1
|
Nie XY, Menet JS. Circadian regulation of stereotypic chromatin conformations at enhancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590818. [PMID: 38712031 PMCID: PMC11071494 DOI: 10.1101/2024.04.24.590818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cooperation between the circadian transcription factor (TF) CLOCK:BMAL1 and other TFs at cis-regulatory elements (CREs) is critical to daily rhythms of transcription. Yet, the modalities of this cooperation are unclear. Here, we analyzed the co-binding of multiple TFs on single DNA molecules in mouse liver using single molecule footprinting (SMF). We found that SMF reads clustered in stereotypic chromatin states that reflect distinguishable organization of TFs and nucleosomes, and that were remarkably conserved between all samples. DNA protection at CLOCK:BMAL1 binding motif (E-box) varied between CREs, from E-boxes being solely bound by CLOCK:BMAL1 to situations where other TFs competed with CLOCK:BMAL1 for E-box binding. SMF also uncovered CLOCK:BMAL1 cooperative binding at E-boxes separated by 250 bp, which structurally altered the CLOCK:BMAL1-DNA interface. Importantly, we discovered multiple nucleosomes with E-boxes at entry/exit sites that were removed upon CLOCK:BMAL1 DNA binding, thereby promoting the formation of open chromatin states that facilitate DNA binding of other TFs and that were associated with rhythmic transcription. These results demonstrate the utility of SMF for studying how CLOCK:BMAL1 and other TFs regulate stereotypical chromatin states at CREs to promote transcription.
Collapse
Affiliation(s)
- Xinyu Y. Nie
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
| | - Jerome S. Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX
| |
Collapse
|
2
|
Ruan ZR, Yu Z, Xing C, Chen EH. Inter-organ steroid hormone signaling promotes myoblast fusion via direct transcriptional regulation of a single key effector gene. Curr Biol 2024; 34:1438-1452.e6. [PMID: 38513654 PMCID: PMC11003854 DOI: 10.1016/j.cub.2024.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/24/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Steroid hormones regulate tissue development and physiology by modulating the transcription of a broad spectrum of genes. In insects, the principal steroid hormones, ecdysteroids, trigger the expression of thousands of genes through a cascade of transcription factors (TFs) to coordinate developmental transitions such as larval molting and metamorphosis. However, whether ecdysteroid signaling can bypass transcriptional hierarchies to exert its function in individual developmental processes is unclear. Here, we report that a single non-TF effector gene mediates the transcriptional output of ecdysteroid signaling in Drosophila myoblast fusion, a critical step in muscle development and differentiation. Specifically, we show that the 20-hydroxyecdysone (commonly referred to as "ecdysone") secreted from an extraembryonic tissue, amnioserosa, acts on embryonic muscle cells to directly activate the expression of antisocial (ants), which encodes an essential scaffold protein enriched at the fusogenic synapse. Not only is ants transcription directly regulated by the heterodimeric ecdysone receptor complex composed of ecdysone receptor (EcR) and ultraspiracle (USP) via ecdysone-response elements but also more strikingly, expression of ants alone is sufficient to rescue the myoblast fusion defect in ecdysone signaling-deficient mutants. We further show that EcR/USP and a muscle-specific TF Twist synergistically activate ants expression in vitro and in vivo. Taken together, our study provides the first example of a steroid hormone directly activating the expression of a single key non-TF effector gene to regulate a developmental process via inter-organ signaling and provides a new paradigm for understanding steroid hormone signaling in other developmental and physiological processes.
Collapse
Affiliation(s)
- Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ze Yu
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Dickson ZW, Golding GB. Evolution of Transcript Abundance is Influenced by Indels in Protein Low Complexity Regions. J Mol Evol 2024; 92:153-168. [PMID: 38485789 DOI: 10.1007/s00239-024-10158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/24/2024] [Indexed: 04/02/2024]
Abstract
Protein Protein low complexity regions (LCRs) are compositionally biased amino acid sequences, many of which have significant evolutionary impacts on the proteins which contain them. They are mutationally unstable experiencing higher rates of indels and substitutions than higher complexity regions. LCRs also impact the expression of their proteins, likely through multiple effects along the path from gene transcription, through translation, and eventual protein degradation. It has been observed that proteins which contain LCRs are associated with elevated transcript abundance (TAb), despite having lower protein abundance. We have gathered and integrated human data to investigate the co-evolution of TAb and LCRs through ancestral reconstructions and model inference using an approximate Bayesian calculation based method. We observe that on short evolutionary timescales TAb evolution is significantly impacted by changes in LCR length, with insertions driving TAb down. But in contrast, the observed data is best explained by indel rates in LCRs which are unaffected by shifts in TAb. Our work demonstrates a coupling between LCR and TAb evolution, and the utility of incorporating multiple responses into evolutionary analyses.
Collapse
Affiliation(s)
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Kapil S, Sobti RC, Kaur T. Prediction and analysis of cis-regulatory elements in Dorsal and Ventral patterning genes of Tribolium castaneum and its comparison with Drosophila melanogaster. Mol Cell Biochem 2024; 479:109-125. [PMID: 37004638 DOI: 10.1007/s11010-023-04712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/15/2023] [Indexed: 04/04/2023]
Abstract
Insect embryonic development and morphology are characterized by their anterior-posterior and dorsal-ventral (DV) patterning. In Drosophila embryos, DV patterning is mediated by a dorsal protein gradient which activates twist and snail proteins, the important regulators of DV patterning. To activate or repress gene expression, some regulatory proteins bind in clusters to their target gene at sites known as cis-regulatory elements or enhancers. To understand how variations in gene expression in different lineages might lead to different phenotypes, it is necessary to understand enhancers and their evolution. Drosophila melanogaster has been widely studied to understand the interactions between transcription factors and the transcription factor binding sites. Tribolium castaneum is an upcoming model animal which is catching the interest of biologists and the research on the enhancer mechanisms in the insect's axes patterning is still in infancy. Therefore, the current study was designed to compare the enhancers of DV patterning in the two insect species. The sequences of ten proteins involved in DV patterning of D. melanogaster were obtained from Flybase. The protein sequences of T. castaneum orthologous to those obtained from D. melanogaster were acquired from NCBI BLAST, and these were then converted to DNA sequences which were modified by adding 20 kb sequences both upstream and downstream to the gene. These modified sequences were used for further analysis. Bioinformatics tools (Cluster-Buster and MCAST) were used to search for clusters of binding sites (enhancers) in the modified DV genes. The results obtained showed that the transcription factors in Drosophila melanogaster and Tribolium castaneum are nearly identical; however, the number of binding sites varies between the two species, indicating transcription factor binding site evolution, as predicted by two different computational tools. It was observed that dorsal, twist, snail, zelda, and Supressor of Hairless are the transcription factors responsible for the regulation of DV patterning in the two insect species.
Collapse
Affiliation(s)
- Subham Kapil
- Department of Zoology, DAV University, Jalandhar, India
| | | | - Tejinder Kaur
- Department of Zoology, DAV University, Jalandhar, India.
| |
Collapse
|
5
|
Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, Chiva C, Cañas-Armenteros D, Mallabiabarrena A, Kamm K, Sabidó E, Gruber-Vodicka H, Schierwater B, Serrano L, Sebé-Pedrós A. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023; 186:4676-4693.e29. [PMID: 37729907 PMCID: PMC10580291 DOI: 10.1016/j.cell.2023.08.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Chiva
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Arrate Mallabiabarrena
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany; American Museum of Natural History, Richard Gilder Graduate School, NY, USA
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
6
|
Brennan KJ, Weilert M, Krueger S, Pampari A, Liu HY, Yang AWH, Morrison JA, Hughes TR, Rushlow CA, Kundaje A, Zeitlinger J. Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation. Dev Cell 2023; 58:1898-1916.e9. [PMID: 37557175 PMCID: PMC10592203 DOI: 10.1016/j.devcel.2023.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
Chromatin accessibility is integral to the process by which transcription factors (TFs) read out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive accessibility and those that do not. Deep learning models that learn complex sequence rules provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility data with interpretable deep learning and performed genetic validation experiments. We identify a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, which makes enhancers accessible but not necessarily active, and the second when the correct combination of TFs leads to enhancer activation.
