cells demonstrate a high degree of transcriptional heterogeneity both between and within tumors. Recent studies have identified differential fusion protein activity as a key source of this heterogeneity which leads to profoundly different cellular phenotypes. Paradoxically, increased invasive and metastatic potential is associated with lower EWS::FLI1 activity. Here, we review what is currently understood about EWS::FLI1 activity, the cell autonomous and tumor microenvironmental factors that regulate it, and the downstream consequences of these activity states on tumor progression. We specifically highlight how transcription factor regulation, signaling pathway modulation, and the extracellular matrix intersect to create a complex network of tumor cell phenotypes. We propose that elucidation of the mechanisms by which these essential elements interact will enable the development of novel therapeutic approaches that are designed to target this complexity and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
30
|
Kaneva K, Schurr TG, Tatarinova TV, Buckley J, Merkurjev D, Triska P, Liu X, Done J, Maglinte DT, Deapen D, Hwang A, Schiffman JD, Triche TJ, Biegel JA, Gai X. Mitochondrial DNA haplogroup, genetic ancestry, and susceptibility to Ewing sarcoma. Mitochondrion 2022; 67:6-14. [PMID: 36115539 PMCID: PMC9997094 DOI: 10.1016/j.mito.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
Based on current studies, the incidence of Ewing sarcoma (ES) varies significantly by race and ethnicity, with the disease being most common in patients of European ancestry. However, race/ethnicity has generally been self-reported rather than formally evaluated at a population level using DNA evidence. Additionally, mitochondrial dysfunction is a hallmark of ES, yet there have been no reported studies of mitochondrial genetics in ES. Thus, we evaluated both the mitochondrial and nuclear ancestries of 420 pediatric ES patients in the United States using whole-genome sequencing. We found that the mitochondrial DNA (mtDNA) genomes of only six (1.4 %) patients belonged to African L haplogroups, while those of 90 % of the patients belonged to macrohaplogroup R, which includes haplogroup H, the most common maternal lineage in Europe. Compared to the general US population, European haplogroups were significantly enriched in ES patients (p < 2.2e-16) and the African haplogroups are significantly impoverished (p < 4.6e-16). Using the ancestry informative markers defined in a National Genographic study, the vast majority of patients exhibited significant nuclear ancestry originating from the Mediterranean, Northern Europe, and Southwest Asia, including all six patients with African L mtDNAs. Very few had primarily African nuclear ancestry. This is the first genomic epidemiology study to simultaneously interrogate the mitochondrial and nuclear ancestries of ES patients. While supporting previous findings of enriched European ancestry in ES patients, these results also suggest alternative hypotheses for the significant contribution of mitochondrial ancestry in ES patients, as well as the protective role of African ancestry.
Collapse
Affiliation(s)
- Kristiyana Kaneva
- Division of Hematology, Oncology, and Blood and Marrow Transplant Program, Children's Center for Cancer and Blood Diseases, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jonathan Buckley
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daria Merkurjev
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Petr Triska
- Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Xiyu Liu
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - James Done
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Dennis T Maglinte
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Dennis Deapen
- Cancer Surveillance Program, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amie Hwang
- Cancer Surveillance Program, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua D Schiffman
- Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; PEEL Therapeutics, Inc., Salt Lake City, UT, USA
| | - Timothy J Triche
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaclyn A Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Martinelli M, Mancarella C, Scapoli L, Palmieri A, De Sanctis P, Ferrari C, Pasello M, Zucchini C, Scotlandi K. Polymorphic variants of IGF2BP3 and SENCR have an impact on predisposition and/or progression of Ewing sarcoma. Front Oncol 2022; 12:968884. [PMID: 36338681 PMCID: PMC9634078 DOI: 10.3389/fonc.2022.968884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
Ewing sarcoma (EWS), the second most common malignant bone tumor in children and adolescents, occurs abruptly without clear evidence of tumor history or progression. Previous association studies have identified some inherited variants associated with the risk of developing EWS but a common picture of the germline susceptibility to this tumor remains largely unclear. Here, we examine the association between thirty single nucleotide polymorphisms (SNPs) of the IGF2BP3, a gene that codes for an oncofetal RNA-binding protein demonstrated to be important for EWS patient’s risk stratification, and five SNPs of SENCR, a long non-coding RNA shown to regulate IGF2BP3. An association between polymorphisms and EWS susceptibility was observed for three IGF2BP3 SNPs - rs112316332, rs13242065, rs12700421 - and for four SENCR SNPs - rs10893909, rs11221437, rs12420823, rs4526784 -. In addition, IGF2BP3 rs34033684 and SENCR rs10893909 variants increased the risk for female respect to male subgroup when carried together, while IGF2BP3 rs13242065 or rs76983703 variants reduced the probability of a disease later onset (> 14 years). Moreover, the absence of IGF2BP3 rs10488282 variant and the presence of rs199653 or rs35875486 variant were significantly associated with a worse survival in EWS patients with localized disease at diagnosis. Overall, our data provide the first evidence linking genetic variants of IGF2BP3 and its modulator SENCR to the risk of EWS development and to disease progression, thus supporting the concept that heritable factors can influence susceptibility to EWS and may help to predict patient prognosis.
