1
|
Mingo YB, Escobar Galvis ML, Henderson MX. α-Synuclein pathology and mitochondrial dysfunction: Toxic partners in Parkinson's disease. Neurobiol Dis 2025; 209:106889. [PMID: 40157617 DOI: 10.1016/j.nbd.2025.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025] Open
Abstract
Two major neuropathological features of Parkinson's disease (PD) are α-synuclein Lewy pathology and mitochondrial dysfunction. Although both α-synuclein pathology and mitochondrial dysfunction may independently contribute to PD pathogenesis, the interaction between these two factors is not yet fully understood. In this review, we discuss the physiological functions of α-synuclein and mitochondrial homeostasis in neurons as well as the pathological defects that ensue when these functions are disturbed in PD. Recent studies have highlighted that dysfunctional mitochondria can become sequestered within Lewy bodies, and cell biology studies have suggested that α-synuclein can directly impair mitochondrial function. There are also PD cases caused by genetic or environmental perturbation of mitochondrial homeostasis. Together, these studies suggest that mitochondrial dysfunction may be a common pathway to neurodegeneration in PD, triggered by multiple insults. We review the literature surrounding the interaction between α-synuclein and mitochondria and highlight open questions in the field that may be explored to advance our understanding of PD and develop novel, disease-modifying therapies.
Collapse
Affiliation(s)
- Yakum B Mingo
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States of America
| | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States of America.
| |
Collapse
|
2
|
Wang J, Peterson JT, Santos JDD, Chan AJS, Diaz-Miranda MA, Rahaman I, Flickinger J, Goldstein A, Bogush E, McCormick EM, Muraresku CC, Anderson VE, Dulik MC, Wallace DC, Xiao R, Falk MJ, Viaene AN, Zolkipli-Cunningham Z. Interpreting the clinical significance of multiple large-scale mitochondrial DNA deletions (MLSMD) in skeletal muscle tissue in the diagnostic evaluation of primary mitochondrial disease. Front Pharmacol 2025; 16:1507493. [PMID: 40271067 PMCID: PMC12015102 DOI: 10.3389/fphar.2025.1507493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/28/2025] [Indexed: 04/25/2025] Open
Abstract
Background and Objectives Improved detection sensitivity from combined Long-Range PCR (LR-PCR), Next-Generation Sequencing (NGS), and droplet digital PCR (ddPCR) to identify multiple large-scale mtDNA deletions (MLSMD) and quantify deletion heteroplasmy have introduced clinical interpretation challenges. We sought to evaluate clinical, biochemical, and histopathological phenotypes of a large clinical cohort harboring MLSMD in muscle to better understand their significance across a range of clinical phenotypes. Methods A single-site retrospective study was performed of 212 diagnostic muscle biopsies obtained from patients referred for Primary Mitochondrial Disease (PMD) evaluation with muscle mitochondrial (mt)DNA sequencing performed at our institution, including electronic medical record (EMR) review of symptoms, biochemical results, and Mitochondrial Myopathy Composite Assessment Tool (MM-COAST) scores. Results MLSMD were identified in 50 of 212 (24%) diagnostic tissue biopsies, and were universally present. in subjects ≥50 years (n = 18/18). In 45 of 50 (90%) subjects with MLSMD, no definitive genetic etiology was identified, despite clinical whole exome sequencing (WES) and/or whole genome sequencing (WGS). MLSMD heteroplasmy levels quantified by ddPCR ranged from 0% to 33%, exceeding 10% heteroplasmy in 5/45 (11%). Subjects with MLSMD (n = 45) were more likely to demonstrate mitochondrial abnormalities on histopathology, upregulation (≥150% of control mean) of one or more electron transport chain (ETC) complex enzyme activities, and reduced citrate synthase indicative of mitochondrial depletion (<60% of control mean) relative to subjects without MLSMD (n = 155). As clinical phenotypes varied across the MLSMD cohort, Bernier diagnostic criteria major/minor symptoms were used to discriminate 13 of 45 subjects with "suspected" PMD having unrevealing WES/WGS results and 32 of 45 subjects scored as "less likely" to have PMD. Relative to the "less likely" cohort, a significantly higher frequency of biochemical and muscle histopathological abnormalities (ragged red and COX negative fibers) were observed in the "suspected" cohort, further supporting a higher index of suspicion for PMD, p < 0.05. Discussion MLSMD in skeletal muscle tissue were a common molecular finding (24%) in our cohort and consistently present in subjects ≥50 years. Among those with genetically undiagnosed MLSMD (n = 45), the "suspected" PMD subset (n = 13/45) represent a promising cohort for novel gene discoveries.
Collapse
Affiliation(s)
- Jing Wang
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James T. Peterson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joaquim Diego D. Santos
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ada J. S. Chan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Maria Alejandra Diaz-Miranda
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Imon Rahaman
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jean Flickinger
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily Bogush
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Colleen C. Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Vernon E. Anderson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Matthew C. Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Douglas C. Wallace
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
3
|
Xu W, Hong YS, Hu B, Comhair SAA, Janocha AJ, Zein JG, Chen R, Meyers DA, Mauger DT, Ortega VE, Bleecker ER, Castro M, Denlinger LC, Fahy JV, Israel E, Levy BD, Jarjour NN, Moore WC, Wenzel SE, Gaston B, Liu C, Arking DE, Erzurum SC. Mitochondrial DNA copy number variation in asthma risk, severity, and exacerbations. J Allergy Clin Immunol 2025; 155:1224-1235. [PMID: 39237012 PMCID: PMC11875079 DOI: 10.1016/j.jaci.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Asthma pathophysiology is associated with mitochondrial dysfunction. Mitochondrial DNA copy number (mtDNA-CN) has been used as a proxy of mitochondrial function, with lower levels indicating mitochondrial dysfunction in population studies of cardiovascular diseases and cancers. OBJECTIVES We investigated whether lower levels of mtDNA-CN are associated with asthma diagnosis, severity, and exacerbations. METHODS mtDNA-CN is evaluated in blood from 2 cohorts: UK Biobank (UKB) (asthma, n = 39,147; no asthma, n = 302,302) and Severe Asthma Research Program (SARP) (asthma, n = 1283; nonsevere asthma, n = 703). RESULTS Individuals with asthma have lower mtDNA-CN compared to individuals without asthma in UKB (beta, -0.006 [95% confidence interval, -0.008 to -0.003], P = 6.23 × 10-6). Lower mtDNA-CN is associated with asthma prevalence, but not severity in UKB or SARP. mtDNA-CN declines with age but is lower in individuals with asthma than in individuals without asthma at all ages. In a 1-year longitudinal study in SARP, mtDNA-CN was associated with risk of exacerbation; those with highest mtDNA-CN had the lowest risk of exacerbation (odds ratio 0.333 [95% confidence interval, 0.173 to 0.542], P = .001). Biomarkers of inflammation and oxidative stress are higher in individuals with asthma than without asthma, but the lower mtDNA-CN in asthma is independent of general inflammation or oxidative stress. Mendelian randomization studies suggest a potential causal relationship between asthma-associated genetic variants and mtDNA-CN. CONCLUSION mtDNA-CN is lower in asthma than in no asthma and is associated with exacerbations. Low mtDNA-CN in asthma is not mediated through inflammation but is associated with a genetic predisposition to asthma.
Collapse
Affiliation(s)
- Weiling Xu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yun Soo Hong
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Suzy A A Comhair
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Allison J Janocha
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Joe G Zein
- Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Ruoying Chen
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Deborah A Meyers
- Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, Ariz
| | - David T Mauger
- Department of Public Health Sciences, Pennsylvania State University School of Medicine, Hershey, Pa
| | - Victor E Ortega
- Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Eugene R Bleecker
- Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Mario Castro
- Department of Medicine, University of Kansas School of Medicine, Kansas City, Kan
| | - Loren C Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin, Madison, Wis
| | - John V Fahy
- Department of Medicine, San Francisco School of Medicine, University of California, San Francisco, Calif
| | - Elliot Israel
- Department of Medicine, Harvard Medical School, Boston, Mass
| | - Bruce D Levy
- Department of Medicine, Harvard Medical School, Boston, Mass
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Wendy C Moore
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Benjamin Gaston
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind
| | - Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, Mass
| | - Dan E Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Integrated Hospital Care Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
4
|
Eggers B, Steinbach S, Aldea IG, Keers S, Molina M, Grinberg LT, Heinsen H, Paraizo Leite RE, Attems J, May C, Marcus K. The Aging Substantia Nigra is Characterized by ROS Accumulation Potentially Resulting in Increased Neuroinflammation and Cytoskeletal Remodeling. Adv Biol (Weinh) 2025; 9:e2400814. [PMID: 40071644 PMCID: PMC12001008 DOI: 10.1002/adbi.202400814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Indexed: 04/17/2025]
Abstract
Aging is a progressive and irreversible process, serving as the primary risk factor for neurodegenerative disorders. This study aims to identify the molecular mechanisms underlying physiological aging within the substantia nigra, which is primarily affected by Parkinson's disease, and to draw potential conclusions on the earliest events leading to neurodegeneration in this specific brain region. The characterization of essential stages in aging progress can enhance knowledge of the mechanisms that promote the development of Parkinson's disease. To gain a comprehensive overview three study groups are utilized: young individuals (mean age: 28.7 years), middle-aged (mean age: 62.3 years), and elderly individuals (mean age: 83.9 years). Using the proteomic approach, crucial features of physiological aging are able to be identified. These include heightened oxidative stress, enhanced lysosomal degradation, autophagy, remodeling of the cytoskeleton, changes in the structure of the mitochondria, alterations in vesicle transportation, and synaptic plasticity.
