1
|
Sone J, Ueno S, Akagi A, Miyahara H, Tamai C, Riku Y, Yabata H, Koizumi R, Hattori T, Hirose H, Koyanagi Y, Kobayashi R, Okada H, Kishimoto Y, Hashizume Y, Sobue G, Yoshida M, Iwasaki Y. NOTCH2NLC GGC repeat expansion causes retinal pathology with intranuclear inclusions throughout the retina and causes visual impairment. Acta Neuropathol Commun 2023; 11:71. [PMID: 37131242 PMCID: PMC10152767 DOI: 10.1186/s40478-023-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
The retinal pathology of genetically confirmed neuronal intranuclear inclusion disease (NIID) is yet unknown. We report the ocular findings in four NIID patients with NOTCH2NLC GGC repeat expansion to investigate the pathology of retinopathy. All four NIID patients were diagnosed by skin biopsy and NOTCH2NLC GGC repeat analysis. Ocular findings in patients with NIID were studied using fundus photographs, optical coherence tomographic images (OCT), and full-field electroretinograms (ERGs). The histopathology of the retina was studied on autopsy samples from two cases with immunohistochemistry. All patients had an expansion of the GGC repeat (87-134 repeats) in the NOTCH2NLC. Two patients were legally blind and had been diagnosed with retinitis pigmentosa prior to the diagnosis of NIID and assessed with whole exome sequencing to rule out comorbidity with other retinal diseases. Fundus photographs around the posterior pole showed chorioretinal atrophy in the peripapillary regions. OCT showed thinning of the retina. ERGs showed various abnormalities in cases. The histopathology of autopsy samples showed diffusely scattered intranuclear inclusions throughout the retina from the retinal pigment epithelium to the ganglion cell layer, and optic nerve glial cells. And severe gliosis was observed in retina and optic nerve. The NOTCH2NLC GGC repeat expansion causes numerous intranuclear inclusions in the retina and optic nerve cells and gliosis. Visual dysfunction could be the first sign of NIID. We should consider NIID as one of the causes of retinal dystrophy and investigate the GGC repeat expansion in NOTCH2NLC.
Collapse
Affiliation(s)
- Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan.
- Department of Neurology, National Hospital Organization Suzuka National Hospital, 3-2-1, Kasado, Suzuka, Mie, 513-8501, Japan.
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan.
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki, Aomori, 036-8562, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Chisato Tamai
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroyuki Yabata
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Shiga University of Medical Science. Seta-Tsukinowa, Otsu, 520-2192, Japan
| | - Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 22-2 Seto, Kanazawa-Ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Tomohiro Hattori
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Hiroshi Hirose
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Rei Kobayashi
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Hisashi Okada
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Yoshiyuki Kishimoto
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, 19-14, Yamanaka, Noyori, Toyohashi, Aichi, 441-8124, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
2
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
3
|
Dela Peña IJI, Botanas CJ, de la Peña JB, Custodio RJ, Dela Peña I, Ryoo ZY, Kim BN, Ryu JH, Kim HJ, Cheong JH. The Atxn7-overexpressing mice showed hyperactivity and impulsivity which were ameliorated by atomoxetine treatment: A possible animal model of the hyperactive-impulsive phenotype of ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:311-319. [PMID: 30125623 DOI: 10.1016/j.pnpbp.2018.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 01/29/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental disorder characterized by varying levels of hyperactivity, inattention, and impulsivity. Patients with ADHD are often classified as (1) predominantly hyperactive-impulsive, (2) predominantly inattentive, and (3) combined type. There is a growing interest in developing specific animal models that would recapitulate specific clinical forms of ADHD, with the goal of developing specific therapeutic strategies. In our previous study, we have identified Ataxin-7 (Atxn7) as a hyperactivity-associated gene. Here, we generated Atxn7 overexpressing (Atxn7 OE) mice to investigate whether the increased Atxn7 expression in the brain correlates with ADHD-like behaviors. Quantitative real-time polymerase chain reaction and immunofluorescence confirmed overexpression of the Atxn7 gene and protein in the prefrontal cortex (PFC) and striatum (STR) of the Atxn7 OE mice. The Atxn7 OE mice displayed hyperactivity and impulsivity, but not inattention. Interestingly, treatment with the ADHD drug, atomoxetine (3 mg/kg, intraperitoneal), attenuated ADHD-like behaviors and reduced Atxn7 gene expression in the PFC and STR of these mice. These findings suggest that Atxn7 plays a role in the pathophysiology of ADHD, and that the Atxn7 OE mice can be used as an animal model of the hyperactive-impulsive phenotype of this disorder. Although confirmatory studies are warranted, the present study provides valuable information regarding the potential genetic underpinnings of ADHD.
Collapse
Affiliation(s)
- Irene Joy I Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Ike Dela Peña
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, CA 92350, USA
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu 41566, Republic of Korea
| | - Bung-Nyun Kim
- Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea.
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea.
| |
Collapse
|
4
|
dela Peña IJI, dela Peña I, de la Peña JB, Kim HJ, Sohn A, Shin CY, Han DH, Kim BN, Ryu JH, Cheong JH. Transcriptional profiling of SHR/NCrl prefrontal cortex shows hyperactivity-associated genes responsive to amphetamine challenge. GENES BRAIN AND BEHAVIOR 2017; 16:664-674. [DOI: 10.1111/gbb.12388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/05/2017] [Accepted: 04/16/2017] [Indexed: 12/15/2022]
Affiliation(s)
- I. J. I. dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - I. dela Peña
- Department of Pharmaceutical and Administrative Sciences; Loma Linda University; Loma Linda CA USA
| | - J. B. de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - H. J. Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - A. Sohn
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - C. Y. Shin
- Department of Neuroscience, School of Medicine; Konkuk University; Seoul Republic of Korea
| | - D. H. Han
- Department of Psychiatry; Chung-Ang University Medical School; Seoul Republic of Korea
| | - B.-N. Kim
- Department of Research Planning, Mental Health Research Institute; National Center for Mental Health; Seoul Republic of Korea
| | - J. H. Ryu
- Department of Life and Nanopharmaceutical Science; College of Pharmacy, Kyung Hee University; Seoul Republic of Korea
- Department of Oriental Pharmaceutical Science; College of Pharmacy, Kyung Hee University; Seoul Republic of Korea
| | - J. H. Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| |
Collapse
|
5
|
Xu Z, Tito AJ, Rui YN, Zhang S. Studying polyglutamine diseases in Drosophila. Exp Neurol 2015; 274:25-41. [PMID: 26257024 DOI: 10.1016/j.expneurol.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Polyglutamine (polyQ) diseases are a family of dominantly transmitted neurodegenerative disorders caused by an abnormal expansion of CAG trinucleotide repeats in the protein-coding regions of the respective disease-causing genes. Despite their simple genetic basis, the etiology of these diseases is far from clear. Over the past two decades, Drosophila has proven to be successful in modeling this family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. Additionally, it has been valuable in probing the pathogenic mechanisms, in identifying and evaluating disease modifiers, and in helping elucidate the normal functions of disease-causing genes. Knowledge learned from this simple invertebrate organism has had a large impact on our understanding of these devastating brain diseases.
