1
|
Xu L, Sheng D, He R, Meng Y, Tian L, Luo Y, Wang Y, Aizemaiti R, An Z, Wang Y. Developmental and neurobehavioral toxicity of benzotriazole ultraviolet stabilizer UV-360 on zebrafish larvae. PLoS One 2025; 20:e0324355. [PMID: 40408449 PMCID: PMC12101659 DOI: 10.1371/journal.pone.0324355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/23/2025] [Indexed: 05/25/2025] Open
Abstract
The presence of UV-360, a commonly utilized benzotriazole ultraviolet stabilizer, has been frequently detected in diverse environments and organisms. However, existing knowledge regarding the potential impacts of UV-360 exposure on organisms remains limited. To evaluate the influence of UV-360 exposure on zebrafish during their initial developmental phases. The study began with an assessment of the developmental impact of UV-360 on larval stages. Subsequently, the investigation focused on examining its effects on locomotor behaviors. Additionally, analyses were conducted on neuronal development, the expression of genes associated with neurotoxicity, and electrophysiological recordings. Finally, the research extended to an exploration of transcriptome-level gene expression profiles. Exposure to UV-360 exhibited significant adverse effects on larvae, evidenced by a marked reduction in hatching rate, decreased heart rate, and impaired development of total body length. Furthermore, UV-360 exposure induced notable behavioral alterations, malformations in spinal motor neuron axons, and a substantial decrease in both the area and volume of these axons. Additionally, the expression of neurotoxicity-related genes and electrophysiological spike activity were significantly altered by UV-360 exposure. Lastly, exposure to UV-360 triggered significant modifications in the transcriptomic profile of zebrafish larvae, with a considerable proportion of differentially expressed genes associated with signal transduction processes and the neuroactive ligand-receptor interaction pathway. The results of this study revealed a dose-dependent developmental and neurobehavioral toxicity associated with UV-360 exposure in zebrafish larvae. The observed modifications in neuroactive ligand-receptors and disruptions in neurotransmitter systems suggested a potential mechanism for the neurotoxicity induced by UV-360 exposure in zebrafish larvae. These findings contribute significantly to the understanding of the toxicological effects of UV-360 on zebrafish larvae and provide strong evidence to help clarify the mechanisms of UV-360-induced toxicity.
Collapse
Affiliation(s)
- Lihan Xu
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- College of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Donglai Sheng
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Rong He
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- College of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Yanlong Meng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Lili Tian
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- Pharmacy of Traditional Chinese Medicine, Zhejiang Hospital, Hangzhou, China
| | - Yuhao Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Yingjia Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, College of Basic Medical, Hangzhou Normal University, Hangzhou, China
| | - Rusidanmu Aizemaiti
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhou An
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuying Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- College of Stomatology, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Martinez Arias A, Rivron N, Moris N, Tam P, Alev C, Fu J, Hadjantonakis AK, Hanna JH, Minchiotti G, Pourquie O, Sheng G, Solnica Krezel L, Veenvliet JV, Warmflash A. Criteria for the standardization of stem-cell-based embryo models. Nat Cell Biol 2024; 26:1625-1628. [PMID: 39223372 DOI: 10.1038/s41556-024-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
| | | | - Patrick Tam
- Embryology Research Unit, Children's Medical Research Institute, and School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Liliana Solnica Krezel
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Jesse V Veenvliet
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
3
|
Timalsina B, Lee S, Kaang BK. Advances in the labelling and selective manipulation of synapses. Nat Rev Neurosci 2024; 25:668-687. [PMID: 39174832 DOI: 10.1038/s41583-024-00851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Synapses are highly specialized neuronal structures that are essential for neurotransmission, and they are dynamically regulated throughout the lifetime. Although accumulating evidence indicates that these structures are crucial for information processing and storage in the brain, their precise roles beyond neurotransmission are yet to be fully appreciated. Genetically encoded fluorescent tools have deepened our understanding of synaptic structure and function, but developing an ideal methodology to selectively visualize, label and manipulate synapses remains challenging. Here, we provide an overview of currently available synapse labelling techniques and describe their extension to enable synapse manipulation. We categorize these approaches on the basis of their conceptual bases and target molecules, compare their advantages and limitations and propose potential modifications to improve their effectiveness. These methods have broad utility, particularly for investigating mechanisms of synaptic function and synaptopathy.
Collapse
Affiliation(s)
- Binod Timalsina
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea.
| |
Collapse
|
4
|
Lee CJM, Autio MI, Zheng W, Song Y, Wang SC, Wong DCP, Xiao J, Zhu Y, Yusoff P, Yei X, Chock WK, Low BC, Sudol M, Foo RSY. Genome-Wide CRISPR Screen Identifies an NF2-Adherens Junction Mechanistic Dependency for Cardiac Lineage. Circulation 2024; 149:1960-1979. [PMID: 38752370 DOI: 10.1161/circulationaha.122.061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 04/05/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Cardiomyocyte differentiation involves a stepwise clearance of repressors and fate-restricting regulators through the modulation of BMP (bone morphogenic protein)/Wnt-signaling pathways. However, the mechanisms and how regulatory roadblocks are removed with specific developmental signaling pathways remain unclear. METHODS We conducted a genome-wide CRISPR screen to uncover essential regulators of cardiomyocyte specification in human embryonic stem cells using a myosin heavy chain 6 (MYH6)-GFP (green fluorescence protein) reporter system. After an independent secondary single guide ribonucleic acid validation of 25 candidates, we identified NF2 (neurofibromin 2), a moesin-ezrin-radixin like (MERLIN) tumor suppressor, as an upstream driver of early cardiomyocyte lineage specification. Independent monoclonal NF2 knockouts were generated using CRISPR-Cas9, and cell states were inferred through bulk RNA sequencing and protein expression analysis across differentiation time points. Terminal lineage differentiation was assessed by using an in vitro 2-dimensional-micropatterned gastruloid model, trilineage differentiation, and cardiomyocyte differentiation. Protein interaction and post-translation modification of NF2 with its interacting partners were assessed using site-directed mutagenesis, coimmunoprecipitation, and proximity ligation assays. RESULTS Transcriptional regulation and trajectory inference from NF2-null cells reveal the loss of cardiomyocyte identity and the acquisition of nonmesodermal identity. Sustained elevation of early mesoderm lineage repressor SOX2 and upregulation of late anticardiac regulators CDX2 and MSX1 in NF2 knockout cells reflect a necessary role for NF2 in removing regulatory roadblocks. Furthermore, we found that NF2 and AMOT (angiomotin) cooperatively bind to YAP (yes-associated protein) during mesendoderm formation, thereby preventing YAP activation, independent of canonical MST (mammalian sterile 20-like serine-threonine protein kinase)-LATS (large tumor suppressor serine-threonine protein kinase) signaling. Mechanistically, cardiomyocyte lineage identity was rescued by wild-type and NF2 serine-518 phosphomutants, but not NF2 FERM (ezrin-radixin-meosin homology protein) domain blue-box mutants, demonstrating that the critical FERM domain-dependent formation of the AMOT-NF2-YAP scaffold complex at the adherens junction is required for early cardiomyocyte lineage differentiation. CONCLUSIONS These results provide mechanistic insight into the essential role of NF2 during early epithelial-mesenchymal transition by sequestering the repressive effect of YAP and relieving regulatory roadblocks en route to cardiomyocytes.