Collapse
Affiliation(s)
- Britta Eggers
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
- Medical Proteome AnalysisCenter for Protein Diagnostics (PRODI)Ruhr‐University Bochum44801BochumGermany
| | - Simone Steinbach
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
| | - Isabel Gil Aldea
- Navarrabiomed BiobankHospital Universitario de NavarraPamplonaNavarra31008Spain
| | - Sharon Keers
- Institute of Neuroscience and Newcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Mariana Molina
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group‐LIM22University of São Paulo Medical SchoolSão PauloCEP 01246 903Brazil
- Institute of Forensic MedicineUniversity of WuerzburgVersbacher Str. 397078WuerzburgGermany
| | - Lea T. Grinberg
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group‐LIM22University of São Paulo Medical SchoolSão PauloCEP 01246 903Brazil
- Department of NeurologyMemory and Aging CenterUniversity of CaliforniaSan FranciscoCA94158USA
| | - Helmut Heinsen
- Institute of Forensic MedicineUniversity of WuerzburgVersbacher Str. 397078WuerzburgGermany
| | - Renata E. Paraizo Leite
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group‐LIM22University of São Paulo Medical SchoolSão PauloCEP 01246 903Brazil
- Discipline of GeriatricsUniversity of São Paulo Medical SchoolSão PauloNE1 7RUBrazil
| | - Johannes Attems
- Translational and Clinical Research InstituteNewcastle UniversityEdwardson building, Campus for Ageing and VitalityNewcastle‐upon‐TyneNE4 5PLUK
| | - Caroline May
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
- Medical Proteome AnalysisCenter for Protein Diagnostics (PRODI)Ruhr‐University Bochum44801BochumGermany
| | - Katrin Marcus
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
- Medical Proteome AnalysisCenter for Protein Diagnostics (PRODI)Ruhr‐University Bochum44801BochumGermany
| |
Collapse
|
5
|
Wang W, Thomas ER, Xiao R, Chen T, Guo Q, Liu K, Yang Y, Li X. Targeting mitochondria-regulated ferroptosis: A new frontier in Parkinson's disease therapy. Neuropharmacology 2025; 274:110439. [PMID: 40174689 DOI: 10.1016/j.neuropharm.2025.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantial nigra. Mitochondrial dysfunction and mitochondrial oxidative stress are central to the pathogenesis of PD, with recent evidence highlighting the role of ferroptosis - a type of regulated cell death dependent on iron metabolism and lipid peroxidation. Mitochondria, the central organelles for cellular energy metabolism, play a pivotal role in PD pathogenesis through the production of Reactive oxygen species (ROS) and the disruption of iron homeostasis. This review explores the intricate interplay between mitochondrial dysfunction and ferroptosis in PD, focusing on key processes such as impaired electron transport chain function, tricarboxylic acid (TCA) cycle dysregulation, disruption of iron metabolism, and altered lipid peroxidation. We discuss key pathways, including the role of glutathione (GSH), mitochondrial ferritin, and the regulation of the mitochondrial labile iron pool (mLIP), which collectively influence the susceptibility of neurons to ferroptosis. Furthermore, this review emphasizes the importance of mitochondrial quality control mechanisms, such as mitophagy and mitochondrial biogenesis, in mitigating ferroptosis-induced neuronal death. Understanding these mechanisms linking the interplay between mitochondrial dysfunction and ferroptosis may pave the way for novel therapeutic approaches aimed at preserving mitochondrial integrity and preventing neuronal loss in PD.
Collapse
Affiliation(s)
- Wenjun Wang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | | | - Ruyue Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Tianshun Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Qulian Guo
- Department of Pediatrics, Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Kezhi Liu
- The Zigong Affiliated of Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province, 643020, China
| | - You Yang
- Department of Pediatrics, Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Xiang Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; The Zigong Affiliated of Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province, 643020, China; Health Science Center, Xi'an Jiaotong University, 710061, China.
| |
Collapse
|
6
|
Mark JR, Tansey MG. Immune cell metabolic dysfunction in Parkinson's disease. Mol Neurodegener 2025; 20:36. [PMID: 40128809 PMCID: PMC11934562 DOI: 10.1186/s13024-025-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Parkinson's disease (PD) is a multi-system disorder characterized histopathologically by degeneration of dopaminergic neurons in the substantia nigra pars compacta. While the etiology of PD remains multifactorial and complex, growing evidence suggests that cellular metabolic dysfunction is a critical driver of neuronal death. Defects in cellular metabolism related to energy production, oxidative stress, metabolic organelle health, and protein homeostasis have been reported in both neurons and immune cells in PD. We propose that these factors act synergistically in immune cells to drive aberrant inflammation in both the CNS and the periphery in PD, contributing to a hostile inflammatory environment which renders certain subsets of neurons vulnerable to degeneration. This review highlights the overlap between established neuronal metabolic deficits in PD with emerging findings in central and peripheral immune cells. By discussing the rapidly expanding literature on immunometabolic dysfunction in PD, we aim to draw attention to potential biomarkers and facilitate future development of immunomodulatory strategies to prevent or delay the progression of PD.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
| |
Collapse
|
7
|
Keethedeth N, Anantha Shenoi R. Mitochondria-targeted nanotherapeutics: A new frontier in neurodegenerative disease treatment. Mitochondrion 2025; 81:102000. [PMID: 39662651 DOI: 10.1016/j.mito.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mitochondria are the seat of cellular energy and play key roles in regulating several cellular processes such as oxidative phosphorylation, respiration, calcium homeostasis and apoptotic pathways. Mitochondrial dysfunction results in error in oxidative phosphorylation, redox imbalance, mitochondrial DNA mutations, and disturbances in mitochondrial dynamics, all of which can lead to several metabolic and degenerative diseases. A plethora of studies have provided evidence for the involvement of mitochondrial dysfunction in the pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Hence mitochondria have been used as possible therapeutic targets in the regulation of neurodegenerative diseases. However, the double membranous structure of mitochondria poses an additional barrier to most drugs even if they are able to cross the plasma membrane. Most of the drugs acting on mitochondria also required very high doses to exhibit the desired mitochondrial accumulation and therapeutic effect which in-turn result in toxic effects. Mitochondrial targeting has been improved by direct conjugation of drugs to mitochondriotropic molecules like dequalinium (DQA) and triphenyl phosphonium (TPP) cations. But being cationic in nature, these molecules also exhibit toxicity at higher doses. In order to further improve the mitochondrial localization with minimal toxicity, TPP was conjugated with various nanomaterials like liposomes. inorganic nanoparticles, polymeric nanoparticles, micelles and dendrimers. This review provides an overview of the role of mitochondrial dysfunction in neurodegenerative diseases and various nanotherapeutic strategies for efficient targeting of mitochondria-acting drugs in these diseases.
Collapse
Affiliation(s)
- Nishad Keethedeth
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| | - Rajesh Anantha Shenoi
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| |
Collapse
|
8
|
Tamatta R, Pai V, Jaiswal C, Singh I, Singh AK. Neuroinflammaging and the Immune Landscape: The Role of Autophagy and Senescence in Aging Brain. Biogerontology 2025; 26:52. [PMID: 39907842 PMCID: PMC11799035 DOI: 10.1007/s10522-025-10199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Neuroinflammation is closely linked to aging, which damages the structure and function of the brain. It is caused by the intricate interactions of immune cells in the aged brain, such as the dysregulated glial cells and the dysfunctional astrocytes. Aging-associated chronic low inflammation, referred to as neuroinflammaging, shows an upregulated proinflammatory response. Autophagy and senescence play crucial roles as moderators of aging and neuroinflammatory responses. The dysregulated neuroimmune system, dystrophic glial cells, and release of proinflammatory factors alter blood-brain barrier, causing a neuroinflammatory landscape. Chronic inflammation combined with deteriorating neurons exacerbate neurological disorders and decline in cognitive function. This review highlights the neuroinflammaging and mechanism associated with immune cells interplay with central nervous system and aging, cellular senescence, and autophagy regulation in the brain's immune system under neuroinflammatory conditions. Moreover, the roles of microglia and peripheral immune cells in the neuroinflammatory process in the aging brain have also been discussed. Determining treatment targets and comprehending mechanisms that influence immune cells in the aged brain is necessary to decrease neuroinflammation.
Collapse
Affiliation(s)
- Rajesh Tamatta
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Varsha Pai
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Charu Jaiswal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Ishika Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India.
| |
Collapse
|
9
|
Lorentzen KC, Prescott AR, Ganley IG. Artificial targeting of autophagy components to mitochondria reveals both conventional and unconventional mitophagy pathways. Autophagy 2025; 21:315-337. [PMID: 39177530 PMCID: PMC11760219 DOI: 10.1080/15548627.2024.2395149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Macroautophagy/autophagy enables lysosomal degradation of a diverse array of intracellular material. This process is essential for normal cellular function and its dysregulation is implicated in many diseases. Given this, there is much interest in understanding autophagic mechanisms of action in order to determine how it can be best targeted therapeutically. In mitophagy, the selective degradation of mitochondria via autophagy, mitochondria first need to be primed with signals that allow the recruitment of the core autophagy machinery to drive the local formation of an autophagosome around the target mitochondrion. To determine how the recruitment of different core autophagy components can drive mitophagy, we took advantage of the mito-QC mitophagy assay (an outer mitochondrial membrane-localized tandem mCherry-GFP tag). By tagging autophagy proteins with an anti-mCherry (or anti-GFP) nanobody, we could recruit them to mitochondria and simultaneously monitor levels of mitophagy. We found that targeting ULK1, ATG16L1 and the different Atg8-family proteins was sufficient to induce mitophagy. Mitochondrial recruitment of ULK1 and the Atg8-family proteins induced a conventional mitophagy pathway, requiring RB1CC1/FIP200, PIK3C3/VPS34 activity and ATG5. Surprisingly, the mitophagy pathway upon recruitment of ATG16L1 proceeded independently of ATG5, although it still required RB1CC1 and PIK3C3/VPS34 activity. In this latter pathway, mitochondria were alternatively delivered to lysosomes via uptake into early endosomes.Abbreviation: aGFP: anti-GFP nanobody; amCh: anti-mCherry nanobody; ATG: autophagy related; ATG16L1: autophagy related 16 like 1; AUTAC/AUTOTAC: autophagy-targeting chimera; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide m-chlorophenylhydrazone; COX4/COX IV: cytochrome c oxidase subunit 4; DFP: deferiprone; DMSO: dimethyl sulfoxide; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; HRP: horseradish peroxidase; HTRA2/OMI: HtrA serine peptidase 2; IB: immunoblotting; IF: immunofluorescence; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; NBR1: NBR1 autophagy cargo receptor; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; OPTN: optineurin; (D)PBS: (Dulbecco's) phosphate-buffered saline; PD: Parkinson disease; PFA: paraformaldehyde; POI: protein of interest; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RAB: RAB, member RAS oncogene family; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase 1; VPS: vacuolar protein sorting; WIPI: WD repeat domain, phosphoinositide interacting.
