1
|
Eber C, Verrier ER. Hijacking JAKis: JAK inhibitors as potential antiviral molecules, a mini review. Antiviral Res 2025; 237:106153. [PMID: 40157651 DOI: 10.1016/j.antiviral.2025.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Janus kinases (JAKs) are key players in the innate immune response and inflammation, catalysing the phosphorylation of STAT proteins, which ultimately leads to the expression of pro-inflammatory and antimicrobial genes. In this context, specific inhibitors of JAK kinases, or JAKis, have been extensively developed, with some already in clinical use for the treatment of chronic inflammatory diseases. However, the interactions between JAK kinases and viral replication appear to be far more complex than initially expected, with some JAKis showing unexpected antiviral properties against different classes of viruses. This mini review summarizes current knowledge about the interactions between JAK proteins and viral infections and discusses the antiviral potential of JAK inhibitors in the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Claudie Eber
- University of Strasbourg, Inserm, ITM UMR_S1110, Strasbourg, France
| | - Eloi R Verrier
- University of Strasbourg, Inserm, ITM UMR_S1110, Strasbourg, France.
| |
Collapse
|
2
|
Chéret A. Acute HIV-1 Infection: Paradigm and Singularity. Viruses 2025; 17:366. [PMID: 40143294 PMCID: PMC11945883 DOI: 10.3390/v17030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Acute HIV-1 infection (AHI) is a transient period where the virus causes evident damage to the immune system, including an extensive apoptosis of CD4+ T cells associated with a high level of activation and a major cytokine storm to fight the invading virus. HIV infection establishes persistence by integrating the viral genome into host cell DNA in both replicating and non-replicating forms, effectively hiding from immune surveillance within infected lymphocytes as cellular reservoirs. The measurement of total HIV-1 DNA in peripheral blood mononuclear cells (PBMCs) is a reliable reflection of this reservoir. Initiating treatments during AHI with nucleoside reverse transcriptase inhibitors (NRTIs) and/or integrase strand transfer inhibitors (INSTIs) is essential to alter the dynamics of the global reservoir expansion, and to reduce the establishment of long-lived cellular and tissue reservoirs, while preserving and enhancing specific and non-specific immune responses. Furthermore, some of the patients treated at the AHI stage may become post-treatment controllers and should be informative regarding the mechanism of viral control, so patients treated during AHI are undoubtedly the best candidates to test innovative remission strategies toward a functional cure that could play a pivotal role in long-term HIV control. AHI is characterized by high levels of viral replication, with a significant increase in the risk of HIV transmission. Detecting AHI and initiating early treatment following diagnosis provides a window of opportunity to control the epidemic, particularly in high-risk populations.
Collapse
Affiliation(s)
- Antoine Chéret
- Inserm U1016, CNRS UMR 8104, Institut Cochin, Université Paris Descartes, 75014 Paris, France;
- Service Plateforme de Diagnostic et Thérapeutique Pluridisciplinaire, Centre Hospitalier Universitaire, 97159 Pointe à Pitre, Guadeloupe, France
- INSERM-CIC-1424, Centre Hospitalier Universitaire, 97159 Pointe à Pitre, Guadeloupe, France
| |
Collapse
|
3
|
Neri A, Olivieri G, Pighi C, Amodio D, Cotugno N, Palma P. Monocytes across life span in HIV infection: lights and shadows. Curr Opin HIV AIDS 2025; 20:133-144. [PMID: 39774439 PMCID: PMC11809736 DOI: 10.1097/coh.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW This review highlights the role of monocytes in the pathogenesis of HIV-1 infection, focusing on their involvement in the inflammatory response and their function as viral targets and long-term reservoirs. RECENT FINDINGS Monocytes have been categorized into three subsets: classical, intermediate, and nonclassical, each with distinct functional characteristics. Advances in genetic sequencing technologies have enabled a more in-depth exploration of the phenotypic and functional variations among these subsets, particularly in the context of HIV. These findings underscore their role as crucial components of the immune response and as reservoirs for the virus. SUMMARY Previous studies on the role of monocytes have demonstrated their contribution to persistent infection and chronic immune activation, especially in adults living with HIV. The lessons learned from these studies should now be harnessed to design studies focused on newborns and children with vertically acquired HIV.
Collapse
Affiliation(s)
- Alessia Neri
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology
| | - Giulio Olivieri
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology
| | - Chiara Pighi
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS
| | - Donato Amodio
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata” Roma, Italy
| | - Nicola Cotugno
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata” Roma, Italy
| | - Paolo Palma
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata” Roma, Italy
| |
Collapse
|
4
|
Leal VNC, Roa MEGV, Cantoni JS, Reis ECD, Lara AN, Pontillo A. Integrated Genetic and Cellular Analysis Reveals NLRP1 Activation in CD4+ T Lymphocytes During Chronic HIV Infection. Immunol Invest 2025; 54:147-166. [PMID: 39495019 DOI: 10.1080/08820139.2024.2419940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
BACKGROUND Most of the investigations related to inflammasome activation during HIV infection have focused on the receptor NLRP3 and innate immune cells such as monocytes/macrophages. However, during the past years, inflammasome activation has also been explored in lymphocytes, and novel sensors, other than the NLRP3, have been shown to play a role in the biology of these cells. Here, we hypothesized that NLRP1 may be involved in CD4+ T cell dysregulation in people living with HIV (PLWH), therefore contributing to chronic inflammation and to the pathogenesis of non-HIV-associated diseases. METHODS The activation of NLRP1 in CD4+ T cells was assessed ex-vivo and in-vitro by the meaning of anti-CD3/anti-CD28 and Talabostat/Val-boroPro (VbP) response. RESULTS Our results showed that the NLRP1 inflammasome was activated in PLWH CD4+ T cells, and that the stimulation of CD4+ T cells resulted in increased response to anti-CD3/anti-CD28 and VbP. Functional variants in NLRP1 significantly affected the level of inflammatory dysregulation of CD4+ T cells, therefore explaining at least in part the association with CD4+ T-mediated diseases. CONCLUSION PLWH CD4+ T cells are more prone to IL-1β release and pyroptosis, therefore contributing to chronic inflammation.
Collapse
Affiliation(s)
- Vinicius Nunes Cordeiro Leal
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Mariela Estefany Gislane Vera Roa
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Julia Silva Cantoni
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Edione Cristina Dos Reis
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Amanda Nazareth Lara
- Departamento de Moléstias Infecciosas e Parasitárias da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| |
Collapse
|
5
|
Teer E, Mukonowenzou NC, Essop MF. The Role of Sustained Type I Interferon Secretion in Chronic HIV Pathogenicity: Implications for Viral Persistence, Immune Activation, and Immunometabolism. Viruses 2025; 17:139. [PMID: 40006894 PMCID: PMC11860620 DOI: 10.3390/v17020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection induces chronic immune activation by stimulating both the innate and adaptive immune systems, resulting in persistent inflammation and immune cell exhaustion. Of note, the modulation of cytokine production and its release can significantly influence the immune response. Type I interferons (IFN-Is) are cytokines that play a crucial role in innate immunity due to their potent antiviral effects, regulation of IFN-stimulated genes essential for viral clearance, and the initiation of both innate and adaptive immune responses. Thus, an understanding of the dual role of IFN-I (protective versus harmful) during HIV-1 infections and elucidating its contributions to HIV pathogenesis is crucial for advancing HIV therapeutic interventions. This review therefore delves into the intricate involvement of IFN-I in both the acute and chronic phases of HIV infection and emphasizes its impact on viral persistence, immune activation, and immunometabolism in treated HIV-infected individuals.
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa; (E.T.); (N.C.M.)
| | - Nyasha C. Mukonowenzou
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa; (E.T.); (N.C.M.)
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| |
Collapse
|
6
|
Monel B, Lamothe PA, Meyo J, McLean AP, Quinones-Alvarado R, Laporte M, Boucau J, Walker BD, Kavanagh DG, Garcia-Beltran WF, Pacheco Y. SLAMF6 enables efficient attachment, synapse formation, and killing of HIV-1-infected CD4 + T cells by virus-specific CD8 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633914. [PMID: 39896504 PMCID: PMC11785116 DOI: 10.1101/2025.01.20.633914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Efficient recognition and elimination of HIV-1-infected CD4+ T cells by cytotoxic CD8+ T cells (CTLs) require target cell engagement and the formation of a well-organized immunological synapse. Surface proteins belonging to the SLAM family are known to be crucial for stabilizing the immunological synapse and regulating antiviral responses during lymphotropic viral infections. In the context of HIV-1, there have been reports of SLAMF6 down-regulation in HIV-1-infected CD4+ T cells; however, the significance of this modulation for CTL function remains unclear. In this investigation, we used CTL lines from People living with HIV (PLWH) to examine the impact of SLAMF6 blockade on three pivotal processes: (1) the formation of CD8+-CD4+ T-cell conjugates, (2) the establishment of the immunological synapse, and (3) the killing and cytokine production capacity of HIV-1-specific CTLs during HIV-1 infection. Our findings reveal that the inability to form CD8+-CD4+ T-cell conjugates following incubation with an anti-SLAMF6 blocking antibody is primarily attributable to a defect in actin ring formation at the immunological synapse. Furthermore, SLAMF6 blockade leads to a reduction in the killing efficiency of HIV-1-infected CD4+ T cells by HIV-1-specific CTLs, underscoring the critical role of SLAMF6 in cytolytic function. This study highlights the importance of SLAMF6 receptors in modulating cytotoxic antiviral responses, shedding light on potential avenues for manipulation and enhancement of this pathway in the context of HIV and other lymphotropic viral infections.