Collapse
Affiliation(s)
- Chang Jie Mick Lee
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
- Institute of Molecular and Cell Biology, Singapore (C.J.M.L., Y.Z., R.S.-Y.F.)
| | | | - Wenhao Zheng
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
| | - Yoohyun Song
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore (Y.S., S.C.W.)
| | - Shyi Chyi Wang
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore (Y.S., S.C.W.)
| | - Darren Chen Pei Wong
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Department of Biological Sciences (D.C.P.W., B.C.L.), National University of Singapore
| | - Jingwei Xiao
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
| | - Yike Zhu
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
- Institute of Molecular and Cell Biology, Singapore (C.J.M.L., Y.Z., R.S.-Y.F.)
| | - Permeen Yusoff
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
| | - Xi Yei
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
| | | | - Boon Chuan Low
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Department of Biological Sciences (D.C.P.W., B.C.L.), National University of Singapore
- University Scholars Programme (B.C.L.), National University of Singapore
| | - Marius Sudol
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (M.S.)
| | - Roger S-Y Foo
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
- Institute of Molecular and Cell Biology, Singapore (C.J.M.L., Y.Z., R.S.-Y.F.)
| |
Collapse
|
5
|
Hopwood N. Species Choice and Model Use: Reviving Research on Human Development. JOURNAL OF THE HISTORY OF BIOLOGY 2024; 57:231-279. [PMID: 39075321 PMCID: PMC11341657 DOI: 10.1007/s10739-024-09775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 07/31/2024]
Abstract
While model organisms have had many historians, this article places studies of humans, and particularly our development, in the politics of species choice. Human embryos, investigated directly rather than via animal surrogates, have gone through cycles of attention and neglect. In the past 60 years they moved from the sidelines to center stage. Research was resuscitated in anatomy, launched in reproductive biomedicine, molecular genetics, and stem-cell science, and made attractive in developmental biology. I explain this surge of interest in terms of rivalry with models and reliance on them. The greater involvement of medicine in human reproduction, especially through in vitro fertilization, gave access to fresh sources of material that fed critiques of extrapolation from mice and met demands for clinical relevance or "translation." Yet much of the revival depended on models. Supply infrastructures and digital standards, including biobanks and virtual atlases, emulated community resources for model organisms. Novel culture, imaging, molecular, and postgenomic methods were perfected on less precious samples. Toing and froing from the mouse affirmed the necessity of the exemplary mammal and its insufficiency justified inquiries into humans. Another kind of model-organoids and embryo-like structures derived from stem cells-enabled experiments that encouraged the organization of a new field, human developmental biology. Research on humans has competed with and counted on models.
Collapse
Affiliation(s)
- Nick Hopwood
- Department of History and Philosophy of Science, University of Cambridge, Free School Lane, Cambridge, CB2 3RH, UK.
| |
Collapse
|
6
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
7
|
Du H, Pan B, Alund AW, Yan J, Chen Y, Robison TW, Chen T. Evaluation of mutagenic susceptibility of different stages in germ cell development of Caenorhabditis elegans using whole genome sequencing. Arch Toxicol 2023; 97:2261-2272. [PMID: 37209179 DOI: 10.1007/s00204-023-03526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
In contrast to somatic mutations, mutations in germ cells affect every cell of any organism derived from the germ cell and therefore are related to numerous genetic diseases. However, there is no suitable assay to evaluate the mutagenic sensitivities of both male and female germ cells. The main type of Caenorhabditis elegans (C. elegans) is hermaphroditic, where spermatogenesis and oogenesis occur chronologically at specific stages, allowing induction of mutations in either sperm or eggs exclusively. In this study, we used the alkylating agent ethyl methanesulfonate and N-ethyl-N-nitrosourea to induce germline mutations in C. elegans at different developmental stages and analyzed mutation frequency and mutational spectrum from data gathered using next-generation sequencing (NGS) technology. Our results revealed low spontaneous mutation rates of C. elegans, along with distinct mutagenic effects elicited by the two mutagens. Our data show that the parental worms treated during germ cell mitosis, spermatogenesis, and oogenesis resulted in different mutation frequencies in their offspring, and female germ cells could be very susceptible to mutagen exposure during oogenesis. In summary, our study indicates that the use of C. elegans and its specific chronological hermaphroditism would be a promising way to explore the sensitivities of both male and female germ cells to mutagens.
Collapse
Affiliation(s)
- Hua Du
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Bohu Pan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Alexander W Alund
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
- Discovery Sciences | Medicine Design, Pfizer Inc., 280 Shennecossett Rd, Groton, CT, 06340, USA
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Timothy W Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
8
|
Arias AM, Marikawa Y, Moris N. Gastruloids: Pluripotent stem cell models of mammalian gastrulation and embryo engineering. Dev Biol 2022; 488:35-46. [PMID: 35537519 PMCID: PMC9477185 DOI: 10.1016/j.ydbio.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
Gastrulation is a fundamental and critical process of animal development whereby the mass of cells that results from the proliferation of the zygote transforms itself into a recognizable outline of an organism. The last few years have seen the emergence of a number of experimental models of early mammalian embryogenesis based on Embryonic Stem (ES) cells. One of this is the Gastruloid model. Gastruloids are aggregates of defined numbers of ES cells that, under defined culture conditions, undergo controlled proliferation, symmetry breaking, and the specification of all three germ layers characteristic of vertebrate embryos, and their derivatives. However, they lack brain structures and, surprisingly, reveal a disconnect between cell type specific gene expression and tissue morphogenesis, for example during somitogenesis. Gastruloids have been derived from mouse and human ES cells and several variations of the original model have emerged that reveal a hereto unknown modularity of mammalian embryos. We discuss the organization and development of gastruloids in the context of the embryonic stages that they represent, pointing out similarities and differences between the two. We also point out their potential as a reproducible, scalable and searchable experimental system and highlight some questions posed by the current menagerie of gastruloids.
Collapse
Affiliation(s)
- Alfonso Martinez Arias
- Systems Bioengineering, MELIS, Universidad Pompeu Fabra, Doctor Aiguader, 88, ICREA, Pag Lluis Companys 23, Barcelona, Spain.
| | - Yusuke Marikawa
- Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
9
|
Hashmi A, Tlili S, Perrin P, Lowndes M, Peradziryi H, Brickman JM, Martínez Arias A, Lenne PF. Cell-state transitions and collective cell movement generate an endoderm-like region in gastruloids. eLife 2022; 11:59371. [PMID: 35404233 PMCID: PMC9033300 DOI: 10.7554/elife.59371] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Shaping the animal body plan is a complex process that involves the spatial organization and patterning of the different germ layers. Recent advances in live imaging have started to unravel the cellular choreography underlying this process in mammals, however, the sequence of events transforming an unpatterned cell ensemble into structured territories is largely unknown. Here, using gastruloids –3D aggregates of mouse embryonic stem cells- we study the formation of one of the three germ layers, the endoderm. We show that the endoderm is generated from an epiblast-like homogeneous state by a three-step mechanism: (i) a loss of E-cadherin mediated contacts in parts of the aggregate leading to the appearance of islands of E-cadherin expressing cells surrounded by cells devoid of E-cadherin, (ii) a separation of these two populations with islands of E-cadherin expressing cells flowing toward the aggregate tip, and (iii) their differentiation into an endoderm population. During the flow, the islands of E-cadherin expressing cells are surrounded by cells expressing T-Brachyury, reminiscent of the process occurring at the primitive streak. Consistent with recent in vivo observations, the endoderm formation in the gastruloids does not require an epithelial-to-mesenchymal transition, but rather a maintenance of an epithelial state for a subset of cells coupled with fragmentation of E-cadherin contacts in the vicinity, and a sorting process. Our data emphasize the role of signaling and tissue flows in the establishment of the body plan.
Collapse
Affiliation(s)
- Ali Hashmi
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Sham Tlili
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Pierre Perrin
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Molly Lowndes
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Hanna Peradziryi
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
10
|
Robertson TF, Huttenlocher A. Real-time imaging of inflammation and its resolution: It's apparent because it's transparent. Immunol Rev 2022; 306:258-270. [PMID: 35023170 PMCID: PMC8855992 DOI: 10.1111/imr.13061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
The ability to directly observe leukocyte behavior in vivo has dramatically expanded our understanding of the immune system. Zebrafish are particularly amenable to the high-resolution imaging of leukocytes during both homeostasis and inflammation. Due to its natural transparency, intravital imaging in zebrafish does not require any surgical manipulation. As a result, zebrafish are particularly well-suited for the long-term imaging required to observe the temporal and spatial events during the onset and resolution of inflammation. Here, we review major insights about neutrophil and macrophage function gained from real-time imaging of zebrafish. We discuss neutrophil reverse migration, the process whereby neutrophils leave sites of tissue damage and resolve local inflammation. Further, we discuss the current tools available for investigating immune function in zebrafish and how future studies that simultaneously image multiple leukocyte subsets can be used to further dissect mechanisms that regulate both the onset and resolution of inflammation.