Collapse
Affiliation(s)
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
10
|
Muñoz JM, Williams JT, Lebowitz JJ. Morphological and functional decline of the SNc in a model of progressive parkinsonism. NPJ Parkinsons Dis 2025; 11:24. [PMID: 39875379 PMCID: PMC11775090 DOI: 10.1038/s41531-025-00873-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits. Electrophysiological properties were impaired by p30 and somatic volume was decreased at all time points. The D2 receptor activated potassium current evoked by quinpirole was present initially, but declined after p30. In contrast, D2-IPSCs were absent at all time points. The decrease in GPCR-mediated inhibition was met with increased spontaneous GABAA signaling. Dendro-dendritic synapses are identified as an early locus of dysfunction in response to bioenergetic decline and suggest that dendritic release sites may contribute to the induction of degeneration.
Collapse
Affiliation(s)
- Jacob M Muñoz
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joseph J Lebowitz
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
11
|
Labarta-Bajo L, Allen NJ. Astrocytes in aging. Neuron 2025; 113:109-126. [PMID: 39788083 PMCID: PMC11735045 DOI: 10.1016/j.neuron.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The mammalian nervous system is impacted by aging. Aging alters brain architecture, is associated with molecular damage, and can manifest with cognitive and motor deficits that diminish the quality of life. Astrocytes are glial cells of the CNS that regulate the development, function, and repair of neural circuits during development and adulthood; however, their functions in aging are less understood. Astrocytes change their transcriptome during aging, with astrocytes in areas such as the cerebellum, the hypothalamus, and white matter-rich regions being the most affected. While numerous studies describe astrocyte transcriptional changes in aging, many questions still remain. For example, how is astrocyte function altered by transcriptional changes that occur during aging? What are the mechanisms promoting astrocyte aged states? How do aged astrocytes impact brain function? This review discusses features of aged astrocytes and their potential triggers and proposes ways in which they may impact brain function and health span.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Maupin EA, Adams KL. Cellular Senescence in Glial Cells: Implications for Multiple Sclerosis. J Neurochem 2025; 169:e16301. [PMID: 39831743 PMCID: PMC11745082 DOI: 10.1111/jnc.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Aging is the most common risk factor for Multiple Sclerosis (MS) disease progression. Cellular senescence, the irreversible state of cell cycle arrest, is the main driver of aging and has been found to accumulate prematurely in neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Cellular senescence in the central nervous system of MS patients has recently gained attention, with several studies providing evidence that demyelination induces cellular senescence, with common hallmarks of p16INK4A and p21 expression, oxidative stress, and senescence-associated secreted factors. Here we discuss the current evidence of cellular senescence in animal models of MS and different glial populations in the central nervous system, highlighting the major gaps in the field that still remain. As premature senescence in MS may exacerbate demyelination and inflammation, resulting in inhibition of myelin repair, it is critical to increase understanding of cellular senescence in vivo, the functional effects of senescence on glial cells, and the impact of removing senescent cells on remyelination and MS. This emerging field holds promise for opening new avenues of treatment for MS patients.
Collapse
Affiliation(s)
- Elizabeth A. Maupin
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Katrina L. Adams
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
- The Center for Stem Cells and Regenerative MedicineUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
13
|
Van Acker ZP, Leroy T, Annaert W. Mitochondrial dysfunction, cause or consequence in neurodegenerative diseases? Bioessays 2025; 47:e2400023. [PMID: 39367555 DOI: 10.1002/bies.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Neurodegenerative diseases encompass a spectrum of conditions characterized by the gradual deterioration of neurons in the central and peripheral nervous system. While their origins are multifaceted, emerging data underscore the pivotal role of impaired mitochondrial functions and endolysosomal homeostasis to the onset and progression of pathology. This article explores whether mitochondrial dysfunctions act as causal factors or are intricately linked to the decline in endolysosomal function. As research delves deeper into the genetics of neurodegenerative diseases, an increasing number of risk loci and genes associated with the regulation of endolysosomal and autophagy functions are being identified, arguing for a downstream impact on mitochondrial health. Our hypothesis centers on the notion that disturbances in endolysosomal processes may propagate to other organelles, including mitochondria, through disrupted inter-organellar communication. We discuss these views in the context of major neurodegenerative diseases including Alzheimer's and Parkinson's diseases, and their relevance to potential therapeutic avenues.
Collapse
Affiliation(s)
- Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Thomas Leroy
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
El Fissi N, Rosenberger FA, Chang K, Wilhalm A, Barton-Owen T, Hansen FM, Golder Z, Alsina D, Wedell A, Mann M, Chinnery PF, Freyer C, Wredenberg A. Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster. Nat Commun 2024; 15:10719. [PMID: 39715749 DOI: 10.1038/s41467-024-55559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγexo-) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations. We identify critical pathways associated with nutrient sensing, insulin signalling, mitochondrial protein import, and autophagy that can rescue the lethal phenotype of the POLγexo- flies. Rescued flies, hemizygous for dilp1, atg2, tim14 or melted, normalise their autophagic flux and proteasome function and adapt their metabolism. Mutation frequencies remain high with the exception of melted-rescued flies, suggesting that melted may act early in development. Treating POLγexo- larvae with the autophagy activator rapamycin aggravates their lethal phenotype, highlighting that excessive autophagy can significantly contribute to the pathophysiology of mitochondrial diseases. Moreover, we show that the nucleation process of autophagy is a critical target for intervention.
Collapse
Affiliation(s)
- Najla El Fissi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Florian A Rosenberger
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Kai Chang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Alissa Wilhalm
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Tom Barton-Owen
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Fynn M Hansen
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Zoe Golder
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - David Alsina
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
- Faculty of Health Sciences, NNF Centre for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
15
|
Kodavati M, Hegde ML. A Commentary on Mitochondrial Dysfunction and Compromised DNA Repair in Neurodegeneration: The Emerging Role of FUS in ALS. Neurosci Insights 2024; 19:26331055241305151. [PMID: 39679063 PMCID: PMC11645713 DOI: 10.1177/26331055241305151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the progression of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's, and Parkinson's disease. Recent discoveries have highlighted the involvement of DNA damage and repair processes, particularly mitochondrial DNA (mtDNA) damage, in these conditions. This commentary reflects on our recent findings, demonstrating the RNA/DNA binding protein fused in sarcoma (FUS)'s crucial role in maintaining mtDNA integrity through interactions with mitochondrial DNA ligase IIIα (mtLig3). Our studies provide direct evidence of increased mtDNA damage in ALS-linked FUS mutant cells, emphasizing the potential of targeting DNA repair pathways to mitigate neurodegeneration. Furthermore, the restoration of mitochondrial function through targeted expression of human DNA ligase 1 (Lig1) in FUS mutant models showcases the therapeutic promise of DNA repair mechanisms in neurodegenerative diseases. These insights offer new molecular understanding and open up future avenues for therapeutic interventions, particularly in FUS-associated ALS and related disorders.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Medical College, New York, NY, USA
| |
Collapse
|
16
|
Ying C, Li Y, Zhang H, Pang S, Hao S, Hu S, Zhao L. Probing the diagnostic values of plasma cf-nDNA and cf-mtDNA for Parkinson's disease and multiple system atrophy. Front Neurosci 2024; 18:1488820. [PMID: 39687490 PMCID: PMC11647036 DOI: 10.3389/fnins.2024.1488820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background Cell loss and mitochondrial dysfunction are key pathological features of idiopathic Parkinson's disease (PD) and multiple system atrophy (MSA). It remains unclear whether disease-specific changes in plasma circulating cell-free nuclear DNA (cf-nDNA) and mitochondrial DNA (cf-mtDNA) occur in patients with PD and MSA. In this study, we investigated whether plasma cf-nDNA, cf-mtDNA levels, as well as cf-mtDNA integrity, are altered in patients with PD and MSA. Methods TaqMan probe-based quantitative PCR was employed to measure plasma cf-nDNA levels, cf-mtDNA copy numbers, and cf-mtDNA deletion levels in 171 participants, including 76 normal controls (NC), 62 PD patients, and 33 MSA patients. A generalized linear model was constructed to analyze differences in circulating cell-free DNA (cfDNA) biomarkers across clinical groups, while a logistic regression model was applied to assess the predictive values of these biomarkers for developing PD or MSA. Spearman correlations were used to explore associations between the three cfDNA biomarkers, demographic data, and clinical scales. Results No significant differences in plasma cf-nDNA levels, cf-mtDNA copy numbers, or cf-mtDNA deletion levels were observed among the PD, MSA, and NC groups (all P > 0.05). Additionally, these measures were not associated with the risk of developing PD or MSA. In PD patients, cf-nDNA levels were positively correlated with Hamilton Anxiety Rating Scale scores (Rho = 0.382, FDR adjusted P = 0.027). In MSA patients, cf-nDNA levels were positively correlated with International Cooperative Ataxia Rating Scale scores (Rho = 0.588, FDR adjusted P = 0.011) and negatively correlated with Montreal Cognitive Assessment scores (Rho = -0.484, FDR adjusted P = 0.044). Subgroup analysis showed that PD patients with constipation had significantly lower plasma cf-mtDNA copy numbers than those without constipation (P = 0.049). MSA patients with cognitive impairment had significantly higher cf-nDNA levels compared to those without (P = 0.008). Conclusion Plasma cf-nDNA level, cf-mtDNA copy number, and cf-mtDNA deletion level have limited roles as diagnostic biomarkers for PD and MSA. However, their correlations with clinical symptoms support the hypothesis that cell loss and mitochondrial dysfunction are involved in PD and MSA development.