Collapse
Affiliation(s)
- Blandine Monel
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, F-44000 Nantes, France
| | - Pedro A. Lamothe
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine. Emory University School of Medicine. Atlanta, Georgia, USA
| | - James Meyo
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- EMD Serono, Boston, Massachusetts, USA
| | - Anna P. McLean
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Maine Medical Center, Department of Psychiatry
| | | | - Mélanie Laporte
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, F-44000 Nantes, France
| | - Julie Boucau
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Bruce D. Walker
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Daniel G. Kavanagh
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- WCG, Princeton, New Jersey, USA
| | - Wilfredo F. Garcia-Beltran
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yovana Pacheco
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá, Colombia
| |
Collapse
|
7
|
Itell HL, Guenthoer J, Humes D, Baumgarten NE, Overbaugh J. Host cell glycosylation selects for infection with CCR5- versus CXCR4-tropic HIV-1. Nat Microbiol 2024; 9:2985-2996. [PMID: 39363105 DOI: 10.1038/s41564-024-01806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 08/06/2024] [Indexed: 10/05/2024]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection involves a selection bottleneck that leads to transmission of one or a few variants. C-C motif chemokine receptor 5 (CCR5) or C-X-C motif chemokine receptor 4 (CXCR4) can act as coreceptors for HIV-1 viral entry. However, initial infection mostly occurs via CCR5, despite abundant expression of CXCR4 on target cells. The host factors that influence HIV-1 susceptibility and selection during transmission are unclear. Here we conduct CRISPR-Cas9 screens and identify SLC35A2 (a transporter of UDP-galactose expressed in target cells in blood and mucosa) as a potent and specific CXCR4-tropic restriction factor in primary target CD4+ T cells. SLC35A2 inactivation, which resulted in truncated glycans, not only increased CXCR4-tropic infection levels but also decreased those of CCR5-tropic strains consistently. Single-cycle infections demonstrated that the effect is cell-intrinsic. These data support a role for a host protein that influences glycan structure in regulating HIV-1 infection. Host cell glycosylation may, therefore, affect HIV-1 selection during transmission in vivo.
Collapse
Affiliation(s)
- Hannah L Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jamie Guenthoer
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Tr1X Inc, La Jolla, CA, USA
| | - Nell E Baumgarten
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
8
|
Aybar-Torres AA, Saldarriaga LA, Pham AT, Emtiazjoo AM, Sharma AK, Bryant AJ, Jin L. The common Sting1 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice. eLife 2024; 13:RP96790. [PMID: 39291958 PMCID: PMC11410371 DOI: 10.7554/elife.96790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.
Collapse
Affiliation(s)
- Alexandra a Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lennon A Saldarriaga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ann T Pham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Amir M Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ashish K Sharma
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of FloridaGainesvilleUnited States
| | - Andrew j Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| |
Collapse
|
9
|
Hmiel L, Zhang S, Obare LM, Santana MADO, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. Int J Mol Sci 2024; 25:7266. [PMID: 39000373 PMCID: PMC11242562 DOI: 10.3390/ijms25137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.
Collapse
Affiliation(s)
- Laura Hmiel
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Suyu Zhang
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Boghuma K. Titanji
- Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Corrilynn O. Hileman
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Shashwatee Bagchi
- Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Aybar-Torres A, Saldarriaga LA, Pham AT, Emtiazjoo AM, Sharma AK, Bryant AJ, Jin L. The common TMEM173 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561109. [PMID: 37886547 PMCID: PMC10602033 DOI: 10.1101/2023.10.05.561109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The significance of STING (encoded by the TMEM173 gene) in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human TMEM173 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using STING knock-in mice expressing common human TMEM173 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING-mediated cell death ex vivo, establishing a critical role of STING residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING research and STING-targeting immunotherapy should consider TMEM173 heterogeneity in humans.
Collapse
Affiliation(s)
- Alexandra Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Lennon A Saldarriaga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Ann T. Pham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Amir M. Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Ashish K Sharma
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, FL 32610, U.S.A
| | - Andrew J. Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
11
|
Blazkova J, Whitehead EJ, Schneck R, Shi V, Justement JS, Rai MA, Kennedy BD, Manning MR, Praiss L, Gittens K, Wender PA, Oguz C, Lack J, Moir S, Chun TW. Immunologic and Virologic Parameters Associated With Human Immunodeficiency Virus (HIV) DNA Reservoir Size in People With HIV Receiving Antiretroviral Therapy. J Infect Dis 2024; 229:1770-1780. [PMID: 38128541 PMCID: PMC11492273 DOI: 10.1093/infdis/jiad595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A better understanding of the dynamics of human immunodeficiency virus (HIV) reservoirs in CD4+ T cells of people with HIV (PWH) receiving antiretroviral therapy (ART) is crucial for developing therapies to eradicate the virus. METHODS We conducted a study involving 28 aviremic PWH receiving ART with high and low levels of HIV DNA. We analyzed immunologic and virologic parameters and their association with the HIV reservoir size. RESULTS The frequency of CD4+ T cells carrying HIV DNA was associated with higher pre-ART plasma viremia, lower pre-ART CD4+ T-cell counts, and lower pre-ART CD4/CD8 ratios. During ART, the High group maintained elevated levels of intact HIV proviral DNA, cell-associated HIV RNA, and inducible virion-associated HIV RNA. HIV sequence analysis showed no evidence for preferential accumulation of defective proviruses nor higher frequencies of clonal expansion in the High versus Low group. Phenotypic and functional T-cell analyses did not show enhanced immune-mediated virologic control in the Low versus High group. Of considerable interest, pre-ART innate immunity was significantly higher in the Low versus High group. CONCLUSIONS Our data suggest that innate immunity at the time of ART initiation may play an important role in modulating the dynamics and persistence of viral reservoirs in PWH.
Collapse
Affiliation(s)
- Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Emily J Whitehead
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Rachel Schneck
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - J Shawn Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - M Ali Rai
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Brooke D Kennedy
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Maegan R Manning
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Lauren Praiss
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Kathleen Gittens
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland
| | - Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, California
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| |
Collapse
|
12
|
Huang Y, Abdelgawad A, Turchinovich A, Queen S, Abreu CM, Zhu X, Batish M, Zheng L, Witwer KW. RNA Landscapes of Brain and Brain-Derived Extracellular Vesicles in Simian Immunodeficiency Virus Infection and Central Nervous System Pathology. J Infect Dis 2024; 229:1295-1305. [PMID: 38079216 PMCID: PMC11095537 DOI: 10.1093/infdis/jiad563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Brain tissue-derived extracellular vesicles (bdEVs) act locally in the central nervous system (CNS) and may indicate molecular mechanisms in human immunodeficiency virus (HIV) CNS pathology. Using brain homogenate (BH) and bdEVs from a simian immunodeficiency virus (SIV) model of HIV disease, we identified RNA networks in SIV infection and neuroinflammation. METHODS Postmortem occipital cortex samples were obtained from uninfected controls and SIV-infected subjects (acute and chronic phases with or without CNS pathology [SIV encephalitis]). bdEVs were separated and characterized per international consensus guidelines. RNAs from bdEVs and BH were sequenced and quantitative polymerase chain reaction (qPCR)-amplified to detect levels of small RNAs (sRNAs, including microRNAs [miRNAs]) and longer RNAs including messenger RNAs (mRNAs) and circular RNAs (circRNAs). RESULTS Dysregulated RNAs in BH and bdEVs were identified in acute and chronic infection with pathology groups, including mRNAs, miRNAs, and circRNAs. Most dysregulated mRNAs in bdEVs reflected dysregulation in source BH. These mRNAs are disproportionately involved in inflammation and immune responses. Based on target prediction, several circRNAs that were differentially abundant in source tissue might be responsible for specific differences in sRNA levels in bdEVs during SIV infection. CONCLUSIONS RNA profiling of bdEVs and source tissues reveals potential regulatory networks in SIV infection and SIV-related CNS pathology.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ahmed Abdelgawad
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Andrey Turchinovich
- Division of Cancer Genome Research, German Cancer Research Center, Heidelberg, Germany
- Heidelberg Biolabs, GmbH, Heidelberg, Germany
| | - Suzanne Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Celina Monteiro Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Kilroy JM, Leal AA, Henderson AJ. Chronic HIV Transcription, Translation, and Persistent Inflammation. Viruses 2024; 16:751. [PMID: 38793632 PMCID: PMC11125830 DOI: 10.3390/v16050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
People with HIV exhibit persistent inflammation that correlates with HIV-associated comorbidities including accelerated aging, increased risk of cardiovascular disease, and neuroinflammation. Mechanisms that perpetuate chronic inflammation in people with HIV undergoing antiretroviral treatments are poorly understood. One hypothesis is that the persistent low-level expression of HIV proviruses, including RNAs generated from defective proviral genomes, drives the immune dysfunction that is responsible for chronic HIV pathogenesis. We explore factors during HIV infection that contribute to the generation of a pool of defective proviruses as well as how HIV-1 mRNA and proteins alter immune function in people living with HIV.