Collapse
Affiliation(s)
- Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
11
|
Gorfinkiel N, Martinez Arias A. The cell in the age of the genomic revolution: Cell Regulatory Networks. Cells Dev 2021; 168:203720. [PMID: 34252599 DOI: 10.1016/j.cdev.2021.203720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022]
Abstract
Over the last few years an intense activity in the areas of advanced microscopy and quantitative cell biology has put the focus on the morphogenetic events that shape embryos. The interest in these processes is taking place against the backdrop of genomic studies, particularly of global patterns of gene expression at the level of single cells, which cannot fully account for the way cells build tissues and organs. Here we discuss the need to integrate the activity of genes with that of cells and propose the need to develop a framework, based on cellular processes and cell interactions, that parallels that which has been created for gene activity in the form of Gene Regulatory Networks (GRNs). We begin to do this by suggesting elements for building Cell Regulatory Networks (CRNs). In the same manner that GRNs create schedules of gene expression that result in the emergence of cell fates over time, CRNs create tissues and organs i.e. space. We also suggest how GRNs and CRNs might interact in the building of embryos through feedback loops involving mechanics and tissue tectonics.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Departamento de Genética, Fisiología y Microbiología, Facultad de CC Biológicas, Universidad Complutense, José Antonio Nováis 12, Madrid, Spain.
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, ICREA (Institució Catalana de Recerca i Estudis Avançats), Doctor Aiguader 88, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
12
|
York HM, Coyle J, Arumugam S. To be more precise: the role of intracellular trafficking in development and pattern formation. Biochem Soc Trans 2020; 48:2051-2066. [PMID: 32915197 PMCID: PMC7609031 DOI: 10.1042/bst20200223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Living cells interpret a variety of signals in different contexts to elucidate functional responses. While the understanding of signalling molecules, their respective receptors and response at the gene transcription level have been relatively well-explored, how exactly does a single cell interpret a plethora of time-varying signals? Furthermore, how their subsequent responses at the single cell level manifest in the larger context of a developing tissue is unknown. At the same time, the biophysics and chemistry of how receptors are trafficked through the complex dynamic transport network between the plasma membrane-endosome-lysosome-Golgi-endoplasmic reticulum are much more well-studied. How the intracellular organisation of the cell and inter-organellar contacts aid in orchestrating trafficking, as well as signal interpretation and modulation by the cells are beginning to be uncovered. In this review, we highlight the significant developments that have strived to integrate endosomal trafficking, signal interpretation in the context of developmental biology and relevant open questions with a few chosen examples. Furthermore, we will discuss the imaging technologies that have been developed in the recent past that have the potential to tremendously accelerate knowledge gain in this direction while shedding light on some of the many challenges.
Collapse
Affiliation(s)
- Harrison M. York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Joanne Coyle
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
13
|
Baillie-Benson P, Moris N, Martinez Arias A. Pluripotent stem cell models of early mammalian development. Curr Opin Cell Biol 2020; 66:89-96. [PMID: 32645551 DOI: 10.1016/j.ceb.2020.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/29/2022]
Abstract
Pluripotent stem cells derived from the early mammalian embryo offer a convenient model system for studying cell fate decisions in embryogenesis. The last 10 years have seen a boom in the popularity of two-dimensional micropatterns and three-dimensional stem cell culture systems as a way to recreate the architecture and interactions of particular cell populations during development. These methods enable the controlled exploration of cellular organization and patterning during development, using cell lines instead of embryos. They have established a new class of in vitro model system for pre-implantation and peri-implantation embryogenesis, ranging from models of the blastocyst stage, through gastrulation and toward early organogenesis. This review aims to set these systems in context and to highlight the strengths and suitability of each approach in modelling early mammalian development.
Collapse
Affiliation(s)
- Peter Baillie-Benson
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Naomi Moris
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Alfonso Martinez Arias
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
14
|
Chowanadisai W, Hart MD, Strong MD, Graham DM, Rucker RB, Smith BJ, Keen CL, Messerli MA. Genetic and Genomic Advances in Developmental Models: Applications for Nutrition Research. Adv Nutr 2020; 11:971-978. [PMID: 32135011 PMCID: PMC7360451 DOI: 10.1093/advances/nmaa022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
There is increasing appreciation that dietary components influence and interact with genes important to metabolism. How such influences impact developmental regulation and programming or risks of chronic diseases remains unclear. Nutrition is recognized to affect development and chronic diseases, but our understanding about how genes essential to nutrient metabolism regulate development and impact risks of these diseases remains unclear. Historically, mammalian models, especially rodents such as rats and mice, have been the primary models used for nutrition and developmental nutrition science, although their complexity and relatively slow rate of development often compromise rapid progress in resolving fundamental, genetic-related questions. Accordingly, the objective of this review is to highlight the opportunities for developmental models in the context of uncovering the function of gene products that are relevant to human nutrition and provide the scientific bases for these opportunities. We present recent studies in zebrafish related to obesity as applications of developmental models in nutritional science. Although the control of external factors and dependent variables, such as nutrition, can be a challenge, suggestions for standardizations related to diet are made to improve consistency in findings between laboratories. The review also highlights the need for standardized diets across different developmental models, which could improve consistency in findings across laboratories. Alternative and developmental animal models have advantages and largely untapped potential for the advancement of nutrigenomics and nutritionally relevant research areas.
Collapse
Affiliation(s)
- Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew D Hart
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Morgan D Strong
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - David M Graham
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Robert B Rucker
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Mark A Messerli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
15
|
Wang S, Larina IV, Larin KV. Label-free optical imaging in developmental biology [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:2017-2040. [PMID: 32341864 PMCID: PMC7173889 DOI: 10.1364/boe.381359] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
Application of optical imaging in developmental biology marks an exciting frontier in biomedical optics. Optical resolution and imaging depth allow for investigation of growing embryos at subcellular, cellular, and whole organism levels, while the complexity and variety of embryonic processes set multiple challenges stimulating the development of various live dynamic embryonic imaging approaches. Among other optical methods, label-free optical techniques attract an increasing interest as they allow investigation of developmental mechanisms without application of exogenous markers or fluorescent reporters. There has been a boost in development of label-free optical imaging techniques for studying embryonic development in animal models over the last decade, which revealed new information about early development and created new areas for investigation. Here, we review the recent progress in label-free optical embryonic imaging, discuss specific applications, and comment on future developments at the interface of photonics, engineering, and developmental biology.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
16
|
Zhao Z, Li G, Xiao Q, Jiang HR, Tchivelekete GM, Shu X, Liu H. Quantification of the influence of drugs on zebrafish larvae swimming kinematics and energetics. PeerJ 2020; 8:e8374. [PMID: 31938582 PMCID: PMC6954687 DOI: 10.7717/peerj.8374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
The use of zebrafish larvae has aroused wide interest in the medical field for its potential role in the development of new therapies. The larvae grow extremely quickly and the embryos are nearly transparent which allows easy examination of its internal structures using fluorescent imaging techniques. Medical treatment of zebrafish larvae can directly influence its swimming behaviours. These behaviour changes are related to functional changes of central nervous system and transformations of the zebrafish body such as muscle mechanical power and force variation, which cannot be measured directly by pure experiment observation. To quantify the influence of drugs on zebrafish larvae swimming behaviours and energetics, we have developed a novel methodology to exploit intravital changes based on observed zebrafish locomotion. Specifically, by using an in-house MATLAB code to process the recorded live zebrafish swimming video, the kinematic locomotion equation of a 3D zebrafish larvae was obtained, and a customised Computational Fluid Dynamics tool was used to solve the fluid flow around the fish model which was geometrically the same as experimentally tested zebrafish. The developed methodology was firstly verified against experiment, and further applied to quantify the fish internal body force, torque and power consumption associated with a group of normal zebrafish larvae vs. those immersed in acetic acid and two neuroactive drugs. As indicated by our results, zebrafish larvae immersed in 0.01% acetic acid display approximately 30% higher hydrodynamic power and 10% higher cost of transport than control group. In addition, 500 μM diphenylhydantoin significantly decreases the locomotion activity for approximately 50% lower hydrodynamic power, whereas 100 mg/L yohimbine has not caused any significant influences on 5 dpf zebrafish larvae locomotion. The approach has potential to evaluate the influence of drugs on the aquatic animal’s behaviour changes and thus support the development of new analgesic and neuroactive drugs.