Collapse
Affiliation(s)
- Chao Ying
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shimin Pang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuwen Hao
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Songnian Hu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lifang Zhao
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Chen H, Li J, Huang Z, Fan X, Wang X, Chen X, Guo H, Liu H, Li S, Yu S, Li H, Huang X, Ma X, Deng X, Wang C, Liu Y. Dopaminergic system and neurons: Role in multiple neurological diseases. Neuropharmacology 2024; 260:110133. [PMID: 39197818 DOI: 10.1016/j.neuropharm.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The dopaminergic system is a complex and powerful neurotransmitter system in the brain. It plays an important regulatory role in motivation, reward, cognition, and motor control. In recent decades, research in the field of the dopaminergic system and neurons has increased exponentially and is gradually becoming a point of intervention in the study and understanding of a wide range of neurological diseases related to human health. Studies have shown that the dopaminergic system and neurons are involved in the development of many neurological diseases (including, but not limited to Parkinson's disease, schizophrenia, depression, attention deficit hyperactivity disorder, etc.) and that dopaminergic neurons either have too much stress or too weak function in the dopaminergic system can lead to disease. Therefore, targeting dopaminergic neurons is considered key to treating these diseases. This article provides a comprehensive review of the dopaminergic system and neurons in terms of brain region distribution, physiological function and subtypes of dopaminergic neurons, as well as the role of the dopaminergic system and neurons in a variety of diseases.
Collapse
Affiliation(s)
- Heng Chen
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jieshu Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhixing Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxiao Fan
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaofei Wang
- Beijing Normal University, Beijing, 100875, China
| | - Xing Chen
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haitao Guo
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hao Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuqi Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaojun Yu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honghong Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinyu Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuehua Ma
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xinqi Deng
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yonggang Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
18
|
Mahajan VR, Nadel JA, King MT, Pawlosky RJ, Davis MI, Veech RL, Lovinger DM, Salinas AG. Ketone ester-enriched diet ameliorates motor and dopamine release deficits in MitoPark mice. Eur J Neurosci 2024; 60:6875-6890. [PMID: 39528410 PMCID: PMC11612846 DOI: 10.1111/ejn.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disease characterized by motor dysfunction and dopamine deficits. The MitoPark (MP) mouse model of PD recapitulates several facets of Parkinson's disease, including gradual development of motor deficits, which enables the study of potential therapeutic interventions. One therapeutic strategy involves decreasing the mitochondrial metabolic load by inducing ketosis and providing an alternative energy source for neurons, leading to decreased neuronal oxidative stress. Thus, we hypothesized that administration of a ketone ester-enriched diet (KEED) would improve motor and dopamine release deficits in MP mice. Motor function (rotarod and open field tests), dopamine release (fast-scan cyclic voltammetry), tissue dopamine levels (gas chromatography-mass spectrometry) and dopamine neurons and axons (immunofluorescence) were assessed in MP, and control mice fed either the standard or a KEED. When started on the ketone diet before motor dysfunction onset, MP mice had improved motor function relative to standard diet (SD) MP mice. While the KEED did not preserve dopamine neurons or striatal dopamine axons, dopamine release in ketone diet MP mice was greater than SD MP mice but less than control mice. In a follow-up experiment, we began the ketone diet after motor dysfunction onset and observed a modest preservation of motor function in ketone diet MP mice relative to SD MP mice. The improvement in motor dysfunction indicates that a KEED or ketone supplement may have a beneficial effect on delaying motor deficit progression in Parkinson's disease.
Collapse
Affiliation(s)
- Vikrant R. Mahajan
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
- Laboratory for Metabolic ControlNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - Jacob A. Nadel
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - M. Todd King
- Laboratory for Metabolic ControlNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - Robert J. Pawlosky
- Laboratory for Metabolic ControlNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - Margaret I. Davis
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - Richard L. Veech
- Laboratory for Metabolic ControlNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - David M. Lovinger
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - Armando G. Salinas
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
- Department of Pharmacology, Toxicology & NeuroscienceLouisiana State University Health Sciences Center – ShreveportShreveportLouisianaUSA
| |
Collapse
|
19
|
Hattori N, Sato S. Mitochondrial dysfunction in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1415-1428. [PMID: 39585446 DOI: 10.1007/s00702-024-02863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The exact cause of nigral cell death in Parkinson's disease (PD) is still unknown. However, research on MPTP-induced experimental parkinsonism has significantly advanced our understanding. In this model, it is widely accepted that mitochondrial respiratory failure is the primary mechanism of cell death. Studies have shown that a toxic metabolite of MPTP inhibits Complex I and alpha-ketoglutarate dehydrogenase activities in mitochondria. Since then, many research groups have focused on mitochondrial dysfunction in PD, identifying deficiencies in Complex I or III in PD patients' brains, skeletal muscle, and platelets. There is some debate about the decline in mitochondrial function in peripheral organs. However, since α-synuclein, the main component protein of Lewy bodies, accumulates in peripheral organs, it is reasonable to consider PD a systemic disease. Additionally, mutant mitochondrial DNA with a 4,977 base pair deletion has been found in the brains of PD patients, suggesting that age-related accumulation of deleted mtDNA is accelerated in the striatum and may contribute to the pathophysiology of PD. While the cause of PD remains unknown, mitochondrial dysfunction is undoubtedly a factor in cell death in PD. In addition, the causative gene for familial PD, parkin (now PRKN), and PTEN-induced putative kinase 1 (PINK1), both gene products are also involved in mitochondrial quality control. Moreover, we have successfully isolated and identified CHCHD2, which is involved in the mitochondrial electron transfer system. There is no doubt that mitochondrial dysfunction contributes to cell death in PD.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1-Hirosawa, Wako-Shi, Saitama, 351-0198, Japan.
| | - Shigeto Sato
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
20
|
Clemente-Suárez VJ, Rubio-Zarapuz A, Belinchón-deMiguel P, Beltrán-Velasco AI, Martín-Rodríguez A, Tornero-Aguilera JF. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024; 13:1940. [PMID: 39682689 PMCID: PMC11640500 DOI: 10.3390/cells13231940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Regular physical activity plays a crucial role in modulating cellular metabolism and mitigating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. OBJECTIVE The objective of this review is to evaluate the molecular mechanisms by which exercise influences cellular metabolism, with a focus on its potential as a therapeutic intervention for neurological disorders. METHODS A comprehensive literature review was conducted using peer-reviewed scientific articles, with a focus on the period between 2015 and 2024, to analyze the effects of exercise on mitochondrial function, oxidative stress, and metabolic health. RESULTS The findings indicate that exercise promotes mitochondrial biogenesis, enhances oxidative phosphorylation, and reduces reactive oxygen species, contributing to improved energy production and cellular resilience. These metabolic adaptations are associated with delayed disease progression and reduced symptoms in patients with neurodegenerative conditions. Additionally, integrating exercise with nutritional strategies may further enhance therapeutic outcomes by addressing metabolic disturbances comprehensively. CONCLUSIONS This review concludes that personalized exercise protocols should be developed to optimize metabolic benefits for patients with neurological diseases, while future research should focus on biomarker development for individualized treatment approaches. These findings highlight the importance of non-pharmacological interventions in managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Pedro Belinchón-deMiguel
- Department of Nursing, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Faculty of Applied Social Sciences and Communications, Universidad Internacional de la Empresa (UNIE), 28015 Madrid, Spain
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
21
|
Zuo CY, Hao XY, Li MJ, Guo MN, Ma DR, Li SJ, Liang YY, Hao CW, Wang ZY, Feng YM, Sun YM, Xu YM, Shi CH. Anemia, blood cell indices, genetic correlations, and brain structures: A comprehensive analysis of roles in Parkinson's disease risk. Parkinsonism Relat Disord 2024; 128:107153. [PMID: 39316934 DOI: 10.1016/j.parkreldis.2024.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Anemia may contribute significantly to the onset of Parkinson's disease (PD). Current research on the association between anemia and PD risk is inconclusive, and the relationships between anemia-related blood cell indices and PD incidence require further clarification. This study aims to investigate the relationships between anemia, blood cell indicators, and PD risk using a thorough prospective cohort study. METHODS We used data from the UK Biobank, a prospective cohort study of 502,649 participants, and ultimately, 365,982 participants were included in the analysis. Cox proportional hazards models were utilized to adjust for confounding factors, aiming to thoroughly explore the associations between anemia and blood cell indices with the risk of incident PD. The interaction between anemia and Polygenic Risk Score (PRS) for PD was also examined. Linear regression and mediation analyses assessed potential mechanisms driven by brain structures, including grey matter volume. RESULTS During a median follow-up of 14.24 years, 2513 participants were diagnosed with PD. Anemia considerably increased PD risk (hazard ratio [HR] 1.98, 95 % confidence interval [CI]: 1.81-2.18, P < 0.001) after adjustments. Those with high PRS for anemia had an 83 % higher PD incidence compared to low PRS participants. Sensitivity analyses confirmed result robustness. Linear regression showed that anemia correlated with grey matter volumes and most white matter tracts. Furthermore, mediation analyses identified that the volume of grey matter in Thalamus mediates the relationship between anemia and PD risk. CONCLUSION In summary, we consider there to be a substantial correlation between anemia and increased PD risk.