Collapse
Affiliation(s)
- Zhen Xu
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Antonio Joel Tito
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; Programs in Human and Molecular Genetics and Neuroscience, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Graduate School of Biomedical Sciences, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Yan-Ning Rui
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; Department of Neurobiology and Anatomy, 1825 Pressler Street, Houston, TX 77030, United States; Programs in Human and Molecular Genetics and Neuroscience, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Graduate School of Biomedical Sciences, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States.
| |
Collapse
|
6
|
Donis KC, Mattos EP, Silva AA, Furtado GV, Saraiva-Pereira ML, Jardim LB, Saute JA. Infantile spinocerebellar ataxia type 7: Case report and a review of the literature. J Neurol Sci 2015; 354:118-21. [PMID: 25972113 DOI: 10.1016/j.jns.2015.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Karina Carvalho Donis
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Post Graduate Program in Children and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Preusser Mattos
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Anjos Silva
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Gabriel Vasata Furtado
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Luiza Saraiva-Pereira
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Bannach Jardim
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jonas Alex Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Internal ribosome entry segment activity of ATXN8 opposite strand RNA. PLoS One 2013; 8:e73885. [PMID: 24040107 PMCID: PMC3770663 DOI: 10.1371/journal.pone.0073885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar ataxia type 8 (SCA8) involves the expansion of CTG/CAG repeats from the overlapping ataxin 8 opposite strand (ATXN8OS) and ataxin 8 (ATXN8) genes located on chromosome 13q21. Although being transcribed, spliced and polyadenylated in the CTG orientation, ATXN8OS does not itself appear to be protein coding, as only small open reading frames (ORFs) were noted. In the present study we investigated the translation of a novel 102 amino acids containing-ORF in the ATXN8OS RNA. Expression of chimeric construct with an in-frame ORF-EGFP gene demonstrated that ATXN8OS RNA is translatable. Using antiserum raised against ORF, ATXN8OS ORF expression was detected in various human cells including lymphoblastoid, embryonic kidney 293, neuroblastoma IMR-32, SK-N-SH, SH-SY5Y cells and human muscle tissue. The biological role of the ATXN8OS ORF and its connection to SCA8 remains to be determined.
Collapse
|
8
|
Ikeda Y, Ranum LPW, Day JW. Clinical and genetic features of spinocerebellar ataxia type 8. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:493-505. [PMID: 21827909 DOI: 10.1016/b978-0-444-51892-7.00031-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yoshio Ikeda
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
9
|
Giunti P, Houlden H, Gardner-Thorpe C, Worth PF, Johnson J, Hilton DA, Revesz T, Davis MB, Wood NW. Spinocerebellar ataxia type 11. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:521-34. [PMID: 21827911 DOI: 10.1016/b978-0-444-51892-7.00033-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- P Giunti
- Department of Molecular Neuroscience, Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Spinocerebellar ataxia 17 (SCA17) and Huntington's disease-like 4 (HDL4). THE CEREBELLUM 2009; 7:170-8. [PMID: 18418687 DOI: 10.1007/s12311-008-0016-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Spinocerebellar ataxia 17 (SCA17) or Huntington's disease-like-4 is a neurodegenerative disease caused by the expansion above 44 units of a CAG/CAA repeat in the coding region of the TATA box binding protein (TBP) gene leading to an abnormal expansion of a polyglutamine stretch in the corresponding protein. Alleles with 43 and 44 repeats have been identified in sporadic cases and their pathogenicity remains uncertain. Furthermore, incomplete penetrance of pathological alleles with up to 49 repeats has been suggested. The imperfect nature of the repeat makes intergenerational instability extremely rare and de novo mutations are most likely the result of partial duplications. This is one of the rarer forms of autosomal dominant cerebellar ataxia but the associated phenotype is often severe, involving various systems (cerebral cortex, striatum, and cerebellum), with extremely variable age at onset (range: 3-75 years) and clinical presentation. This gene is thought to account for a small proportion of patients with a Huntington's disease-like phenotype and cerebellar signs. Parkinson's disease-like, Creutzfeldt-Jakob disease-like and Alzheimer disease-like phenotypes have also been described with small SCA17 expansions. The abnormal protein is expressed at the same level as its normal counterpart and forms neuronal intranuclear inclusions containing other proteins involved in protein folding or degradation. The increase in the size of the glutamine stretch enhances transcription in vitro, probably leading to transcription deregulation. Interestingly, the TBP protein mutated in SCA17 is recruited in the inclusions of other polyglutaminopathies, suggesting its involvement in the transcription down-regulation observed in these diseases.
Collapse
|
11
|
Ikeda Y, Daughters RS, Ranum LPW. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. THE CEREBELLUM 2009; 7:150-8. [PMID: 18418692 DOI: 10.1007/s12311-008-0010-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spinocerebellar ataxia type 8 (SCA8) is a dominantly inherited, slowly progressive neurodegenerative disorder caused by a CTG.CAG repeat expansion located on chromosome 13q21. The expansion mutation was isolated directly from the DNA of a single patient using RAPID cloning and subsequently shown to co-segregate with disease in additional ataxia families including a seven-generation kindred (the MN-A family). The size-dependent penetrance of the repeat found in the large MN-A kindred makes it appear as though some parts of the family have a dominant disorder while other parts of this same family have recessive or sporadic forms of ataxia. While the linkage and size-dependent penetrance of the SCA8 CTG.CAG expansion in the MN-A family argue that the SCA8 expansion causes ataxia, the reduced penetrance in other SCA8 families and the discovery of expansions in the general population have led to a controversy surrounding whether or not the SCA8 expansion is pathogenic. A recently reported mouse model in which SCA8 BAC-expansion but not BAC-control lines develop a progressive neurological phenotype now demonstrates the pathogenicity of the (CTG.CAG)(n) expansion. These mice show a loss of cerebellar GABAergic inhibition and, similar to human patients, have 1C2-positive intranuclear inclusions in Purkinje cells and other neurons. Additional studies demonstrate that the SCA8 expansion is expressed in both directions (CUG and CAG) and that a novel gene expressed in the CAG direction encodes a pure polyglutamine expansion protein (ataxin 8, ATXN8). Moreover, the expression of non-coding (CUG)(n) expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and the discovery of intranuclear polyglutamine inclusions suggest SCA8 pathogenesis may involve toxic gain-of-function mechanisms at both the protein and RNA levels. Our data, combined with the recently reported antisense transcripts spanning the DM1 repeat expansion in the CAG direction and the growing number of reports of antisense transcripts expressed throughout the mammalian genome, raises the possibility that bidirectional expression across pathogenic microsatellite expansions may occur in other expansion disorders, and that potential pathogenic effects of mutations expressed from both strands should be considered.
Collapse
Affiliation(s)
- Yoshio Ikeda
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
12
|
Latouche M, Lasbleiz C, Martin E, Monnier V, Debeir T, Mouatt-Prigent A, Muriel MP, Morel L, Ruberg M, Brice A, Stevanin G, Tricoire H. A conditional pan-neuronal Drosophila model of spinocerebellar ataxia 7 with a reversible adult phenotype suitable for identifying modifier genes. J Neurosci 2007; 27:2483-92. [PMID: 17344386 PMCID: PMC6672519 DOI: 10.1523/jneurosci.5453-06.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spinocerebellar ataxia 7 (SCA7) is a neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the ataxin 7 (ATXN7) protein, a member of a multiprotein complex involved in histone acetylation. We have created a conditional Drosophila model of SCA7 in which expression of truncated ATXN7 (ATXN7T) with a pathogenic polyQ expansion is induced in neurons in adult flies. In this model, mutant ATXN7T accumulated in neuronal intranuclear inclusions containing ubiquitin, the 19S proteasome subunit, and HSP70 (heat shock protein 70), as in patients. Aggregation was accompanied by a decrease in locomotion and lifespan but limited neuronal death. Disaggregation of the inclusions, when expression of expanded ATXN7T was stopped, correlated with improved locomotor function and increased lifespan, suggesting that the pathology may respond to treatment. Lifespan was then used as a quantitative marker in a candidate gene approach to validate the interest of the model and to identify generic modulators of polyQ toxicity and specific modifiers of SCA7. Several molecular pathways identified in this focused screen (proteasome function, unfolded protein stress, caspase-dependent apoptosis, and histone acetylation) were further studied in primary neuronal cultures. Sodium butyrate, a histone deacetylase inhibitor, improved the survival time of the neurons. This model is therefore a powerful tool for studying SCA7 and for the development of potential therapies for polyQ diseases.