Collapse
Affiliation(s)
- Kaelan J Brennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA
| | - Hsiao-Yun Liu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Ally W H Yang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | - Anshul Kundaje
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA; Department of Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
7
|
Nowling RJ, Njoya K, Peters JG, Riehle MM. Prediction accuracy of regulatory elements from sequence varies by functional sequencing technique. Front Cell Infect Microbiol 2023; 13:1182567. [PMID: 37600946 PMCID: PMC10433755 DOI: 10.3389/fcimb.2023.1182567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Various sequencing based approaches are used to identify and characterize the activities of cis-regulatory elements in a genome-wide fashion. Some of these techniques rely on indirect markers such as histone modifications (ChIP-seq with histone antibodies) or chromatin accessibility (ATAC-seq, DNase-seq, FAIRE-seq), while other techniques use direct measures such as episomal assays measuring the enhancer properties of DNA sequences (STARR-seq) and direct measurement of the binding of transcription factors (ChIP-seq with transcription factor-specific antibodies). The activities of cis-regulatory elements such as enhancers, promoters, and repressors are determined by their sequence and secondary processes such as chromatin accessibility, DNA methylation, and bound histone markers. Methods Here, machine learning models are employed to evaluate the accuracy with which cis-regulatory elements identified by various commonly used sequencing techniques can be predicted by their underlying sequence alone to distinguish between cis-regulatory activity that is reflective of sequence content versus secondary processes. Results and discussion Models trained and evaluated on D. melanogaster sequences identified through DNase-seq and STARR-seq are significantly more accurate than models trained on sequences identified by H3K4me1, H3K4me3, and H3K27ac ChIP-seq, FAIRE-seq, and ATAC-seq. These results suggest that the activity detected by DNase-seq and STARR-seq can be largely explained by underlying DNA sequence, independent of secondary processes. Experimentally, a subset of DNase-seq and H3K4me1 ChIP-seq sequences were tested for enhancer activity using luciferase assays and compared with previous tests performed on STARR-seq sequences. The experimental data indicated that STARR-seq sequences are substantially enriched for enhancer-specific activity, while the DNase-seq and H3K4me1 ChIP-seq sequences are not. Taken together, these results indicate that the DNase-seq approach identifies a broad class of regulatory elements of which enhancers are a subset and the associated data are appropriate for training models for detecting regulatory activity from sequence alone, STARR-seq data are best for training enhancer-specific sequence models, and H3K4me1 ChIP-seq data are not well suited for training and evaluating sequence-based models for cis-regulatory element prediction.
Collapse
Affiliation(s)
- Ronald J. Nowling
- Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, WI, United States
| | - Kimani Njoya
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John G. Peters
- Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, WI, United States
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Zhao Y. TFSyntax: a database of transcription factors binding syntax in mammalian genomes. Nucleic Acids Res 2022; 51:D306-D314. [PMID: 36200824 PMCID: PMC9825613 DOI: 10.1093/nar/gkac849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 01/29/2023] Open
Abstract
In mammals, transcriptional factors (TFs) drive gene expression by binding to regulatory elements in a cooperative manner. Deciphering the rules of such cooperation is crucial to obtain a full understanding of cellular homeostasis and development. Although this is a long-standing topic, there is no comprehensive database for biologists to access the syntax of TF binding sites. Here we present TFSyntax (https://tfsyntax.zhaopage.com), a database focusing on the arrangement of TF binding sites. TFSyntax maps the binding motif of 1299 human TFs and 890 mouse TFs across 382 cells and tissues, representing the most comprehensive TF binding map to date. In addition to location, TFSyntax defines motif positional preference, density and colocalization within accessible elements. Powered by a series of functional modules based on web interface, users can freely search, browse, analyze, and download data of interest. With comprehensive characterization of TF binding syntax across distinct tissues and cell types, TFSyntax represents a valuable resource and platform for studying the mechanism of transcriptional regulation and exploring how regulatory DNA variants cause disease.
Collapse
Affiliation(s)
- Yongbing Zhao
- To whom correspondence should be addressed. Tel: +1 301 480 5852;
| |
Collapse
|
9
|
Krieger G, Lupo O, Wittkopp P, Barkai N. Evolution of transcription factor binding through sequence variations and turnover of binding sites. Genome Res 2022; 32:1099-1111. [PMID: 35618416 PMCID: PMC9248875 DOI: 10.1101/gr.276715.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023]
Abstract
Variations in noncoding regulatory sequences play a central role in evolution. Interpreting such variations, however, remains difficult even in the context of defined attributes such as transcription factor (TF) binding sites. Here, we systematically link variations in cis-regulatory sequences to TF binding by profiling the allele-specific binding of 27 TFs expressed in a yeast hybrid, in which two related genomes are present within the same nucleus. TFs localize preferentially to sites containing their known consensus motifs but occupy only a small fraction of the motif-containing sites available within the genomes. Differential binding of TFs to the orthologous alleles was well explained by variations that alter motif sequence, whereas differences in chromatin accessibility between alleles were of little apparent effect. Motif variations that abolished binding when present in only one allele were still bound when present in both alleles, suggesting evolutionary compensation, with a potential role for sequence conservation at the motif's vicinity. At the level of the full promoter, we identify cases of binding-site turnover, in which binding sites are reciprocally gained and lost, yet most interspecific differences remained uncompensated. Our results show the flexibility of TFs to bind imprecise motifs and the fast evolution of TF binding sites between related species.
Collapse
Affiliation(s)
- Gat Krieger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Offir Lupo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Patricia Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
Gaiewski MJ, Drewell RA, Dresch JM. Fitting thermodynamic-based models: Incorporating parameter sensitivity improves the performance of an evolutionary algorithm. Math Biosci 2021; 342:108716. [PMID: 34687735 DOI: 10.1016/j.mbs.2021.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
A detailed comprehension of transcriptional regulation is critical to understanding the genetic control of development and disease across many different organisms. To more fully investigate the complex molecular interactions controlling the precise expression of genes, many groups have constructed mathematical models to complement their experimental approaches. A critical step in such studies is choosing the most appropriate parameter estimation algorithm to enable detailed analysis of the parameters that contribute to the models. In this study, we develop a novel set of evolutionary algorithms that use a pseudo-random Sobol Set to construct the initial population and incorporate parameter sensitivities into the adaptation of mutation rates, using local, global, and hybrid strategies. Comparison of the performance of these new algorithms to a number of current state-of-the-art global parameter estimation algorithms on a range of continuous test functions, as well as synthetic biological data representing models of gene regulatory systems, reveals improved performance of the new algorithms in terms of runtime, error and reproducibility. In addition, by analyzing the ability of these algorithms to fit datasets of varying quality, we provide the experimentalist with a guide to how the algorithms perform across a range of noisy data. These results demonstrate the improved performance of the new set of parameter estimation algorithms and facilitate meaningful integration of model parameters and predictions in our understanding of the molecular mechanisms of gene regulation.
Collapse
Affiliation(s)
- Michael J Gaiewski
- Department of Mathematics and Computer Science, Clark University, Worcester, MA, USA; Department of Mathematics, University of Connecticut, Storrs, CT, USA.
| | | | | |
Collapse
|
11
|
Kern C, Wang Y, Xu X, Pan Z, Halstead M, Chanthavixay G, Saelao P, Waters S, Xiang R, Chamberlain A, Korf I, Delany ME, Cheng HH, Medrano JF, Van Eenennaam AL, Tuggle CK, Ernst C, Flicek P, Quon G, Ross P, Zhou H. Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research. Nat Commun 2021; 12:1821. [PMID: 33758196 PMCID: PMC7988148 DOI: 10.1038/s41467-021-22100-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Gene regulatory elements are central drivers of phenotypic variation and thus of critical importance towards understanding the genetics of complex traits. The Functional Annotation of Animal Genomes consortium was formed to collaboratively annotate the functional elements in animal genomes, starting with domesticated animals. Here we present an expansive collection of datasets from eight diverse tissues in three important agricultural species: chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus). Comparative analysis of these datasets and those from the human and mouse Encyclopedia of DNA Elements projects reveal that a core set of regulatory elements are functionally conserved independent of divergence between species, and that tissue-specific transcription factor occupancy at regulatory elements and their predicted target genes are also conserved. These datasets represent a unique opportunity for the emerging field of comparative epigenomics, as well as the agricultural research community, including species that are globally important food resources.
Collapse
Affiliation(s)
- Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Xiaoqin Xu
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Michelle Halstead
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Susan Waters
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Amanda Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Ian Korf
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Mary E Delany
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Hans H Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Chris K Tuggle
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Catherine Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California, David, Davis, CA, USA
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
12
|
Sönmezer C, Kleinendorst R, Imanci D, Barzaghi G, Villacorta L, Schübeler D, Benes V, Molina N, Krebs AR. Molecular Co-occupancy Identifies Transcription Factor Binding Cooperativity In Vivo. Mol Cell 2020; 81:255-267.e6. [PMID: 33290745 DOI: 10.1016/j.molcel.2020.11.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023]
Abstract
Gene activation requires the cooperative activity of multiple transcription factors at cis-regulatory elements (CREs). Yet, most transcription factors have short residence time, questioning the requirement of their physical co-occupancy on DNA to achieve cooperativity. Here, we present a DNA footprinting method that detects individual molecular interactions of transcription factors and nucleosomes with DNA in vivo. We apply this strategy to quantify the simultaneous binding of multiple transcription factors on single DNA molecules at mouse CREs. Analysis of the binary occupancy patterns at thousands of motif combinations reveals that high DNA co-occupancy occurs for most types of transcription factors, in the absence of direct physical interaction, at sites of competition with nucleosomes. Perturbation of pairwise interactions demonstrates the function of molecular co-occupancy in binding cooperativity. Our results reveal the interactions regulating CREs at molecular resolution and identify DNA co-occupancy as a widespread cooperativity mechanism used by transcription factors to remodel chromatin.