Collapse
Affiliation(s)
- Marcella Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- *Correspondence: Marcella Martinelli, ; Katia Scotlandi,
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Scapoli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Annalisa Palmieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Paola De Sanctis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Ferrari
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Marcella Martinelli, ; Katia Scotlandi,
| |
Collapse
|
32
|
Abstract
Undifferentiated small round cell sarcomas (SRCSs) of bone and soft tissue comprise a heterogeneous group of highly aggressive tumours associated with a poor prognosis, especially in metastatic disease. SRCS entities mainly occur in the third decade of life and can exhibit striking disparities regarding preferentially affected sex and tumour localization. SRCSs comprise new entities defined by specific genetic abnormalities, namely EWSR1-non-ETS fusions, CIC-rearrangements or BCOR genetic alterations, as well as EWSR1-ETS fusions in the prototypic SRCS Ewing sarcoma. These gene fusions mainly encode aberrant oncogenic transcription factors that massively rewire the transcriptome and epigenome of the as yet unknown cell or cells of origin. Additional mutations or copy number variants are rare at diagnosis and, depending on the tumour entity, may involve TP53, CDKN2A and others. Histologically, these lesions consist of small round cells expressing variable levels of CD99 and specific marker proteins, including cyclin B3, ETV4, WT1, NKX3-1 and aggrecan, depending on the entity. Besides locoregional treatment that should follow standard protocols for sarcoma management, (neo)adjuvant treatment is as yet ill-defined but generally follows that of Ewing sarcoma and is associated with adverse effects that might compromise quality of life. Emerging studies on the molecular mechanisms of SRCSs and the development of genetically engineered animal models hold promise for improvements in early detection, disease monitoring, treatment-related toxicity, overall survival and quality of life.
Collapse
|
33
|
Fuest S, Post C, Balbach ST, Jabar S, Neumann I, Schimmelpfennig S, Sargin S, Nass E, Budde T, Kailayangiri S, Altvater B, Ranft A, Hartmann W, Dirksen U, Rössig C, Schwab A, Pethő Z. Relevance of Abnormal KCNN1 Expression and Osmotic Hypersensitivity in Ewing Sarcoma. Cancers (Basel) 2022; 14:4819. [PMID: 36230742 PMCID: PMC9564116 DOI: 10.3390/cancers14194819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
Ewing sarcoma (EwS) is a rare and highly malignant bone tumor occurring mainly in childhood and adolescence. Physiologically, the bone is a central hub for Ca2+ homeostasis, which is severely disturbed by osteolytic processes in EwS. Therefore, we aimed to investigate how ion transport proteins involved in Ca2+ homeostasis affect EwS pathophysiology. We characterized the expression of 22 candidate genes of Ca2+-permeable or Ca2+-regulated ion channels in three EwS cell lines and found the Ca2+-activated K+ channel KCa2.1 (KCNN1) to be exceptionally highly expressed. We revealed that KCNN1 expression is directly regulated by the disease-driving oncoprotein EWSR1-FL1. Due to its consistent overexpression in EwS, KCNN1 mRNA could be a prognostic marker in EwS. In a large cohort of EwS patients, however, KCNN1 mRNA quantity does not correlate with clinical parameters. Several functional studies including patch clamp electrophysiology revealed no evidence for KCa2.1 function in EwS cells. Thus, elevated KCNN1 expression is not translated to KCa2.1 channel activity in EwS cells. However, we found that the low K+ conductance of EwS cells renders them susceptible to hypoosmotic solutions. The absence of a relevant K+ conductance in EwS thereby provides an opportunity for hypoosmotic therapy that can be exploited during tumor surgery.
Collapse
Affiliation(s)
- Sebastian Fuest
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| | - Christoph Post
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| | - Sebastian T Balbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Susanne Jabar
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Ilka Neumann
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| | | | - Sarah Sargin
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| | - Elke Nass
- Institute of Physiology I, University Münster, 48149 Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, University Münster, 48149 Münster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Andreas Ranft
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Münster, 48149 Münster, Germany
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Claudia Rössig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| |
Collapse
|
34
|
Kim MS, Lee WS, Lee H, Jin W. TrkC, a novel prognostic marker, induces and maintains cell survival and metastatic dissemination of Ewing sarcoma by inhibiting EWSR1-FLI1 degradation. Cell Death Dis 2022; 13:836. [PMID: 36171207 PMCID: PMC9519565 DOI: 10.1038/s41419-022-05275-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/23/2023]
Abstract
Upregulation of EWSR1-FLI1 expression has been associated with invasiveness, induced cell survival, metastatic dissemination, and acquisition of self-renewal traits in Ewing sarcoma (ES). Although existing evidence implies that TrkC expression is linked to the pathogenesis of other cancer types, its role and the mechanism behind its correlation with EWSR1-FLI1 in the pathogenesis of ES remain unclear. In this study, we uncovered a novel physiological role of TrkC as a key regulator of EWSR1-FLI1 involved in the survival and metastatic dissemination of ES. TrkC was observed to be frequently overexpressed in human metastatic ES cells in vitro and in vivo, facilitating enhanced survival, tumorigenicity, and metastasis of ES cells. TrkC-mediated metastasis of ES cells was induced by the inhibition of the proteasomal degradation of EWSR1-FLI1 via the TrkC/EWSR1-FLI1 complex, which subsequently enabled the induction of the target proteins, EGR2 and NKX2.2. Moreover, TrkC significantly inhibited tumor suppressor activity of TGF-β through reduction of the mRNA expression of one of its receptors, TGFBR2 via TrkC-induced stabilization of EWSR1-FLI1. Furthermore, loss of TrkC expression inhibited tumor growth and metastasis in experimental mouse models. This study is the first to report the involvement and functional role of TrkC in the pathogenesis of ES, suggesting important implications for understanding the alterations of TrkC in Ewing tumors.