Collapse
Affiliation(s)
- Morwena Latouche
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Christelle Lasbleiz
- Centre National de la Rechereche Scientifique, UMR 7592, Insititut Jacques Monod, Campus Universitaire de Jussieu, Paris F-75251, France, and
| | - Elodie Martin
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Véronique Monnier
- Centre National de la Rechereche Scientifique, UMR 7592, Insititut Jacques Monod, Campus Universitaire de Jussieu, Paris F-75251, France, and
| | - Thomas Debeir
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Annick Mouatt-Prigent
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Marie-Paule Muriel
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Lydie Morel
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
| | - Merle Ruberg
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Alexis Brice
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
- Assistance Publique–Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Départment de Génétique, Cytogénétique, et Embryologie, Paris F-75013, France
| | - Giovanni Stevanin
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
- Assistance Publique–Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Départment de Génétique, Cytogénétique, et Embryologie, Paris F-75013, France
| | - Hérvé Tricoire
- Centre National de la Rechereche Scientifique, UMR 7592, Insititut Jacques Monod, Campus Universitaire de Jussieu, Paris F-75251, France, and
| |
Collapse
|
13
|
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG expansion mutation located in the 3' untranslated portion of the dystrophica myotonin protein kinase gene. The identification and characterization of RNA-binding proteins that interact with expanded CUG repeats and the discovery that a similar transcribed but untranslated CCTG expansion in an intron causes myotonic dystrophy type 2 (DM2) have uncovered a new type of mechanism in which microsatellite expansion mutations cause disease through an RNA gain-of-function mechanism. This review discusses RNA pathogenesis in DM1 and DM2 and evidence that similar mechanisms may play a role in a growing number of dominant noncoding expansion disorders, including fragile X tremor ataxia syndrome (FXTAS), spinocerebellar ataxia type 8 (SCA8), SCA10, SCA12, and Huntington's disease-like 2 (HDL2).
Collapse
Affiliation(s)
- Laura P W Ranum
- Institute of Human Genetics and Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
14
|
Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, Chen G, Weatherspoon MR, Clark HB, Ebner TJ, Day JW, Ranum LPW. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 2006; 38:758-69. [PMID: 16804541 DOI: 10.1038/ng1827] [Citation(s) in RCA: 316] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 05/22/2006] [Indexed: 11/08/2022]
Abstract
We previously reported that a (CTG)n expansion causes spinocerebellar ataxia type 8 (SCA8), a slowly progressive ataxia with reduced penetrance. We now report a transgenic mouse model in which the full-length human SCA8 mutation is transcribed using its endogenous promoter. (CTG)116 expansion, but not (CTG)11 control lines, develop a progressive neurological phenotype with in vivo imaging showing reduced cerebellar-cortical inhibition. 1C2-positive intranuclear inclusions in cerebellar Purkinje and brainstem neurons in SCA8 expansion mice and human SCA8 autopsy tissue result from translation of a polyglutamine protein, encoded on a previously unidentified antiparallel transcript (ataxin 8, ATXN8) spanning the repeat in the CAG direction. The neurological phenotype in SCA8 BAC expansion but not BAC control lines demonstrates the pathogenicity of the (CTG-CAG)n expansion. Moreover, the expression of noncoding (CUG)n expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and the discovery of intranuclear polyglutamine inclusions suggests SCA8 pathogenesis involves toxic gain-of-function mechanisms at both the protein and RNA levels.
Collapse
Affiliation(s)
- Melinda L Moseley
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Freed KA, Cooper DW, Brennecke SP, Moses EK. Detection of CAG repeats in pre-eclampsia/eclampsia using the repeat expansion detection method. Mol Hum Reprod 2005; 11:481-7. [PMID: 16123075 DOI: 10.1093/molehr/gah190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pre-eclampsia/eclampsia is a serious disorder of human pregnancy that has a worldwide incidence of 2-10% and carries a severe morbidity and mortality risk for both mother and child. Its precise cause remains unknown. However, there is increasing evidence of an underlying complex maternal genetic susceptibility. Its high population incidence in the face of strong negative selection pressure suggests that the gene(s) involved have a selective advantage and/or a high mutation rate. One class of genetic diseases that involve a high mutation rate are the trinucleotide repeat expansion diseases. Thus, the aim of this study was to determine whether there is an association between a trinucleotide (CAG) repeat expansion and pre-eclampsia/eclampsia. We have used the repeat expansion detection (RED) method, which was developed to directly identify clinically significant repeat expansions, to analyse genomic DNA from an Australian and New Zealand population. The maximal CAG repeat length for each individual was recorded and the Mann-Whitney U and Wilcoxon rank sum test for independent samples were used to compare distributions for CAG/CTG repeats between two populations. There were no statistically significant differences between the distribution of CAG repeats in normotensive (n = 59) and severe pre-eclampsia (n = 69) (Mann-Whitney U = 1732; P = 0.14), and normotensive (n = 59) and eclamptic (n = 15) populations (Mann-Whitney U = 417, P = 0.726). Therefore, these RED results do not support a role for a large CAG expansion in pre-eclampsia/eclampsia. However, these data do not preclude the possibility that a small CAG expansion is associated with the disorder nor do they negate the hypothesis that a highly mutable gene contributes to the genetic component of pre-eclampsia/eclampsia.
Collapse
Affiliation(s)
- K A Freed
- Department of Perinatal Medicine, The Royal Women's Hospital, University of Melbourne, Carlton, Victoria, Australia.
| | | | | | | |
Collapse
|
16
|
Abstract
The group of spinocerebellar ataxias (SCAs) includes more than 20 subgroups based only on genetic research. The "ataxia genes" are autosomal; the "disease-alleles" are dominant, and many of them, but not all, encode a protein with an abnormally long polyglutamine domain. In DNA, this domain can be detected as an elongated CAG repeat region, which is the basis of genetic diagnostics. The polyglutamine tails often tend to aggregate and form inclusions. In some cases, protein-protein interactions are the key to understanding the disease. Protein partners of ataxia proteins include phosphatases and components of chromatin and the transcriptional machinery. To date, investigation of spinocerebellar ataxias involves population genetics, molecular methods, and studying model organisms. However, there is still no efficient therapy for patients. Here, we review the genetic and molecular data gained on spinocerebellar ataxias.
Collapse
Affiliation(s)
- Viktor Honti
- Department of Neurology, Albert Szent-Györgyi Medical and Pharmaceutical Center, University of Szeged, Szeged, Hungary.
| | | |
Collapse
|
17
|
Yu GY, Howell MJ, Roller MJ, Xie TD, Gomez CM. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 2005; 57:349-54. [PMID: 15732118 DOI: 10.1002/ana.20371] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The dominantly inherited spinocerebellar ataxias (SCA) are a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive gait ataxia, upper limb incoordination, and dysarthria. We studied a six-generation kindred of Norwegian ancestry with pure cerebellar ataxia inherited in an autosomal dominant pattern. All affected family members had a slowly progressive cerebellar ataxia, with an age of onset range from 26 to 60 years. Brain magnetic resonance imaging study of 11 affected patients showed that atrophy was confined to the cerebellum. After excluding all the known SCAs using linkage analysis or direct mutation screen, we conducted a genomewide genetic linkage scan. With the aid of a novel linkage analysis strategy, we found linkage between the disease locus and marker D19S591 and D19S1034. Subsequent genetic and clinical analysis identified a critical region of 15.55cM interval on chromosome 19p13.3, flanked by markers D19S886 and D19S894, and have established a new genetic locus designated SCA26. The SCA26 locus is adjacent to the genes for Cayman ataxia and SCA6. The region consists of 3.3 million base pairs (Mb) of DNA sequences with approximately 100 known and predicted genes. Identification of the responsible gene for SCA26 ataxia will provide further insight into mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Guo-Yun Yu
- Department of Neurology, University of Minnesota, MMC 295, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Fragile X mental retardation and Friedreich's ataxia were among the first pathogenic trinucleotide repeat disorders to be described in which noncoding repeat expansions interfere with gene expression and cause a loss of protein production. Invoking a similar loss-of-function hypothesis for the CTG expansion causing myotonic dystrophy type 1 (DM1) located in the 3' noncoding portion of a kinase gene was more difficult because DM is a dominantly inherited multisystemic disorder in which the second copy of the gene is unaffected. However, the discovery that a transcribed but untranslated CCTG expansion causes myotonic dystrophy type 2 (DM2), along with other discoveries on DM1 and DM2 pathogenesis, indicate that the CTG and CCTG expansions are pathogenic at the RNA level. This review will detail recent developments on the molecular mechanisms of RNA pathogenesis in DM, and the growing number of expansion disorders that might involve similar pathogenic RNA mechanisms.