Collapse
Affiliation(s)
- Jonathan M. Kilroy
- Department of Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (J.M.K.); (A.A.L.)
| | - Andrew A. Leal
- Department of Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (J.M.K.); (A.A.L.)
| | - Andrew J. Henderson
- Department of Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (J.M.K.); (A.A.L.)
- Department of Medicine and Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
14
|
Joshi VR, Altfeld M. Harnessing natural killer cells to target HIV-1 persistence. Curr Opin HIV AIDS 2024; 19:141-149. [PMID: 38457230 DOI: 10.1097/coh.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review recent advances in the role of natural killer (NK) cells in approaches aimed at reducing the latent HIV-1 reservoir. RECENT FINDINGS Multiple approaches to eliminate cells harboring latent HIV-1 are being explored, but have been met with limited success so far. Recent studies have highlighted the role of NK cells and their potential in HIV-1 cure efforts. Anti-HIV-1 NK cell function can be optimized by enhancing NK cell activation, antibody dependent cellular cytotoxicity, reversing inhibition of NK cells as well as by employing immunotherapeutic complexes to enable HIV-1 specificity of NK cells. While NK cells alone do not eliminate the HIV-1 reservoir, boosting NK cell function might complement other strategies involving T cell and B cell immunity towards an HIV-1 functional cure. SUMMARY Numerous studies focusing on targeting latently HIV-1-infected cells have emphasized a potential role of NK cells in these strategies. Our review highlights recent advances in harnessing NK cells in conjunction with latency reversal agents and other immunomodulatory therapeutics to target HIV-1 persistence.
Collapse
Affiliation(s)
- Vinita R Joshi
- Department of Virus Immunology, Leibniz Institute of Virology
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Manickam C, Upadhyay AA, Woolley G, Kroll KW, Terry K, Broedlow CA, Klatt NR, Bosinger SE, Reeves RK. Natural killer-like B cells are a distinct but infrequent innate immune cell subset modulated by SIV infection of rhesus macaques. PLoS Pathog 2024; 20:e1012223. [PMID: 38739675 PMCID: PMC11115201 DOI: 10.1371/journal.ppat.1012223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Natural killer-like B (NKB) cells are unique innate immune cells expressing both natural killer (NK) and B cell receptors. As first responders to infection, they secrete IL-18 to induce a critical cascade of innate and adaptive immune cell infiltration and activation. However, limited research exists on the role of NKB cells in homeostasis and infection, largely due to incomplete and erroneous evaluations. To fill this knowledge gap, we investigated the expression of signaling and trafficking proteins, and the in situ localization and transcriptome of naïve NKB cells compared to conventionally-defined NK and B cells, as well as modulations of these cells in SIV infection. Intracellular signaling proteins and trafficking markers were expressed differentially on naïve NKB cells, with high expression of CD62L and Syk, and low expression of CD69, α4β7, FcRg, Zap70, and CD3z, findings which were more similar to B cells than NK cells. CD20+NKG2a/c+ NKB cells were identified in spleen, mesenteric lymph nodes (MLN), colon, jejunum, and liver of naïve rhesus macaques (RM) via tissue imaging, with NKB cell counts concentrated in spleen and MLN. For the first time, single cell RNA sequencing (scRNAseq), including B cell receptor (BCR) sequencing, of sorted NKB cells confirmed that NKB cells are unique. Transcriptomic analysis of naïve splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. While only 15% of sorted NKB cells showed transcript expression of both KLRC1 (NKG2A) and MS4A1 (CD20) genes, only 5% of cells expressed KLRC1, MS4A1, and IgH/IgL transcripts. We observed expanded NKB frequencies in RM gut and buccal mucosa as early as 14 and 35 days post-SIV infection, respectively. Further, mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes, respectively. Our studies indicate that NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings that could only be resolved using genomic techniques. Although NKB cells were clearly elevated during SIV infection and associated with inflammatory changes during infection, further interrogation is necessary to acurately identify the true phenotype and significance of NKB cells in infection and inflammation.
Collapse
Affiliation(s)
- Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Amit A. Upadhyay
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, Georgia, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Kyle W. Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Courtney A. Broedlow
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nichole R. Klatt
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Steven E. Bosinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, Georgia, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
16
|
Silva MJA, Marinho RL, Rodrigues YC, Brasil TP, Dos Santos PAS, Silva CS, Sardinha DM, Lima KVB, Lima LNGC. Molecular Role of HIV-1 Human Receptors (CCL5-CCR5 Axis) in neuroAIDS: A Systematic Review. Microorganisms 2024; 12:782. [PMID: 38674726 PMCID: PMC11051963 DOI: 10.3390/microorganisms12040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic HIV-1 infection can cause neurological illness, also known as HIV-associated neurocognitive disorders (HAND). The elevated level of pro-inflammatory cytokines and chemokines, such as C-C Chemokine Ligand 5 (CCL5/RANTES), is one of the ways of causing HIV-1-mediated neuroinflammation. C-C Chemokine Receptor 5 (CCR5) is the main coreceptor for viral entry into host cells and for mediating induction of CCL5/RANTES. CCR5 and CCL5 are part of a correlated axis of immune pathways used for effective protection against the HIV-1 virus. The purpose of this paper was to review the literary knowledge about the immunopathological relationship between this immune complex and neuroAIDS. A systematic review of the literature was conducted based on the selection and search of articles, available in English, Spanish, or Portuguese in the time frame of 1990-2022, of primary and secondary types in the PUBMED, Science Direct, SciELO, and LILACS databases through descriptors (MeSH) together with "AND": "CCR5"; "CCL5"; "neurological manifestations"; or "HIV". The methodological quality of the articles was assessed using the JBI Checklists and the PRISMA 2020 writing guidelines were followed. A total of 36 articles were included in the final composition of the review. The main cells of the CNS affected by neuroAIDS are: neurons; microglia; astrocytes; and oligodendrocytes. Molecular devices and their associations with cellular injuries have been described from the entry of the virus into the host's CNS cell to the generation of mental disorders. Furthermore, divergent results were found about the levels of CCL5/RANTES secretion and the generation of immunopathogenesis, while all condensed research for CCR5 indicated that elevation of this receptor causes more neurodegenerative manifestations. Therefore, new therapeutic and interventional strategies can be conditioned on the immunological direction proposed in this review for the disease.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Postgraduate Program in Parasite Biology in the Amazon (PPGBPA), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil;
| | - Rebecca Lobato Marinho
- Institute of Biological and Health Sciences (ICB), University of Pará State (UEPA), Belém 66087-670, PA, Brazil; (R.L.M.); (P.A.S.D.S.); (C.S.S.); (D.M.S.)
| | - Yan Corrêa Rodrigues
- Institute of Biological and Health Sciences (ICB), University of Pará State (UEPA), Belém 66087-670, PA, Brazil; (R.L.M.); (P.A.S.D.S.); (C.S.S.); (D.M.S.)
| | - Thiago Pinto Brasil
- Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60441-750, CE, Brazil;
| | - Pabllo Antonny Silva Dos Santos
- Institute of Biological and Health Sciences (ICB), University of Pará State (UEPA), Belém 66087-670, PA, Brazil; (R.L.M.); (P.A.S.D.S.); (C.S.S.); (D.M.S.)
| | - Caroliny Soares Silva
- Institute of Biological and Health Sciences (ICB), University of Pará State (UEPA), Belém 66087-670, PA, Brazil; (R.L.M.); (P.A.S.D.S.); (C.S.S.); (D.M.S.)
| | - Daniele Melo Sardinha
- Institute of Biological and Health Sciences (ICB), University of Pará State (UEPA), Belém 66087-670, PA, Brazil; (R.L.M.); (P.A.S.D.S.); (C.S.S.); (D.M.S.)
| | - Karla Valéria Batista Lima
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil; (K.V.B.L.); (L.N.G.C.L.)
| | | |
Collapse
|
17
|
Argandona Lopez C, Brown AM. Microglial- neuronal crosstalk in chronic viral infection through mTOR, SPP1/OPN and inflammasome pathway signaling. Front Immunol 2024; 15:1368465. [PMID: 38646526 PMCID: PMC11032048 DOI: 10.3389/fimmu.2024.1368465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
HIV-infection of microglia and macrophages (MMs) induces neuronal injury and chronic release of inflammatory stimuli through direct and indirect molecular pathways. A large percentage of people with HIV-associated neurologic and psychiatric co-morbidities have high levels of circulating inflammatory molecules. Microglia, given their susceptibility to HIV infection and long-lived nature, are reservoirs for persistent infection. MMs and neurons possess the molecular machinery to detect pathogen nucleic acids and proteins to activate innate immune signals. Full activation of inflammasome assembly and expression of IL-1β requires a priming event and a second signal. Many studies have demonstrated that HIV infection alone can activate inflammasome activity. Interestingly, secreted phosphoprotein-1 (SPP1/OPN) expression is highly upregulated in the CNS of people infected with HIV and neurologic dysfunction. Interestingly, all evidence thus far suggests a protective function of SPP1 signaling through mammalian target of rapamycin (mTORC1/2) pathway function to counter HIV-neuronal injury. Moreover, HIV-infected mice knocked down for SPP1 show by neuroimaging, increased neuroinflammation compared to controls. This suggests that SPP1 uses unique regulatory mechanisms to control the level of inflammatory signaling. In this mini review, we discuss the known and yet-to-be discovered biological links between SPP1-mediated stimulation of mTOR and inflammasome activity. Additional new mechanistic insights from studies in relevant experimental models will provide a greater understanding of crosstalk between microglia and neurons in the regulation of CNS homeostasis.