Collapse
Affiliation(s)
- Zhenkai Zhao
- Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow, UK
| | - Gen Li
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama-City, Japan
| | - Qing Xiao
- Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow, UK
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
17
|
Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nat Genet 2019; 51:999-1010. [PMID: 31110351 PMCID: PMC6545159 DOI: 10.1038/s41588-019-0408-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) hold great promise for cell-based therapies and drug discovery. However, homogeneous differentiation remains a major challenge, highlighting the need for understanding developmental mechanisms. We performed genome-scale CRISPR screens to uncover regulators of definitive endoderm (DE) differentiation, which unexpectedly uncovered five JNK/JUN family genes as key barriers of DE differentiation. The JNK/JUN pathway does not act through directly inhibiting the DE enhancers. Instead JUN co-occupies ESC enhancers with OCT4, NANOG and SMAD2/3, and specifically inhibits the exit from the pluripotent state by impeding the decommissioning of ESC enhancers and inhibiting the reconfiguration of SMAD2/3 chromatin binding from ESC to DE enhancers. Therefore, the JNK/JUN pathway safeguards pluripotency from precocious DE differentiation. Direct pharmacological inhibition of JNK significantly improves the efficiencies of generating DE and DE-derived pancreatic and lung progenitor cells, highlighting the potential of harnessing the knowledge from developmental studies for regenerative medicine.
Collapse
|
18
|
Küchler EC, Silva LAD, Nelson-Filho P, Sabóia TM, Rentschler AM, Granjeiro JM, Oliveira D, Tannure PN, Silva RAD, Antunes LS, Tsang M, Vieira AR. Assessing the association between hypoxia during craniofacial development and oral clefts. J Appl Oral Sci 2018; 26:e20170234. [PMID: 29791568 PMCID: PMC5953560 DOI: 10.1590/1678-7757-2017-0234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/28/2017] [Indexed: 12/25/2022] Open
Abstract
Objectives To evaluate the association between hypoxia during embryo development and oral clefts in an animal model, and to evaluate the association between polymorphisms in the HIF-1A gene with oral clefts in human families. Material and Methods The study with the animal model used zebrafish embryos at 8 hours post-fertilization submitted to 30% and 50% hypoxia for 24 hours. At 5 days post-fertilization, the larvae were fixed. The cartilage structures were stained to evaluate craniofacial phenotypes. The family-based association study included 148 Brazilian nuclear families with oral clefts. The association between the genetic polymorphisms rs2301113 and rs2057482 in HIF-1A with oral clefts was tested. We used real time PCR genotyping approach. ANOVA with Tukey's post-test was used to compare means. The transmission/disequilibrium test was used to analyze the distortion of the inheritance of alleles from parents to their affected offspring. Results For the hypoxic animal model, the anterior portion of the ethmoid plate presented a gap in the anterior edge, forming a cleft. The hypoxia level was associated with the severity of the phenotype (p<0.0001). For the families, there was no under-transmitted allele among the affected progeny (p>0.05). Conclusion Hypoxia is involved in the oral cleft etiology, however, polymorphisms in HIF-1A are not associated with oral clefts in humans.
Collapse
Affiliation(s)
- Erika Calvano Küchler
- Departamento de Odontopediatria, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Lea Assed da Silva
- Departamento de Odontopediatria, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Paulo Nelson-Filho
- Departamento de Odontopediatria, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Ticiana M Sabóia
- Unidade de Pesquisa Clínica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Angela M Rentschler
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - José Mauro Granjeiro
- Programa de Bioengenharia, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém, Rio de Janeiro, Brasil
| | - Driely Oliveira
- Departamento de Odontopediatria, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Patricia N Tannure
- Departamento de Odontopediatria, Faculdade de Odontologia, Universidade Veiga de Almeida, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Raquel Assed da Silva
- Departamento de Odontopediatria, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Leonardo Santos Antunes
- Unidade de Pesquisa Clínica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexandre R Vieira
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Li F, Lin J, Liu X, Li W, Ding Y, Zhang Y, Zhou S, Guo N, Li Q. Characterization of the locomotor activities of zebrafish larvae under the influence of various neuroactive drugs. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:173. [PMID: 29951495 DOI: 10.21037/atm.2018.04.25] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Behavioral changes in animals reflect functional changes in their central nervous system. Neuroactive drugs that act on different neural pathways can induce specific behavioral responses; therefore, it is possible to infer the activities of neuroactive drugs by studying the behavioral changes induced by drugs of interest in animals. Methods In this study, AB strain zebrafish larvae at 7 days post fertilization (dpf) were treated with different concentrations of drugs that act on different neural pathways. Changes in the swimming distances of zebrafish larvae under different illumination conditions and the differences in locomotor activities between light and dark conditions (lighting motor index) were analyzed. Results Among the drugs studied, different concentrations of sulpiride had no effect on larval locomotor activity either under light or dark conditions. Progressively decreased spontaneous movements were observed in zebrafish larvae treated with increasing doses of MK-801 and valproic acid. With increasing concentrations of pentylenetetrazole and yohimbine, the spontaneous movement of larval zebrafish presented a bell-shaped response. When the illumination changed from light to dark, zebrafish larvae not treated with drugs demonstrated increased locomotor activities. However, high levels of yohimbine, pentylenetetrazole decreased the degree of change in the lighting motor index. Conclusions In conclusion, drugs that affect different neural pathways exert different influences on the locomotor activities of zebrafish larvae. This study presents an initial effort to establish a framework that correlates the drug activities and the behavioral responses of zebrafish larvae under drug treatments, which may provide a potential identification of the pathways of novel drugs with neurological activities through their behavioral influences.