Collapse
Affiliation(s)
- Can Sönmezer
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Rozemarijn Kleinendorst
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Dilek Imanci
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Guido Barzaghi
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Laura Villacorta
- European Molecular Biology Laboratory (EMBL), GeneCore, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Sciences, Petersplatz 1, 4001 Basel, Switzerland
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), GeneCore, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg-CNRS-INSERM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Arnaud Regis Krebs
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
13
|
Zeitlinger J. Seven myths of how transcription factors read the cis-regulatory code. CURRENT OPINION IN SYSTEMS BIOLOGY 2020; 23:22-31. [PMID: 33134611 PMCID: PMC7592701 DOI: 10.1016/j.coisb.2020.08.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genomics data are now being generated at large quantities, of exquisite high resolution and from single cells. They offer a unique opportunity to develop powerful machine learning algorithms, including neural networks, to uncover the rules of the cis-regulatory code. However, current modeling assumptions are often not based on state-of-the-art knowledge of the cis-regulatory code from transcription, developmental genetics, imaging and structural studies. Here I aim to fill this gap by giving a brief historical overview of the field, describing common misconceptions and providing knowledge that might help to guide computational approaches. I will describe the principles and mechanisms involved in the combinatorial requirement of transcription factor binding motifs for enhancer activity, including the role of chromatin accessibility, repressors and low-affinity motifs in the cis-regulatory code. Deciphering the cis-regulatory code would unlock an enormous amount of regulatory information in the genome and would allow us to locate cis-regulatory genetic variants involved in development and disease.
Collapse
Affiliation(s)
- Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA
- The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
14
|
Yang J, Ruan H, Zou Y, Su Z, Gu X. Ancestral transcriptome inference based on RNA-Seq and ChIP-seq data. Methods 2020; 176:99-105. [DOI: 10.1016/j.ymeth.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022] Open
|
15
|
Seto K, Mok W, Stone J. Bridging the gap between theory and practice in elucidating modular gene regulatory sequence organisation within genomes. Genome 2020; 63:281-289. [PMID: 32114793 DOI: 10.1139/gen-2019-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes to promoter regions probably have been responsible for many morphological evolutionary transitions, especially in animals. This idea is becoming testable, as data from genome projects amass and enable bioinformaticians to conduct comparative sequence analyses and test for correlations between genotypic similarities or differences and phenotypic likeness or disparity. Although such practical pursuits have initiated some theoretical considerations, a conceptual framework for understanding promoter region evolution, potentially effecting morphological evolution, is only starting to emerge, predominantly resulting from computational research. We contribute to this framework by specifying three big problems for promoter region research; reviewing computational research on promoter region evolution; and exemplifying a topic for future promoter region research - module evolution.
Collapse
Affiliation(s)
- Kelly Seto
- Department of Molecular & Medical Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wendy Mok
- Department of Molecular Biology & Biophysics, University of Connecticut Health, Farmington, CT 06032, USA
| | - Jonny Stone
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; SHARCNet, McMaster University, Hamilton, ON L8S 4L8, Canada; Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
16
|
Peng PC, Khoueiry P, Girardot C, Reddington JP, Garfield DA, Furlong EEM, Sinha S. The Role of Chromatin Accessibility in cis-Regulatory Evolution. Genome Biol Evol 2020; 11:1813-1828. [PMID: 31114856 PMCID: PMC6601868 DOI: 10.1093/gbe/evz103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Transcription factor (TF) binding is determined by sequence as well as chromatin accessibility. Although the role of accessibility in shaping TF-binding landscapes is well recorded, its role in evolutionary divergence of TF binding, which in turn can alter cis-regulatory activities, is not well understood. In this work, we studied the evolution of genome-wide binding landscapes of five major TFs in the core network of mesoderm specification, between Drosophila melanogaster and Drosophila virilis, and examined its relationship to accessibility and sequence-level changes. We generated chromatin accessibility data from three important stages of embryogenesis in both Drosophila melanogaster and Drosophila virilis and recorded conservation and divergence patterns. We then used multivariable models to correlate accessibility and sequence changes to TF-binding divergence. We found that accessibility changes can in some cases, for example, for the master regulator Twist and for earlier developmental stages, more accurately predict binding change than is possible using TF-binding motif changes between orthologous enhancers. Accessibility changes also explain a significant portion of the codivergence of TF pairs. We noted that accessibility and motif changes offer complementary views of the evolution of TF binding and developed a combined model that captures the evolutionary data much more accurately than either view alone. Finally, we trained machine learning models to predict enhancer activity from TF binding and used these functional models to argue that motif and accessibility-based predictors of TF-binding change can substitute for experimentally measured binding change, for the purpose of predicting evolutionary changes in enhancer activity.
Collapse
Affiliation(s)
- Pei-Chen Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign.,Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Pierre Khoueiry
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,American University of Beirut (AUB), Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - James P Reddington
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - David A Garfield
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,IRI-Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| |
Collapse
|
17
|
Gisselbrecht SS, Palagi A, Kurland JV, Rogers JM, Ozadam H, Zhan Y, Dekker J, Bulyk ML. Transcriptional Silencers in Drosophila Serve a Dual Role as Transcriptional Enhancers in Alternate Cellular Contexts. Mol Cell 2019; 77:324-337.e8. [PMID: 31704182 DOI: 10.1016/j.molcel.2019.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/15/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
A major challenge in biology is to understand how complex gene expression patterns are encoded in the genome. While transcriptional enhancers have been studied extensively, few transcriptional silencers have been identified, and they remain poorly understood. Here, we used a novel strategy to screen hundreds of sequences for tissue-specific silencer activity in whole Drosophila embryos. Almost all of the transcriptional silencers that we identified were also active enhancers in other cellular contexts. These elements are bound by more transcription factors than non-silencers. A subset of these silencers forms long-range contacts with promoters. Deletion of a silencer caused derepression of its target gene. Our results challenge the common practice of treating enhancers and silencers as separate classes of regulatory elements and suggest the possibility that thousands or more bifunctional CRMs remain to be discovered in Drosophila and 104-105 in humans.
Collapse
Affiliation(s)
- Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alexandre Palagi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Doctoral School of Life and Health Sciences, University of Nice Sophia Antipolis, 06560 Valbonne, France
| | - Jesse V Kurland
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julia M Rogers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Hakan Ozadam
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ye Zhan
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Gheorghe M, Sandve GK, Khan A, Chèneby J, Ballester B, Mathelier A. A map of direct TF-DNA interactions in the human genome. Nucleic Acids Res 2019; 47:e21. [PMID: 30517703 PMCID: PMC6393237 DOI: 10.1093/nar/gky1210] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most popular assay to identify genomic regions, called ChIP-seq peaks, that are bound in vivo by transcription factors (TFs). These regions are derived from direct TF-DNA interactions, indirect binding of the TF to the DNA (through a co-binding partner), nonspecific binding to the DNA, and noise/bias/artifacts. Delineating the bona fide direct TF-DNA interactions within the ChIP-seq peaks remains challenging. We developed a dedicated software, ChIP-eat, that combines computational TF binding models and ChIP-seq peaks to automatically predict direct TF-DNA interactions. Our work culminated with predicted interactions covering >4% of the human genome, obtained by uniformly processing 1983 ChIP-seq peak data sets from the ReMap database for 232 unique TFs. The predictions were a posteriori assessed using protein binding microarray and ChIP-exo data, and were predominantly found in high quality ChIP-seq peaks. The set of predicted direct TF-DNA interactions suggested that high-occupancy target regions are likely not derived from direct binding of the TFs to the DNA. Our predictions derived co-binding TFs supported by protein-protein interaction data and defined cis-regulatory modules enriched for disease- and trait-associated SNPs. We provide this collection of direct TF-DNA interactions and cis-regulatory modules through the UniBind web-interface (http://unibind.uio.no).
Collapse
Affiliation(s)
- Marius Gheorghe
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | | | - Aziz Khan
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | - Jeanne Chèneby
- Aix Marseille Université, INSERM, TAGC, Marseille, France
| | | | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Radiumhospitalet, Oslo, Norway
| |
Collapse
|
19
|
Sonawane AR, Weiss ST, Glass K, Sharma A. Network Medicine in the Age of Biomedical Big Data. Front Genet 2019; 10:294. [PMID: 31031797 PMCID: PMC6470635 DOI: 10.3389/fgene.2019.00294] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Network medicine is an emerging area of research dealing with molecular and genetic interactions, network biomarkers of disease, and therapeutic target discovery. Large-scale biomedical data generation offers a unique opportunity to assess the effect and impact of cellular heterogeneity and environmental perturbations on the observed phenotype. Marrying the two, network medicine with biomedical data provides a framework to build meaningful models and extract impactful results at a network level. In this review, we survey existing network types and biomedical data sources. More importantly, we delve into ways in which the network medicine approach, aided by phenotype-specific biomedical data, can be gainfully applied. We provide three paradigms, mainly dealing with three major biological network archetypes: protein-protein interaction, expression-based, and gene regulatory networks. For each of these paradigms, we discuss a broad overview of philosophies under which various network methods work. We also provide a few examples in each paradigm as a test case of its successful application. Finally, we delineate several opportunities and challenges in the field of network medicine. We hope this review provides a lexicon for researchers from biological sciences and network theory to come on the same page to work on research areas that require interdisciplinary expertise. Taken together, the understanding gained from combining biomedical data with networks can be useful for characterizing disease etiologies and identifying therapeutic targets, which, in turn, will lead to better preventive medicine with translational impact on personalized healthcare.