Collapse
Affiliation(s)
- Catalina Argandona Lopez
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amanda M. Brown
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neuroimmunology, Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Lin C, Kuffour EO, Li T, Gertzen CGW, Kaiser J, Luedde T, König R, Gohlke H, Münk C. The ISG15-Protease USP18 Is a Pleiotropic Enhancer of HIV-1 Replication. Viruses 2024; 16:485. [PMID: 38675828 PMCID: PMC11053637 DOI: 10.3390/v16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance. This mechanism might involve USP18. In our recent studies, we demonstrate that HIV-1 infection induces USP18, which dramatically enhances HIV-1 replication by abrogating the antiviral function of p21. USP18 downregulates p21 by accumulating misfolded dominant negative p53, which inactivates wild-type p53 transactivation, leading to the upregulation of key enzymes involved in de novo dNTP biosynthesis pathways and inactivated SAMHD1. Despite the USP18-mediated increase in HIV-1 DNA in infected cells, it is intriguing to note that the cGAS-STING-mediated sensing of the viral DNA is abrogated. Indeed, the expression of USP18 or knockout of ISG15 inhibits the sensing of HIV-1. We demonstrate that STING is ISGylated at residues K224, K236, K289, K347, K338, and K370. The inhibition of STING K289-linked ISGylation suppresses its oligomerization and IFN induction. We propose that human USP18 is a novel factor that potentially contributes in multiple ways to HIV-1 replication.
Collapse
Affiliation(s)
- Chaohui Lin
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Edmund Osei Kuffour
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Taolan Li
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Christoph G. W. Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| |
Collapse
|
19
|
Piacentini J, Allen DS, Ganser-Pornillos BK, Chanda SK, Yoh SM, Pornillos O. Molecular Determinants of PQBP1 Binding to the HIV-1 Capsid Lattice. J Mol Biol 2024; 436:168409. [PMID: 38128824 PMCID: PMC10885737 DOI: 10.1016/j.jmb.2023.168409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) stimulates innate immune responses upon infection, including cyclic GMP-AMP synthase (cGAS) signaling that results in type I interferon production. HIV-1-induced activation of cGAS requires the host cell factor polyglutamine binding protein 1 (PQBP1), an intrinsically disordered protein that bridges capsid recognition and cGAS recruitment. However, the molecular details of PQBP1 interactions with the HIV-1 capsid and their functional implications remain poorly understood. Here, we show that PQBP1 binds to HIV-1 capsids through charge complementing contacts between acidic residues in the N-terminal region of PQBP1 and an arginine ring in the central channel of the HIV-1 CA hexamer that makes up the viral capsid. These studies reveal the molecular details of PQBP1's primary interaction with the HIV-1 capsid and suggest that additional elements are likely to contribute to stable capsid binding.
Collapse
Affiliation(s)
- Juliana Piacentini
- University of Virginia, Department of Molecular Physiology & Biological Physics, Charlottesville, VA, USA
| | - Dale S Allen
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Barbie K Ganser-Pornillos
- University of Virginia, Department of Molecular Physiology & Biological Physics, Charlottesville, VA, USA; University of Utah, Department of Biochemistry, Salt Lake City, UT, USA
| | - Sumit K Chanda
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Sunnie M Yoh
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA.
| | - Owen Pornillos
- University of Virginia, Department of Molecular Physiology & Biological Physics, Charlottesville, VA, USA; University of Utah, Department of Biochemistry, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Sid Ahmed S, Bajak K, Fackler OT. Beyond Impairment of Virion Infectivity: New Activities of the Anti-HIV Host Cell Factor SERINC5. Viruses 2024; 16:284. [PMID: 38400059 PMCID: PMC10892966 DOI: 10.3390/v16020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Members of the serine incorporator (SERINC) protein family exert broad antiviral activity, and many viruses encode SERINC antagonists to circumvent these restrictions. Significant new insight was recently gained into the mechanisms that mediate restriction and antagonism. In this review, we summarize our current understanding of the mode of action and relevance of SERINC proteins in HIV-1 infection. Particular focus will be placed on recent findings that provided important new mechanistic insights into the restriction of HIV-1 virion infectivity, including the discovery of SERINC's lipid scramblase activity and its antagonism by the HIV-1 pathogenesis factor Nef. We also discuss the identification and implications of several additional antiviral activities by which SERINC proteins enhance pro-inflammatory signaling and reduce viral gene expression in myeloid cells. SERINC proteins emerge as versatile and multifunctional regulators of cell-intrinsic immunity against HIV-1 infection.
Collapse
Affiliation(s)
- Samy Sid Ahmed
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (S.S.A.); (K.B.)
| | - Kathrin Bajak
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (S.S.A.); (K.B.)
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 38124 Heidelberg, Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (S.S.A.); (K.B.)
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 38124 Heidelberg, Germany
| |
Collapse
|
21
|
Gyu Choi H, Woong Kwon K, Jae Shin S. Importance of adjuvant selection in tuberculosis vaccine development: Exploring basic mechanisms and clinical implications. Vaccine X 2023; 15:100400. [PMID: 37965276 PMCID: PMC10641539 DOI: 10.1016/j.jvacx.2023.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
The global emergency of unexpected pathogens, exemplified by SARS-CoV-2, has emphasized the importance of vaccines in thwarting infection and curtailing the progression of severe disease. The scourge of tuberculosis (TB), emanating from the Mycobacterium tuberculosis (Mtb) complex, has inflicted a more profound toll in terms of mortality and morbidity than any other infectious agents prior to the SARS-CoV-2 pandemic. Despite the existence of Bacillus Calmette-Guérin (BCG), the only licensed vaccine developed a century ago, its efficacy against TB remains unsatisfactory, particularly in preventing pulmonary Mtb infections in adolescents and adults. However, collaborations between academic and industrial entities have led to a renewed impetus in the development of TB vaccines, with numerous candidates, particularly subunit vaccines with specialized adjuvants, exhibiting promising outcomes in recent clinical studies. Adjuvants are crucial in modulating optimal immunological responses, by endowing immune cells with sufficient antigen and immune signals. As exemplified by the COVID-19 vaccine landscape, the interplay between vaccine efficacy and adverse effects is of paramount importance, particularly for the elderly and individuals with underlying ailments such as diabetes and concurrent infections. In this regard, adjuvants hold the key to optimizing vaccine efficacy and safety. This review accentuates the pivotal roles of adjuvants and their underlying mechanisms in the development of TB vaccines. Furthermore, we expound on the prospects for the development of more efficacious adjuvants and their synergistic combinations for individuals in diverse states, such as aging, HIV co-infection, and diabetes, by examining the immunological alterations that arise with aging and comparing them with those observed in younger cohorts.
Collapse
Affiliation(s)
- Han Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| |
Collapse
|
22
|
Pawar P, Gokavi J, Wakhare S, Bagul R, Ghule U, Khan I, Ganu V, Mukherjee A, Shete A, Rao A, Saxena V. MiR-155 Negatively Regulates Anti-Viral Innate Responses among HIV-Infected Progressors. Viruses 2023; 15:2206. [PMID: 38005883 PMCID: PMC10675553 DOI: 10.3390/v15112206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/26/2023] Open
Abstract
HIV infection impairs host immunity, leading to progressive disease. An anti-retroviral treatment efficiently controls viremia but cannot completely restore the immune dysfunction in HIV-infected individuals. Both host and viral factors determine the rate of disease progression. Among the host factors, innate immunity plays a critical role; however, the mechanism(s) associated with dysfunctional innate responses are poorly understood among HIV disease progressors, which was investigated here. The gene expression profiles of TLRs and innate cytokines in HIV-infected (LTNPs and progressors) and HIV-uninfected individuals were examined. Since the progressors showed a dysregulated TLR-mediated innate response, we investigated the role of TLR agonists in restoring the innate functions of the progressors. The stimulation of PBMCs with TLR3 agonist-poly:(I:C), TLR7 agonist-GS-9620 and TLR9 agonist-ODN 2216 resulted in an increased expression of IFN-α, IFN-β and IL-6. Interestingly, the expression of IFITM3, BST-2, IFITM-3, IFI-16 was also increased upon stimulation with TLR3 and TLR7 agonists, respectively. To further understand the molecular mechanism involved, the role of miR-155 was explored. Increased miR-155 expression was noted among the progressors. MiR-155 inhibition upregulated the expression of TLR3, NF-κB, IRF-3, TNF-α and the APOBEC-3G, IFITM-3, IFI-16 and BST-2 genes in the PBMCs of the progressors. To conclude, miR-155 negatively regulates TLR-mediated cytokines as wel l as the expression of host restriction factors, which play an important role in mounting anti-HIV responses; hence, targeting miR-155 might be helpful in devising strategic approaches towards alleviating HIV disease progression.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Jyotsna Gokavi
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Shilpa Wakhare
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Rajani Bagul
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Ujjwala Ghule
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Ishrat Khan
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, India; (I.K.); (A.M.)
| | - Varada Ganu
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, India; (I.K.); (A.M.)
| | - Ashwini Shete
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Amrita Rao
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| |
Collapse
|
23
|
Jiang C, Mei M, Liu Y, Hou M, Jiao J, Tan Y, Tan X. PSGL-1 is an evolutionarily conserved antiviral restriction factor. mBio 2023; 14:e0038723. [PMID: 37787515 PMCID: PMC10653843 DOI: 10.1128/mbio.00387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Studying the co-evolution between viruses and humans is important for understanding why we are what we are now as well as for developing future antiviral drugs. Here we pinned down an evolutionary arms race between retroviruses and mammalian hosts at the molecular level by identifying the antagonism between a host antiviral restriction factor PSGL-1 and viral accessory proteins. We show that this antagonism is conserved from mouse to human and from mouse retrovirus to HIV. Further studying this antagonism might provide opportunities for developing new antiviral therapies.