Collapse
Affiliation(s)
- Min Soo Kim
- grid.256155.00000 0004 0647 2973Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999 Republic of Korea
| | - Won Sung Lee
- grid.256155.00000 0004 0647 2973Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999 Republic of Korea
| | - Hanki Lee
- grid.410898.c0000 0001 2339 0388Graduate School of Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Gyeonggi-do 17058 Republic of Korea
| | - Wook Jin
- grid.256155.00000 0004 0647 2973Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999 Republic of Korea
| |
Collapse
|
35
|
Showpnil IA, Selich-Anderson J, Taslim C, Boone MA, Crow JC, Theisen ER, Lessnick SL. EWS/FLI mediated reprogramming of 3D chromatin promotes an altered transcriptional state in Ewing sarcoma. Nucleic Acids Res 2022; 50:9814-9837. [PMID: 36124657 PMCID: PMC9508825 DOI: 10.1093/nar/gkac747] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022] Open
Abstract
Ewing sarcoma is a prototypical fusion transcription factor-associated pediatric cancer that expresses EWS/FLI or a highly related FET/ETS chimera. EWS/FLI dysregulates transcription to induce and maintain sarcomagenesis, but the mechanisms utilized are not fully understood. We therefore sought to define the global effects of EWS/FLI on chromatin conformation and transcription in Ewing sarcoma cells using a well-validated ‘knock-down/rescue’ model of EWS/FLI function in combination with next generation sequencing assays to evaluate how the chromatin landscape changes with loss, and recovery, of EWS/FLI expression. We found that EWS/FLI (and EWS/ERG) genomic localization is largely conserved across multiple patient-derived Ewing sarcoma cell lines. This EWS/FLI binding signature is associated with establishment of topologically-associated domain (TAD) boundaries, compartment activation, enhancer-promoter looping that involve both intra- and inter-TAD interactions, and gene activation. In addition, EWS/FLI co-localizes with the loop-extrusion factor cohesin to promote chromatin loops and TAD boundaries. Importantly, local chromatin features provide the basis for transcriptional heterogeneity in regulation of direct EWS/FLI target genes across different Ewing sarcoma cell lines. These data demonstrate a key role of EWS/FLI in mediating genome-wide changes in chromatin configuration and support the notion that fusion transcription factors serve as master regulators of three-dimensional reprogramming of chromatin.
Collapse
Affiliation(s)
- Iftekhar A Showpnil
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Megann A Boone
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Jesse C Crow
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Emily R Theisen
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA.,Division of Pediatric Heme/Onc/BMT, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Shulman DS, Whittle SB, Surdez D, Bailey KM, de Álava E, Yustein JT, Shlien A, Hayashi M, Bishop AJR, Crompton BD, DuBois SG, Shukla N, Leavey PJ, Lessnick SL, Kovar H, Delattre O, Grünewald TGP, Antonescu CR, Roberts RD, Toretsky JA, Tirode F, Gorlick R, Janeway KA, Reed D, Lawlor ER, Grohar PJ. An international working group consensus report for the prioritization of molecular biomarkers for Ewing sarcoma. NPJ Precis Oncol 2022; 6:65. [PMID: 36115869 PMCID: PMC9482616 DOI: 10.1038/s41698-022-00307-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
The advent of dose intensified interval compressed therapy has improved event-free survival for patients with localized Ewing sarcoma (EwS) to 78% at 5 years. However, nearly a quarter of patients with localized tumors and 60-80% of patients with metastatic tumors suffer relapse and die of disease. In addition, those who survive are often left with debilitating late effects. Clinical features aside from stage have proven inadequate to meaningfully classify patients for risk-stratified therapy. Therefore, there is a critical need to develop approaches to risk stratify patients with EwS based on molecular features. Over the past decade, new technology has enabled the study of multiple molecular biomarkers in EwS. Preliminary evidence requiring validation supports copy number changes, and loss of function mutations in tumor suppressor genes as biomarkers of outcome in EwS. Initial studies of circulating tumor DNA demonstrated that diagnostic ctDNA burden and ctDNA clearance during induction are also associated with outcome. In addition, fusion partner should be a pre-requisite for enrollment on EwS clinical trials, and the fusion type and structure require further study to determine prognostic impact. These emerging biomarkers represent a new horizon in our understanding of disease risk and will enable future efforts to develop risk-adapted treatment.