Collapse
Affiliation(s)
- Abhijeet R. Sonawane
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Amitabh Sharma
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
20
|
Arakawa N, Utsumi D, Takahashi K, Matsumoto-Oda A, Nyachieo A, Chai D, Jillani N, Imai H, Satta Y, Terai Y. Expression Changes of Structural Protein Genes May Be Related to Adaptive Skin Characteristics Specific to Humans. Genome Biol Evol 2019; 11:613-628. [PMID: 30657921 PMCID: PMC6402313 DOI: 10.1093/gbe/evz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
Human skin is morphologically and physiologically different from the skin of other primates. However, the genetic causes underlying human-specific skin characteristics remain unclear. Here, we quantitatively demonstrate that the epidermis and dermis of human skin are significantly thicker than those of three Old World monkey species. In addition, we indicate that the topography of the epidermal basement membrane zone shows a rete ridge in humans but is flat in the Old World monkey species examined. Subsequently, we comprehensively compared gene expression levels between human and nonhuman great ape skin using next-generation cDNA sequencing (RNA-Seq). We identified four structural protein genes associated with the epidermal basement membrane zone or elastic fibers in the dermis (COL18A1, LAMB2, CD151, and BGN) that were expressed significantly greater in humans than in nonhuman great apes, suggesting that these differences may be related to the rete ridge and rich elastic fibers present in human skin. The rete ridge may enhance the strength of adhesion between the epidermis and dermis in skin. This ridge, along with a thick epidermis and rich elastic fibers might contribute to the physical strength of human skin with a low amount of hair. To estimate transcriptional regulatory regions for COL18A1, LAMB2, CD151, and BGN, we examined conserved noncoding regions with histone modifications that can activate transcription in skin cells. Human-specific substitutions in these regions, especially those located in binding sites of transcription factors which function in skin, may alter the gene expression patterns and give rise to the human-specific adaptive skin characteristics.
Collapse
Affiliation(s)
- Nami Arakawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Daisuke Utsumi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Kenzo Takahashi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Akiko Matsumoto-Oda
- Graduate School of Tourism Sciences, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Atunga Nyachieo
- Institute of Primate Research, National Museum of Kenya, Karen, Nairobi, Kenya
| | - Daniel Chai
- Institute of Primate Research, National Museum of Kenya, Karen, Nairobi, Kenya
| | - Ngalla Jillani
- Institute of Primate Research, National Museum of Kenya, Karen, Nairobi, Kenya
| | - Hiroo Imai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| |
Collapse
|
21
|
Vizcaya-Molina E, Klein CC, Serras F, Mishra RK, Guigó R, Corominas M. Damage-responsive elements in Drosophila regeneration. Genome Res 2018; 28:1852-1866. [PMID: 30459214 PMCID: PMC6280756 DOI: 10.1101/gr.233098.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
One of the most important questions in regenerative biology is to unveil how and when genes change expression and trigger regeneration programs. The resetting of gene expression patterns during response to injury is governed by coordinated actions of genomic regions that control the activity of multiple sequence-specific DNA binding proteins. Using genome-wide approaches to interrogate chromatin function, we here identify the elements that regulate tissue recovery in Drosophila imaginal discs, which show a high regenerative capacity after genetically induced cell death. Our findings indicate there is global coregulation of gene expression as well as a regeneration program driven by different types of regulatory elements. Novel enhancers acting exclusively within damaged tissue cooperate with enhancers co-opted from other tissues and other developmental stages, as well as with endogenous enhancers that show increased activity after injury. Together, these enhancers host binding sites for regulatory proteins that include a core set of conserved transcription factors that control regeneration across metazoans.
Collapse
Affiliation(s)
- Elena Vizcaya-Molina
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| | - Cecilia C Klein
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| | - Rakesh K Mishra
- The Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
22
|
Genome-wide use of high- and low-affinity Tbrain transcription factor binding sites during echinoderm development. Proc Natl Acad Sci U S A 2018; 114:5854-5861. [PMID: 28584099 DOI: 10.1073/pnas.1610611114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sea stars and sea urchins are model systems for interrogating the types of deep evolutionary changes that have restructured developmental gene regulatory networks (GRNs). Although cis-regulatory DNA evolution is likely the predominant mechanism of change, it was recently shown that Tbrain, a Tbox transcription factor protein, has evolved a changed preference for a low-affinity, secondary binding motif. The primary, high-affinity motif is conserved. To date, however, no genome-wide comparisons have been performed to provide an unbiased assessment of the evolution of GRNs between these taxa, and no study has attempted to determine the interplay between transcription factor binding motif evolution and GRN topology. The study here measures genome-wide binding of Tbrain orthologs by using ChIP-sequencing and associates these orthologs with putative target genes to assess global function. Targets of both factors are enriched for other regulatory genes, although nonoverlapping sets of functional enrichments in the two datasets suggest a much diverged function. The number of low-affinity binding motifs is significantly depressed in sea urchins compared with sea star, but both motif types are associated with genes from a range of functional categories. Only a small fraction (∼10%) of genes are predicted to be orthologous targets. Collectively, these data indicate that Tbr has evolved significantly different developmental roles in these echinoderms and that the targets and the binding motifs in associated cis-regulatory sequences are dispersed throughout the hierarchy of the GRN, rather than being biased toward terminal process or discrete functional blocks, which suggests extensive evolutionary tinkering.
Collapse
|
23
|
Marinov GK, Kundaje A. ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation. Brief Funct Genomics 2018; 17:116-137. [PMID: 29529131 PMCID: PMC5889016 DOI: 10.1093/bfgp/ely004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advances in the methods for detecting protein-DNA interactions have played a key role in determining the directions of research into the mechanisms of transcriptional regulation. The most recent major technological transformation happened a decade ago, with the move from using tiling arrays [chromatin immunoprecipitation (ChIP)-on-Chip] to high-throughput sequencing (ChIP-seq) as a readout for ChIP assays. In addition to the numerous other ways in which it is superior to arrays, by eliminating the need to design and manufacture them, sequencing also opened the door to carrying out comparative analyses of genome-wide transcription factor occupancy across species and studying chromatin biology in previously less accessible model and nonmodel organisms, thus allowing us to understand the evolution and diversity of regulatory mechanisms in unprecedented detail. Here, we review the biological insights obtained from such studies in recent years and discuss anticipated future developments in the field.
Collapse
Affiliation(s)
- Georgi K Marinov
- Corresponding author: Georgi K. Marinov, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. E-mail:
| | | |
Collapse
|
24
|
Comparative Analysis of Immune Cells Reveals a Conserved Regulatory Lexicon. Cell Syst 2018; 6:381-394.e7. [PMID: 29454939 DOI: 10.1016/j.cels.2018.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/06/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022]
Abstract
Most well-characterized enhancers are deeply conserved. In contrast, genome-wide comparative studies of steady-state systems showed that only a small fraction of active enhancers are conserved. To better understand conservation of enhancer activity, we used a comparative genomics approach that integrates temporal expression and epigenetic profiles in an innate immune system. We found that gene expression programs diverge among mildly induced genes, while being highly conserved for strongly induced genes. The fraction of conserved enhancers varies greatly across gene expression programs, with induced genes and early-response genes, in particular, being regulated by a higher fraction of conserved enhancers. Clustering of conserved accessible DNA sequences within enhancers resulted in over 60 sequence motifs including motifs for known factors, as well as many with unknown function. We further show that the number of instances of these motifs is a strong predictor of the responsiveness of a gene to pathogen detection.
Collapse
|
25
|
Wiegmann BM, Richards S. Genomes of Diptera. CURRENT OPINION IN INSECT SCIENCE 2018; 25:116-124. [PMID: 29602357 DOI: 10.1016/j.cois.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Diptera (true flies) are among the most diverse holometabolan insect orders and were the first eukaryotic order to have a representative genome fully sequenced. 110 fly species have publically available genome assemblies and many hundreds of population-level genomes have been generated in the model organisms Drosophila melanogaster and the malaria mosquito Anopheles gambiae. Comparative genomics carried out in a phylogenetic context is illuminating many aspects of fly biology, providing unprecedented insight into variability in genome structure, gene content, genetic mechanisms, and rates and patterns of evolution in genes, populations, and species. Despite the rich availability of genomic resources in flies, there remain many fly lineages to which new genome sequencing efforts should be directed. Such efforts would be most valuable in fly families or clades that exhibit multiple origins of key fly behaviors such as blood feeding, phytophagy, parasitism, pollination, and mycophagy.