Collapse
Affiliation(s)
- Laura P W Ranum
- Institute of Human Genetics, MMC 206, 420 Delaware St S.E., University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
19
|
Ikeda Y, Dalton JC, Moseley ML, Gardner KL, Bird TD, Ashizawa T, Seltzer WK, Pandolfo M, Milunsky A, Potter NT, Shoji M, Vincent JB, Day JW, Ranum LPW. Spinocerebellar ataxia type 8: molecular genetic comparisons and haplotype analysis of 37 families with ataxia. Am J Hum Genet 2004; 75:3-16. [PMID: 15152344 PMCID: PMC1182005 DOI: 10.1086/422014] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 04/05/2004] [Indexed: 11/03/2022] Open
Abstract
We reported elsewhere that an untranslated CTG expansion causes the dominantly inherited neurodegenerative disorder spinocerebellar ataxia type 8 (SCA8). SCA8 shows a complex inheritance pattern with extremes of incomplete penetrance, in which often only one or two affected individuals are found in a given family. SCA8 expansions have also been found in control chromosomes, indicating that separate genetic or environmental factors increase disease penetrance among SCA8-expansion-carrying patients with ataxia. We describe the molecular genetic features and disease penetrance of 37 different families with SCA8 ataxia from the United States, Canada, Japan, and Mexico. Haplotype analysis using 17 STR markers spanning an approximately 1-Mb region was performed on the families with ataxia, on a group of expansion carriers in the general population, and on psychiatric patients, to clarify the genetic basis of the reduced penetrance and to investigate whether CTG expansions among different populations share a common ancestral background. Two major ancestrally related haplotypes (A and A') were found among white families with ataxia, normal controls, and patients with major psychosis, indicating a common ancestral origin of both pathogenic and nonpathogenic SCA8 expansions among whites. Two additional and distinct haplotypes were found among a group of Japanese families with ataxia (haplotype B) and a Mexican family with ataxia (haplotype C). Our finding that SCA8 expansions on three independently arising haplotypes are found among patients with ataxia and cosegregate with ataxia when multiple family members are affected further supports the direct role of the CTG expansion in disease pathogenesis.
Collapse
Affiliation(s)
- Yoshio Ikeda
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - Joline C. Dalton
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - Melinda L. Moseley
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - Kathy L. Gardner
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - Thomas D. Bird
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - Tetsuo Ashizawa
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - William K. Seltzer
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - Massimo Pandolfo
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - Aubrey Milunsky
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - Nicholas T. Potter
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - Mikio Shoji
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - John B. Vincent
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - John W. Day
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| | - Laura P. W. Ranum
- Institute of Human Genetics and Departments of Genetics, Cell Biology, and Development and Neurology, University of Minnesota, Minneapolis; Veterans Administration Hospital Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh; Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology, University of Texas Medical Branch, Galveston, TX; Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston; Athena Diagnostics, Worcester, MA; Department of Neurology, Erasme Hospital, Brussels Free University, Brussels; Center for Human Genetics, Boston University School of Medicine, Boston; Department of Medical Genetics, University of Tennessee Medical Center, Knoxville, TN; Department of Neurology, Division of Neuroscience, Biophysical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; and Neurogenetics Section, The Centre for Addiction and Mental Health, Toronto
| |
Collapse
|
20
|
Margolis RL. Dominant spinocerebellar ataxias: a molecular approach to classification, diagnosis, pathogenesis and the future. Expert Rev Mol Diagn 2004; 3:715-32. [PMID: 14628900 DOI: 10.1586/14737159.3.6.715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The capacity to use molecular techniques to establish the genetic diagnoses of the autosomal dominant ataxias has revolutionized the field. It is now possible to systematically classify these disorders according to the nature of the causative mutation, with implications for diagnostic testing, analysis of pathogenesis and therapeutic strategies. Here, the disorders are grouped into ataxias caused by CAG repeat expansions that encode polyglutamine, ataxias caused by mutations in ion channels, ataxias caused by repeat expansions that do not encode polyglutamine, and ataxias caused by point mutations. The clinical, pathological, genetic and pathogenic features of each disorder are considered and the current status and future of diagnosis and therapy are reviewed in light of this classification scheme.
Collapse
Affiliation(s)
- Russell L Margolis
- Department of Psychiatry, Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
21
|
Tsutsumi T, Holmes SE, McInnis MG, Sawa A, Callahan C, DePaulo JR, Ross CA, DeLisi LE, Margolis RL. Novel CAG/CTG repeat expansion mutations do not contribute to the genetic risk for most cases of bipolar disorder or schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2004; 124B:15-9. [PMID: 14681907 DOI: 10.1002/ajmg.b.20058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The possible presence of anticipation in bipolar affective disorder and schizophrenia has led to the hypothesis that repeat expansion mutations could contribute to the genetic etiology of these diseases. Using the repeat expansion detection (RED) assay, we have systematically examined genomic DNA from 100 unrelated probands with schizophrenia and 68 unrelated probands with bipolar affective disorder for the presence of CAG/CTG repeat expansions. Our results show that 28% of the probands with schizophrenia and 30% of probands with bipolar disorder have a CAG/CTG repeat in the expanded range, but that each expansion could be explained by one of three nonpathogenic repeat expansions known to exist in the general population. We conclude that novel CAG/CTG repeat expansions are not a common genetic risk factor for bipolar disorder or schizophrenia.
Collapse
Affiliation(s)
- T Tsutsumi
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University of School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Michalik A, Martin JJ, Van Broeckhoven C. Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 2003; 12:2-15. [PMID: 14571264 DOI: 10.1038/sj.ejhg.5201108] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant, late-onset, slowly progressive disorder, primarily characterized by gradual loss of motor coordination, resulting from dysfunction and degeneration of the cerebellum and its connecting pathways. The disease is caused by expansion of a CAG trinucleotide repeat within the SCA7 gene, which encodes a polyglutamine tract within a novel protein, termed ataxin-7. The expansion of polyglutamine-encoding CAG repeats in dissimilar genes underlies eight neurodegenerative conditions besides SCA7, including a number of dominant ataxias related to SCA7. Although elongated polyglutamine itself can initiate neuronal dysfunction and death, its toxicity is modulated by the context of the disease proteins, as evidenced by the differing clinical and pathological presentation of the various disorders. In this respect, it is exciting that SCA7 constitutes the only polyglutamine disorder, in which the photoreceptors of the retina are also severely affected, leading to retinal degeneration and blindness. Since the discovery of the SCA7 mutation, numerous studies attempted to pinpoint the molecular mechanisms underlying the unique features of SCA7, particularly the retinal involvement. Here we summarize the clinical, pathological, and genetic aspects of SCA7, and review the current understanding of the pathogenesis of this disorder.
Collapse
Affiliation(s)
- A Michalik
- Department of Molecular Genetics, Neurogenetics Group, Flanders Interuniversity Institute for Biotechnology, Antwerpen, Belgium
| | | | | |
Collapse
|
23
|
Lebre AS, Brice A. Spinocerebellar ataxia 7 (SCA7). Cytogenet Genome Res 2003; 100:154-63. [PMID: 14526176 DOI: 10.1159/000072850] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Accepted: 12/14/2002] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar ataxia 7 (SCA7) is a progressive autosomal dominant neurodegenerative disorder characterized clinically by cerebellar ataxia associated with progressive macular dystrophy. The disease affects primarily the cerebellum and the retina, but also many other CNS structures as the disease progresses. SCA7 is caused by expansion of an unstable trinucleotide CAG repeat encoding a polyglutamine tract in the corresponding protein, ataxin-7. Normal SCA7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36-306 CAG repeats. SCA7 has a number of features in common with other diseases with polyglutamine expansions: (i) the appearance of clinical symptoms above a threshold number of CAG repeats (>35); (ii) a correlation between the size of the expansion and the rate of progression of the disease: the larger the repeat, the faster the progression; (iii) instability of the repeat sequence (approximately 12 CAG/transmission) that accounts for the marked anticipation of approximately 20 years/generation. The CAG repeat sequence is particularly unstable and de novo mutations can occur during paternal transmissions of intermediate size alleles (28-35 CAG repeats). This can explain the persistence of the disease in spite of the anticipation that should have resulted in its extinction.