Collapse
Affiliation(s)
- Chun-Yan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xiao-Yan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Meng-Jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Meng-Nan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dong-Rui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuang-Jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuan-Yuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chen-Wei Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhi-Yun Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yan-Mei Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yue-Meng Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
22
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
23
|
Nurkolis F, Utami TW, Alatas AI, Wicaksono D, Kurniawan R, Ratmandhika SR, Sukarno KT, Pahu YGP, Kim B, Tallei TE, Tjandrawinata RR, Alhasyimi AA, Surya R, Helen H, Halim P, Muhar AM, Syahputra RA. Can salivary and skin microbiome become a biodetector for aging-associated diseases? Current insights and future perspectives. FRONTIERS IN AGING 2024; 5:1462569. [PMID: 39484071 PMCID: PMC11524912 DOI: 10.3389/fragi.2024.1462569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Growth and aging are fundamental elements of human development. Aging is defined by a decrease in physiological activities and higher illness vulnerability. Affected by lifestyle, environmental, and hereditary elements, aging results in disorders including cardiovascular, musculoskeletal, and neurological diseases, which accounted for 16.1 million worldwide deaths in 2019. Stress-induced cellular senescence, caused by DNA damage, can reduce tissue regeneration and repair, promoting aging. The root cause of many age-related disorders is inflammation, encouraged by the senescence-associated secretory phenotype (SASP). Aging's metabolic changes and declining immune systems raise illness risk via promoting microbiome diversity. Stable, individual-specific skin and oral microbiomes are essential for both health and disease since dysbiosis is linked with periodontitis and eczema. Present from birth to death, the human microbiome, under the influence of diet and lifestyle, interacts symbiotically with the body. Poor dental health has been linked to Alzheimer's and Parkinson's diseases since oral microorganisms and systemic diseases have important interactions. Emphasizing the importance of microbiome health across the lifetime, this study reviews the understanding of the microbiome's role in aging-related diseases that can direct novel diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Trianna Wahyu Utami
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aiman Idrus Alatas
- Program of Clinical Microbiology Residency, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Danar Wicaksono
- Alumnus Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rudy Kurniawan
- Graduate School of Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | | | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | | | - Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
| | - Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Adi Muradi Muhar
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
24
|
Flores-Ponce X, Velasco I. Dopaminergic neuron metabolism: relevance for understanding Parkinson's disease. Metabolomics 2024; 20:116. [PMID: 39397188 PMCID: PMC11471710 DOI: 10.1007/s11306-024-02181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Dopaminergic neurons from the substantia nigra pars compacta (SNc) have a higher susceptibility to aging-related degeneration, compared to midbrain dopaminergic cells present in the ventral tegmental area (VTA); the death of dopamine neurons in the SNc results in Parkinson´s disease (PD). In addition to increased loss by aging, dopaminergic neurons from the SNc are more prone to cell death when exposed to genetic or environmental factors, that either interfere with mitochondrial function, or cause an increase of oxidative stress. The oxidation of dopamine is a contributing source of reactive oxygen species (ROS), but this production is not enough to explain the differences in susceptibility to degeneration between SNc and VTA neurons. AIM OF REVIEW In this review we aim to highlight the intrinsic differences between SNc and VTA dopamine neurons, in terms of gene expression, calcium oscillations, bioenergetics, and ROS responses. Also, to describe the changes in the pentose phosphate pathway and the induction of apoptosis in SNc neurons during aging, as related to the development of PD. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent work showed that neurons from the SNc possess intrinsic characteristics that result in metabolic differences, related to their intricate morphology, that render them more susceptible to degeneration. In particular, these neurons have an elevated basal energy metabolism, that is required to fulfill the demands of the constant firing of action potentials, but at the same time, is associated to higher ROS production, compared to VTA cells. Finally, we discuss how mutations related to PD affect metabolic pathways, and the related mechanisms, as revealed by metabolomics.
Collapse
Affiliation(s)
- Xóchitl Flores-Ponce
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| |
Collapse
|
25
|
Li Y, Zhang H, Yu C, Dong X, Yang F, Wang M, Wen Z, Su M, Li B, Yang L. New Insights into Mitochondria in Health and Diseases. Int J Mol Sci 2024; 25:9975. [PMID: 39337461 PMCID: PMC11432609 DOI: 10.3390/ijms25189975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondria are a unique type of semi-autonomous organelle within the cell that carry out essential functions crucial for the cell's survival and well-being. They are the location where eukaryotic cells carry out energy metabolism. Aside from producing the majority of ATP through oxidative phosphorylation, which provides essential energy for cellular functions, mitochondria also participate in other metabolic processes within the cell, such as the electron transport chain, citric acid cycle, and β-oxidation of fatty acids. Furthermore, mitochondria regulate the production and elimination of ROS, the synthesis of nucleotides and amino acids, the balance of calcium ions, and the process of cell death. Therefore, it is widely accepted that mitochondrial dysfunction is a factor that causes or contributes to the development and advancement of various diseases. These include common systemic diseases, such as aging, diabetes, Parkinson's disease, and cancer, as well as rare metabolic disorders, like Kearns-Sayre syndrome, Leigh disease, and mitochondrial myopathy. This overview outlines the various mechanisms by which mitochondria are involved in numerous illnesses and cellular physiological activities. Additionally, it provides new discoveries regarding the involvement of mitochondria in both disorders and the maintenance of good health.
Collapse
Affiliation(s)
- Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
26
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
27
|
Paß T, Ricke KM, Hofmann P, Chowdhury RS, Nie Y, Chinnery P, Endepols H, Neumaier B, Carvalho A, Rigoux L, Steculorum SM, Prudent J, Riemer T, Aswendt M, Liss B, Brachvogel B, Wiesner RJ. Preserved striatal innervation maintains motor function despite severe loss of nigral dopaminergic neurons. Brain 2024; 147:3189-3203. [PMID: 38574200 DOI: 10.1093/brain/awae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/06/2024] Open
Abstract
Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations, leading to mitochondrial dysfunction, are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Konrad M Ricke
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Pierre Hofmann
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Roy S Chowdhury
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Yu Nie
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Patrick Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Heike Endepols
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Bernd Neumaier
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), 52425 Jülich, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - André Carvalho
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Sophie M Steculorum
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Trine Riemer
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Markus Aswendt
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Bent Brachvogel
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
28
|
Emamnejad R, Pagnin M, Petratos S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci Biobehav Rev 2024; 164:105788. [PMID: 38950685 DOI: 10.1016/j.neubiorev.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
29
|
Lopriore P, Palermo G, Meli A, Bellini G, Benevento E, Montano V, Siciliano G, Mancuso M, Ceravolo R. Mitochondrial Parkinsonism: A Practical Guide to Genes and Clinical Diagnosis. Mov Disord Clin Pract 2024; 11:948-965. [PMID: 38943319 PMCID: PMC11329577 DOI: 10.1002/mdc3.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/19/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Primary mitochondrial diseases (PMDs) are the most common inborn errors of energy metabolism, with a combined prevalence of 1 in 4300. They can result from mutations in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). These disorders are multisystemic and mainly affect high energy-demanding tissues, such as muscle and the central nervous system (CNS). Among many clinical features of CNS involvement, parkinsonism is one of the most common movement disorders in PMDs. METHODS This review provides a pragmatic educational overview of the most recent advances in the field of mitochondrial parkinsonism, from pathophysiology and genetic etiologies to phenotype and diagnosis. RESULTS mtDNA maintenance and mitochondrial dynamics alterations represent the principal mechanisms underlying mitochondrial parkinsonism. It can be present in isolation, alongside other movement disorders or, more commonly, as part of a multisystemic phenotype. Mutations in several nuclear-encoded genes (ie, POLG, TWNK, SPG7, and OPA1) and, more rarely, mtDNA mutations, are responsible for mitochondrial parkinsonism. Progressive external opthalmoplegia and optic atrophy may guide genetic etiology identification. CONCLUSION A comprehensive deep-phenotyping approach is needed to reach a diagnosis of mitochondrial parkinsonism, which lacks distinctive clinical features and exemplifies the intricate genotype-phenotype interplay of PMDs.
Collapse
Affiliation(s)
- Piervito Lopriore
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Adriana Meli
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Elena Benevento
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Vincenzo Montano
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Gabriele Siciliano
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Michelangelo Mancuso
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| |
Collapse
|
30
|
Stavgiannoudaki I, Goulielmaki E, Garinis GA. Broken strands, broken minds: Exploring the nexus of DNA damage and neurodegeneration. DNA Repair (Amst) 2024; 140:103699. [PMID: 38852477 DOI: 10.1016/j.dnarep.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss progressively leading to cognitive decline and the manifestation of incurable and debilitating conditions, such as Alzheimer's, Parkinson's, and Huntington's diseases. Loss of genome maintenance causally contributes to age-related neurodegeneration, as exemplified by the premature appearance of neurodegenerative features in a growing family of human syndromes and mice harbouring inborn defects in DNA repair. Here, we discuss the relevance of persistent DNA damage, key DNA repair mechanisms and compromised genome integrity in age-related neurodegeneration highlighting the significance of investigating these connections to pave the way for the development of rationalized intervention strategies aimed at delaying the onset of neurodegenerative disorders and promoting healthy aging.