Collapse
Affiliation(s)
- Fei Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiuyun Liu
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenhui Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yifeng Ding
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yunjian Zhang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ning Guo
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
20
|
Huang TH, Niesman P, Arasu D, Lee D, De La Cruz AL, Callejas A, Hong EJ, Lois C. Tracing neuronal circuits in transgenic animals by transneuronal control of transcription ( TRACT). eLife 2017; 6:32027. [PMID: 29231171 PMCID: PMC5777821 DOI: 10.7554/elife.32027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding the computations that take place in brain circuits requires identifying how neurons in those circuits are connected to one another. We describe a technique called TRACT (TRAnsneuronal Control of Transcription) based on ligand-induced intramembrane proteolysis to reveal monosynaptic connections arising from genetically labeled neurons of interest. In this strategy, neurons expressing an artificial ligand (‘donor’ neurons) bind to and activate a genetically-engineered artificial receptor on their synaptic partners (‘receiver’ neurons). Upon ligand-receptor binding at synapses the receptor is cleaved in its transmembrane domain and releases a protein fragment that activates transcription in the synaptic partners. Using TRACT in Drosophila we have confirmed the connectivity between olfactory receptor neurons and their postsynaptic targets, and have discovered potential new connections between neurons in the circadian circuit. Our results demonstrate that the TRACT method can be used to investigate the connectivity of neuronal circuits in the brain. One of the main obstacles to understanding how the brain works is that we know relatively little about how its nerve cells or neurons are connected to one another. These connections make up the brain’s wiring diagram. Current methods for revealing this wiring all have limitations. The most popular method – serial electron microscopy – can reveal the connections in a small region of the brain in great detail, but it cannot show connections between neurons that are far apart. Huang et al. have now created a genetic system for visualizing these connections. For neurons to communicate, one neuron must produce a signal called a ligand. This ligand can then bind to and activate its partner neuron. Huang et al. modified the DNA of neurons so that every time those cells produced a specific ligand, they also produced a red fluorescent protein. Similar modifications ensured that every time the ligand activated a partner neuron, the activated neuron produced a green fluorescent protein. Viewing the red and green neurons under a microscope enabled Huang et al. to see which cells were communicating with which others. While these experiments took place in fruit flies, the same approach should also work in other laboratory animals, including fish, mice and rats. Once we know the wiring diagram of the brain, the next step is to investigate the role of the various connections. To understand how a computer works, for example, we might change the connections between its circuit components and look at how this affects the computer’s output. With this new method, we can change how neurons communicate with one another in the brain, and then look at the effects on behavior. This should provide insights into the workings of the human brain, and clues to what goes wrong in disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Ting-Hao Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Peter Niesman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Deepshika Arasu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Donghyung Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Aubrie L De La Cruz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Antuca Callejas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Cell Biology, School of Science, University of Extremadura, Badajoz, Spain
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
21
|
MacRae CA, Boss G, Brenner M, Gerszten RE, Mahon S, Peterson RT. A countermeasure development pipeline. Ann N Y Acad Sci 2017; 1378:58-67. [PMID: 27737495 DOI: 10.1111/nyas.13224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 01/30/2023]
Abstract
We have developed an integrated pipeline for countermeasure discovery that, under the auspices of the National Institutes of Health Countermeasures Against Chemical Threats network, is one of the few efforts within academia that by design spans the spectrum from discovery to phase I. The successful implementation of this approach for cyanide would enable efficient proof-of-concept studies that would lay the foundation for a generalizable strategy for parallel mechanistic studies and accelerated countermeasure development in the face of new and emerging chemical threats.
Collapse
Affiliation(s)
- Calum A MacRae
- Brigham and Women's Hospital, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts.
| | - Gerry Boss
- Department of Medicine, University of California, San Diego, San Diego, California
| | | | - Robert E Gerszten
- Harvard Medical School, Boston, Massachusetts.,Massachusetts General Hospital, Charlestown, Massachusetts
| | - Sari Mahon
- Department of Medicine, University of California, San Diego, San Diego, California
| | - Randall T Peterson
- Harvard Medical School, Boston, Massachusetts.,Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
22
|
Huang TH, Velho T, Lois C. Monitoring cell-cell contacts in vivo in transgenic animals. Development 2016; 143:4073-4084. [PMID: 27660327 DOI: 10.1242/dev.142406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
Abstract
We used a synthetic genetic system based on ligand-induced intramembrane proteolysis to monitor cell-cell contacts in animals. Upon ligand-receptor interaction in sites of cell-cell contact, the transmembrane domain of an engineered receptor is cleaved by intramembrane proteolysis and releases a protein fragment that regulates transcription in the interacting partners. We demonstrate that the system can be used to regulate gene expression between interacting cells, both in vitro and in vivo, in transgenic Drosophila We show that the system allows for detection of interactions between neurons and glia in the Drosophila nervous system. In addition, we observed that when the ligand is expressed in subsets of neurons with a restricted localization in the brain it leads to activation of transcription in a selected set of glial cells that interact with those neurons. This system will be useful to monitor cell-cell interactions in animals, and can be used to genetically manipulate cells that interact with one another.
Collapse
Affiliation(s)
- Ting-Hao Huang
- California Institute of Technology, Division of Biology and Biological Engineering, Beckman Institute MC 139-74, 1200 East California Blvd, Pasadena, CA 91125, USA.,Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tarciso Velho
- California Institute of Technology, Division of Biology and Biological Engineering, Beckman Institute MC 139-74, 1200 East California Blvd, Pasadena, CA 91125, USA.,Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil
| | - Carlos Lois
- California Institute of Technology, Division of Biology and Biological Engineering, Beckman Institute MC 139-74, 1200 East California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
23
|
Lee A, Lin A, Shah K, Singh H, Miller V, Gururaja Rao S. Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism. PLoS One 2016; 11:e0160676. [PMID: 27505063 PMCID: PMC4978499 DOI: 10.1371/journal.pone.0160676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/24/2016] [Indexed: 11/18/2022] Open
Abstract
Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS) upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application.
Collapse
Affiliation(s)
- Amanda Lee
- A.J. Drexel Plasma Institute, Drexel University College of Engineering, Camden, NJ, 08103, United States of America
| | - Abraham Lin
- A.J. Drexel Plasma Institute, Drexel University College of Engineering, Camden, NJ, 08103, United States of America
| | - Kajol Shah
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States of America
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States of America
| | - Vandana Miller
- A.J. Drexel Plasma Institute, Drexel University College of Engineering, Camden, NJ, 08103, United States of America
| | - Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States of America
| |
Collapse
|
24
|
Schweickert A, Feistel K. The Xenopus Embryo: An Ideal Model System to Study Human Ciliopathies. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0074-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Sun Y, Fang Y, Xu X, Lu G, Chen Z. Evidence of an Association between Age-Related Functional Modifications and Pathophysiological Changes in Zebrafish Heart. Gerontology 2014; 61:435-47. [PMID: 25531915 DOI: 10.1159/000369094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/15/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Zebrafish have become a valuable model for the study of developmental biology and human disease, such as cardiovascular disease. It is difficult to discriminate between disease-related and age-related alterations. OBJECTIVE This study was aimed to investigate the effects and potential mechanisms of age-related cardiac modifications in an older zebrafish population. METHODS In this study, we calculated the survival rate and measured the spinal curvature through the aging process. A swimming challenge test was performed and showed that swimming capacity and endurance dramatically dropped in older fish groups. RESULTS To find out the effect of stress on zebrafish during the aging process, we recorded electrocardiograms on zebrafish and showed that during stress, aging not only led to a significant reduction in heart rate, but also caused other age-related impairments, such as arrhythmias and ST-T depression. Echocardiography showed a marked increase in end-diastolic ventricular dimensions and in isovolumic relaxation time and a notably slower mean and peak velocity of the bulboventricular valve in older zebrafish, but stroke volume and cardiac output were not different in young and old zebrafish. Both nppa and nppb (cardiac fetal genes for natriuretic factor) expression detected by real-time polymerase chain reaction analysis increased in older fish compared to the younger group. Histological staining revealed fibrosis within cardiomyocytes and an increase in ventricular myocardial density and a decrease in epicardial vessel dimensions in older fish hearts that may correlate with a deterioration of cardiac function and exercise capacity. CONCLUSION These data suggest that cardiac functional modifications in zebrafish are comparable to those in humans and may partly be due to changes in the cardiovascular system including cardiac fetal gene reprogramming, myocardial density, and epicardial vessel dimensions.
Collapse
Affiliation(s)
- Yanyi Sun
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
26
|
Handschuh K, Feenstra J, Koss M, Ferretti E, Risolino M, Zewdu R, Sahai MA, Bénazet JD, Peng XP, Depew MJ, Quintana L, Sharpe J, Wang B, Alcorn H, Rivi R, Butcher S, Manak JR, Vaccari T, Weinstein H, Anderson KV, Lacy E, Selleri L. ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling. Cell Rep 2014; 9:674-87. [PMID: 25373905 DOI: 10.1016/j.celrep.2014.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 08/06/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022] Open
Abstract
Sorting and degradation of receptors and associated signaling molecules maintain homeostasis of conserved signaling pathways during cell specification and tissue development. Yet, whether machineries that sort signaling proteins act preferentially on different receptors and ligands in different contexts remains mysterious. Here, we show that Vacuolar protein sorting 25, Vps25, a component of ESCRT-II (Endosomal Sorting Complex Required for Transport II), directs preferential endosome-mediated modulation of FGF signaling in limbs. By ENU-induced mutagenesis, we isolated a polydactylous mouse line carrying a hypomorphic mutation of Vps25 (Vps25(ENU)). Unlike Vps25-null embryos we generated, Vps25(ENU/ENU) mutants survive until late gestation. Their limbs display FGF signaling enhancement and consequent hyperactivation of the FGF-SHH feedback loop causing polydactyly, whereas WNT and BMP signaling remain unperturbed. Notably, Vps25(ENU/ENU) Mouse Embryonic Fibroblasts exhibit aberrant FGFR trafficking and degradation; however, SHH signaling is unperturbed. These studies establish that the ESCRT-II machinery selectively limits FGF signaling in vertebrate skeletal patterning.