Collapse
Affiliation(s)
- A-S Lebre
- INSERM U289, Groupe hospitalier Pitié-Salpêtrière, Paris, France.
| | | |
Collapse
|
24
|
Mosemiller AK, Dalton JC, Day JW, Ranum LPW. Molecular genetics of spinocerebellar ataxia type 8 (SCA8). Cytogenet Genome Res 2003; 100:175-83. [PMID: 14526178 DOI: 10.1159/000072852] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Accepted: 03/06/2003] [Indexed: 11/19/2022] Open
Abstract
We previously reported that a transcribed but untranslated CTG expansion causes a novel form of ataxia, spinocerebellar ataxia type 8 (SCA8) (Koob et al., 1999). SCA8 was the first example of a dominant spinocerebellar ataxia that is not caused by the expansion of a CAG repeat translated into a polyglutamine tract. This slowly progressive form of ataxia is characterized by dramatic repeat instability and a high degree of reduced penetrance. The clinical and genetic features of the disease are discussed below.
Collapse
Affiliation(s)
- A K Mosemiller
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
25
|
Margolis RL, Holmes SE. Huntington's disease-like 2: a clinical, pathological, and molecular comparison to Huntington's disease. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1566-2772(03)00061-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Fan X, Messaed C, Dion P, Laganiere J, Brais B, Karpati G, Rouleau GA. HnRNP A1 and A/B interaction with PABPN1 in oculopharyngeal muscular dystrophy. Can J Neurol Sci 2003; 30:244-51. [PMID: 12945950 DOI: 10.1017/s0317167100002675] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive ptosis, dysphagia and proximal limb weakness. The autosomal dominant form of this disease is caused by short expansions of a (GCG)6 repeat to (GCG) in the PABPN1 gene. The mutations lead to the expansion of a polyalanine stretch from 10 to 12-17 alanines in the N-terminus of PABPN1. The mutated PABPN1 (mPABPN1) induces the formation of intranuclear filamentous inclusions that sequester poly(A) RNA and are associated with cell death. METHODS Human fetal brain cDNA library was used to look for PABPNI binding proteins using yeast two-hybrid screen. The protein interaction was confirmed by GST pull-down and co-immunoprecipitation assays. Oculopharyngeal muscular dystrophy cellular model and OPMD patient muscle tissue were used to check whether the PABPN1 binding proteins were involved in the formation of OPMD intranuclear inclusions. RESULTS We identify two PABPNI interacting proteins, hnRNP A1 and hnRNP A/B. When co-expressed with mPABPN1 in COS-7 cells, predominantly nuclear protein hnRNP A1 and A/B co-localize with mPABPN1 in the insoluble intranuclear aggregates. Patient studies showed that hnRNP A1 is sequestered in OPMD nuclear inclusions. CONCLUSIONS The hnRNP proteins are involved in mRNA processing and mRNA nucleocytoplasmic export, sequestering of hnRNPs in OPMD intranuclear aggregates supports the view that OPMD intranuclear inclusions are "poly(A) RNA traps", which would interfere with RNA export, and cause muscle cell death.
Collapse
Affiliation(s)
- Xueping Fan
- Center for Research in Neuroscience, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Vincent JB, Paterson AD, Strong E, Petronis A, Kennedy JL. The unstable trinucleotide repeat story of major psychosis. AMERICAN JOURNAL OF MEDICAL GENETICS 2003; 97:77-97. [PMID: 10813808 DOI: 10.1002/(sici)1096-8628(200021)97:1<77::aid-ajmg11>3.0.co;2-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
New hopes for cloning susceptibility genes for schizophrenia and bipolar affective disorder followed the discovery of a novel type of DNA mutation, namely unstable DNA. One class of unstable DNA, trinucleotide repeat expansion, is the causal mutation in myotonic dystrophy, fragile X mental retardation, Huntington disease and a number of other rare Mendelian neurological disorders. This finding has led researchers in psychiatric genetics to search for unstable DNA sites as susceptibility factors for schizophrenia and bipolar affective disorder. Increased severity and decreased age at onset of disease in successive generations, known as genetic anticipation, was reported for undifferentiated psychiatric diseases and for myotonic dystrophy early in the twentieth century, but was initially dismissed as the consequence of ascertainment bias. Because unstable DNA was demonstrated to be a molecular substrate for genetic anticipation in the majority of trinucleotide repeat diseases including myotonic dystrophy, many recent studies looking for genetic anticipation have been performed for schizophrenia and bipolar affective disorder with surprisingly consistent positive results. These studies are reviewed, with particular emphasis placed on relevant sampling and statistical considerations, and concerns are raised regarding the interpretation of such studies. In parallel, molecular genetic investigations looking for evidence of trinucleotide repeat expansion in both schizophrenia and bipolar disorder are reviewed. Initial studies of genome-wide trinucleotide repeats using the repeat expansion detection technique suggested possible association of large CAG/CTG repeat tracts with schizophrenia and bipolar affective disorder. More recently, three loci have been identified that contain large, unstable CAG/CTG repeats that occur frequently in the population and seem to account for the majority of large products identified using the repeat expansion detection method. These repeats localize to an intron in transcription factor gene SEF2-1B at 18q21, a site named ERDA1 on 17q21 with no associated coding region, and the 3' end of a gene on 13q21, SCA8, that is believed to be responsible for a form of spinocerebellar ataxia. At present no strong evidence exists that large repeat alleles at either SEF2-1B or ERDA1 are involved in the etiology of schizophrenia or bipolar disorder. Preliminary evidence suggests that large repeat alleles at SCA8 that are non-penetrant for ataxia may be a susceptibility factor for major psychosis. A fourth, but much more infrequently unstable CAG/CTG repeat has been identified within the 5' untranslated region of the gene, MAB21L1, on 13q13. A fifth CAG/CTG repeat locus has been identified within the coding region of an ion transporter, KCNN3 (hSKCa3), on 1q21. Although neither large alleles nor instability have been observed at KCNN3, this repeat locus has been extensively analyzed in association and family studies of major psychosis, with conflicting findings. Studies of polyglutamine containing genes in major psychosis have also shown some intriguing results. These findings, reviewed here, suggest that, although a major role for unstable trinucleotides in psychosis is unlikely, involvement at a more modest level in a minority of cases cannot be excluded, and warrants further investigation.
Collapse
Affiliation(s)
- J B Vincent
- Department of Genetics at the Hospital for Sick Children, Toronto, Canada
| | | | | | | | | |
Collapse
|
28
|
Benzow KA, Koob MD, Condie A, Catovsky D, Matutes E, Yuille MR, Houlston RS. Instability of CAG-trinucleotide repeats in chronic lymphocytic leukemia. Leuk Lymphoma 2002; 43:1987-90. [PMID: 12481897 DOI: 10.1080/1042819021000015943] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anticipation--earlier onset and more severe disease in the offspring generation--is a well documented feature of familial chronic lymphocytic leukaemia (CLL). In a number of Mendelian diseases, anticipation is caused by expansion of contiguous triplets of nucleotides. The severity of disease expression and penetrance is related to the extent of the triplet expansion. To investigate whether repeat nucleotide repeat expansion is a feature of CLL, the repeat expansion detection (RED) technique was applied to samples from 17 patients with familial disease and 32 patients with early-onset CLL disease. No potentially pathological CAG expansions were detected. We conclude that unstable CAG repeat expansion is not a feature of CLL and that other processes are likely to be involved in generating anticipation in familial forms of the disease.
Collapse
Affiliation(s)
- Kellie A Benzow
- Institute of Human Genetics, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Advances in molecular genetics have led to identification of an increasing number of genes responsible for inherited ataxic disorders. Consequently, DNA testing has become a powerful method to unambiguously establish the diagnosis in some of these disorders; however, there are limitations in this approach. Furthermore, the ethical, social, legal and psychological implications of the genetic test results are complex, necessitating appropriate counseling. This article intends to help the practicing neurologist clinically differentiate these disorders, choose appropriate genetic tests, and recognize the importance of counseling.