Collapse
Affiliation(s)
- Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece.
| |
Collapse
|
31
|
Arena G, Landoulsi Z, Grossmann D, Payne T, Vitali A, Delcambre S, Baron A, Antony P, Boussaad I, Bobbili DR, Sreelatha AAK, Pavelka L, J Diederich N, Klein C, Seibler P, Glaab E, Foltynie T, Bandmann O, Sharma M, Krüger R, May P, Grünewald A. Polygenic Risk Scores Validated in Patient-Derived Cells Stratify for Mitochondrial Subtypes of Parkinson's Disease. Ann Neurol 2024; 96:133-149. [PMID: 38767023 DOI: 10.1002/ana.26949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE The aim of our study is to better understand the genetic architecture and pathological mechanisms underlying neurodegeneration in idiopathic Parkinson's disease (iPD). We hypothesized that a fraction of iPD patients may harbor a combination of common variants in nuclear-encoded mitochondrial genes ultimately resulting in neurodegeneration. METHODS We used mitochondria-specific polygenic risk scores (mitoPRSs) and created pathway-specific mitoPRSs using genotype data from different iPD case-control datasets worldwide, including the Luxembourg Parkinson's Study (412 iPD patients and 576 healthy controls) and COURAGE-PD cohorts (7,270 iPD cases and 6,819 healthy controls). Cellular models from individuals stratified according to the most significant mitoPRS were subsequently used to characterize different aspects of mitochondrial function. RESULTS Common variants in genes regulating Oxidative Phosphorylation (OXPHOS-PRS) were significantly associated with a higher PD risk in independent cohorts (Luxembourg Parkinson's Study odds ratio, OR = 1.31[1.14-1.50], p-value = 5.4e-04; COURAGE-PD OR = 1.23[1.18-1.27], p-value = 1.5e-29). Functional analyses in fibroblasts and induced pluripotent stem cells-derived neuronal progenitors revealed significant differences in mitochondrial respiration between iPD patients with high or low OXPHOS-PRS (p-values < 0.05). Clinically, iPD patients with high OXPHOS-PRS have a significantly earlier age at disease onset compared to low-risk patients (false discovery rate [FDR]-adj p-value = 0.015), similar to prototypic monogenic forms of PD. Finally, iPD patients with high OXPHOS-PRS responded more effectively to treatment with mitochondrially active ursodeoxycholic acid. INTERPRETATION OXPHOS-PRS may provide a precision medicine tool to stratify iPD patients into a pathogenic subgroup genetically defined by specific mitochondrial impairment, making these individuals eligible for future intelligent clinical trial designs. ANN NEUROL 2024;96:133-149.
Collapse
Affiliation(s)
- Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Zied Landoulsi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dajana Grossmann
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Thomas Payne
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Armelle Vitali
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dheeraj Reddy Bobbili
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ashwin Ashok Kumar Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Lukas Pavelka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier du Luxembourg, Luxembourg, Luxembourg
| | - Nico J Diederich
- Department of Neurosciences, Centre Hospitalier de Luxembourg, Strassen, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier du Luxembourg, Luxembourg, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
32
|
Eo H, Yu SH, Choi Y, Kim Y, Kang YC, Lee H, Kim JH, Han K, Lee HK, Chang MY, Oh MS, Kim CH. Mitochondrial transplantation exhibits neuroprotective effects and improves behavioral deficits in an animal model of Parkinson's disease. Neurotherapeutics 2024; 21:e00355. [PMID: 38580511 PMCID: PMC11067340 DOI: 10.1016/j.neurot.2024.e00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Mitochondria are essential organelles for cell survival that manage the cellular energy supply by producing ATP. Mitochondrial dysfunction is associated with various human diseases, including metabolic syndromes, aging, and neurodegenerative diseases. Among the diseases related to mitochondrial dysfunction, Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss and neuroinflammation. Recently, it was reported that mitochondrial transfer between cells occurred naturally and that exogenous mitochondrial transplantation was beneficial for treating mitochondrial dysfunction. The current study aimed to investigate the therapeutic effect of mitochondrial transfer on PD in vitro and in vivo. The results showed that PN-101 mitochondria isolated from human mesenchymal stem cells exhibited a neuroprotective effect against 1-methyl-4-phenylpyridinium, 6-hydroxydopamine and rotenone in dopaminergic cells and ameliorated dopaminergic neuronal loss in the brains of C57BL/6J mice injected 30 mg/kg of methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intraperitoneally. In addition, PN-101 exhibited anti-inflammatory effects by reducing the expression of pro-inflammatory cytokines in microglial cells and suppressing microglial activation in the striatum. Furthermore, intravenous mitochondrial treatment was associated with behavioral improvements during the pole test and rotarod test in the MPTP-induced PD mice. These dual effects of neuroprotection and anti-neuroinflammation support the potential for mitochondrial transplantation as a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, 02447, Seoul, Republic of Korea
| | - Shin-Hye Yu
- Paean Biotechnology, Inc., 5 Samil-daero8-gil, Jung-gu, 04552, Seoul, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, 02447, Seoul, Republic of Korea
| | - Yujin Kim
- Paean Biotechnology, Inc., 5 Samil-daero8-gil, Jung-gu, 04552, Seoul, Republic of Korea
| | - Young Cheol Kang
- Paean Biotechnology, Inc., 5 Samil-daero8-gil, Jung-gu, 04552, Seoul, Republic of Korea
| | - Hanbyeol Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, 02447, Seoul, Republic of Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, 02447, Seoul, Republic of Korea
| | - Kyuboem Han
- Paean Biotechnology, Inc., 5 Samil-daero8-gil, Jung-gu, 04552, Seoul, Republic of Korea
| | - Hong Kyu Lee
- Paean Biotechnology, Inc., 5 Samil-daero8-gil, Jung-gu, 04552, Seoul, Republic of Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763 Seoul, Republic of Korea; Department of Premedicine, College of Medicine, Hanyang University, 04763 Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, 02447, Seoul, Republic of Korea; Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, 02447, Seoul, Republic of Korea.
| | - Chun-Hyung Kim
- Paean Biotechnology, Inc., 5 Samil-daero8-gil, Jung-gu, 04552, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
34
|
Valizadeh M, Derafsh E, Abdi Abyaneh F, Parsamatin SK, Noshabad FZR, Alinaghipour A, Yaghoobi Z, Taheri AT, Dadgostar E, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-Coding RNAs and Neurodegenerative Diseases: Information of their Roles in Apoptosis. Mol Neurobiol 2024; 61:4508-4537. [PMID: 38102518 DOI: 10.1007/s12035-023-03849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Apoptosis can be known as a key factor in the pathogenesis of neurodegenerative disorders. In disease conditions, the rate of apoptosis expands and tissue damage may become apparent. Recently, the scientific studies of the non-coding RNAs (ncRNAs) has provided new information of the molecular mechanisms that contribute to neurodegenerative disorders. Numerous reports have documented that ncRNAs have important contributions to several biological processes associated with the increase of neurodegenerative disorders. In addition, microRNAs (miRNAs), circular RNAs (circRNAs), as well as, long ncRNAs (lncRNAs) represent ncRNAs subtypes with the usual dysregulation in neurodegenerative disorders. Dysregulating ncRNAs has been associated with inhibiting or stimulating apoptosis in neurodegenerative disorders. Therefore, this review highlighted several ncRNAs linked to apoptosis in neurodegenerative disorders. CircRNAs, lncRNAs, and miRNAs were also illustrated completely regarding the respective signaling pathways of apoptosis.
Collapse
Affiliation(s)
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Canada
| | | | - Sayedeh Kiana Parsamatin
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, IR, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, IR, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| |
Collapse
|
35
|
Hedlich-Dwyer J, Allard JS, Mulgrave VE, Kisby GE, Raber J, Gassman NR. Novel Techniques for Mapping DNA Damage and Repair in the Brain. Int J Mol Sci 2024; 25:7021. [PMID: 39000135 PMCID: PMC11241736 DOI: 10.3390/ijms25137021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
DNA damage in the brain is influenced by endogenous processes and metabolism along with exogenous exposures. Accumulation of DNA damage in the brain can contribute to various neurological disorders, including neurodegenerative diseases and neuropsychiatric disorders. Traditional methods for assessing DNA damage in the brain, such as immunohistochemistry and mass spectrometry, have provided valuable insights but are limited by their inability to map specific DNA adducts and regional distributions within the brain or genome. Recent advancements in DNA damage detection methods offer new opportunities to address these limitations and further our understanding of DNA damage and repair in the brain. Here, we review emerging techniques offering more precise and sensitive ways to detect and quantify DNA lesions in the brain or neural cells. We highlight the advancements and applications of these techniques and discuss their potential for determining the role of DNA damage in neurological disease.
Collapse
Affiliation(s)
- Jenna Hedlich-Dwyer
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joanne S Allard
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Veronica E Mulgrave
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Glen E Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
36
|
Bury A, Pyle A, Vincent AE, Actis P, Hudson G. Nanobiopsy investigation of the subcellular mtDNA heteroplasmy in human tissues. Sci Rep 2024; 14:13789. [PMID: 38877095 PMCID: PMC11178779 DOI: 10.1038/s41598-024-64455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Mitochondrial function is critical to continued cellular vitality and is an important contributor to a growing number of human diseases. Mitochondrial dysfunction is typically heterogeneous, mediated through the clonal expansion of mitochondrial DNA (mtDNA) variants in a subset of cells in a given tissue. To date, our understanding of the dynamics of clonal expansion of mtDNA variants has been technically limited to the single cell-level. Here, we report the use of nanobiopsy for subcellular sampling from human tissues, combined with next-generation sequencing to assess subcellular mtDNA mutation load in human tissue from mitochondrial disease patients. The ability to map mitochondrial mutation loads within individual cells of diseased tissue samples will further our understanding of mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Alexander Bury
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK
- Bragg Centre for Materials Research, Leeds, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK.
- Bragg Centre for Materials Research, Leeds, UK.