Collapse
Affiliation(s)
- Karen Handschuh
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jennifer Feenstra
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew Koss
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Maurizio Risolino
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Rediet Zewdu
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michelle A Sahai
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jean-Denis Bénazet
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xiao P Peng
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London SE1 9RT, UK; Department of Othopaedic Surgery, UCSF, San Francisco, CA 94110, USA
| | - Laura Quintana
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA; Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| | - Baolin Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Heather Alcorn
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Roberta Rivi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stephen Butcher
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - J Robert Manak
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas Vaccari
- IFOM-FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Elizabeth Lacy
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
27
|
Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5. PLoS One 2014; 9:e107674. [PMID: 25259869 PMCID: PMC4178035 DOI: 10.1371/journal.pone.0107674] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023] Open
Abstract
Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5′RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.
Collapse
|
28
|
Peterson RT. Discovery of therapeutic targets by phenotype-based zebrafish screens. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 1:49-54. [PMID: 24981267 DOI: 10.1016/j.ddtec.2004.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The easy identification of phenotypes in the transparent zebrafish embryo has enabled numerous genetic, antisense morpholino oligonucleotide, and small molecule screens. Can zebrafish screens also be used for unbiased discovery of novel drug targets?:
Collapse
Affiliation(s)
- Randall T Peterson
- Developmental Biology Laboratory, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
29
|
Wick HC, Drabkin H, Ngu H, Sackman M, Fournier C, Haggett J, Blake JA, Bianchi DW, Slonim DK. DFLAT: functional annotation for human development. BMC Bioinformatics 2014; 15:45. [PMID: 24507166 PMCID: PMC3928322 DOI: 10.1186/1471-2105-15-45] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/28/2014] [Indexed: 11/25/2022] Open
Abstract
Background Recent increases in genomic studies of the developing human fetus and neonate have led to a need for widespread characterization of the functional roles of genes at different developmental stages. The Gene Ontology (GO), a valuable and widely-used resource for characterizing gene function, offers perhaps the most suitable functional annotation system for this purpose. However, due in part to the difficulty of studying molecular genetic effects in humans, even the current collection of comprehensive GO annotations for human genes and gene products often lacks adequate developmental context for scientists wishing to study gene function in the human fetus. Description The Developmental FunctionaL Annotation at Tufts (DFLAT) project aims to improve the quality of analyses of fetal gene expression and regulation by curating human fetal gene functions using both manual and semi-automated GO procedures. Eligible annotations are then contributed to the GO database and included in GO releases of human data. DFLAT has produced a considerable body of functional annotation that we demonstrate provides valuable information about developmental genomics. A collection of gene sets (genes implicated in the same function or biological process), made by combining existing GO annotations with the 13,344 new DFLAT annotations, is available for use in novel analyses. Gene set analyses of expression in several data sets, including amniotic fluid RNA from fetuses with trisomies 21 and 18, umbilical cord blood, and blood from newborns with bronchopulmonary dysplasia, were conducted both with and without the DFLAT annotation. Conclusions Functional analysis of expression data using the DFLAT annotation increases the number of implicated gene sets, reflecting the DFLAT’s improved representation of current knowledge. Blinded literature review supports the validity of newly significant findings obtained with the DFLAT annotations. Newly implicated significant gene sets also suggest specific hypotheses for future research. Overall, the DFLAT project contributes new functional annotation and gene sets likely to enhance our ability to interpret genomic studies of human fetal and neonatal development.
Collapse
Affiliation(s)
- Heather C Wick
- Department of Computer Science, Tufts University, 155 College Ave, Medford, MA 02155, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ota S, Kawahara A. Zebrafish: a model vertebrate suitable for the analysis of human genetic disorders. Congenit Anom (Kyoto) 2014; 54:8-11. [PMID: 24279334 DOI: 10.1111/cga.12040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/10/2013] [Indexed: 12/14/2022]
Abstract
Zebrafish is a popular model vertebrate because of its conservation of a significant number of morphological and physiological processes in vertebrate organogenesis. A number of zebrafish mutants isolated from chemical mutagenesis screens exhibit characterized morphological defects that often resemble the symptoms of human genetic disorders. Recent innovations in genome-editing technologies, such as transcription activator-like effector nucleases (TALEN) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, enable us to investigate the loss-of-function phenotypes of developmentally regulated genes in zebrafish. This review highlights recent advances in reverse genetic technologies for zebrafish and presents possible applications of zebrafish for the study of human genetic disorders.
Collapse
Affiliation(s)
- Satoshi Ota
- Laboratory for Cardiovascular Molecular Dynamics, RIKEN Quantitative Biology Center (QBiC), Suita, Japan
| | | |
Collapse
|
31
|
Affiliation(s)
- Jessica A. Bolker
- Department of Biological Sciences; University of New Hampshire; Durham NH 03824 USA
| |
Collapse
|
32
|
Spaink HP, Cui C, Wiweger MI, Jansen HJ, Veneman WJ, Marín-Juez R, de Sonneville J, Ordas A, Torraca V, van der Ent W, Leenders WP, Meijer AH, Snaar-Jagalska BE, Dirks RP. Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 2013; 62:246-54. [PMID: 23769806 DOI: 10.1016/j.ymeth.2013.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines.
Collapse
Affiliation(s)
- Herman P Spaink
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jin S, Sarkar KS, Jin YN, Liu Y, Kokel D, Van Ham TJ, Roberts LD, Gerszten RE, Macrae CA, Peterson RT. An in vivo zebrafish screen identifies organophosphate antidotes with diverse mechanisms of action. ACTA ACUST UNITED AC 2012; 18:108-15. [PMID: 22960781 DOI: 10.1177/1087057112458153] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities. Therefore, discovering new organophosphate antidotes is a high priority. Early life stage zebrafish exposed to organophosphates exhibit several phenotypes that parallel the human response to organophosphates, including behavioral deficits, paralysis, and eventual death. Here, we have developed a high-throughput zebrafish screen in a 96-well plate format to find new antidotes that counteract organophosphate-induced lethality. In a pilot screen of 1200 known drugs, we identified 16 compounds that suppress organophosphate toxicity in zebrafish. Several in vitro assays coupled with liquid chromatography/tandem mass spectrometry-based metabolite profiling enabled determination of mechanisms of action for several of the antidotes, including reversible acetylcholinesterase inhibition, cholinergic receptor antagonism, and inhibition of bioactivation. Therefore, the in vivo screen is capable of discovering organophosphate antidotes that intervene in distinct pathways. These findings suggest that zebrafish screens might be a broadly applicable approach for discovering compounds that counteract the toxic effects of accidental or malicious poisonous exposures.