Collapse
Affiliation(s)
- David S Shulman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Sarah B Whittle
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Didier Surdez
- Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Kelly M Bailey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC/Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Center and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX, USA
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology/Department of Paediatric Laboratory Medicine/Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute and Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrick J Leavey
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, and the Division of Pediatric Heme/Onc/BMT, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Heinrich Kovar
- St. Anna Children´s Cancer Research Institute (CCRI) and Department Pediatrics Medical University of Vienna, Vienna, Austria
| | - Olivier Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg/Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)/Institut of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disease, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC, USA
| | - Franck Tirode
- Univ Lyon, Universite Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008, Lyon, France
| | - Richard Gorlick
- Division of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Damon Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL, USA
| | - Elizabeth R Lawlor
- Seattle Children's Research Institute, University of Washington Medical School, Seattle, WA, USA
| | - Patrick J Grohar
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Germline predisposition to pediatric Ewing sarcoma is characterized by inherited pathogenic variants in DNA damage repair genes. Am J Hum Genet 2022; 109:1026-1037. [PMID: 35512711 PMCID: PMC9247831 DOI: 10.1016/j.ajhg.2022.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
More knowledge is needed regarding germline predisposition to Ewing sarcoma to inform biological investigation and clinical practice. Here, we evaluated the enrichment of pathogenic germline variants in Ewing sarcoma relative to other pediatric sarcoma subtypes, as well as patterns of inheritance of these variants. We carried out European-focused and pan-ancestry case-control analyses to screen for enrichment of pathogenic germline variants in 141 established cancer predisposition genes in 1,147 individuals with pediatric sarcoma diagnoses (226 Ewing sarcoma, 438 osteosarcoma, 180 rhabdomyosarcoma, and 303 other sarcoma) relative to identically processed cancer-free control individuals. Findings in Ewing sarcoma were validated with an additional cohort of 430 individuals, and a subset of 301 Ewing sarcoma parent-proband trios was analyzed for inheritance patterns of identified pathogenic variants. A distinct pattern of pathogenic germline variants was seen in Ewing sarcoma relative to other sarcoma subtypes. FANCC was the only gene with an enrichment signal for heterozygous pathogenic variants in the European Ewing sarcoma discovery cohort (three individuals, OR 12.6, 95% CI 3.0–43.2, p = 0.003, FDR = 0.40). This enrichment in FANCC heterozygous pathogenic variants was again observed in the European Ewing sarcoma validation cohort (three individuals, OR 7.0, 95% CI 1.7–23.6, p = 0.014), representing a broader importance of genes involved in DNA damage repair, which were also nominally enriched in individuals with Ewing sarcoma. Pathogenic variants in DNA damage repair genes were acquired through autosomal inheritance. Our study provides new insight into germline risk factors contributing to Ewing sarcoma pathogenesis.
Collapse
|
38
|
Buchou C, Laud-Duval K, van der Ent W, Grossetête S, Zaidi S, Gentric G, Corbé M, Müller K, Del Nery E, Surdez D, Delattre O. Upregulation of the Mevalonate Pathway through EWSR1-FLI1/EGR2 Regulatory Axis Confers Ewing Cells Exquisite Sensitivity to Statins. Cancers (Basel) 2022; 14:2327. [PMID: 35565457 PMCID: PMC9100622 DOI: 10.3390/cancers14092327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Ewing sarcoma (EwS) is an aggressive primary bone cancer in children and young adults characterized by oncogenic fusions between genes encoding FET-RNA-binding proteins and ETS transcription factors, the most frequent fusion being EWSR1-FLI1. We show that EGR2, an Ewing-susceptibility gene and an essential direct target of EWSR1-FLI1, directly regulates the transcription of genes encoding key enzymes of the mevalonate (MVA) pathway. Consequently, Ewing sarcoma is one of the tumors that expresses the highest levels of mevalonate pathway genes. Moreover, genome-wide screens indicate that MVA pathway genes constitute major dependencies of Ewing cells. Accordingly, the statin inhibitors of HMG-CoA-reductase, a rate-limiting enzyme of the MVA pathway, demonstrate cytotoxicity in EwS. Statins induce increased ROS and lipid peroxidation levels, as well as decreased membrane localization of prenylated proteins, such as small GTP proteins. These metabolic effects lead to an alteration in the dynamics of S-phase progression and to apoptosis. Statin-induced effects can be rescued by downstream products of the MVA pathway. Finally, we further show that statins impair tumor growth in different Ewing PDX models. Altogether, the data show that statins, which are off-patent, well-tolerated, and inexpensive compounds, should be strongly considered in the therapeutic arsenal against this deadly childhood disease.
Collapse
Affiliation(s)
- Charlie Buchou
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Karine Laud-Duval
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Wietske van der Ent
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Sandrine Grossetête
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Géraldine Gentric
- INSERM U830, Équipe Labellisée LNCC, Stress and Cancer Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France;
| | - Maxime Corbé
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Kévin Müller
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Elaine Del Nery
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
- Balgrist University Hospital, University of Zurich, Zurich, Forchstrasse 340, 8008 Zürich, Switzerland
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| |
Collapse
|
39
|
Chakravarty D, Johnson A, Sklar J, Lindeman NI, Moore K, Ganesan S, Lovly CM, Perlmutter J, Gray SW, Hwang J, Lieu C, André F, Azad N, Borad M, Tafe L, Messersmith H, Robson M, Meric-Bernstam F. Somatic Genomic Testing in Patients With Metastatic or Advanced Cancer: ASCO Provisional Clinical Opinion. J Clin Oncol 2022; 40:1231-1258. [PMID: 35175857 DOI: 10.1200/jco.21.02767] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE An ASCO provisional clinical opinion offers timely clinical direction to ASCO's membership following publication or presentation of potentially practice-changing data from major studies. This provisional clinical opinion addresses the appropriate use of tumor genomic testing in patients with metastatic or advanced solid tumors. CLINICAL CONTEXT An increasing number of therapies are approved to treat cancers harboring specific genomic biomarkers. However, there is a lack of clarity as to when tumor genomic sequencing should be ordered, what type of assays should be performed, and how to interpret the results for treatment selection. PROVISIONAL CLINICAL OPINION Patients with metastatic or advanced cancer should undergo genomic sequencing in a certified laboratory if the presence of one or more specific genomic alterations has regulatory approval as biomarkers to guide the use of or exclusion from certain treatments for their disease. Multigene panel-based assays should be used if more than one biomarker-linked therapy is approved for the patient's disease. Site-agnostic approvals for any cancer with a high tumor mutation burden, mismatch repair deficiency, or neurotrophic tyrosine receptor kinase (NTRK) fusions provide a rationale for genomic testing for all solid tumors. Multigene testing may also assist in treatment selection by identifying additional targets when there are few or no genotype-based therapy approvals for the patient's disease. For treatment planning, the clinician should consider the functional impact of the targeted alteration and expected efficacy of genomic biomarker-linked options relative to other approved or investigational treatments.Additional information is available at www.asco.org/assays-and-predictive-markers-guidelines.