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| |
Collapse
|
37
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
38
|
Naoi M, Maruyama W, Shamoto-Nagai M, Riederer P. Toxic interactions between dopamine, α-synuclein, monoamine oxidase, and genes in mitochondria of Parkinson's disease. J Neural Transm (Vienna) 2024; 131:639-661. [PMID: 38196001 DOI: 10.1007/s00702-023-02730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Parkinson's disease is characterized by its distinct pathological features; loss of dopamine neurons in the substantia nigra pars compacta and accumulation of Lewy bodies and Lewy neurites containing modified α-synuclein. Beneficial effects of L-DOPA and dopamine replacement therapy indicate dopamine deficit as one of the main pathogenic factors. Dopamine and its oxidation products are proposed to induce selective vulnerability in dopamine neurons. However, Parkinson's disease is now considered as a generalized disease with dysfunction of several neurotransmitter systems caused by multiple genetic and environmental factors. The pathogenic factors include oxidative stress, mitochondrial dysfunction, α-synuclein accumulation, programmed cell death, impaired proteolytic systems, neuroinflammation, and decline of neurotrophic factors. This paper presents interactions among dopamine, α-synuclein, monoamine oxidase, its inhibitors, and related genes in mitochondria. α-Synuclein inhibits dopamine synthesis and function. Vice versa, dopamine oxidation by monoamine oxidase produces toxic aldehydes, reactive oxygen species, and quinones, which modify α-synuclein, and promote its fibril production and accumulation in mitochondria. Excessive dopamine in experimental models modifies proteins in the mitochondrial electron transport chain and inhibits the function. α-Synuclein and familiar Parkinson's disease-related gene products modify the expression and activity of monoamine oxidase. Type A monoamine oxidase is associated with neuroprotection by an unspecific dose of inhibitors of type B monoamine oxidase, rasagiline and selegiline. Rasagiline and selegiline prevent α-synuclein fibrillization, modulate this toxic collaboration, and exert neuroprotection in experimental studies. Complex interactions between these pathogenic factors play a decisive role in neurodegeneration in PD and should be further defined to develop new therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Peter Riederer
- Clinical Neurochemistry, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
40
|
Chen A, Yangzom T, Hong Y, Lundberg BC, Sullivan GJ, Tzoulis C, Bindoff LA, Liang KX. Hallmark Molecular and Pathological Features of POLG Disease are Recapitulated in Cerebral Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307136. [PMID: 38445970 PMCID: PMC11095234 DOI: 10.1002/advs.202307136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Indexed: 03/07/2024]
Abstract
In this research, a 3D brain organoid model is developed to study POLG-related encephalopathy, a mitochondrial disease stemming from POLG mutations. Induced pluripotent stem cells (iPSCs) derived from patients with these mutations is utilized to generate cortical organoids, which exhibited typical features of the diseases with POLG mutations, such as altered morphology, neuronal loss, and mitochondiral DNA (mtDNA) depletion. Significant dysregulation is also identified in pathways crucial for neuronal development and function, alongside upregulated NOTCH and JAK-STAT signaling pathways. Metformin treatment ameliorated many of these abnormalities, except for the persistent affliction of inhibitory dopamine-glutamate (DA GLU) neurons. This novel model effectively mirrors both the molecular and pathological attributes of diseases with POLG mutations, providing a valuable tool for mechanistic understanding and therapeutic screening for POLG-related disorders and other conditions characterized by compromised neuronal mtDNA maintenance and complex I deficiency.
Collapse
Affiliation(s)
- Anbin Chen
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Department of NeurosurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai20092China
| | - Tsering Yangzom
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Centre for International HealthUniversity of BergenBergen5020Norway
| | - Yu Hong
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
| | - Bjørn Christian Lundberg
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Department of BiomedicineUniversity of BergenBergen5009Norway
| | | | - Charalampos Tzoulis
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Neuro‐SysMedCenter of Excellence for Clinical Research in Neurological DiseasesHaukeland University HospitalBergen5021Norway
| | | | | |
Collapse
|
41
|
Flønes IH, Toker L, Sandnes DA, Castelli M, Mostafavi S, Lura N, Shadad O, Fernandez-Vizarra E, Painous C, Pérez-Soriano A, Compta Y, Molina-Porcel L, Alves G, Tysnes OB, Dölle C, Nido GS, Tzoulis C. Mitochondrial complex I deficiency stratifies idiopathic Parkinson's disease. Nat Commun 2024; 15:3631. [PMID: 38684731 PMCID: PMC11059185 DOI: 10.1038/s41467-024-47867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.
Collapse
Affiliation(s)
- Irene H Flønes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Lilah Toker
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Dagny Ann Sandnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Martina Castelli
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Sepideh Mostafavi
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Njål Lura
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Omnia Shadad
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Erika Fernandez-Vizarra
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
- Veneto Institute of Molecular Medicine, 35131, Padova, Italy
| | - Cèlia Painous
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alexandra Pérez-Soriano
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
- UParkinson - Sinapsi Neurología, Centre Mèdic Teknon Grup Hospitalari Quirón Salud, Barcelona, Spain
| | - Yaroslau Compta
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Molina-Porcel
- Alzheimer's disease and other cognitive disorders unit. Neurology Service, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Pb 8100, 4068, Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, 4062, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Gonzalo S Nido
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway.
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway.
| |
Collapse
|
42
|
Gilkerson R, Kaur H, Carrillo O, Ramos I. OMA1-Mediated Mitochondrial Dynamics Balance Organellar Homeostasis Upstream of Cellular Stress Responses. Int J Mol Sci 2024; 25:4566. [PMID: 38674151 PMCID: PMC11049825 DOI: 10.3390/ijms25084566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
In response to cellular metabolic and signaling cues, the mitochondrial network employs distinct sets of membrane-shaping factors to dynamically modulate organellar structures through a balance of fission and fusion. While these organellar dynamics mediate mitochondrial structure/function homeostasis, they also directly impact critical cell-wide signaling pathways such as apoptosis, autophagy, and the integrated stress response (ISR). Mitochondrial fission is driven by the recruitment of the cytosolic dynamin-related protein-1 (DRP1), while fusion is carried out by mitofusins 1 and 2 (in the outer membrane) and optic atrophy-1 (OPA1) in the inner membrane. This dynamic balance is highly sensitive to cellular stress; when the transmembrane potential across the inner membrane (Δψm) is lost, fusion-active OPA1 is cleaved by the overlapping activity with m-AAA protease-1 (OMA1 metalloprotease, disrupting mitochondrial fusion and leaving dynamin-related protein-1 (DRP1)-mediated fission unopposed, thus causing the collapse of the mitochondrial network to a fragmented state. OMA1 is a unique regulator of stress-sensitive homeostatic mitochondrial balance, acting as a key upstream sensor capable of priming the cell for apoptosis, autophagy, or ISR signaling cascades. Recent evidence indicates that higher-order macromolecular associations within the mitochondrial inner membrane allow these specialized domains to mediate crucial organellar functionalities.
Collapse
Affiliation(s)
- Robert Gilkerson
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
- Department of Health & Biomedical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Harpreet Kaur
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| | - Omar Carrillo
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| | - Isaiah Ramos
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| |
Collapse
|
43
|
Wang V, Tseng KY, Kuo TT, Huang EYK, Lan KL, Chen ZR, Ma KH, Greig NH, Jung J, Choi HI, Olson L, Hoffer BJ, Chen YH. Attenuating mitochondrial dysfunction and morphological disruption with PT320 delays dopamine degeneration in MitoPark mice. J Biomed Sci 2024; 31:38. [PMID: 38627765 PMCID: PMC11022395 DOI: 10.1186/s12929-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.
Collapse
Affiliation(s)
- Vicki Wang
- Doctoral Degree Program in Translational Medicine, National Defense Medical Center and Academia Sinica, Taipei, 11490, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, 11490, Taiwan
- National Defense Medical Center, Taipei, 11490, Taiwan
| | - Tung-Tai Kuo
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, 11490, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Kuo-Lun Lan
- Department of Pathology, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Zi-Rong Chen
- Department of Pathology, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Kuo-Hsing Ma
- Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Jin Jung
- Peptron, Inc., Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Ho-Ii Choi
- Peptron, Inc., Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Lars Olson
- Department of Neuroscience, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, 11490, Taiwan.
- National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
44
|
Baev AY, Vinokurov AY, Potapova EV, Dunaev AV, Angelova PR, Abramov AY. Mitochondrial Permeability Transition, Cell Death and Neurodegeneration. Cells 2024; 13:648. [PMID: 38607087 PMCID: PMC11011324 DOI: 10.3390/cells13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024] Open
Abstract
Neurodegenerative diseases are chronic conditions occurring when neurons die in specific brain regions that lead to loss of movement or cognitive functions. Despite the progress in understanding the mechanisms of this pathology, currently no cure exists to treat these types of diseases: for some of them the only help is alleviating the associated symptoms. Mitochondrial dysfunction has been shown to be involved in the pathogenesis of most the neurodegenerative disorders. The fast and transient permeability of mitochondria (the mitochondrial permeability transition, mPT) has been shown to be an initial step in the mechanism of apoptotic and necrotic cell death, which acts as a regulator of tissue regeneration for postmitotic neurons as it leads to the irreparable loss of cells and cell function. In this study, we review the role of the mitochondrial permeability transition in neuronal death in major neurodegenerative diseases, covering the inductors of mPTP opening in neurons, including the major ones-free radicals and calcium-and we discuss perspectives and difficulties in the development of a neuroprotective strategy based on the inhibition of mPTP in neurodegenerative disorders.