Collapse
Affiliation(s)
- Chao Jiang
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Miao Mei
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Ying Liu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Min Hou
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jun Jiao
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ya Tan
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xu Tan
- Chinese Institutes for Medical Research, Beijing, China
| |
Collapse
|
24
|
Gao C, Ouyang W, Kutza J, Grimm TA, Fields K, Lankford CSR, Schwartzkopff F, Paciga M, Stantchev T, Tiffany L, Strebel K, Clouse KA. Macrophage-Derived Factors with the Potential to Contribute to Pathogenicity of HIV-1 and HIV-2: Role of CCL-2/MCP-1. Viruses 2023; 15:2160. [PMID: 38005838 PMCID: PMC10674259 DOI: 10.3390/v15112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 11/26/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) is known to be less pathogenic than HIV-1. However, the mechanism(s) underlying the decreased HIV-2 pathogenicity is not fully understood. Herein, we report that β-chemokine CCL2 expression was increased in HIV-1-infected human monocyte-derived macrophages (MDM) but decreased in HIV-2-infected MDM when compared to uninfected MDM. Inhibition of CCL2 expression following HIV-2 infection occurred at both protein and mRNA levels. By microarray analysis, quantitative PCR, and Western blotting, we identified that Signal Transducer and Activator of Transcription 1 (STAT1), a critical transcription factor for inducing CCL2 gene expression, was also reduced in HIV-2-infected MDM. Blockade of STAT1 in HIV-infected MDM using a STAT1 inhibitor significantly reduced the production of CCL2. In contrast, transduction of STAT1-expressing pseudo-retrovirus restored CCL2 production in HIV-2-infected MDM. These findings support the concept that CCL2 inhibition in HIV-2-infected MDM is meditated by reduction of STAT1. Furthermore, we showed that STAT1 reduction in HIV-2-infected MDM was regulated by the CUL2/RBX1 ubiquitin E3 ligase complex-dependent proteasome pathway. Knockdown of CUL2 or RBX1 restored the expression of STAT1 and CCL2 in HIV-2-infected MDM. Taken together, our findings suggest that differential regulation of the STAT1-CCL2 axis may be one of the mechanisms underlying the different pathogenicity observed for HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Chunling Gao
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Weiming Ouyang
- Division of Biotechnology Review and Research 2, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Joseph Kutza
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Tobias A. Grimm
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Karen Fields
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Carla S. R. Lankford
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Franziska Schwartzkopff
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Mark Paciga
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Linda Tiffany
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA;
| | - Kathleen A. Clouse
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| |
Collapse
|
25
|
Gunst JD, Højen JF, Pahus MH, Rosás-Umbert M, Stiksrud B, McMahon JH, Denton PW, Nielsen H, Johansen IS, Benfield T, Leth S, Gerstoft J, Østergaard L, Schleimann MH, Olesen R, Støvring H, Vibholm L, Weis N, Dyrhol-Riise AM, Pedersen KBH, Lau JSY, Copertino DC, Linden N, Huynh TT, Ramos V, Jones RB, Lewin SR, Tolstrup M, Rasmussen TA, Nussenzweig MC, Caskey M, Reikvam DH, Søgaard OS. Impact of a TLR9 agonist and broadly neutralizing antibodies on HIV-1 persistence: the randomized phase 2a TITAN trial. Nat Med 2023; 29:2547-2558. [PMID: 37696935 PMCID: PMC10579101 DOI: 10.1038/s41591-023-02547-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
Inducing antiretroviral therapy (ART)-free virological control is a critical step toward a human immunodeficiency virus type 1 (HIV-1) cure. In this phase 2a, placebo-controlled, double-blinded trial, 43 people (85% males) with HIV-1 on ART were randomized to (1) placebo/placebo, (2) lefitolimod (TLR9 agonist)/placebo, (3) placebo/broadly neutralizing anti-HIV-1 antibodies (bNAbs) or (4) lefitolimod/bNAb. ART interruption (ATI) started at week 3. Lefitolimod was administered once weekly for the first 8 weeks, and bNAbs were administered twice, 1 d before and 3 weeks after ATI. The primary endpoint was time to loss of virologic control after ATI. The median delay in time to loss of virologic control compared to the placebo/placebo group was 0.5 weeks (P = 0.49), 12.5 weeks (P = 0.003) and 9.5 weeks (P = 0.004) in the lefitolimod/placebo, placebo/bNAb and lefitolimod/bNAb groups, respectively. Among secondary endpoints, viral doubling time was slower for bNAb groups compared to non-bNAb groups, and the interventions were overall safe. We observed no added benefit of lefitolimod. Despite subtherapeutic plasma bNAb levels, 36% (4/11) in the placebo/bNAb group compared to 0% (0/10) in the placebo/placebo group maintained virologic control after the 25-week ATI. Although immunotherapy with lefitolimod did not lead to ART-free HIV-1 control, bNAbs may be important components in future HIV-1 curative strategies. ClinicalTrials.gov identifier: NCT03837756 .
Collapse
Affiliation(s)
- Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper F Højen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Miriam Rosás-Umbert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Stiksrud
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Leth
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Gødstrup Hospital, Gødstrup, Denmark
| | - Jan Gerstoft
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mariane H Schleimann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Støvring
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Line Vibholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne M Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karen B H Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jillian S Y Lau
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tan T Huynh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas A Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Dag Henrik Reikvam
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
26
|
Vaidyanathan A, Taylor HE, Hope TJ, D'Aquila RT, Bartom ET, Hultquist JF, Peter ME. Analysis of the Contribution of 6-mer Seed Toxicity to HIV-1-Induced Cytopathicity. J Virol 2023; 97:e0065223. [PMID: 37310263 PMCID: PMC10373551 DOI: 10.1128/jvi.00652-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
HIV-1 (HIV) infects CD4+ T cells, the gradual depletion of which can lead to AIDS in the absence of antiretroviral therapy (ART). Some cells, however, survive HIV infection and persist as part of the latently infected reservoir that causes recurrent viremia after ART cessation. Improved understanding of the mechanisms of HIV-mediated cell death could lead to a way to clear the latent reservoir. Death induced by survival gene elimination (DISE), an RNA interference (RNAi)-based mechanism, kills cells through short RNAs (sRNAs) with toxic 6-mer seeds (positions 2 to 7 of sRNA). These toxic seeds target the 3' untranslated region (UTR) of mRNAs, decreasing the expression of hundreds of genes critical for cell survival. In most cells under normal conditions, highly expressed cell-encoded nontoxic microRNAs (miRNAs) block access of toxic sRNAs to the RNA-induced silencing complex (RISC) that mediates RNAi, promoting cell survival. HIV has been shown to inhibit the biogenesis of host miRNAs in multiple ways. We now report that HIV infection of cells deficient in miRNA expression or function results in enhanced RISC loading of an HIV-encoded miRNA HIV-miR-TAR-3p, which can kill cells by DISE through a noncanonical (positions 3 to 8) 6-mer seed. In addition, cellular RISC-bound sRNAs shift to lower seed viability. This also occurs after latent HIV provirus reactivation in J-Lat cells, suggesting independence of permissiveness of cells to viral infection. More precise targeting of the balance between protective and cytotoxic sRNAs could provide new avenues to explore novel cell death mechanisms that could be used to kill latent HIV. IMPORTANCE Several mechanisms by which initial HIV infection is cytotoxic to infected cells have been reported and involve various forms of cell death. Characterizing the mechanisms underlying the long-term survival of certain T cells that become persistent provirus reservoirs is critical to developing a cure. We recently discovered death induced by survival gene elimination (DISE), an RNAi-based mechanism of cell death whereby toxic short RNAs (sRNAs) containing 6-mer seed sequences (exerting 6-mer seed toxicity) targeting essential survival genes are loaded into RNA-induced silencing complex (RISC) complexes, resulting in inescapable cell death. We now report that HIV infection in cells with low miRNA expression causes a shift of mostly cellular RISC-bound sRNAs to more toxic seeds. This could prime cells to DISE and is further enhanced by the viral microRNA (miRNA) HIV-miR-TAR-3p, which carries a toxic noncanonical 6-mer seed. Our data provide multiple new avenues to explore novel cell death mechanisms that could be used to kill latent HIV.