Collapse
Affiliation(s)
| | | | | | - Neal I Lindeman
- Brigham and Womens' Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | - Fabrice André
- PRISM, Precision Medicine Center, Institut Gustave Roussy, Villejuif, France
| | | | | | - Laura Tafe
- Dartmouth-Hitchcock Medical Center and The Geisel School of Medicine at Dartmouth, Darmouth, NH
| | | | - Mark Robson
- Memorial Sloan Kettering Cancer Center, New York City, NY
| | | |
Collapse
|
40
|
de Campos Vieira Abib S, Chui CH, Cox S, Abdelhafeez AH, Fernandez-Pineda I, Elgendy A, Karpelowsky J, Lobos P, Wijnen M, Fuchs J, Hayes A, Gerstle JT. International Society of Paediatric Surgical Oncology (IPSO) Surgical Practice Guidelines. Ecancermedicalscience 2022; 16:1356. [PMID: 35510137 PMCID: PMC9023308 DOI: 10.3332/ecancer.2022.1356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 12/14/2022] Open
Abstract
Most children with tumors will require one or more surgical interventions as part of the care and treatment, including making a diagnosis, obtaining adequate venous access, performing a surgical resection for solid tumors (with staging and reconstruction), performing procedures for cancer prevention and its late effects, and managing complications of treatment; all with the goal of improving survival and quality of life. It is important for surgeons to adhere to sound pediatric surgical oncology principles, as they are closely associated with improved local control and survival. Unfortunately, there is a significant disparity in survival rates in low and middle income countries, when compared to those from high income countries. The International Society of Paediatric Surgical Oncology (IPSO) is the leading organization that deals with pediatric surgical oncology worldwide. This organization allows experts in the field from around the globe to gather and address the surgical needs of children with cancer. IPSO has been invited to contribute surgical guidance as part of the World Health Organization Initiative for Childhood Cancer. One of our goals is to provide surgical guidance for different scenarios, including those experienced in High- (HICs) and Low- and Middle-Income Countries (LMICs). With this in mind, the following guidelines have been developed by authors from both HICs and LMICs. These have been further validated by experts with the aim of providing evidence-based information for surgeons who care for children with cancer. We hope that this initiative will benefit children worldwide in the best way possible. Simone Abib, IPSO President Justin T Gerstle, IPSO Education Committee Chair Chan Hon Chui, IPSO Secretary.
Collapse
Affiliation(s)
- Simone de Campos Vieira Abib
- Pediatric Oncology Institute, GRAACC, Federal University of São Paulo, Rua Pedro de Toledo, 572 - Vila Clementino, São Paulo, SP 04021-001, Brazil
| | - Chan Hon Chui
- Surgery Centre for Children, Mount Elizabeth Medical Centre, 3 Mount Elizabeth, 228510, Singapore
| | - Sharon Cox
- Division of Paediatric Surgery, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
| | - Abdelhafeez H Abdelhafeez
- Department of Surgery, St Jude Research Hospital 262 Danny Thomas Place. MS133, Memphis, TN 38105, USA
| | - Israel Fernandez-Pineda
- Department of Pediatric Surgery, Virgen del Rocio Children’s Hospital, Av Manuel Siurot S/NN, Sevilla 41013, Spain
| | - Ahmed Elgendy
- Surgical Oncology Unit, Faculty of Medicine, Tanta University, Elgiesh Street, 31111, Tanta, Gharbeya, Egypt
| | - Jonathan Karpelowsky
- Department of Paediatric Surgery, Children’s Hospital at Westmead, Westmead NSW 2145, Australia
| | - Pablo Lobos
- Pediatric Surgery Division, Hospital Italiano de Buenos Aires, Andrés Lamas 812, Buenos Aires 1406, Argentina
| | - Marc Wijnen
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, Huispostnummer KE 01.129.2, Postbus 85090, Utretcht 3508AB, The Netherlands
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University of Tuebingen, Hoppe-Seyler-Str. 3, Tübingen 72076, Germany
| | - Andrea Hayes
- Department of Surgery, Howard University Hospital, 1851 9th Street NW, 4th Floor, Washington, DC 20059, USA
| | - Justin T Gerstle
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
41
|
Systemic Treatment of Ewing Sarcoma: Current Options and Future Perspectives. FORUM OF CLINICAL ONCOLOGY 2022. [DOI: 10.2478/fco-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Ewing sarcoma (ES) is an uncommon malignant neoplasm, mostly affecting young adults and adolescents. Surgical excision, irradiation, and combinations of multiple chemotherapeutic agents are currently used as a multimodal strategy for the treatment of local and oligometastatic disease. Although ES usually responds to the primary treatment, relapsed and primarily refractory disease remains a difficult therapeutic challenge. The growing understanding of cancer biology and the subsequent development of new therapeutic strategies have been put at the service of research in recurrent and refractory ES, generating a great number of ongoing studies with compounds that could find superior clinical outcomes in the years to come. This review gathers the current available information on the treatment and clinical investigation of ES and aims to be a point of support for future research.