Collapse
Affiliation(s)
- Artyom Y. Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan;
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Elena V. Potapova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Andrey V. Dunaev
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| |
Collapse
|
45
|
Shen YX, Lee PS, Teng MC, Huang JH, Wang CC, Fan HF. Influence of Cigarette Aerosol in Alpha-Synuclein Oligomerization and Cell Viability in SH-SY5Y: Implications for Parkinson's Disease. ACS Chem Neurosci 2024; 15:1484-1500. [PMID: 38483468 PMCID: PMC10995954 DOI: 10.1021/acschemneuro.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Although cigarette aerosol exposure is associated with various adverse health issues, its impact on Parkinson's disease (PD) remains elusive. Here, we investigated the effect of cigarette aerosol extract (CAE) on SH-SY5Y cells for the first time, both with and without α-synuclein (α-Syn) overexpression. We found that α-Syn aggravates CAE-induced cell death, oxidative stress, and mitochondrial dysfunction. Fluorescence cross-correlation spectroscopy (FCCS) revealed a dual distribution of α-Syn within the cells, with homogeneous regions indicative of monomeric α-Syn and punctated regions, suggesting the formation of oligomers. Moreover, we observed colocalization of α-Syn oligomers with lysosomes along with a reduction in autophagy activity. These findings suggest that α-Syn overexpression exacerbates CAE-induced intracellular cytotoxicity, mitochondrial dysfunction, and autophagy dysregulation, leading to elevated cell mortality. Our findings provide new insights into the pathogenic mechanisms linking exposure to cigarette aerosols with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Xin Shen
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Pe-Shuen Lee
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Ming-Chu Teng
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Jhih-Hong Huang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Chia C. Wang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| |
Collapse
|
46
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Morais PLAG, Santos JR, Cavalcanti JRLP. The neurobiological effects of senescence on dopaminergic system: A comprehensive review. J Chem Neuroanat 2024; 137:102415. [PMID: 38521203 DOI: 10.1016/j.jchemneu.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Marco Aurelio M Freire
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Karina M Paiva
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Rodrigo F Oliveira
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - José Ronaldo Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | | |
Collapse
|
47
|
Xie J, Cheng J, Ko H, Tang Y. Cytosolic DNA sensors in neurodegenerative diseases: from physiological defenders to pathological culprits. EMBO Mol Med 2024; 16:678-699. [PMID: 38467840 PMCID: PMC11018843 DOI: 10.1038/s44321-024-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Cytosolic DNA sensors are a group of pattern recognition receptors (PRRs) that vary in structures, molecular mechanisms, and origins but share a common function to detect intracellular microbial DNA and trigger the innate immune response like type 1 interferon production and autophagy. Cytosolic DNA sensors have been proven as indispensable defenders against the invasion of many pathogens; however, growing evidence shows that self-DNA misplacement to cytoplasm also frequently occurs in non-infectious circumstances. Accumulation of cytosolic DNA causes improper activation of cytosolic DNA sensors and triggers an abnormal autoimmune response, that significantly promotes pathological progression. Neurodegenerative diseases are a group of neurological disorders characterized by neuron loss and still lack effective treatments due to a limited understanding of pathogenesis. But current research has found a solid relationship between neurodegenerative diseases and cytosolic DNA sensing pathways. This review summarizes profiles of several major cytosolic DNA sensors and their common adaptor protein STING. It also discusses both the beneficial and detrimental roles of cytosolic DNA sensors in the genesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
48
|
Puigròs M, Calderon A, Martín-Ruiz D, Serradell M, Fernández M, Muñoz-Lopetegi A, Mayà G, Santamaria J, Gaig C, Colell A, Tolosa E, Iranzo A, Trullas R. Mitochondrial DNA deletions in the cerebrospinal fluid of patients with idiopathic REM sleep behaviour disorder. EBioMedicine 2024; 102:105065. [PMID: 38502973 PMCID: PMC10963194 DOI: 10.1016/j.ebiom.2024.105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Idiopathic rapid eye movement (REM) sleep behaviour disorder (IRBD) represents the prodromal stage of Lewy body disorders (Parkinson's disease (PD) and dementia with Lewy bodies (DLB)) which are linked to variations in circulating cell-free mitochondrial DNA (cf-mtDNA). Here, we assessed whether altered cf-mtDNA release and integrity are already present in IRBD. METHODS We used multiplex digital PCR (dPCR) to quantify cf-mtDNA copies and deletion ratio in cerebrospinal fluid (CSF) and serum in a cohort of 71 participants, including 1) 17 patients with IRBD who remained disease-free (non-converters), 2) 34 patients initially diagnosed with IRBD who later developed either PD or DLB (converters), and 3) 20 age-matched controls without IRBD or Parkinsonism. In addition, we investigated whether CD9-positive extracellular vesicles (CD9-EVs) from CSF and serum samples contained cf-mtDNA. FINDINGS Patients with IRBD, both converters and non-converters, exhibited more cf-mtDNA with deletions in the CSF than controls. This finding was confirmed in CD9-EVs. The high levels of deleted cf-mtDNA in CSF corresponded to a significant decrease in cf-mtDNA copies in CD9-EVs in both IRBD non-converters and converters. Conversely, a significant increase in cf-mtDNA copies was found in serum and CD9-EVs from the serum of patients with IRBD who later converted to a Lewy body disorder. INTERPRETATION Alterations in cf-mtDNA copy number and deletion ratio known to occur in Lewy body disorders are already present in IRBD and are not a consequence of Lewy body disease conversion. This suggests that mtDNA dysfunction is a primary molecular mechanism of the pathophysiological cascade that precedes the full clinical motor and cognitive manifestation of Lewy body disorders. FUNDING Funded by Michael J. Fox Foundation research grant MJFF-001111. Funded by MICIU/AEI/10.13039/501100011033 "ERDF A way of making Europe", grants PID2020-115091RB-I00 (RT) and PID2022-143279OB-I00 (ACo). Funded by Instituto de Salud Carlos III and European Union NextGenerationEU/PRTR, grant PMP22/00100 (RT and ACo). Funded by AGAUR/Generalitat de Catalunya, grant SGR00490 (RT and ACo). MP has an FPI fellowship, PRE2018-083297, funded by MICIU/AEI/10.13039/501100011033 "ESF Investing in your future".
Collapse
Affiliation(s)
- Margalida Puigròs
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; Neurophysiology Laboratory, School of Medicine, Institute of Neurosciences, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Anna Calderon
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniel Martín-Ruiz
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mònica Serradell
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Manel Fernández
- Parkinson's disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Amaia Muñoz-Lopetegi
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gerard Mayà
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Joan Santamaria
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carles Gaig
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Anna Colell
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eduard Tolosa
- Parkinson's disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alex Iranzo
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Ramon Trullas
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
49
|
Fornstedt Wallin B. Oxidation of dopamine and related catechols in dopaminergic brain regions in Parkinson's disease and during ageing in non-Parkinsonian subjects. J Neural Transm (Vienna) 2024; 131:213-228. [PMID: 38238531 DOI: 10.1007/s00702-023-02718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/28/2023] [Indexed: 02/18/2024]
Abstract
The present study was performed to examine if catechol oxidation is higher in brains from patients with Parkinson's disease compared to age-matched controls, and if catechol oxidation increases with age. Brain tissue from Parkinson patients and age-matched controls was examined for oxidation of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylalanine (DOPA) to corresponding quinones, by measurement of 5-S-cysteinyl-dopamine, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA. The cysteinyl catechols are assumed to be biomarkers for DA, DOPAC and DOPA autoxidation and part of the biosynthetic pathway of neuromelanin. The concentrations of the 5-S-cysteinyl catechols were lower, whereas the 5-S-cysteinyl-DA/DA and 5-S-cysteinyl-DOPAC/DOPAC ratios tended to be higher in the Parkinson group compared to controls, which was interpreted as a higher degree of oxidation. High 5-S-cysteinyl-DA/DA ratios were found in the substantia nigra of a sub-population of the Parkinson group. Based on 5-S-cysteinyl-DA/DA ratios, dopamine oxidation was found to increase statistically significantly with age in the caudate nucleus, and non-significantly in the substantia nigra. In conclusion, the occurrence of 5-S-cysteinyl-DA, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA was demonstrated in dopaminergic brain areas of humans, a tendency for higher oxidation of DA in the Parkinson group compared to controls was observed as well as a statistically significant increase in DA oxidation with age. Possibly, autoxidation of DA and other catechols are involved in both normal and pathological ageing of the brain. This study confirms one earlier but small study, as well as complements one study on non-PD cases and one study on both PD cases and controls on NM bound or integrated markers or catechols.
Collapse
Affiliation(s)
- Bodil Fornstedt Wallin
- Department of Pharmacology, University of Göteborg (at the time of the study), Göteborg, Sweden.
| |
Collapse
|
50
|
Spinazzola A, Perez-Rodriguez D, Ježek J, Holt IJ. Mitochondrial DNA competition: starving out the mutant genome. Trends Pharmacol Sci 2024; 45:225-242. [PMID: 38402076 DOI: 10.1016/j.tips.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024]
Abstract
High levels of pathogenic mitochondrial DNA (mtDNA) variants lead to severe genetic diseases, and the accumulation of such mutants may also contribute to common disorders. Thus, selecting against these mutants is a major goal in mitochondrial medicine. Although mutant mtDNA can drift randomly, mounting evidence indicates that active forces play a role in the selection for and against mtDNA variants. The underlying mechanisms are beginning to be clarified, and recent studies suggest that metabolic cues, including fuel availability, contribute to shaping mtDNA heteroplasmy. In the context of pathological mtDNAs, remodeling of nutrient metabolism supports mitochondria with deleterious mtDNAs and enables them to outcompete functional variants owing to a replicative advantage. The elevated nutrient requirement represents a mutant Achilles' heel because small molecules that restrict nutrient consumption or interfere with nutrient sensing can purge cells of deleterious mtDNAs and restore mitochondrial respiration. These advances herald the dawn of a new era of small-molecule therapies to counteract pathological mtDNAs.
Collapse
Affiliation(s)
- Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK.
| | - Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Jan Ježek
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK; Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE (Basque Foundation for Science), 48013 Bilbao, Spain; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain; Universidad de País Vasco, Barrio Sarriena s/n, 48940 Leioa, Bilbao, Spain.
| |
Collapse
|