Collapse
Affiliation(s)
- Brian M Wiegmann
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77006, United States
| |
Collapse
|
26
|
Congrains C, Campanini EB, Torres FR, Rezende VB, Nakamura AM, de Oliveira JL, Lima ALA, Chahad-Ehlers S, Sobrinho IS, de Brito RA. Evidence of Adaptive Evolution and Relaxed Constraints in Sex-Biased Genes of South American and West Indies Fruit Flies (Diptera: Tephritidae). Genome Biol Evol 2018; 10:380-395. [PMID: 29346618 PMCID: PMC5786236 DOI: 10.1093/gbe/evy009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Several studies have demonstrated that genes differentially expressed between sexes (sex-biased genes) tend to evolve faster than unbiased genes, particularly in males. The reason for this accelerated evolution is not clear, but several explanations have involved adaptive and nonadaptive mechanisms. Furthermore, the differences of sex-biased expression patterns of closely related species are also little explored out of Drosophila. To address the evolutionary processes involved with sex-biased expression in species with incipient differentiation, we analyzed male and female transcriptomes of Anastrepha fraterculus and Anastrepha obliqua, a pair of species that have diverged recently, likely in the presence of gene flow. Using these data, we inferred differentiation indexes and evolutionary rates and tested for signals of selection in thousands of genes expressed in head and reproductive transcriptomes from both species. Our results indicate that sex-biased and reproductive-biased genes evolve faster than unbiased genes in both species, which is due to both adaptive pressure and relaxed constraints. Furthermore, among male-biased genes evolving under positive selection, we identified some related to sexual functions such as courtship behavior and fertility. These findings suggest that sex-biased genes may have played important roles in the establishment of reproductive isolation between these species, due to a combination of selection and drift, and unveil a plethora of genetic markers useful for more studies in these species and their differentiation.
Collapse
Affiliation(s)
- Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Emeline B Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Felipe R Torres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Víctor B Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Aline M Nakamura
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - André L A Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - Reinaldo A de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| |
Collapse
|
27
|
Batut PJ, Gingeras TR. Conserved noncoding transcription and core promoter regulatory code in early Drosophila development. eLife 2017; 6:29005. [PMID: 29260710 PMCID: PMC5754203 DOI: 10.7554/elife.29005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/19/2017] [Indexed: 01/30/2023] Open
Abstract
Multicellular development is driven by regulatory programs that orchestrate the transcription of protein-coding and noncoding genes. To decipher this genomic regulatory code, and to investigate the developmental relevance of noncoding transcription, we compared genome-wide promoter activity throughout embryogenesis in 5 Drosophila species. Core promoters, generally not thought to play a significant regulatory role, in fact impart restrictions on the developmental timing of gene expression on a global scale. We propose a hierarchical regulatory model in which core promoters define broad windows of opportunity for expression, by defining a range of transcription factors from which they can receive regulatory inputs. This two-tiered mechanism globally orchestrates developmental gene expression, including extremely widespread noncoding transcription. The sequence and expression specificity of noncoding RNA promoters are evolutionarily conserved, implying biological relevance. Overall, this work introduces a hierarchical model for developmental gene regulation, and reveals a major role for noncoding transcription in animal development.
Collapse
Affiliation(s)
- Philippe J Batut
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, United States
| | - Thomas R Gingeras
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, United States
| |
Collapse
|
28
|
Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species. Proc Natl Acad Sci U S A 2017; 114:E11037-E11046. [PMID: 29203652 PMCID: PMC5754749 DOI: 10.1073/pnas.1618075114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome-wide landscapes of transcription factor (TF) binding sites (BSs) diverge during evolution, conferring species-specific transcriptional patterns. The rate of divergence varies in different metazoan lineages but has not been widely studied in plants. We identified the BSs and assessed the effects on transcription of FLOWERING LOCUS C (FLC) and PERPETUAL FLOWERING 1 (PEP1), two orthologous MADS-box TFs that repress flowering and confer vernalization requirement in the Brassicaceae species Arabidopsis thaliana and Arabis alpina, respectively. We found that only 14% of their BSs were conserved in both species and that these contained a CArG-box that is recognized by MADS-box TFs. The CArG-box consensus at conserved BSs was extended compared with the core motif. By contrast, species-specific BSs usually lacked the CArG-box in the other species. Flowering-time genes were highly overrepresented among conserved targets, and their CArG-boxes were widely conserved among Brassicaceae species. Cold-regulated (COR) genes were also overrepresented among targets, but the cognate BSs and the identity of the regulated genes were usually different in each species. In cold, COR gene transcript levels were increased in flc and pep1-1 mutants compared with WT, and this correlated with reduced growth in pep1-1 Therefore, FLC orthologs regulate a set of conserved target genes mainly involved in reproductive development and were later independently recruited to modulate stress responses in different Brassicaceae lineages. Analysis of TF BSs in these lineages thus distinguishes widely conserved targets representing the core function of the TF from those that were recruited later in evolution.
Collapse
|
29
|
Stewart-Ornstein J, Cheng HWJ, Lahav G. Conservation and Divergence of p53 Oscillation Dynamics across Species. Cell Syst 2017; 5:410-417.e4. [PMID: 29055670 PMCID: PMC5687840 DOI: 10.1016/j.cels.2017.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/08/2017] [Accepted: 09/21/2017] [Indexed: 12/24/2022]
Abstract
The tumor-suppressing transcription factor p53 is highly conserved at the protein level and plays a key role in the DNA damage response. One important aspect of p53 regulation is its dynamics in response to DNA damage, which include oscillations. Here, we observe that, while the qualitative oscillatory nature of p53 dynamics is conserved across cell lines derived from human, monkey, dog, mouse, and rat, the oscillation period is variable. Specifically, rodent cells exhibit rapid p53 oscillations, whereas dog, monkey, and human cells show slower oscillations. Computational modeling and experiments identify stronger negative feedback between p53 and MDM2 as the driver of faster oscillations in rodents, suggesting that the period of oscillation is a network-level property. In total, our study shows that despite highly conserved signaling, the quantitative features of p53 oscillations can diverge across evolution. We caution that strong amino acid conservation of proteins and transcriptional network similarity do not necessarily imply conservation of time dynamics.
Collapse
Affiliation(s)
| | - Ho Wa Jacky Cheng
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Khoueiry P, Girardot C, Ciglar L, Peng PC, Gustafson EH, Sinha S, Furlong EE. Uncoupling evolutionary changes in DNA sequence, transcription factor occupancy and enhancer activity. eLife 2017; 6. [PMID: 28792889 PMCID: PMC5550276 DOI: 10.7554/elife.28440] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Sequence variation within enhancers plays a major role in both evolution and disease, yet its functional impact on transcription factor (TF) occupancy and enhancer activity remains poorly understood. Here, we assayed the binding of five essential TFs over multiple stages of embryogenesis in two distant Drosophila species (with 1.4 substitutions per neutral site), identifying thousands of orthologous enhancers with conserved or diverged combinatorial occupancy. We used these binding signatures to dissect two properties of developmental enhancers: (1) potential TF cooperativity, using signatures of co-associations and co-divergence in TF occupancy. This revealed conserved combinatorial binding despite sequence divergence, suggesting protein-protein interactions sustain conserved collective occupancy. (2) Enhancer in-vivo activity, revealing orthologous enhancers with conserved activity despite divergence in TF occupancy. Taken together, we identify enhancers with diverged motifs yet conserved occupancy and others with diverged occupancy yet conserved activity, emphasising the need to functionally measure the effect of divergence on enhancer activity.
Collapse
Affiliation(s)
- Pierre Khoueiry
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Lucia Ciglar
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Pei-Chen Peng
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Champaign, United States
| | - E Hilary Gustafson
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Saurabh Sinha
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,Carl R. Woese Institute of Genomic Biology, University of Illinois, Champaign, United States
| | - Eileen Em Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
31
|
Reiter F, Wienerroither S, Stark A. Combinatorial function of transcription factors and cofactors. Curr Opin Genet Dev 2017; 43:73-81. [PMID: 28110180 DOI: 10.1016/j.gde.2016.12.007] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Differential gene expression gives rise to the many cell types of complex organisms. Enhancers regulate transcription by binding transcription factors (TFs), which in turn recruit cofactors to activate RNA Polymerase II at core promoters. Transcriptional regulation is typically mediated by distinct combinations of TFs, enabling a relatively small number of TFs to generate a large diversity of cell types. However, how TFs achieve combinatorial enhancer control and how enhancers, enhancer-bound TFs, and the cofactors they recruit regulate RNA Polymerase II activity is not entirely clear. Here, we review how TF synergy is mediated at the level of DNA binding and after binding, the role of cofactors and the post-translational modifications they catalyze, and discuss different models of enhancer-core-promoter communication.