Collapse
|
42
|
Pfister SM, Reyes-Múgica M, Chan JKC, Hasle H, Lazar AJ, Rossi S, Ferrari A, Jarzembowski JA, Pritchard-Jones K, Hill DA, Jacques TS, Wesseling P, López Terrada DH, von Deimling A, Kratz CP, Cree IA, Alaggio R. A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era. Cancer Discov 2022; 12:331-355. [PMID: 34921008 PMCID: PMC9401511 DOI: 10.1158/2159-8290.cd-21-1094] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023]
Abstract
Pediatric tumors are uncommon, yet are the leading cause of cancer-related death in childhood. Tumor types, molecular characteristics, and pathogenesis are unique, often originating from a single genetic driver event. The specific diagnostic challenges of childhood tumors led to the development of the first World Health Organization (WHO) Classification of Pediatric Tumors. The classification is rooted in a multilayered approach, incorporating morphology, IHC, and molecular characteristics. The volume is organized according to organ sites and provides a single, state-of-the-art compendium of pediatric tumor types. A special emphasis was placed on "blastomas," which variably recapitulate the morphologic maturation of organs from which they originate. SIGNIFICANCE: In this review, we briefly summarize the main features and updates of each chapter of the inaugural WHO Classification of Pediatric Tumors, including its rapid transition from a mostly microscopic into a molecularly driven classification systematically taking recent discoveries in pediatric tumor genomics into account.
Collapse
Affiliation(s)
- Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Miguel Reyes-Múgica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR China
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Jason A Jarzembowski
- Department of Pathology, Children's Wisconsin and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - D Ashley Hill
- Department of Pathology, Children's National Hospital, Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Thomas S Jacques
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Pieter Wesseling
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands
| | - Dolores H López Terrada
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ian A Cree
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
43
|
RNA-Seq for the detection of gene fusions in solid tumors: development and validation of the JAX FusionSeq™ 2.0 assay. J Mol Med (Berl) 2022; 100:323-335. [PMID: 35013752 DOI: 10.1007/s00109-021-02149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
Whole transcriptome sequencing (RNA-Seq) has gained prominence for the detection of fusions in solid tumors. Here, we describe the development and validation of an in-house RNA-Seq-based test system (FusionSeq™ 2.0) for the detection of clinically actionable gene fusions, in formalin-fixed paraffin-embedded (FFPE) specimens, using seventy tumor samples with varying fusion status. Conditions were optimized for RNA input of 50 ng, shown to be adequate to call known fusions at as low as 20% neoplastic content. Evaluation of assay performance between FFPE and fresh-frozen (FF) tissues exhibited little to no difference in fusion calling capability. Performance analysis of the assay validation data determined 100% accuracy, sensitivity, specificity, and reproducibility. This clinically developed and validated RNA-Seq-based approach for fusion detection in FPPE samples was shown to be on par if not superior to off-the-shelf commercially offered assays. With gene fusions implicated in a variety of cancer types, offering high-quality, low-cost molecular testing services for FFPE specimens will serve to best benefit the patient and the advancement of precision medicine in molecular oncology. KEY MESSAGES: A custom RNA-Seq-based test system (FusionSeq™ 2.0) for the detection of clinically actionable gene fusions, Evaluation of assay performance between FFPE and fresh-frozen (FF) tissues exhibited little to no difference in fusion calling capability. The assay can be performed with low RNA input and neoplastic content. Performance characteristics of the assay validation data determined 100% accuracy, sensitivity, specificity, and reproducibility.
Collapse
|
44
|
Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol 2021; 31:100404. [PMID: 34976713 PMCID: PMC8686064 DOI: 10.1016/j.jbo.2021.100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
EWS/FLI is the defining mutation of Ewing sarcoma. This oncogene drives malignant transformation and progression and occurs in a genetic background characterized by few other recurrent cooperating mutations. In addition, the tumor is absolutely dependent on the continued expression of EWS/FLI to maintain the malignant phenotype. However, EWS/FLI is a transcription factor and therefore a challenging drug target. The difficulty of directly targeting EWS/FLI stems from unique features of this fusion protein as well as the network of interacting proteins required to execute the transcriptional program. This network includes interacting proteins as well as upstream and downstream effectors that together reprogram the epigenome and transcriptome. While the vast number of proteins involved in this process challenge the development of a highly specific inhibitors, they also yield numerous therapeutic opportunities. In this report, we will review how this vast EWS-FLI transcriptional network has been exploited over the last two decades to identify compounds that directly target EWS/FLI and/or associated vulnerabilities.
Collapse
Affiliation(s)
- Guillermo Flores
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, USA
| | - Patrick J Grohar
- Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3501 Civic Center Blvd., Philadelphia, PA, USA
| |
Collapse
|
45
|
Dai KN, Li AB. An Efficient Nomogram to Predict Overall Survival of Patients with Pediatric Ewing's Sarcoma: A Population-Based Study. Int J Gen Med 2021; 14:6101-6109. [PMID: 34611425 PMCID: PMC8485920 DOI: 10.2147/ijgm.s324163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Background The objective of our study was to develop and validate a nomogram to predict the overall survival (OS) of patients with pediatric Ewing’s sarcoma (PES). Methods Age, gender, race, tumor stage, tumor size, tumor site, treatment method, and survival time were collected from patients diagnosed with PES between 2004 and 2016 from the Surveillance, Epidemiology, and End Results (SEER) database. A total of 772 patients were randomly allocated to a training dataset (n = 579) and a validation dataset (n = 193). Then, univariate and multivariate analyses were performed to determine the prognostic effect of the selected variables. A nomogram was constructed to estimate the OS and it was further assessed using the concordance index (C-index), calibration curves, and receiver operating characteristic (ROC). Results Age, race, tumor size, and tumor stage were included in the nomogram. The C-index was 0.77 in the OS for the training dataset. The C-index for the validation dataset of the OS prediction was 0.75. Calibration plots and ROC curves showed excellent predictive accuracy. Conclusion Age, race, tumor stage, and tumor size were independent prognostic factors for patients with PES. The nomogram showed an accurate and reliable prognostic performance for PES patients.