Collapse
Affiliation(s)
- Alberto L Rosa
- Universidad de Córdoba, Laboratory of Neurogenetics, Institute for Medical Research Mercedes y Martín Ferreyra-INIMEC, Carrer Researcher of the National Research Council (CONICET), Córdoba, Argentina
| | | |
Collapse
|
30
|
Houlston RS, Catovsky D, Yuille MR. Genetic susceptibility to chronic lymphocytic leukemia. Leukemia 2002; 16:1008-14. [PMID: 12040432 DOI: 10.1038/sj.leu.2402538] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2001] [Accepted: 09/20/2001] [Indexed: 11/09/2022]
Abstract
There is increasing evidence that a subset of chronic lymphocytic leukemia is caused by an inherited predisposition. Here we review the evidence for an inherited predisposition, the characteristics of familial cases and evidence for the involvement of specific genes.
Collapse
Affiliation(s)
- R S Houlston
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, UK
| | | | | |
Collapse
|
31
|
Aleman TS, Cideciyan AV, Volpe NJ, Stevanin G, Brice A, Jacobson SG. Spinocerebellar ataxia type 7 (SCA7) shows a cone-rod dystrophy phenotype. Exp Eye Res 2002; 74:737-45. [PMID: 12126946 DOI: 10.1006/exer.2002.1169] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autosomal dominant spinocerebellar ataxia 7 is associated with retinal degeneration. SCA7, the causative gene, encodes ataxin-7, a ubiquitous 892 amino acid protein of variable sub-cellular localization, and the disease is due to expansion of an unstable CAG repeat in the coding region of the gene. Recent increases in understanding of the mechanisms ofSCA7 -related retinopathy from in vitro and murine model studies prompted us to perform a detailed study of the retinal phenotype of affected members of a family with SCA7 mutation (45-47 CAG repeats). There was a spectrum of severity from mild to severe dysfunction. Early functional abnormalities were at both photoreceptor and post-receptoral levels. When cone and rod photoreceptor dysfunction was present, it was approximately equal. Regional retinal dysfunction was evident: there was more dysfunction centrally than peripherally with least effect in the midperiphery. In vivo cross-sectional retinal images with optical coherence tomography showed an early disease stage of altered foveal lamination (abnormal area of low reflectivity splitting the outer retina-choroidal complex) accompanied in the parafovea by reduced retinal thickness. Later disease stages showed foveal and parafoveal retinal thinning. The phenotype in this family with SCA7 is that of a cone-rod dystrophy. These observations increase interest in a recent hypothesis that ataxin-7 may interfere with the function of CRX (cone-rod homeobox), a transcription factor regulating photoreceptor genes and a cause of a cone-rod dystrophy phenotype in man.
Collapse
Affiliation(s)
- Tomas S Aleman
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kovach MJ, Campbell KCM, Herman K, Waggoner B, Gelber D, Hughes LF, Kimonis VE. Anticipation in a unique family with Charcot-Marie-Tooth syndrome and deafness: delineation of the clinical features and review of the literature. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 108:295-303. [PMID: 11920834 DOI: 10.1002/ajmg.10223] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous group of polyneuropathies characterized by degeneration of peripheral nerves, resulting in distal muscle atrophy, sensory loss, and deformities of hands and feet. We have studied 34 individuals in a large 84-member four-generation central Illinois family with autosomal dominant Charcot-Marie-Tooth and deafness. Nerve conduction velocities are consistent with type 1 CMT. Audiological evaluation revealed both auditory neuropathy and cochlear involvement in affected individuals. There is increasing clinical severity and younger age of onset of CMT and deafness with each progressive generation, suggestive of anticipation (P < 0.05). The proband, a female diagnosed at birth with hypotonia, bilateral vocal cord palsy, swallowing incoordination, and hearing impairment, died at age 18 months. Another individual died at the age of 3 months from hypotonia later attributed to CMT. Genetic analysis indicated that affected individuals in this family do not have the common 1.4 Mb duplication associated with type 1A CMT; however, all affected individuals have a unique G to C transversion at position 248 in coding exon 3 of the peripheral myelin PMP22 gene located on chromosome 17p11.2-p12. This mutation is predicted to cause an Ala67Pro substitution in the second transmembrane domain of PMP22, consistent with the molecular cause of the CMT phenotype. However, it does not explain the cochlear component of the deafness, the clinical observation of anticipation, and other features in this family.
Collapse
Affiliation(s)
- M J Kovach
- Division of Genetics and Metabolism, Department of Pediatrics, Southern Illinois University-School of Medicine, Springfield, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Margolis RL, O'Hearn E, Rosenblatt A, Willour V, Holmes SE, Franz ML, Callahan C, Hwang HS, Troncoso JC, Ross CA. A disorder similar to Huntington's disease is associated with a novel CAG repeat expansion. Ann Neurol 2001; 50:373-80. [PMID: 11761463 DOI: 10.1002/ana.1312] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant disorder characterized by abnormalities of movement, cognition, and emotion and selective atrophy of the striatum and cerebral cortex. While the etiology of HD is known to be a CAG trinucleotide repeat expansion, the pathways by which this mutation causes HD pathology remain unclear. We now report a large pedigree with an autosomal dominant disorder that is clinically similar to HD and that arises from a different CAG expansion mutation. The disorder is characterized by onset in the fourth decade, involuntary movements and abnormalities of voluntary movement, psychiatric symptoms, weight loss, dementia, and a relentless course with death about 20 years after disease onset. Brain magnetic resonance imaging scans and an autopsy revealed marked striatal atrophy and moderate cortical atrophy, with striatal neurodegeneration in a dorsal to ventral gradient and occasional intranuclear inclusions. All tested affected individuals, and no tested unaffecteds, have a CAG trinucleotide repeat expansion of 50 to 60 triplets, as determined by the repeat expansion detection assay. Tests for the HD expansion, for all other known CAG expansion mutations, and for linkage to chromosomes 20p and 4p were negative, indicating that this mutation is novel. Cloning the causative CAG expansion mutation for this new disease, which we have termed Huntington's disease-like 2, may yield valuable insight into the pathogenesis of HD and related disorders.
Collapse
Affiliation(s)
- R L Margolis
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Holmes SE, O'Hearn E, Rosenblatt A, Callahan C, Hwang HS, Ingersoll-Ashworth RG, Fleisher A, Stevanin G, Brice A, Potter NT, Ross CA, Margolis RL. A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet 2001; 29:377-8. [PMID: 11694876 DOI: 10.1038/ng760] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We recently described a disorder termed Huntington disease-like 2 (HDL2) that completely segregates with an unidentified CAG/CTG expansion in a large pedigree (W). We now report the cloning of this expansion and its localization to a variably spliced exon of JPH3 (encoding junctophilin-3), a gene involved in the formation of junctional membrane structures.
Collapse
Affiliation(s)
- S E Holmes
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Beauchemin AM, Gottlieb B, Beitel LK, Elhaji YA, Pinsky L, Trifiro MA. Cytochrome c oxidase subunit Vb interacts with human androgen receptor: a potential mechanism for neurotoxicity in spinobulbar muscular atrophy. Brain Res Bull 2001; 56:285-97. [PMID: 11719263 DOI: 10.1016/s0361-9230(01)00583-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spinobulbar muscular atrophy (SBMA) is a neurodegenerative disease caused by the expansion of the polyglutamine (polyGln) tract in the human androgen receptor (hAR). One mechanism by which polyGln-expanded proteins are believed to cause neuronotoxicity is through aberrant interaction(s) with, and possible sequestration of, critical cellular protein(s). Our goal was to confirm and further characterize the interaction between hAR and cytochrome c oxidase subunit Vb (COXVb), a nuclear-encoded mitochondrial protein. We initially isolated COXVb as an AR-interacting protein in a yeast two-hybrid screen to identify candidate proteins that interacted with normal and polyGln-expanded AR. Using the mammalian two-hybrid system, we confirm that COXVb interacts with normal and mutant AR and demonstrated that the COXVb-normal AR interaction is stimulated by heat shock protein 70. In addition, blue fluorescent protein-tagged AR specifically co-localized with cytoplasmic aggregates formed by green fluorescent protein-labeled polyGln-expanded AR in androgen-treated cells. Mitochondrial dysfunction may precede neuropathological findings in polyGln-expanded disorders and may thus represent an early event in neuronotoxicity. Interaction of COXVb and hAR, with subsequent sequestration of COXVb, may provide a mechanism for putative mitochondrial dysfunction in SBMA.