Collapse
Affiliation(s)
- Franziska Reiter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Sebastian Wienerroither
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
32
|
Ma L, Zhao B, Chen K, Thomas A, Tuteja JH, He X, He C, White KP. Evolution of transcript modification by N6-methyladenosine in primates. Genome Res 2017; 27:385-392. [PMID: 28052920 PMCID: PMC5340966 DOI: 10.1101/gr.212563.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/19/2016] [Indexed: 11/24/2022]
Abstract
Phenotypic differences within populations and between closely related species are often driven by variation and evolution of gene expression. However, most analyses have focused on the effects of genomic variation at cis-regulatory elements such as promoters and enhancers that control transcriptional activity, and little is understood about the influence of post-transcriptional processes on transcript evolution. Post-transcriptional modification of RNA by N6-methyladenosine (m6A) has been shown to be widespread throughout the transcriptome, and this reversible mark can affect transcript stability and translation dynamics. Here we analyze m6A mRNA modifications in lymphoblastoid cell lines (LCLs) from human, chimpanzee and rhesus, and we identify patterns of m6A evolution among species. We find that m6A evolution occurs in parallel with evolution of consensus RNA sequence motifs known to be associated with the enzymatic complexes that regulate m6A dynamics, and expression evolution of m6A-modified genes occurs in parallel with m6A evolution.
Collapse
Affiliation(s)
- Lijia Ma
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois 60637, USA.,Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Boxuan Zhao
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.,Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kai Chen
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.,Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Amber Thomas
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois 60637, USA.,Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jigyasa H Tuteja
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois 60637, USA.,Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xin He
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.,Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois 60637, USA.,Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA.,Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA.,Tempus Health, Incorporated, Chicago, Illinois 60654, USA
| |
Collapse
|
33
|
|
34
|
Kvon EZ, Kamneva OK, Melo US, Barozzi I, Osterwalder M, Mannion BJ, Tissières V, Pickle CS, Plajzer-Frick I, Lee EA, Kato M, Garvin TH, Akiyama JA, Afzal V, Lopez-Rios J, Rubin EM, Dickel DE, Pennacchio LA, Visel A. Progressive Loss of Function in a Limb Enhancer during Snake Evolution. Cell 2016; 167:633-642.e11. [PMID: 27768887 DOI: 10.1016/j.cell.2016.09.028] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/07/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.
Collapse
Affiliation(s)
- Evgeny Z Kvon
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Olga K Kamneva
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Uirá S Melo
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Iros Barozzi
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marco Osterwalder
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Brandon J Mannion
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Catherine S Pickle
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Elizabeth A Lee
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Momoe Kato
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tyler H Garvin
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer A Akiyama
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Veena Afzal
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Lopez-Rios
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Edward M Rubin
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Diane E Dickel
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Len A Pennacchio
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.
| | - Axel Visel
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
35
|
Koenecke N, Johnston J, He Q, Meier S, Zeitlinger J. Drosophila poised enhancers are generated during tissue patterning with the help of repression. Genome Res 2016; 27:64-74. [PMID: 27979994 PMCID: PMC5204345 DOI: 10.1101/gr.209486.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
Abstract
Histone modifications are frequently used as markers for enhancer states, but how to interpret enhancer states in the context of embryonic development is not clear. The poised enhancer signature, involving H3K4me1 and low levels of H3K27ac, has been reported to mark inactive enhancers that are poised for future activation. However, future activation is not always observed, and alternative reasons for the widespread occurrence of this enhancer signature have not been investigated. By analyzing enhancers during dorsal-ventral (DV) axis formation in the Drosophila embryo, we find that the poised enhancer signature is specifically generated during patterning in the tissue where the enhancers are not induced, including at enhancers that are known to be repressed by a transcriptional repressor. These results suggest that, rather than serving exclusively as an intermediate step before future activation, the poised enhancer state may be a mark for spatial regulation during tissue patterning. We discuss the possibility that the poised enhancer state is more generally the result of repression by transcriptional repressors.
Collapse
Affiliation(s)
- Nina Koenecke
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jeff Johnston
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Qiye He
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Samuel Meier
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,University of Kansas Medical Center, Department of Pathology, Kansas City, Kansas 66160, USA
| |
Collapse
|
36
|
Koenecke N, Johnston J, Gaertner B, Natarajan M, Zeitlinger J. Genome-wide identification of Drosophila dorso-ventral enhancers by differential histone acetylation analysis. Genome Biol 2016; 17:196. [PMID: 27678375 PMCID: PMC5037609 DOI: 10.1186/s13059-016-1057-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/05/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Drosophila dorso-ventral (DV) patterning is one of the best-understood regulatory networks to date, and illustrates the fundamental role of enhancers in controlling patterning, cell fate specification, and morphogenesis during development. Histone acetylation such as H3K27ac is an excellent marker for active enhancers, but it is challenging to obtain precise locations for enhancers as the highest levels of this modification flank the enhancer regions. How to best identify tissue-specific enhancers in a developmental system de novo with a minimal set of data is still unclear. RESULTS Using DV patterning as a test system, we develop a simple and effective method to identify tissue-specific enhancers de novo. We sample a broad set of candidate enhancer regions using data on CREB-binding protein co-factor binding or ATAC-seq chromatin accessibility, and then identify those regions with significant differences in histone acetylation between tissues. This method identifies hundreds of novel DV enhancers and outperforms ChIP-seq data of relevant transcription factors when benchmarked with mRNA expression data and transgenic reporter assays. These DV enhancers allow the de novo discovery of the relevant transcription factor motifs involved in DV patterning and contain additional motifs that are evolutionarily conserved and for which the corresponding transcription factors are expressed in a DV-biased fashion. Finally, we identify novel target genes of the regulatory network, implicating morphogenesis genes as early targets of DV patterning. CONCLUSIONS Taken together, our approach has expanded our knowledge of the DV patterning network even further and is a general method to identify enhancers in any developmental system, including mammalian development.
Collapse
Affiliation(s)
- Nina Koenecke
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Jeff Johnston
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Bjoern Gaertner
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Present address: Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Malini Natarajan
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
37
|
Steffens EK, Becker K, Krevet S, Teichert I, Kück U. Transcription factor PRO1 targets genes encoding conserved components of fungal developmental signaling pathways. Mol Microbiol 2016; 102:792-809. [PMID: 27560538 DOI: 10.1111/mmi.13491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 01/05/2023]
Abstract
The filamentous fungus Sordaria macrospora is a model system to study multicellular development during fruiting body formation. Previously, we demonstrated that this major process in the sexual life cycle is controlled by the Zn(II)2 Cys6 zinc cluster transcription factor PRO1. Here, we further investigated the genome-wide regulatory network controlled by PRO1 by employing chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) to identify binding sites for PRO1. We identified several target regions that occur in the promoter regions of genes encoding components of diverse signaling pathways. Furthermore, we identified a conserved DNA-binding motif that is bound specifically by PRO1 in vitro. In addition, PRO1 controls in vivo the expression of a DsRed reporter gene under the control of the esdC target gene promoter. Our ChIP-seq data suggest that PRO1 also controls target genes previously shown to be involved in regulating the pathways controlling cell wall integrity, NADPH oxidase and pheromone signaling. Our data point to PRO1 acting as a master regulator of genes for signaling components that comprise a developmental cascade controlling fruiting body formation.
Collapse
Affiliation(s)
- Eva Katharina Steffens
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Sabine Krevet
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| |
Collapse
|
38
|
Quinn JJ, Zhang QC, Georgiev P, Ilik IA, Akhtar A, Chang HY. Rapid evolutionary turnover underlies conserved lncRNA-genome interactions. Genes Dev 2016; 30:191-207. [PMID: 26773003 PMCID: PMC4719309 DOI: 10.1101/gad.272187.115] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many long noncoding RNAs (lncRNAs) can regulate chromatin states, but the evolutionary origin and dynamics driving lncRNA-genome interactions are unclear. We adapted an integrative strategy that identifies lncRNA orthologs in different species despite limited sequence similarity, which is applicable to mammalian and insect lncRNAs. Analysis of the roX lncRNAs, which are essential for dosage compensation of the single X chromosome in Drosophila males, revealed 47 new roX orthologs in diverse Drosophilid species across ∼40 million years of evolution. Genetic rescue by roX orthologs and engineered synthetic lncRNAs showed that altering the number of focal, repetitive RNA structures determines roX ortholog function. Genomic occupancy maps of roX RNAs in four species revealed conserved targeting of X chromosome neighborhoods but rapid turnover of individual binding sites. Many new roX-binding sites evolved from DNA encoding a pre-existing RNA splicing signal, effectively linking dosage compensation to transcribed genes. Thus, dynamic change in lncRNAs and their genomic targets underlies conserved and essential lncRNA-genome interactions.