Collapse
Affiliation(s)
- Shan Jin
- Massachusetts General Hospital, Harvard Medical School, Department of Medicine, Charlestown, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shen X, Pettersson M, Rönnegård L, Carlborg Ö. Inheritance beyond plain heritability: variance-controlling genes in Arabidopsis thaliana. PLoS Genet 2012; 8:e1002839. [PMID: 22876191 PMCID: PMC3410891 DOI: 10.1371/journal.pgen.1002839] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/01/2012] [Indexed: 11/21/2022] Open
Abstract
The phenotypic effect of a gene is normally described by the mean-difference between alternative genotypes. A gene may, however, also influence the phenotype by causing a difference in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana dataset [1] and show that genetic variance heterogeneity appears to be as common as normal additive effects on a genomewide scale. The study also develops theory to estimate the contributions of variance differences between genotypes to the phenotypic variance, and this is used to show that individual loci can explain more than 20% of the phenotypic variance. Two well-studied systems, cellular control of molybdenum level by the ion-transporter MOT1 and flowering-time regulation by the FRI-FLC expression network, and a novel association for Leaf serration are used to illustrate the contribution of major individual loci, expression pathways, and gene-by-environment interactions to the genetic variance heterogeneity. The most well-studied effects of genes are those leading to different phenotypic means for alternative genotypes. A less well-explored type of genetic control is that resulting in a heterogeneity in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana GWAS dataset to detect genetic effects on the variance heterogeneity, and our results indicate that the environmental variance is under extensive genetic control by a large number of variance-controlling loci across the genome. A straightforward extension of current quantitative genetics theory was derived to estimate the contribution of genetic variance heterogeneity to the phenotypic variance for loci detected in the vGWAS. This showed that some variance-controlling loci explained more than 20% of the phenotypic variance. Genetic variance heterogeneity was detected in various biological processes, including cellular control of ion levels in the plant and regulation of flowering. Our findings indicate that further studies of genetically determined variance heterogeneity are important to further understand the extent of its biological importance. Accounting for variance-controlling loci in complex trait genetic studies is a useful way to identify previously unexplained genetic variance, dissect the genetic control of environmental variance, and gain biological insight into the genetic regulation of complex traits.
Collapse
Affiliation(s)
- Xia Shen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Statistics Unit, School of Technology and Business Studies, Dalarna University, Borlänge, Sweden
| | - Mats Pettersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lars Rönnegård
- Statistics Unit, School of Technology and Business Studies, Dalarna University, Borlänge, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Örjan Carlborg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
35
|
The zebrafish as a novel animal model to study the molecular mechanisms of mechano-electrical feedback in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:154-65. [PMID: 22835662 DOI: 10.1016/j.pbiomolbio.2012.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 02/07/2023]
Abstract
Altered mechanical loading of the heart leads to hypertrophy, decompensated heart failure and fatal arrhythmias. However, the molecular mechanisms that link mechanical and electrical dysfunction remain poorly understood. Growing evidence suggest that ventricular electrical remodeling (VER) is a process that can be induced by altered mechanical stress, creating persistent electrophysiological changes that predispose the heart to life-threatening arrhythmias. While VER is clearly a physiological property of the human heart, as evidenced by "T wave memory", it is also thought to occur in a variety of pathological states associated with altered ventricular activation such as bundle branch block, myocardial infarction, and cardiac pacing. Animal models that are currently being used for investigating stretch-induced VER have significant limitations. The zebrafish has recently emerged as an attractive animal model for studying cardiovascular disease and could overcome some of these limitations. Owing to its extensively sequenced genome, high conservation of gene function, and the comprehensive genetic resources that are available in this model, the zebrafish may provide new insights into the molecular mechanisms that drive detrimental electrical remodeling in response to stretch. Here, we have established a zebrafish model to study mechano-electrical feedback in the heart, which combines efficient genetic manipulation with high-precision stretch and high-resolution electrophysiology. In this model, only 90 min of ventricular stretch caused VER and recapitulated key features of VER found previously in the mammalian heart. Our data suggest that the zebrafish model is a powerful platform for investigating the molecular mechanisms underlying mechano-electrical feedback and VER in the heart.
Collapse
|
36
|
Ng CS, Wu P, Foley J, Foley A, McDonald ML, Juan WT, Huang CJ, Lai YT, Lo WS, Chen CF, Leal SM, Zhang H, Widelitz RB, Patel PI, Li WH, Chuong CM. The chicken frizzle feather is due to an α-keratin (KRT75) mutation that causes a defective rachis. PLoS Genet 2012; 8:e1002748. [PMID: 22829773 PMCID: PMC3400578 DOI: 10.1371/journal.pgen.1002748] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/19/2012] [Indexed: 12/15/2022] Open
Abstract
Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental biology studies identified defects in feather medulla formation, and physical studies revealed that the frizzle feather curls in a stepwise manner. The frizzle gene is transmitted in an autosomal incomplete dominant mode. A whole-genome linkage scan of five pedigrees with 2678 SNPs revealed association of the frizzle locus with a keratin gene-enriched region within the linkage group E22C19W28_E50C23. Sequence analyses of the keratin gene cluster identified a 69 bp in-frame deletion in a conserved region of KRT75, an α-keratin gene. Retroviral-mediated expression of the mutated F cDNA in the wild-type rectrix qualitatively changed the bending of the rachis with some features of frizzle feathers including irregular kinks, severe bending near their distal ends, and substantially higher variations among samples in comparison to normal feathers. These results confirmed KRT75 as the F gene. This study demonstrates the potential of our approach for identifying genetic determinants of feather forms. With the availability of a sequenced chicken genome, the reservoir of variant plumage genes found in domestic chickens can provide insight into the molecular mechanisms underlying the diversity of feather forms. In this paper, we identify the molecular basis of the distinctive frizzle (F) feather phenotype that is caused by a single autosomal incomplete dominant gene in which heterozygous individuals show less severe phenotypes than homozygous individuals. Feathers in frizzle chickens curve backward. We used computer-assisted analysis to establish that the rachis of the frizzle feather was irregularly kinked and more severely bent than normal. Moreover, microscopic evaluation of regenerating feathers found reduced proliferating cells that give rise to the frizzle rachis. Analysis of a pedigree of frizzle chickens showed that the phenotype is linked to two single-nucleotide polymorphisms in a cluster of keratin genes within the linkage group E22C19W28_E50C23. Sequencing of the gene cluster identified a 69-base pair in-frame deletion of the protein coding sequence of the α-keratin-75 gene. Forced expression of the mutated gene in normal chickens produced a twisted rachis. Although chicken feathers are primarily composed of beta-keratins, our findings indicate that alpha-keratins have an important role in establishing the structure of feathers.
Collapse
Affiliation(s)
- Chen Siang Ng
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - John Foley
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- Department of Dermatology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Anne Foley
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- Department of Dermatology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Merry-Lynn McDonald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wen-Tau Juan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Chih-Jen Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ting Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Sui Lo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Feng Chen
- Department of Animal Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Suzanne M. Leal
- Department of Dermatology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States Department of Agriculture, East Lansing, Michigan, United States of America
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pragna I. Patel
- Institute for Genetic Medicine and Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (W-HL); (C-MC)
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (W-HL); (C-MC)
| |
Collapse
|
37
|
Vasta GR, Nita-Lazar M, Giomarelli B, Ahmed H, Du S, Cammarata M, Parrinello N, Bianchet MA, Amzel LM. Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1388-99. [PMID: 21896283 PMCID: PMC3429948 DOI: 10.1016/j.dci.2011.08.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 07/28/2011] [Accepted: 08/23/2011] [Indexed: 05/11/2023]
Abstract
Protein-carbohydrate interactions mediated by lectins have been recognized as key components of innate immunity in vertebrates and invertebrates, not only for recognition of potential pathogens, but also for participating in downstream effector functions, such as their agglutination, immobilization, and complement-mediated opsonization and killing. More recently, lectins have been identified as critical regulators of mammalian adaptive immune responses. Fish are endowed with virtually all components of the mammalian adaptive immunity, and are equipped with a complex lectin repertoire. In this review, we discuss evidence suggesting that: (a) lectin repertoires in teleost fish are highly diversified, and include not only representatives of the lectin families described in mammals, but also members of lectin families described for the first time in fish species; (b) the tissue-specific expression and localization of the diverse lectin repertoires and their molecular partners is consistent with their distinct biological roles in innate and adaptive immunity; (c) although some lectins may bind endogenous ligands, others bind sugars on the surface of potential pathogens; (d) in addition to pathogen recognition and opsonization, some lectins display additional effector roles, such as complement activation and regulation of immune functions; (e) some lectins that recognize exogenous ligands mediate processes unrelated to immunity: they may act as anti-freeze proteins or prevent polyspermia during fertilization.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Program in the Biology of Model Systems, Baltimore, MD 21202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Padilla S, Hunter DL, Padnos B, Frady S, MacPhail RC. Assessing locomotor activity in larval zebrafish: Influence of extrinsic and intrinsic variables. Neurotoxicol Teratol 2011; 33:624-30. [PMID: 21871562 DOI: 10.1016/j.ntt.2011.08.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/07/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradigm simultaneously tests individual larval zebrafish under both light and dark conditions in a 96-well plate using a video tracking system. We have found that many variables affect the level or pattern of locomotor activity, including age of the larvae, size of the well, and the presence of malformations. Some other variables, however, do not appear to affect larval behavior including type of rearing solution (10% Hank's vs. 1:3 Danieau vs 60 mg/kg Instant Ocean vs 1× and 1:10× EPA Moderately Hard Water). Zebrafish larval behavior using a microtiter plate format may be an ideal endpoint for screening developmentally neurotoxic chemicals, but it is imperative that many test variables be carefully specified and controlled.