Collapse
Affiliation(s)
- Aparajitha Vaidyanathan
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Harry E. Taylor
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Thomas J. Hope
- Department of Cell & Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard T. D'Aquila
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marcus E. Peter
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
27
|
Huang Y, Abdelgawad A, Turchinovich A, Queen S, Abreu CM, Zhu X, Batish M, Zheng L, Witwer KW. RNA landscapes of brain tissue and brain tissue-derived extracellular vesicles in simian immunodeficiency virus (SIV) infection and SIV-related central nervous system pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535193. [PMID: 37034720 PMCID: PMC10081316 DOI: 10.1101/2023.04.01.535193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Introduction Antiretroviral treatment regimens can effectively control HIV replication and some aspects of disease progression. However, molecular events in end-organ diseases such as central nervous system (CNS) disease are not yet fully understood, and routine eradication of latent reservoirs is not yet in reach. Brain tissue-derived extracellular vesicles (bdEVs) act locally in the source tissue and may indicate molecular mechanisms in HIV CNS pathology. Regulatory RNAs from EVs have emerged as important participants in HIV disease pathogenesis. Using brain tissue and bdEVs from the simian immunodeficiency virus (SIV) model of HIV disease, we profiled messenger RNAs (mRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), seeking to identify possible networks of RNA interaction in SIV infection and neuroinflammation. Methods Postmortem occipital cortex tissue were collected from pigtailed macaques: uninfected controls and SIV-infected subjects (acute phase and chronic phase with or without CNS pathology). bdEVs were separated and characterized in accordance with international consensus standards. RNAs from bdEVs and source tissue were used for sequencing and qPCR to detect mRNA, miRNA, and circRNA levels. Results Multiple dysregulated bdEV RNAs, including mRNAs, miRNAs, and circRNAs, were identified in acute infection and chronic infection with pathology. Most dysregulated mRNAs in bdEVs reflected dysregulation in their source tissues. These mRNAs are disproportionately involved in inflammation and immune responses, especially interferon pathways. For miRNAs, qPCR assays confirmed differential abundance of miR-19a-3p, let-7a-5p, and miR-29a-3p (acute SIV infection), and miR-146a-5p and miR-449a-5p (chronic with pathology) in bdEVs. In addition, target prediction suggested that several circRNAs that were differentially abundant in source tissue might be responsible for specific differences in small RNA levels in bdEVs during SIV infection. Conclusions RNA profiling of bdEVs and source tissues reveals potential regulatory networks in SIV infection and SIV-related CNS pathology.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ahmed Abdelgawad
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Andrey Turchinovich
- Division of Cancer Genome Research, German Cancer Research Center DKFZ, Heidelberg, Germany
- Heidelberg Biolabs GmbH, Mannheim, Germany
| | - Suzanne Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Celina Monteiro Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Qian G, Zhang Y, Liu Y, Li M, Xin B, Jiang W, Han W, Wang Y, Tang X, Li L, Zhu L, Sun T, Yan B, Zheng Y, Xu J, Ge B, Zhang Z, Yan D. Glutamylation of an HIV-1 protein inhibits the immune response by hijacking STING. Cell Rep 2023; 42:112442. [PMID: 37099423 DOI: 10.1016/j.celrep.2023.112442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 04/27/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) recognizes Y-form cDNA of human immunodeficiency virus type 1 (HIV-1) and initiates antiviral immune response through cGAS-stimulator of interferon genes (STING)-TBK1-IRF3-type I interferon (IFN-I) signalingcascade. Here, we report that the HIV-1 p6 protein suppresses HIV-1-stimulated expression of IFN-I and promotes immune evasion. Mechanistically, the glutamylated p6 at residue Glu6 inhibits the interaction between STING and tripartite motif protein 32 (TRIM32) or autocrine motility factor receptor (AMFR). This subsequently suppresses the K27- and K63-linked polyubiquitination of STING at K337, therefore inhibiting STING activation, whereas mutation of the Glu6 residue partially reverses the inhibitory effect. However, CoCl2, an agonist of cytosolic carboxypeptidases (CCPs), counteracts the glutamylation of p6 at the Glu6 residue and inhibits HIV-1 immune evasion. These findings reveal a mechanism through which an HIV-1 protein mediates immune evasion and provides a therapeutic drug candidate to treat HIV-1 infection.
Collapse
Affiliation(s)
- Gui Qian
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Yihua Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Yinan Liu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Manman Li
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Bowen Xin
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Wenyi Jiang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Wendong Han
- Biosafety Level 3 Laboratory, Fudan University, Shanghai 200032, China
| | - Yu Wang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Xian Tang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Liuyan Li
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Lingyan Zhu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Tao Sun
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Bo Yan
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jianqing Xu
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Baoxue Ge
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
Zhang B, Mao H, Zhu H, Guo J, Zhou P, Ma Z. Response to HIV-1 gp160-carrying recombinant virus HSV-1 and HIV-1 VLP combined vaccine in BALB/c mice. Front Microbiol 2023; 14:1136664. [PMID: 37007461 PMCID: PMC10063819 DOI: 10.3389/fmicb.2023.1136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Human immunodeficiency virus (HIV) induced AIDS causes a large number of infections and deaths worldwide every year, still no vaccines are available to prevent infection. Recombinant herpes simplex virus type 1 (HSV-1) vector-based vaccines coding the target proteins of other pathogens have been widely used for disease control. Here, a recombinant virus with HIV-1 gp160 gene integration into the internal reverse (IR) region-deleted HSV-1 vector (HSV-BAC), was obtained by bacterial artificial chromosome (BAC) technology, and its immunogenicity investigated in BALB/c mice. The result showed similar replication ability of the HSV-BAC-based recombinant virus and wild type. Furthermore, humoral and cellular immune response showed superiority of intraperitoneal (IP) administration, compared to intranasally (IN), subcutaneous (SC) and intramuscularly (IM), that evidenced by production of significant antibody and T cell responses. More importantly, in a prime-boost combination study murine model, the recombinant viruses prime followed by HIV-1 VLP boost induced stronger and broader immune responses than single virus or protein vaccination in a similar vaccination regimen. Antibody production was sufficient with huge potential for viral clearance, along with efficient T-cell activation, which were evaluated by the enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FC). Overall, these findings expose the value of combining different vaccine vectors and modalities to improve immunogenicity and breadth against different HIV-1 antigens.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongyan Mao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongjuan Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Jingxia Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Paul Zhou
- Unit of Antiviral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
- *Correspondence: Zhenghai Ma,
| |
Collapse
|
30
|
Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol 2023; 14:1127704. [PMID: 36969193 PMCID: PMC10033545 DOI: 10.3389/fimmu.2023.1127704] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, there has been a tremendous development of biotechnological, pharmacological, and medical techniques which can be implemented in the functional modulation of the immune system components. Immunomodulation has attracted much attention because it offers direct applications in both basic research and clinical therapy. Modulation of a non-adequate, amplified immune response enables to attenuate the clinical course of a disease and restore homeostasis. The potential targets to modulate immunity are as multiple as the components of the immune system, thus creating various possibilities for intervention. However, immunomodulation faces new challenges to design safer and more efficacious therapeutic compounds. This review offers a cross-sectional picture of the currently used and newest pharmacological interventions, genomic editing, and tools for regenerative medicine involving immunomodulation. We reviewed currently available experimental and clinical evidence to prove the efficiency, safety, and feasibility of immunomodulation in vitro and in vivo. We also reviewed the advantages and limitations of the described techniques. Despite its limitations, immunomodulation is considered as therapy itself or as an adjunct with promising results and developing potential.
Collapse
|
31
|
Yang T, Wang SC, Ye L, Maimaitiyiming Y, Naranmandura H. Targeting viral proteins for restraining SARS-CoV-2: focusing lens on viral proteins beyond spike for discovering new drug targets. Expert Opin Drug Discov 2023; 18:247-268. [PMID: 36723288 DOI: 10.1080/17460441.2023.2175812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Emergence of highly infectious SARS-CoV-2 variants are reducing protection provided by current vaccines, requiring constant updates in antiviral approaches. The virus encodes four structural and sixteen nonstructural proteins which play important roles in viral genome replication and transcription, virion assembly, release , entry into cells, and compromising host cellular defenses. As alien proteins to host cells, many viral proteins represent potential targets for combating the SARS-CoV-2. AREAS COVERED Based on literature from PubMed and Web of Science databases, the authors summarize the typical characteristics of SARS-CoV-2 from the whole viral particle to the individual viral proteins and their corresponding functions in virus life cycle. The authors also discuss the potential and emerging targeted interventions to curb virus replication and spread in detail to provide unique insights into SARS-CoV-2 infection and countermeasures against it. EXPERT OPINION Our comprehensive analysis highlights the rationale to focus on non-spike viral proteins that are less mutated but have important functions. Examples of this include: structural proteins (e.g. nucleocapsid protein, envelope protein) and extensively-concerned nonstructural proteins (e.g. NSP3, NSP5, NSP12) along with the ones with relatively less attention (e.g. NSP1, NSP10, NSP14 and NSP16), for developing novel drugs to overcome resistance of SARS-CoV-2 variants to preexisting vaccines and antibody-based treatments.