Collapse
Affiliation(s)
- A M Beauchemin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Panet-Raymond V, Gottlieb B, Beitel LK, Schipper H, Timiansky M, Pinsky L, Trifiro MA. Characterization of intracellular aggregates using fluorescently-tagged polyglutamine-expanded androgen receptor. Neurotox Res 2001; 3:259-75. [PMID: 15111251 DOI: 10.1007/bf03033265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinal bulbar muscular atrophy (SBMA) is a classic CAG-repeat neurodegenerative disease. It is caused by expansion of a polyglutamine (polyGln) tract in the androgen receptor (AR). Recent evidence has indicated a potential role for nuclear and cytoplasmic inclusions in the pathogenesis of these diseases. We have used blue and green fluorescently-tagged AR to show that both wild-type (WT) and poly-Gln-expanded full-length AR can form aggregates and that aggregation is not related to cytotoxicity. Twenty to thirty-five percent of all cell types transfected into COS cells showed aggregation containing both amino- and carboxy-terminal fluorescent tags. The aggregates reacted with (F39.4.1), an anti-AR antibody and with IC2, an expanded polyGln tract antibody. Western analysis of protein extracts revealed little evidence of proteolysis although some cleavage of the fusion proteins was seen. The general caspase inhibitor, Z-DEVD-FMK, did not affect aggregation in either wild type or polyGln-expanded GFP-AR transfected cells. Surprisingly, addition of Mibolerone a synthetic androgen significantly decreased inclusion formation in both WT and polyGln-expanded AR-transfected cells. Overall, we show that both WT and polyGln expanded full-length AR are found in aggregates and that proteolysis is not a requirement for aggregation. Our results also suggest that toxicity is not related to intracellular aggregation of polyGln expanded AR.
Collapse
Affiliation(s)
- V Panet-Raymond
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, 3755 Cote-Ste-Catherine Rd., Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
37
|
Margolis RL, O'Hearn E, Rosenblatt A, Willour V, Holmes SE, Franz ML, Callahan C, Hwang HS, Troncoso JC, Ross CA. A disorder similar to Huntington's disease is associated with a novel CAG repeat expansion. Ann Neurol 2001. [DOI: 10.1002/ana.1124] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Sawada K, Doyu M, Tanaka F, Sobue G, Kato K. Detection of triplet repeat expansion in the human genome by use of hybridization signal intensity. Anal Biochem 2000; 286:59-66. [PMID: 11038274 DOI: 10.1006/abio.2000.4786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triplet repeat disease is a group of hereditary neurodegenerative disorders caused by expansion of trinucleotide repeats such as CAG/CTG, CGG/CCG, and GAA/TTC. Direct detection of the expansion in the patient's genome shortcuts the tedious process needed for identification of disease genes by conventional approaches. Here we describe a method to detect triplet repeat expansion from the hybridization signal intensity. Using a digoxigenin-labeled (CTG)9 probe, the hybridization intensity and number of repeats showed a good linear correlation. The technique detected expansion in genomic DNA in all cases with moderate or large expansion. Even in the case of a small expansion, this method could detect the mutant fragment. The technique has advantages over related techniques because it is more sensitive and can be applied to cases where a small repeat expansion is involved.
Collapse
Affiliation(s)
- K Sawada
- Taisho Laboratory of Functional Genomics, Nara Institute of Science and Technology, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
39
|
Filla A, Mariotti C, Caruso G, Coppola G, Cocozza S, Castaldo I, Calabrese O, Salvatore E, De Michele G, Riggio MC, Pareyson D, Gellera C, Di Donato S. Relative frequencies of CAG expansions in spinocerebellar ataxia and dentatorubropallidoluysian atrophy in 116 Italian families. Eur Neurol 2000; 44:31-6. [PMID: 10894992 DOI: 10.1159/000008189] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two hundred and forty-eight patients from 116 Italian families with dominant ataxia were studied for CAG expansion within SCA1, 2, 3, 6, 7 (spinocerebellar ataxia) and DRPLA (dentatorubropallidoluysian atrophy) genes. Fifty-six percent of the families originated from Southern, 19% from Central and 25% from Northern Italy. SCA2 was the commonest mutation, accounting for 47% of the families, followed by SCA1 (24%), SCA6 (2%), SCA7 (2%) and DRPLA (1%). No SCA3 family was found. Twenty-four percent of the families carried a still unidentified mutation. When occurrence of mutations was evaluated according to the geographic origin, SCA1 was the commonest in Northern (72%), whereas SCA2 was prevalent (63%) in Southern Italy. The number of CAG repeats in SCA1 normal alleles was higher in Northern than in Central-Southern Italy.
Collapse
Affiliation(s)
- A Filla
- Department of Neurological Sciences, Federico II University, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000; 26:191-4. [PMID: 11017075 DOI: 10.1038/79911] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spinocerebellar ataxia type 10 (SCA10; MIM 603516; refs 1,2) is an autosomal dominant disorder characterized by cerebellar ataxia and seizures. The gene SCA10 maps to a 3.8-cM interval on human chromosome 22q13-qter (refs 1,2). Because several other SCA subtypes show trinucleotide repeat expansions, we examined microsatellites in this region. We found an expansion of a pentanucleotide (ATTCT) repeat in intron 9 of SCA10 in all patients in five Mexican SCA10 families. There was an inverse correlation between the expansion size, up to 22.5 kb larger than the normal allele, and the age of onset (r2=0.34, P=0.018). Analysis of 562 chromosomes from unaffected individuals of various ethnic origins (including 242 chromosomes from Mexican persons) showed a range of 10 to 22 ATTCT repeats with no evidence of expansions. Our data indicate that the new SCA10 intronic ATTCT pentanucleotide repeat in SCA10 patients is unstable and represents the largest microsatellite expansion found so far in the human genome.
Collapse
Affiliation(s)
- T Matsuura
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jouquand S, Priat C, Hitte C, Lachaume P, André C, Galibert F. Identification and characterization of a set of 100 tri- and dinucleotide microsatellites in the canine genome. Anim Genet 2000; 31:266-72. [PMID: 11086536 DOI: 10.1046/j.1365-2052.2000.00642.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A set of 100 canine microsatellite markers--83 dinucleotides and 17 trinucleotides--is reported. A study of their frequency in the dog genome showed that, while the frequency of the CA repeats is one (CA)n every 47 kb, the 10 trinucleotidic frequencies vary from one every 117 kb (AGG)n to one every 875 kb (AGT)n. Polymorphism analysis performed on 16 unrelated mongrel dogs showed that 80% of dinucleotides are polymorphic, while only 30% of the trinucleotides are so. Of this set of 100 markers, 56 have been mapped on the RHDF5000 dog/hamster whole genome radiation hybrid panel. Moreover, through systematic BLAST analogy searches of the microsatellite-containing clone sequence, three new dog genes could be identified, based on their human ortholog. All of the markers presented may prove useful in physical mapping methods, and polymorphic microsatellites in genetic linkage studies or parentage controls in dog.