Collapse
Affiliation(s)
- S Padilla
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Casadei R, Pelleri MC, Vitale L, Facchin F, Lenzi L, Canaider S, Strippoli P, Frabetti F. Identification of housekeeping genes suitable for gene expression analysis in the zebrafish. Gene Expr Patterns 2011; 11:271-6. [DOI: 10.1016/j.gep.2011.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 11/28/2022]
|
41
|
Bontems F, Baerlocher L, Mehenni S, Bahechar I, Farinelli L, Dosch R. Efficient mutation identification in zebrafish by microarray capturing and next generation sequencing. Biochem Biophys Res Commun 2011; 405:373-6. [DOI: 10.1016/j.bbrc.2011.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
42
|
de Jong M, Rauwerda H, Bruning O, Verkooijen J, Spaink HP, Breit TM. RNA isolation method for single embryo transcriptome analysis in zebrafish. BMC Res Notes 2010; 3:73. [PMID: 20233395 PMCID: PMC2845602 DOI: 10.1186/1756-0500-3-73] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/16/2010] [Indexed: 02/04/2023] Open
Abstract
Background Transcriptome analysis during embryogenesis usually requires pooling of embryos to obtain sufficient RNA. Hence, the measured levels of gene-expression represent the average mRNA levels of pooled samples and the biological variation among individuals is confounded. This can irreversibly reduce the robustness, resolution, or expressiveness of the experiment. Therefore, we developed a robust method to isolate abundant high-quality RNA from individual embryos to perform single embryo transcriptome analyses using zebrafish as a model organism. Available methods for embryonic zebrafish RNA isolation minimally utilize ten embryos. Further downscaling of these methods to one embryo is practically not feasible. Findings We developed a single embryo RNA extraction method based on sample homogenization in liquid nitrogen, RNA extraction with phenol and column purification. Evaluation of this method showed that: the quality of the RNA was very good with an average RIN value of 8.3-8.9; the yield was always ≥ 200 ng RNA per embryo; the method was applicable to all stages of zebrafish embryogenesis; the success rate was almost 100%; and the extracted RNA performed excellent in microarray experiments in that the technical variation was much lower than the biological variation. Conclusions Presented is a high-quality, robust RNA isolation method. Obtaining sufficient RNA from single embryos eliminates the necessity of sample pooling and its associated drawbacks. Although our RNA isolation method has been setup for transcriptome analysis in zebrafish, it can also be used for other model systems and other applications like (q)PCR and transcriptome sequencing.
Collapse
Affiliation(s)
- Mark de Jong
- MicroArray Department & Integrative Bioinformatics Unit, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
43
|
Siripattarapravat K, Pinmee B, Venta PJ, Chang CC, Cibelli JB. Somatic cell nuclear transfer in zebrafish. Nat Methods 2009; 6:733-5. [DOI: 10.1038/nmeth.1369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/29/2009] [Indexed: 11/09/2022]
|
44
|
Abstract
Over the last decade the zebrafish has emerged as a major genetic model organism. While stimulated originally by the utility of its transparent embryos for the study of vertebrate organogenesis, the success of the zebrafish was consolidated through multiple genetic screens, sequencing of the fish genome by the Sanger Center, and the advent of extensive genomic resources. In the last few years the potential of the zebrafish for in vivo cell biology, physiology, disease modeling and drug discovery has begun to be realized. This review will highlight work on cardiac electrophysiology, emphasizing the arenas in which the zebrafish complements other in vivo and in vitro models; developmental physiology, large-scale screens, high-throughput disease modeling and drug discovery. Much of this work is at an early stage, and so the focus will be on the general principles, the specific advantages of the zebrafish and on future potential.
Collapse
Affiliation(s)
- David J Milan
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
45
|
Kily LJM, Cowe YCM, Hussain O, Patel S, McElwaine S, Cotter FE, Brennan CH. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. ACTA ACUST UNITED AC 2008; 211:1623-34. [PMID: 18456890 DOI: 10.1242/jeb.014399] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Addiction is a complex psychiatric disorder considered to be a disease of the brain's natural reward reinforcement system. Repeated stimulation of the 'reward' pathway leads to adaptive changes in gene expression and synaptic organization that reinforce drug taking and underlie long-term changes in behaviour. The primitive nature of reward reinforcement pathways and the near universal ability of abused drugs to target the same system allow drug-associated reward and reinforcement to be studied in non-mammalian species. Zebrafish have proved to be a valuable model system for the study of vertebrate development and disease. Here we demonstrate that adult zebrafish show a dose-dependent acute conditioned place preference (CPP) reinforcement response to ethanol or nicotine. Repeated exposure of adult zebrafish to either nicotine or ethanol leads to a robust CPP response that persists following 3 weeks of abstinence and in the face of adverse stimuli, a behavioural indicator of the establishment of dependence. Microarray analysis using whole brain samples from drug-treated and control zebrafish identified 1362 genes that show a significant change in expression between control and treated individuals. Of these genes, 153 are common to both ethanol- and nicotine-treated animals. These genes include members of pathways and processes implicated in drug dependence in mammalian models, revealing conservation of neuro-adaptation pathways between zebrafish and mammals.
Collapse
Affiliation(s)
- Layla J M Kily
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End, London E1 4NS, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Markstein M, Pitsouli C, Villalta C, Celniker SE, Perrimon N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 2008; 40:476-83. [PMID: 18311141 PMCID: PMC2330261 DOI: 10.1038/ng.101] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 01/29/2008] [Indexed: 12/11/2022]
Abstract
A major obstacle to creating precisely expressed transgenes lies in the epigenetic effects of the host chromatin that surrounds them. Here we present a strategy to overcome this problem, employing a Gal4-inducible luciferase assay to systematically quantify position effects of host chromatin and the ability of insulators to counteract these effects at phiC31 integration loci randomly distributed throughout the Drosophila genome. We identify loci that can be exploited to deliver precise doses of transgene expression to specific tissues. Moreover, we uncover a previously unrecognized property of the gypsy retrovirus insulator to boost gene expression to levels severalfold greater than at most or possibly all un-insulated loci, in every tissue tested. These findings provide the first opportunity to create a battery of transgenes that can be reliably expressed at high levels in virtually any tissue by integration at a single locus, and conversely, to engineer a controlled phenotypic allelic series by exploiting several loci. The generality of our approach makes it adaptable to other model systems to identify and modify loci for optimal transgene expression.
Collapse
Affiliation(s)
- Michele Markstein
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Daniel P Walsh
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | |
Collapse
|
48
|
Abstract
A method is described for measurement of the circadian activity rhythms of up to 150 larval zebrafish simultaneously with a single video image analysis system. Most of the required equipment and software are commercially available, although some components are custom-built.
Collapse
Affiliation(s)
- Gregory M Cahill
- Department of Biology and Biochemistry, University of Houston, TX, USA
| |
Collapse
|
49
|
Affiliation(s)
- Xiaofeng Xia
- WiCell Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | |
Collapse
|
50
|
Similarities Between Angiogenesis and Neural Development: What Small Animal Models Can Tell Us. Curr Top Dev Biol 2007; 80:1-55. [DOI: 10.1016/s0070-2153(07)80001-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|