Collapse
Affiliation(s)
- Ke-Na Dai
- Department of Pediatrics; Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315040, People's Republic of China
| | - A-Bing Li
- Department of Orthopedics, Ningbo Yinzhou Second Hospital, Ningbo, 315100, Zhejiang, People's Republic of China
| |
Collapse
|
46
|
Li J, Ohmura S, Marchetto A, Orth MF, Imle R, Dallmayer M, Musa J, Knott MML, Hölting TLB, Stein S, Funk CM, Sastre A, Alonso J, Bestvater F, Kasan M, Romero-Pérez L, Hartmann W, Ranft A, Banito A, Dirksen U, Kirchner T, Cidre-Aranaz F, Grünewald TGP. Therapeutic targeting of the PLK1-PRC1-axis triggers cell death in genomically silent childhood cancer. Nat Commun 2021; 12:5356. [PMID: 34531368 PMCID: PMC8445938 DOI: 10.1038/s41467-021-25553-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer1. Yet, many childhood cancers, such as Ewing sarcoma (EwS), feature remarkably 'silent' genomes with minimal CIN2. Here, we show in the EwS model how uncoupling of mitosis and cytokinesis via targeting protein regulator of cytokinesis 1 (PRC1) or its activating polo-like kinase 1 (PLK1) can be employed to induce fatal genomic instability and tumor regression. We find that the EwS-specific oncogenic transcription factor EWSR1-FLI1 hijacks PRC1, which physiologically safeguards controlled cell division, through binding to a proximal enhancer-like GGAA-microsatellite, thereby promoting tumor growth and poor clinical outcome. Via integration of transcriptome-profiling and functional in vitro and in vivo experiments including CRISPR-mediated enhancer editing, we discover that high PRC1 expression creates a therapeutic vulnerability toward PLK1 inhibition that can repress even chemo-resistant EwS cells by triggering mitotic catastrophe.Collectively, our results exemplify how aberrant PRC1 activation by a dominant oncogene can confer malignancy but provide opportunities for targeted therapy, and identify PRC1 expression as an important determinant to predict the efficacy of PLK1 inhibitors being used in clinical trials.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Child
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Kaplan-Meier Estimate
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- RNAi Therapeutics/methods
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/therapy
- Signal Transduction/genetics
- Xenograft Model Antitumor Assays/methods
- Polo-Like Kinase 1
- Mice
Collapse
Affiliation(s)
- Jing Li
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Roland Imle
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Soft tissue sarcoma Junior Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Pediatric Surgery, Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Marlene Dallmayer
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Julian Musa
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefanie Stein
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Cornelius M Funk
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Ana Sastre
- Unidad Hemato-oncología Pediátrica, Hospital Infantil Universitario La Paz, Madrid, Spain
| | - Javier Alonso
- Pediatric Solid Tumour Laboratory, Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Felix Bestvater
- Light Microscopy Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Merve Kasan
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute for Pathology, University Hospital Münster, Münster, Germany
| | - Andreas Ranft
- Pediatrics III, AYA Unit, West German Cancer Centre, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, Essen, Germany
| | - Ana Banito
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Soft tissue sarcoma Junior Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Uta Dirksen
- Pediatrics III, AYA Unit, West German Cancer Centre, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, Essen, Germany
| | - Thomas Kirchner
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
47
|
Lin Z, Wu Z, Luo W. Chimeric Antigen Receptor T-Cell Therapy: The Light of Day for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13174469. [PMID: 34503279 PMCID: PMC8431424 DOI: 10.3390/cancers13174469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary As a novel immunotherapy, chimeric antigen receptor (CAR) T-cell therapy has achieved encouraging results in leukemia and lymphoma. Furthermore, CAR-T cells have been explored in the treatment of osteosarcoma (OS). However, there is no strong comprehensive evidence to support their efficacy. Therefore, we reviewed the current evidence on CAR-T cells for OS to demonstrate their feasibility and provide new options for the treatment of OS. Abstract Osteosarcoma (OS) is the most common malignant bone tumor, arising mainly in children and adolescents. With the introduction of multiagent chemotherapy, the treatments of OS have remarkably improved, but the prognosis for patients with metastases is still poor, with a five-year survival rate of 20%. In addition, adverse effects brought by traditional treatments, including radical surgery and systemic chemotherapy, may seriously affect the survival quality of patients. Therefore, new treatments for OS await exploitation. As a novel immunotherapy, chimeric antigen receptor (CAR) T-cell therapy has achieved encouraging results in treating cancer in recent years, especially in leukemia and lymphoma. Furthermore, researchers have recently focused on CAR-T therapy in solid tumors, including OS. In this review, we summarize the safety, specificity, and clinical transformation of the targets in treating OS and point out the direction for further research.