Collapse
Affiliation(s)
- Tao Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si Chun Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linyan Ye
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
TRAF3 activates STING-mediated suppression of EV-A71 and target of viral evasion. Signal Transduct Target Ther 2023; 8:79. [PMID: 36823147 PMCID: PMC9950063 DOI: 10.1038/s41392-022-01287-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 02/25/2023] Open
Abstract
Innate immunity represents one of the main host responses to viral infection.1-3 STING (Stimulator of interferon genes), a crucial immune adapter functioning in host cells, mediates cGAS (Cyclic GMP-AMP Synthase) sensing of exogenous and endogenous DNA fragments and generates innate immune responses.4 Whether STING activation was involved in infection and replication of enterovirus remains largely unknown. In the present study, we discovered that human enterovirus A71 (EV-A71) infection triggered STING activation in a cGAS dependent manner. EV-A71 infection caused mitochondrial damage and the discharge of mitochondrial DNA into the cytosol of infected cells. However, during EV-A71 infection, cGAS-STING activation was attenuated. EV-A71 proteins were screened and the viral protease 2Apro had the greatest capacity to inhibit cGAS-STING activation. We identified TRAF3 as an important factor during STING activation and as a target of 2Apro. Supplement of TRAF3 rescued cGAS-STING activation suppression by 2Apro. TRAF3 supported STING activation mediated TBK1 phosphorylation. Moreover, we found that 2Apro protease activity was essential for inhibiting STING activation. Furthermore, EV-D68 and CV-A16 infection also triggered STING activation. The viral protease 2Apro from EV-D68 and CV-A16 also had the ability to inhibit STING activation. As STING activation prior to EV-A71 infection generated cellular resistance to EV-A71 replication, blocking EV-A71-mediated STING suppression represents a new anti-viral target.
Collapse
|
33
|
Caputo V, Libera M, Sisti S, Giuliani B, Diotti RA, Criscuolo E. The initial interplay between HIV and mucosal innate immunity. Front Immunol 2023; 14:1104423. [PMID: 36798134 PMCID: PMC9927018 DOI: 10.3389/fimmu.2023.1104423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is still one of the major global health issues, and despite significant efforts that have been put into studying the pathogenesis of HIV infection, several aspects need to be clarified, including how innate immunity acts in different anatomical compartments. Given the nature of HIV as a sexually transmitted disease, one of the aspects that demands particular attention is the mucosal innate immune response. Given this scenario, we focused our attention on the interplay between HIV and mucosal innate response: the different mucosae act as a physical barrier, whose integrity can be compromised by the infection, and the virus-cell interaction induces the innate immune response. In addition, we explored the role of the mucosal microbiota in facilitating or preventing HIV infection and highlighted how its changes could influence the development of several opportunistic infections. Although recent progress, a proper characterization of mucosal innate immune response and microbiota is still missing, and further studies are needed to understand how they can be helpful for the formulation of an effective vaccine.
Collapse
|
34
|
Mohamed H, Berman R, Connors J, Haddad EK, Miller V, Nonnemacher MR, Dampier W, Wigdahl B, Krebs FC. Immunomodulatory Effects of Non-Thermal Plasma in a Model for Latent HIV-1 Infection: Implications for an HIV-1-Specific Immunotherapy. Biomedicines 2023; 11:122. [PMID: 36672628 PMCID: PMC9856147 DOI: 10.3390/biomedicines11010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
In people living with HIV-1 (PLWH), antiretroviral therapy (ART) eventually becomes necessary to suppress the emergence of human immunodeficiency virus type 1 (HIV-1) replication from latent reservoirs because HIV-1-specific immune responses in PLWH are suboptimal. Immunotherapies that enhance anti-HIV-1 immune responses for better control of virus reemergence from latent reservoirs are postulated to offer ART-free control of HIV-1. Toward the goal of developing an HIV-1-specific immunotherapy based on non-thermal plasma (NTP), the early immunological responses to NTP-exposed latently infected T lymphocytes were examined. Application of NTP to the J-Lat T-lymphocyte cell line (clones 10.6 and 15.4) stimulated monocyte recruitment and macrophage maturation, which are key steps in initiation of an immune response. In contrast, CD8+ T lymphocytes in a mixed lymphocyte reaction assay were not stimulated by the presence of NTP-exposed J-Lat cells. Furthermore, co-culture of NTP-exposed J-Lat cells with mature phagocytes did not modulate their antigen presentation to primary CD8+ T lymphocytes (cross-presentation). However, reactivation from latency was stimulated in a clone-specific manner by NTP. Overall, these studies, which demonstrated that ex vivo application of NTP to latently infected lymphocytes can stimulate key immune cell responses, advance the development of an NTP-based immunotherapy that will provide ART-free control of HIV-1 reactivation in PLWH.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Rachel Berman
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Jennifer Connors
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elias K. Haddad
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Vandana Miller
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Fred C. Krebs
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
35
|
Gillespie SL, Chinen J, Paul ME. Human Immunodeficiency Virus Infection and Acquired Immunodeficiency Syndrome. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
36
|
Yan L, Xu K, Xiao Q, Tuo L, Luo T, Wang S, Yang R, Zhang F, Yang X. Cellular and molecular insights into incomplete immune recovery in HIV/AIDS patients. Front Immunol 2023; 14:1152951. [PMID: 37205108 PMCID: PMC10185893 DOI: 10.3389/fimmu.2023.1152951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Highly active antiretroviral therapy (ART) can effectively inhibit virus replication and restore immune function in most people living with human immunodeficiency virus (HIV). However, an important proportion of patients fail to achieve a satisfactory increase in CD4+ T cell counts. This state is called incomplete immune reconstitution or immunological nonresponse (INR). Patients with INR have an increased risk of clinical progression and higher rates of mortality. Despite widespread attention to INR, the precise mechanisms remain unclear. In this review, we will discuss the alterations in the quantity and quality of CD4+ T as well as multiple immunocytes, changes in soluble molecules and cytokines, and their relationship with INR, aimed to provide cellular and molecular insights into incomplete immune reconstitution.
Collapse
Affiliation(s)
- Liting Yan
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Kaiju Xu
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Xiao
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Lin Tuo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tingting Luo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shuqiang Wang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Renguo Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Fujie Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Xingxiang Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| |
Collapse
|
37
|
Li S, Moog C, Zhang T, Su B. HIV reservoir: antiviral immune responses and immune interventions for curing HIV infection. Chin Med J (Engl) 2022; 135:2667-2676. [PMID: 36719355 PMCID: PMC9943973 DOI: 10.1097/cm9.0000000000002479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 02/01/2023] Open
Abstract
ABSTRACT Antiretroviral therapy against human immunodeficiency virus (HIV) is effective in controlling viral replication but cannot completely eliminate HIV due to the persistence of the HIV reservoir. Innate and adaptive immune responses have been proposed to contribute to preventing HIV acquisition, controlling HIV replication and eliminating HIV-infected cells. However, the immune responses naturally induced in HIV-infected individuals rarely eradicate HIV infection, which may be caused by immune escape, an inadequate magnitude and breadth of immune responses, and immune exhaustion. Optimizing these immune responses may solve the problems of epitope escape and insufficient sustained memory responses. Moreover, immune interventions aimed at improving host immune response can reduce HIV reservoirs, which have become one focus in the development of innovative strategies to eliminate HIV reservoirs. In this review, we focus on the immune response against HIV and how antiviral immune responses affect HIV reservoirs. We also discuss the development of innovative strategies aiming to eliminate HIV reservoirs and promoting functional cure of HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg 67000, France
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
38
|
Alrubayyi A, Rowland-Jones S, Peppa D. Natural killer cells during acute HIV-1 infection: clues for HIV-1 prevention and therapy. AIDS 2022; 36:1903-1915. [PMID: 35851334 PMCID: PMC9612724 DOI: 10.1097/qad.0000000000003319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022]
Abstract
Despite progress in preexposure prophylaxis, the number of newly diagnosed cases with HIV-1 remains high, highlighting the urgent need for preventive and therapeutic strategies to reduce HIV-1 acquisition and limit disease progression. Early immunological events, occurring during acute infection, are key determinants of the outcome and course of disease. Understanding early immune responses occurring before viral set-point is established, is critical to identify potential targets for prophylactic and therapeutic approaches. Natural killer (NK) cells represent a key cellular component of innate immunity and contribute to the early host defence against HIV-1 infection, modulating the pathogenesis of acute HIV-1 infection (AHI). Emerging studies have identified tools for harnessing NK cell responses and expanding specialized NK subpopulations with adaptive/memory features, paving the way for development of novel HIV-1 therapeutics. This review highlights the knowns and unknowns regarding the role of NK cell subsets in the containment of acute HIV-1 infection, and summarizes recent advances in selectively augmenting NK cell functions through prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford
- Division of Infection and Immunity, University College London
| | | | - Dimitra Peppa
- Division of Infection and Immunity, University College London
- Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, UK
| |
Collapse
|
39
|
Dickey LL, Martins LJ, Planelles V, Hanley TM. HIV-1-induced type I IFNs promote viral latency in macrophages. J Leukoc Biol 2022; 112:1343-1356. [PMID: 35588262 PMCID: PMC9613502 DOI: 10.1002/jlb.4ma0422-616r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Indexed: 12/30/2022] Open
Abstract
Macrophages chronically infected with HIV-1 serve as a reservoir that contributes to HIV-1 persistence during antiretroviral therapy; however, the mechanisms governing the establishment and maintenance of this virus reservoir have not been fully elucidated. Here, we show that HIV-1 enters a state reminiscent of latency in monocyte-derived macrophages (MDMs), characterized by integrated proviral DNA with decreased viral transcription. This quiescent state is associated with decreased NF-κB p65, RNA polymerase II, and p-TEFb recruitment to the HIV-1 promoter as well as maintenance of promoter chromatin in a transcriptionally nonpermissive state. MDM transition to viral latency is mediated by type I IFN signaling, as inhibiting type I IFN signaling or blocking type 1 IFN prevents the establishment of latent infection. Knockdown studies demonstrate that the innate immune signaling molecule mitochondrial antiviral signaling protein (MAVS) is required for the transition to latency. Finally, we demonstrate a role for the viral accessory protein Vpr in the establishment of HIV-1 latency in macrophages. Our data indicate that HIV-1-induced type I IFN production is responsible for the establishment of viral latency in MDMs and identify possible therapeutic targets for the prevention or elimination of this important HIV-1 reservoir.