Collapse
Affiliation(s)
- S Jouquand
- Laboratoire UPR41 CNRS, Faculté de Medecine, Rennes, France
| | | | | | | | | | | |
Collapse
|
42
|
Kaushik N, Malaspina A, de Belleroche J. Characterization of trinucleotide- and tandem repeat-containing transcripts obtained from human spinal cord cDNA library by high-density filter hybridization. DNA Cell Biol 2000; 19:265-73. [PMID: 10855793 DOI: 10.1089/10445490050021177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to identify trinucleotide- and tandem repeat-containing transcripts in human spinal cord, hybridization of a high-density spinal cord cDNA library filter was carried out using a radioactively labeled degenerate oligonucleotide designed to detect different trinucleotide repeats including those known to occur in disease-associated expansions, in a single step. The sequence analysis of the trinucleotide repeat-containing transcripts (TNRTs) revealed 23 known mammalian genes with trinucleotide repeat-containing regions (TNRs), some of which were not previously reported to contain TNRs, and 18 cDNA clones with no or insignificant sequence homology to known genes. Amongst the known genes detected was the fragile X gene (FMR-1) containing (CGG)30. Other genes containing extended TNRs of 9 to 21 repeats were calcium-dependent protease, ATBF1-A, ferritin H chain, and the G protein Gsalpha2. Ten sequences containing perfect TNRs and two sequences containing perfect tandem repeats (derived from 11 TNRTs) were further analyzed for allelic variation using primers flanking the TNR, and five were shown to exhibit two to five alleles per TNR. These transcripts were further investigated for their chromosomal localization where unknown or only partially characterized. The transcripts that were polymorphic in the TNR region were ATBF1-A (a homeodomain protein), clone 390013 on chromosome Xp11, a member of the family of the 14.3.3 protein kinase C regulators, a human translation initiation factor (an isolog of the yeast Suilisol gene 1), and a novel sequence (TR21). Only the first two transcripts showed the presence of rare expanded alleles. Characterization of polymorphic TNRs in novel and even known genes expressed in human spinal cord is likely to help in the identification of new candidates for genes involved in neurodegenerative disorders.
Collapse
Affiliation(s)
- N Kaushik
- Department of Neuromuscular Diseases, Imperial College School of Medicine, London, UK
| | | | | |
Collapse
|
43
|
|
44
|
Monckton DG, Cayuela ML, Gould FK, Brock GJ, Silva R, Ashizawa T. Very large (CAG)(n) DNA repeat expansions in the sperm of two spinocerebellar ataxia type 7 males. Hum Mol Genet 1999; 8:2473-8. [PMID: 10556295 DOI: 10.1093/hmg/8.13.2473] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic anticipation, i.e. increasing disease severity and decreasing age of onset from one generation to the next, is observed in a number of diseases, including myotonic dystrophy type 1, Huntington's disease and several of the spinocerebellar ataxias. All of these disorders are associated with the expansion of a trinucleotide repeat and array length is positively correlated with disease severity and inversely correlated with the age of onset. The expanded repeat is highly unstable and continues to expand from one generation to the next, providing a molecular explanation for anticipation. Spinocerebellar ataxia type 7 (SCA7) is one of the latest additions to the list of triplet repeat diseases and is distinct from the other SCAs in that it is accompanied by retinal degeneration. Pedigree analyses have previously revealed that the SCA7 repeat is highly unstable and liable to expand, in particular when transmitted by a male. Surprisingly, though, an under-representation of male transmission has also been reported. We now demonstrate directly by single molecule analyses that the expanded repeat is extraordinarily unstable in the male germline and biased toward massive increases. Nearly all of the mutant sperm of two SCA7 males contain alleles that are so large that most of the affected offspring would at best have a severe infantile form of the disease. Indeed, the gross under-representation of such very large expanded alleles in patients suggests that a significant proportion of such alleles might be associated with embryonic lethality or dysfunctional sperm.
Collapse
Affiliation(s)
- D G Monckton
- Division of Molecular Genetics, Institute for Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL. Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet 1999; 23:391-2. [PMID: 10581021 DOI: 10.1038/70493] [Citation(s) in RCA: 307] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Nardacchione A, Orsi L, Brusco A, Franco A, Grosso E, Dragone E, Mortara P, Schiffer D, De Marchi M. Definition of the smallest pathological CAG expansion in SCA7. Clin Genet 1999; 56:232-4. [PMID: 10563484 DOI: 10.1034/j.1399-0004.1999.560309.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Kaytor MD, Duvick LA, Skinner PJ, Koob MD, Ranum LP, Orr HT. Nuclear localization of the spinocerebellar ataxia type 7 protein, ataxin-7. Hum Mol Genet 1999; 8:1657-64. [PMID: 10441328 DOI: 10.1093/hmg/8.9.1657] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) belongs to a group of neurological disorders caused by a CAG repeat expansion in the coding region of the associated gene. To gain insight into the pathogenesis of SCA7 and possible functions of ataxin-7, we examined the subcellular localization of ataxin-7 in transfected COS-1 cells using SCA7 cDNA clones with different CAG repeat tract lengths. In addition to a diffuse distribution throughout the nucleus, ataxin-7 associated with the nuclear matrix and the nucleolus. The location of the putative SCA7 nuclear localization sequence (NLS) was confirmed by fusing an ataxin-7 fragment with the normally cytoplasmic protein chicken muscle pyruvate kinase. Mutation of this NLS prevented protein from entering the nucleus. Thus, expanded ataxin-7 may carry out its pathogenic effects in the nucleus by altering a matrix-associated nuclear structure and/or by disrupting nucleolar function.
Collapse
Affiliation(s)
- M D Kaytor
- Institute of Human Genetics, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | |
Collapse
|
48
|
Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999; 21:379-84. [PMID: 10192387 DOI: 10.1038/7710] [Citation(s) in RCA: 400] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myotonic dystrophy (DM) is the only disease reported to be caused by a CTG expansion. We now report that a non-coding CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). This expansion, located on chromosome 13q21, was isolated directly from the genomic DNA of an ataxia patient by RAPID cloning. SCA8 patients have expansions similar in size (107-127 CTG repeats) to those found among adult-onset DM patients. SCA8 is the first example of a dominant SCA not caused by a CAG expansion translated as a polyglutamine tract.
Collapse
Affiliation(s)
- M D Koob
- Department of Neurology, Institute of Human Genetics, University of Minnesota, Minneapolis 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
During the past 7 years several inheritable neurological disorders have been found to be due to the expansion of an unstable CAG trinucleotide repeat that leads to an increase in the length of a polyglutamine tract within a disease-specific protein. Based on pathological evidence obtained from the brains of affected individuals and transgenic mice expressing a mutant human gene, it was proposed that the formation of nuclear aggregates of the polyglutamine protein plays a critical role in pathogenesis. However, recent evidence indicates that this may not be the case. This review focuses on our results for one of these disorders, spinocerebellar ataxia type 1 (SCA1), and presents a model for SCA1 pathogenesis.
Collapse
Affiliation(s)
- I A Klement
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
50
|
Zu L, Figueroa KP, Grewal R, Pulst SM. Mapping of a new autosomal dominant spinocerebellar ataxia to chromosome 22. Am J Hum Genet 1999; 64:594-9. [PMID: 9973298 PMCID: PMC1377770 DOI: 10.1086/302247] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The autosomal dominant cerebellar ataxias (ADCAs) are a clinically and genetically heterogeneous group of disorders. The clinical symptoms include cerebellar dysfunction and associated signs from dysfunction in other parts of the nervous system. So far, five spinocerebellar ataxia (SCA) genes have been identified: SCA1, SCA2, SCA3, SCA6, and SCA7. Loci for SCA4 and SCA5 have been mapped. However, approximately one-third of SCAs have remained unassigned. We have identified a Mexican American pedigree that segregates a new form of ataxia clinically characterized by gait and limb ataxia, dysarthria, and nystagmus. Two individuals have seizures. After excluding all known genetic loci for linkage, we performed a genomewide search and identified linkage to a 15-cM region on chromosome 22q13. A maximum LOD score of 4.3 (recombination fraction 0) was obtained for D22S928 and D22S1161. This distinct form of ataxia has been designated "SCA10." Anticipation was observed in the available parent-child pairs, suggesting that trinucleotide-repeat expansion may be the mutagenic mechanism.
Collapse
Affiliation(s)
- L Zu
- Division of Neurology and Rose Moss Laboratory for Parkinson's and Neurodegenerative Diseases, Burns and Allen Research Institute, Cedars-Sinai Medical Center, University of California, Los Angeles, CA 90048, USA
| | | | | | | |
Collapse
|