Collapse
|
48
|
Sole A, Grossetête S, Heintzé M, Babin L, Zaïdi S, Revy P, Renouf B, De Cian A, Giovannangeli C, Pierre-Eugène C, Janoueix-Lerosey I, Couronné L, Kaltenbach S, Tomishima M, Jasin M, Grünewald TGP, Delattre O, Surdez D, Brunet E. Unraveling Ewing sarcoma tumorigenesis originating from patient-derived Mesenchymal Stem Cells. Cancer Res 2021; 81:4994-5006. [PMID: 34341072 DOI: 10.1158/0008-5472.can-20-3837] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/04/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023]
Abstract
Ewing sarcoma (EwS) is characterized by pathognomonic translocations, most frequently fusing EWSR1 with FLI1. An estimated 30% of EwS tumors also display genetic alterations in STAG2, TP53, or CDKN2A (SPC). Numerous attempts to develop relevant EwS models from primary human cells have been unsuccessful in faithfully recapitulating the phenotypic, transcriptomic and epigenetic features of EwS. In this study, by engineering the t(11;22)(q24;q12) translocation together with a combination of SPC mutations, we generated a wide collection of immortalized cells (EWIma cells) tolerating EWSR1-FLI1 expression from primary mesenchymal stem cells (MSC) derived from an EwS patient. Within this model, SPC alterations strongly favored EwS oncogenicity. Xenograft experiments with independent EWIma cells induced tumors and metastases in mice, which displayed bona fide features of EwS. EWIma cells presented balanced but also more complex translocation profiles mimicking chromoplexy, which is frequently observed in EwS and other cancers. Collectively, these results demonstrate that bone marrow-derived MSCs are a source of origin for EwS and also provide original experimental models to investigate Ewing sarcomagenesis.
Collapse
Affiliation(s)
- Anna Sole
- Laboratory of Genome Dynamics in the Immune System,INSERM, UMR 1163, Imagine Institute for Genetic Diseases
| | | | - Maxime Heintzé
- Laboratory of Genome Dynamics in the Immune System,INSERM, UMR 1163, Imagine Institute for Genetic Diseases
| | | | | | | | | | - Anne De Cian
- INSERM U1154, Museum National d'Histoire Naturelle
| | | | | | | | | | - Sophie Kaltenbach
- Cytogenetics, H�'pital Necker - Enfants Malades, Assistance Publique - H�'pitaux de Paris (AP-HP), Université Paris Descartes Sorbonne Cité
| | | | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
| | - Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center
| | - Olivier Delattre
- Genetics and biology of pediatric tumors, Institut Curie - Centre de Recherche
| | - Didier Surdez
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Institute Curie
| | - Erika Brunet
- Laboratory of Genome Dynamics in the Immune System,INSERM, UMR 1163, Imagine Institute for Genetic Diseases
| |
Collapse
|
49
|
Tanaka M, Nakamura T. Modeling fusion gene-associated sarcoma: Advantages for understanding sarcoma biology and pathology. Pathol Int 2021; 71:643-654. [PMID: 34265156 DOI: 10.1111/pin.13142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Disease-specific gene fusions are reportedly major driver mutations in approximately 30% of bone and soft tissue sarcomas. Most fusion genes encode transcription factors or co-factors that regulate downstream target genes, altering cell growth, lineage commitment, and differentiation. Given the limitations of investigating their functions in vitro, the generation of mouse models expressing fusion genes in the appropriate cellular lineages is pivotal. Therefore, we generated a series of mouse models by introducing fusion genes into embryonic mesenchymal progenitors. This review describes mouse models of Ewing, synovial, alveolar soft part, and CIC-rearranged sarcomas. Furthermore, we describe the similarities between these models and their human counterparts. These models provide remarkable advantages to identify cells-of-origin, specific collaborators of fusion genes, angiogenesis key factors, or diagnostic biomarkers. Finally, we discuss the relationship between fusion proteins and the epigenetic background as well as the possible role of the super-enhancers.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
50
|
Tzanakakis GN, Giatagana EM, Berdiaki A, Spyridaki I, Hida K, Neagu M, Tsatsakis AM, Nikitovic D. The Role of IGF/IGF-IR-Signaling and Extracellular Matrix Effectors in Bone Sarcoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13102478. [PMID: 34069554 PMCID: PMC8160938 DOI: 10.3390/cancers13102478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bone sarcomas are mesenchymal origin tumors. Bone sarcoma patients show a variable response or do not respond to chemotherapy. Notably, improving efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Most clinical trials aiming at the IGF pathway have had limited success. Developing combinatorial strategies to enhance antitumor responses and better classify the patients that could best benefit from IGF-axis targeting therapies is in order. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects bone sarcomas’ basal functions and their response to therapy. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized. Abstract Bone sarcomas, mesenchymal origin tumors, represent a substantial group of varying neoplasms of a distinct entity. Bone sarcoma patients show a limited response or do not respond to chemotherapy. Notably, developing efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Whereas failures have been registered in creating novel targeted therapeutics aiming at the IGF pathway, new agent development should continue, evaluating combinatorial strategies for enhancing antitumor responses and better classifying the patients that could best benefit from these therapies. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects sarcomas’ basal functions and their response to therapy. This review highlights key studies focusing on IGF signaling in bone sarcomas, specifically studies underscoring novel properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized.
Collapse
Affiliation(s)
- George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Ioanna Spyridaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan;
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Correspondence:
| |
Collapse
|