Collapse
Affiliation(s)
- Jeffrey J Quinn
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, California 94305, USA
| | - Qiangfeng C Zhang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Plamen Georgiev
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Ibrahim A Ilik
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
39
|
Odom DT. Comparative Genomics: One for all. eLife 2016; 5:e14150. [PMID: 26880550 PMCID: PMC4764549 DOI: 10.7554/elife.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 11/13/2022] Open
Abstract
Using a common analysis pipeline to compare data from three major lineages of complex eukaryotes reveals that transcription seems to evolve at a common rate.
Collapse
Affiliation(s)
- Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Joshi A, Beck Y, Michoel T. Multi-species network inference improves gene regulatory network reconstruction for early embryonic development in Drosophila. J Comput Biol 2016; 22:253-65. [PMID: 25844666 DOI: 10.1089/cmb.2014.0290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gene regulatory network inference uses genome-wide transcriptome measurements in response to genetic, environmental, or dynamic perturbations to predict causal regulatory influences between genes. We hypothesized that evolution also acts as a suitable network perturbation and that integration of data from multiple closely related species can lead to improved reconstruction of gene regulatory networks. To test this hypothesis, we predicted networks from temporal gene expression data for 3,610 genes measured during early embryonic development in six Drosophila species and compared predicted networks to gold standard networks of ChIP-chip and ChIP-seq interactions for developmental transcription factors in five species. We found that (i) the performance of single-species networks was independent of the species where the gold standard was measured; (ii) differences between predicted networks reflected the known phylogeny and differences in biology between the species; (iii) an integrative consensus network that minimized the total number of edge gains and losses with respect to all single-species networks performed better than any individual network. Our results show that in an evolutionarily conserved system, integration of data from comparable experiments in multiple species improves the inference of gene regulatory networks. They provide a basis for future studies on the numerous multispecies gene expression datasets for other biological processes available in the literature.
Collapse
Affiliation(s)
- Anagha Joshi
- 1 Division of Developmental Biology, The Roslin Institute, The University of Edinburgh , Midlothian, Scotland, United Kingdom
| | | | | |
Collapse
|
41
|
Carvunis AR, Wang T, Skola D, Yu A, Chen J, Kreisberg JF, Ideker T. Evidence for a common evolutionary rate in metazoan transcriptional networks. eLife 2015; 4. [PMID: 26682651 PMCID: PMC4764585 DOI: 10.7554/elife.11615] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
Genome sequences diverge more rapidly in mammals than in other animal lineages, such as birds or insects. However, the effect of this rapid divergence on transcriptional evolution remains unclear. Recent reports have indicated a faster divergence of transcription factor binding in mammals than in insects, but others found the reverse for mRNA expression. Here, we show that these conflicting interpretations resulted from differing methodologies. We performed an integrated analysis of transcriptional network evolution by examining mRNA expression, transcription factor binding and cis-regulatory motifs across >25 animal species, including mammals, birds and insects. Strikingly, we found that transcriptional networks evolve at a common rate across the three animal lineages. Furthermore, differences in rates of genome divergence were greatly reduced when restricting comparisons to chromatin-accessible sequences. The evolution of transcription is thus decoupled from the global rate of genome sequence evolution, suggesting that a small fraction of the genome regulates transcription. DOI:http://dx.doi.org/10.7554/eLife.11615.001 The genetic information that makes each individual unique is encoded in DNA molecules. Cells read this molecular instruction manual by a process called transcription, in which proteins called transcription factors bind to DNA in specific places and regulate which sections of the DNA will be expressed. These 'transcripts' are active molecules that determine the cell’s – and ultimately the individual’s – characteristics. However, it is not well understood how alterations in the DNA of different individuals or species can lead to changes in where the transcription factors bind, and in which transcripts are expressed. Carvunis, Wang, Skola et al. set out to determine if there is a relationship between how often DNA changes and how often transcription changes during the evolution of animals. The experiments examined the abundance of transcripts in the cells of a variety of animal species with close or distant evolutionary relationships. For example, the house mouse was compared to a close relative called the Algerian mouse, to another species of rodent (rat) and to humans. The experiments show that the changes in transcript abundances are happening at similar rates in mammals, birds and insects, even though DNA changes at very different rates in these groups of animals. This similarity was also observed for other aspects of transcription, such as in changes to where transcription factors bind to DNA. The next challenges are to find out what makes transcription evolve at such similar rates in these groups of animals, and whether these findings extend to other species and to other processes in cells. DOI:http://dx.doi.org/10.7554/eLife.11615.002
Collapse
Affiliation(s)
| | - Tina Wang
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Dylan Skola
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Alice Yu
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Jonathan Chen
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Jason F Kreisberg
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, United States
| |
Collapse
|
42
|
Muiño JM, de Bruijn S, Pajoro A, Geuten K, Vingron M, Angenent GC, Kaufmann K. Evolution of DNA-Binding Sites of a Floral Master Regulatory Transcription Factor. Mol Biol Evol 2015; 33:185-200. [PMID: 26429922 PMCID: PMC4693976 DOI: 10.1093/molbev/msv210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Flower development is controlled by the action of key regulatory transcription factors of the MADS-domain family. The function of these factors appears to be highly conserved among species based on mutant phenotypes. However, the conservation of their downstream processes is much less well understood, mostly because the evolutionary turnover and variation of their DNA-binding sites (BSs) among plant species have not yet been experimentally determined. Here, we performed comparative ChIP (chromatin immunoprecipitation)-seq experiments of the MADS-domain transcription factor SEPALLATA3 (SEP3) in two closely related Arabidopsis species: Arabidopsis thaliana and A. lyrata which have very similar floral organ morphology. We found that BS conservation is associated with DNA sequence conservation, the presence of the CArG-box BS motif and on the relative position of the BS to its potential target gene. Differences in genome size and structure can explain that SEP3 BSs in A. lyrata can be located more distantly to their potential target genes than their counterparts in A. thaliana. In A. lyrata, we identified transposition as a mechanism to generate novel SEP3 binding locations in the genome. Comparative gene expression analysis shows that the loss/gain of BSs is associated with a change in gene expression. In summary, this study investigates the evolutionary dynamics of DNA BSs of a floral key-regulatory transcription factor and explores factors affecting this phenomenon.
Collapse
Affiliation(s)
- Jose M Muiño
- Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany Laboratory of Bioinformatics, Wageningen University, Wageningen, The Netherlands
| | - Suzanne de Bruijn
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Alice Pajoro
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Koen Geuten
- Laboratory of Molecular Plant Biology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Martin Vingron
- Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands Bioscience, Plant Research International, Wageningen, The Netherlands
| | - Kerstin Kaufmann
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| |
Collapse
|
43
|
Technau U, Schwaiger M. Recent advances in genomics and transcriptomics of cnidarians. Mar Genomics 2015; 24 Pt 2:131-8. [PMID: 26421490 DOI: 10.1016/j.margen.2015.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 01/05/2023]
Abstract
The advent of the genomic era has provided important and surprising insights into the deducted genetic composition of the common ancestor of cnidarians and bilaterians. This has changed our view of how genomes of metazoans evolve and when crucial gene families arose and diverged in animal evolution. Sequencing of several cnidarian genomes showed that cnidarians share a great part of their gene repertoire as well as genome synteny with vertebrates, with less gene losses in the anthozoan cnidarian lineage than for example in ecdysozoans like Drosophila melanogaster or Caenorhabditis elegans. The Hydra genome on the other hand has evolved more rapidly indicated by more divergent sequences, more cases of gene losses and many taxonomically restricted genes. Cnidarian genomes also contain a rich repertoire of transcription factors, including those that in bilaterian model organisms regulate the development of key bilaterian traits such as mesoderm, nervous system development and bilaterality. The sea anemone Nematostella vectensis, and possibly cnidarians in general, does not only share its complex gene repertoire with bilaterians, but also the regulation of crucial developmental regulatory genes via distal enhancer elements. In addition, epigenetic modifications on DNA and chromatin are shared among eumetazoans. This suggests that most conserved genes present in our genomes today, as well as the mechanisms guiding their expression, evolved before the divergence of cnidarians and bilaterians about 600 Myr ago.
Collapse
Affiliation(s)
- Ulrich Technau
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Michaela Schwaiger
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
44
|
Prescott SL, Srinivasan R, Marchetto MC, Grishina I, Narvaiza I, Selleri L, Gage FH, Swigut T, Wysocka J. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 2015; 163:68-83. [PMID: 26365491 DOI: 10.1016/j.cell.2015.08.036] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/06/2015] [Accepted: 07/21/2015] [Indexed: 01/23/2023]
Abstract
cis-regulatory changes play a central role in morphological divergence, yet the regulatory principles underlying emergence of human traits remain poorly understood. Here, we use epigenomic profiling from human and chimpanzee cranial neural crest cells to systematically and quantitatively annotate divergence of craniofacial cis-regulatory landscapes. Epigenomic divergence is often attributable to genetic variation within TF motifs at orthologous enhancers, with a novel motif being most predictive of activity biases. We explore properties of this cis-regulatory change, revealing the role of particular retroelements, uncovering broad clusters of species-biased enhancers near genes associated with human facial variation, and demonstrating that cis-regulatory divergence is linked to quantitative expression differences of crucial neural crest regulators. Our work provides a wealth of candidates for future evolutionary studies and demonstrates the value of "cellular anthropology," a strategy of using in-vitro-derived embryonic cell types to elucidate both fundamental and evolving mechanisms underlying morphological variation in higher primates.
Collapse
Affiliation(s)
- Sara L Prescott
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rajini Srinivasan
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Carolina Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Irina Grishina
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Iñigo Narvaiza
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Thompson D, Regev A, Roy S. Comparative analysis of gene regulatory networks: from network reconstruction to evolution. Annu Rev Cell Dev Biol 2015; 31:399-428. [PMID: 26355593 DOI: 10.1146/annurev-cellbio-100913-012908] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of gene expression is central to many biological processes. Although reconstruction of regulatory circuits from genomic data alone is therefore desirable, this remains a major computational challenge. Comparative approaches that examine the conservation and divergence of circuits and their components across strains and species can help reconstruct circuits as well as provide insights into the evolution of gene regulatory processes and their adaptive contribution. In recent years, advances in genomic and computational tools have led to a wealth of methods for such analysis at the sequence, expression, pathway, module, and entire network level. Here, we review computational methods developed to study transcriptional regulatory networks using comparative genomics, from sequence to functional data. We highlight how these methods use evolutionary conservation and divergence to reliably detect regulatory components as well as estimate the extent and rate of divergence. Finally, we discuss the promise and open challenges in linking regulatory divergence to phenotypic divergence and adaptation.
Collapse
Affiliation(s)
- Dawn Thompson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | | | | |
Collapse
|
46
|
Martinez-Morales JR. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches. Brief Funct Genomics 2015; 15:315-21. [PMID: 26293604 DOI: 10.1093/bfgp/elv032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan.
Collapse
|
47
|
Using transgenic reporter assays to functionally characterize enhancers in animals. Genomics 2015; 106:185-192. [PMID: 26072435 DOI: 10.1016/j.ygeno.2015.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/11/2015] [Accepted: 06/09/2015] [Indexed: 11/21/2022]
Abstract
Enhancers or cis-regulatory modules play an instructive role in regulating gene expression during animal development and in response to the environment. Despite their importance, we only have an incomplete map of enhancers in the genome and our understanding of the mechanisms governing their function is still limited. Recent advances in genomics provided powerful tools to generate genome-wide maps of potential enhancers. However, most of these methods are based on indirect measures of enhancer activity and have to be followed by functional testing. Animal transgenesis has been a valuable method to functionally test and characterize enhancers in vivo. In this review I discuss how different transgenic strategies are utilized to characterize enhancers in model organisms focusing on studies in Drosophila and mouse. I will further discuss recent large-scale transgenic efforts to systematically identify and catalog enhancers as well as highlight the challenges and future directions in the field.
Collapse
|
48
|
Naval-Sánchez M, Potier D, Hulselmans G, Christiaens V, Aerts S. Identification of Lineage-Specific Cis-Regulatory Modules Associated with Variation in Transcription Factor Binding and Chromatin Activity Using Ornstein-Uhlenbeck Models. Mol Biol Evol 2015; 32:2441-55. [PMID: 25944915 PMCID: PMC4540964 DOI: 10.1093/molbev/msv107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Scoring the impact of noncoding variation on the function of cis-regulatory regions, on their chromatin state, and on the qualitative and quantitative expression levels of target genes is a fundamental problem in evolutionary genomics. A particular challenge is how to model the divergence of quantitative traits and to identify relationships between the changes across the different levels of the genome, the chromatin activity landscape, and the transcriptome. Here, we examine the use of the Ornstein-Uhlenbeck (OU) model to infer selection at the level of predicted cis-regulatory modules (CRMs), and link these with changes in transcription factor binding and chromatin activity. Using publicly available cross-species ChIP-Seq and STARR-Seq data we show how OU can be applied genome-wide to identify candidate transcription factors for which binding site and CRM turnover is correlated with changes in regulatory activity. Next, we profile open chromatin in the developing eye across three Drosophila species. We identify the recognition motifs of the chromatin remodelers, Trithorax-like and Grainyhead as mostly correlating with species-specific changes in open chromatin. In conclusion, we show in this study that CRM scores can be used as quantitative traits and that motif discovery approaches can be extended towards more complex models of divergence.
Collapse
Affiliation(s)
- Marina Naval-Sánchez
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Delphine Potier
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Carl SH, Russell S. Common binding by redundant group B Sox proteins is evolutionarily conserved in Drosophila. BMC Genomics 2015; 16:292. [PMID: 25887553 PMCID: PMC4419465 DOI: 10.1186/s12864-015-1495-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/27/2015] [Indexed: 01/08/2023] Open
Abstract
Background Group B Sox proteins are a highly conserved group of transcription factors that act extensively to coordinate nervous system development in higher metazoans while showing both co-expression and functional redundancy across a broad group of taxa. In Drosophila melanogaster, the two group B Sox proteins Dichaete and SoxNeuro show widespread common binding across the genome. While some instances of functional compensation have been observed in Drosophila, the function of common binding and the extent of its evolutionary conservation is not known. Results We used DamID-seq to examine the genome-wide binding patterns of Dichaete and SoxNeuro in four species of Drosophila. Through a quantitative comparison of Dichaete binding, we evaluated the rate of binding site turnover across the genome as well as at specific functional sites. We also examined the presence of Sox motifs within binding intervals and the correlation between sequence conservation and binding conservation. To determine whether common binding between Dichaete and SoxNeuro is conserved, we performed a detailed analysis of the binding patterns of both factors in two species. Conclusion We find that, while the regulatory networks driven by Dichaete and SoxNeuro are largely conserved across the drosophilids studied, binding site turnover is widespread and correlated with phylogenetic distance. Nonetheless, binding is preferentially conserved at known cis-regulatory modules and core, independently verified binding sites. We observed the strongest binding conservation at sites that are commonly bound by Dichaete and SoxNeuro, suggesting that these sites are functionally important. Our analysis provides insights into the evolution of group B Sox function, highlighting the specific conservation of shared binding sites and suggesting alternative sources of neofunctionalisation between paralogous family members. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1495-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah H Carl
- Department of Genetics and Cambridge Systems Biology Centre, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| | - Steven Russell
- Department of Genetics and Cambridge Systems Biology Centre, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
50
|
Chang AT, Liu Y, Ayyanathan K, Benner C, Jiang Y, Prokop JW, Paz H, Wang D, Li HR, Fu XD, Rauscher FJ, Yang J. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors. Genes Dev 2015; 29:603-16. [PMID: 25762439 PMCID: PMC4378193 DOI: 10.1101/gad.242842.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors recognize the canonical E-box (CANNTG) to regulate gene transcription; however, given the prevalence of E-boxes in a genome, it has been puzzling how individual bHLH proteins selectively recognize E-box sequences on their targets. TWIST is a bHLH transcription factor that promotes epithelial-mesenchymal transition (EMT) during development and tumor metastasis. High-resolution mapping of TWIST occupancy in human and Drosophila genomes reveals that TWIST, but not other bHLH proteins, recognizes a unique double E-box motif with two E-boxes spaced preferentially by 5 nucleotides. Using molecular modeling and binding kinetic analyses, we found that the strict spatial configuration in the double E-box motif aligns two TWIST-E47 dimers on the same face of DNA, thus providing a high-affinity site for a highly stable intramolecular tetramer. Biochemical analyses showed that the WR domain of TWIST dimerizes to mediate tetramer formation, which is functionally required for TWIST-induced EMT. These results uncover a novel mechanism for a bHLH transcription factor to recognize a unique spatial configuration of E-boxes to achieve target specificity. The WR-WR domain interaction uncovered here sets an example of target gene specificity of a bHLH protein being controlled allosterically by a domain outside of the bHLH region.
Collapse
Affiliation(s)
- Andrew T Chang
- Department of Pharmacology, University of California at San Diego, La Jolla, California, 92093, USA; The Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, 92093, USA
| | - Yuanjie Liu
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | - Chris Benner
- Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yike Jiang
- Department of Pharmacology, University of California at San Diego, La Jolla, California, 92093, USA; The Biological Science Graduate Program, University of California at San Diego, La Jolla, California, 92093, USA
| | - Jeremy W Prokop
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Helicia Paz
- Department of Pharmacology, University of California at San Diego, La Jolla, California, 92093, USA
| | - Dong Wang
- Department of Cell and Molecular Medicine, University of California at San Diego, La Jolla, California, 92093, USA
| | - Hai-Ri Li
- Department of Cell and Molecular Medicine, University of California at San Diego, La Jolla, California, 92093, USA
| | - Xiang-Dong Fu
- Department of Cell and Molecular Medicine, University of California at San Diego, La Jolla, California, 92093, USA
| | | | - Jing Yang
- Department of Pharmacology, University of California at San Diego, La Jolla, California, 92093, USA; Department of Pediatrics, University of California at San Diego, La Jolla, California, 92093, USA
| |
Collapse
|