Collapse
Affiliation(s)
- Laura L. Dickey
- Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Laura J. Martins
- Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Vicente Planelles
- Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Timothy M. Hanley
- Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| |
Collapse
|
40
|
Vadaq N, van de Wijer L, van Eekeren LE, Koenen H, de Mast Q, Joosten LAB, Netea MG, Matzaraki V, van der Ven AJAM. Targeted plasma proteomics reveals upregulation of distinct inflammatory pathways in people living with HIV. iScience 2022; 25:105089. [PMID: 36157576 PMCID: PMC9494231 DOI: 10.1016/j.isci.2022.105089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite antiretroviral therapy (ART), people living with HIV (PLHIV) display persistent inflammation leading to non-AIDS-related co-morbidities. To better understand underlying mechanisms, we compared targeted plasma inflammatory protein concentration (n = 92) between a cohort of 192 virally suppressed PLHIV, who were followed-up for five years, and 416 healthy controls (HC). Findings were validated in an independent cohort of 649 virally suppressed PLHIV and 98 HC. Compared to HC, PLHIV exhibited distinctively upregulated inflammatory proteins, including mucosal defense chemokines, CCR5 and CXCR3 ligands, and growth factors. Unsupervised clustering of inflammatory proteins clearly differentiated PLHIV with low (n = 123) and high inflammation (n = 65), the latter having a 3.4 relative risk (95% confidence interval 1.2-9.8) to develop malignancies and trend for cardiovascular events during a 5-year follow-up. The best protein predictors discriminating the two inflammatory endotypes were PD-L1, VEGFA, LAP TGF β-1, and TNFRSF9. Our data provide insights into co-morbidities associated inflammatory changes in PLHIV on long-term ART.
Collapse
Affiliation(s)
- Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands.,Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Lisa van de Wijer
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Louise E van Eekeren
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Germany
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - André J A M van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
41
|
Wang W, Li Y, Zhang Z, Wei W. Human immunodeficiency virus-1 core: The Trojan horse in virus–host interaction. Front Microbiol 2022; 13:1002476. [PMID: 36106078 PMCID: PMC9465167 DOI: 10.3389/fmicb.2022.1002476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) is the major cause of acquired immunodeficiency syndrome (AIDs) worldwide. In HIV-1 infection, innate immunity is the first defensive line for immune recognition and viral clearance to ensure the normal biological function of the host cell and body health. Under the strong selected pressure generated by the human body over thousands of years, HIV has evolved strategies to counteract and deceive the innate immune system into completing its lifecycle. Recently, several studies have demonstrated that HIV capsid core which is thought to be a protector of the cone structure of genomic RNA, also plays an essential role in escaping innate immunity surveillance. This mini-review summarizes the function of capsid in viral immune evasion, and the comprehensive elucidation of capsid-host cell innate immunity interaction could promote our understanding of HIV-1’s pathogenic mechanism and provide insights for HIV-1 treatment in clinical therapy.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhe Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Wei
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
- *Correspondence: Wei Wei,
| |
Collapse
|
42
|
Board NL, Moskovljevic M, Wu F, Siliciano RF, Siliciano JD. Engaging innate immunity in HIV-1 cure strategies. Nat Rev Immunol 2022; 22:499-512. [PMID: 34824401 DOI: 10.1038/s41577-021-00649-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Combination antiretroviral therapy (ART) can block multiple stages of the HIV-1 life cycle to prevent progression to AIDS in people living with HIV-1. However, owing to the persistence of a reservoir of latently infected CD4+ T cells, life-long ART is necessary to prevent viral rebound. One strategy currently under consideration for curing HIV-1 infection is known as 'shock and kill'. This strategy uses latency-reversing agents to induce expression of HIV-1 genes, allowing for infected cells to be cleared by cytolytic immune cells. The role of innate immunity in HIV-1 pathogenesis is best understood in the context of acute infection. Here, we suggest that innate immunity can also be used to improve the efficacy of HIV-1 cure strategies, with a particular focus on dendritic cells (DCs) and natural killer cells. We discuss novel latency-reversing agents targeting DCs as well as DC-based strategies to enhance the clearance of infected cells by CD8+ T cells and strategies to improve the killing activity of natural killer cells.
Collapse
Affiliation(s)
- Nathan L Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Milica Moskovljevic
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Howard Hughes Medical Institute, Baltimore, MD, USA.
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
43
|
Abstract
In humans, HIV-1 infection induces innate immune responses mediated mainly by type I interferon (IFN). Type I IFN restricts HIV-1 replication by upregulating the expression of IFN-stimulated genes with diverse anti-HIV properties. In this study, we report that the cell membrane protein otoferlin (OTOF) acts as a type I IFN-induced effector, inhibiting HIV-1 entry in myeloid lineage macrophages and dendritic cells (DCs). OTOF is significantly induced by type I IFN in macrophages and DCs but not in CD4+ T lymphocytes. Silencing OTOF abrogates the IFN-mediated suppression of HIV-1 infection in macrophages and DCs. Moreover, OTOF overexpression exhibits anti-HIV activity in macrophages and CD4+ T cells. Further evidence reveals that OTOF inhibits HIV-1 entry into target cells at the cell membrane. Collectively, OTOF is a downstream molecule induced by type I IFN to inhibit HIV-1 entry in macrophages; it is a new potential agent for the treatment of HIV infection.
Collapse
|
44
|
Olson RM, Gornalusse G, Whitmore LS, Newhouse D, Tisoncik-Go J, Smith E, Ochsenbauer C, Hladik F, Gale M. Innate immune regulation in HIV latency models. Retrovirology 2022; 19:15. [PMID: 35804422 PMCID: PMC9270781 DOI: 10.1186/s12977-022-00599-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Innate immunity and type 1 interferon (IFN) defenses are critical for early control of HIV infection within CD4 + T cells. Despite these defenses, some acutely infected cells silence viral transcription to become latently infected and form the HIV reservoir in vivo. Latently infected cells persist through antiretroviral therapy (ART) and are a major barrier to HIV cure. Here, we evaluated innate immunity and IFN responses in multiple T cell models of HIV latency, including established latent cell lines, Jurkat cells latently infected with a reporter virus, and a primary CD4 + T cell model of virologic suppression. RESULTS We found that while latently infected T cell lines have functional RNA sensing and IFN signaling pathways, they fail to induce specific interferon-stimulated genes (ISGs) in response to innate immune activation or type 1 IFN treatment. Jurkat cells latently infected with a fluorescent reporter HIV similarly demonstrate attenuated responses to type 1 IFN. Using bulk and single-cell RNA sequencing we applied a functional genomics approach and define ISG expression dynamics in latent HIV infection, including HIV-infected ART-suppressed primary CD4 + T cells. CONCLUSIONS Our observations indicate that HIV latency and viral suppression each link with cell-intrinsic defects in specific ISG induction. We identify a set of ISGs for consideration as latency restriction factors whose expression and function could possibly mitigate establishing latent HIV infection.
Collapse
Affiliation(s)
- Rebecca M. Olson
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| | - Germán Gornalusse
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Obstetrics & Gynecology, University of Washington, Seattle, WA USA
| | - Leanne S. Whitmore
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| | - Dan Newhouse
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| | - Jennifer Tisoncik-Go
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| | - Elise Smith
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| | - Christina Ochsenbauer
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Florian Hladik
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Obstetrics & Gynecology, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Department of Medicine, University of Washington, Seattle, WA USA
| | - Michael Gale
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| |
Collapse
|
45
|
Mensching L, Hoelzemer A. NK Cells, Monocytes and Macrophages in HIV-1 Control: Impact of Innate Immune Responses. Front Immunol 2022; 13:883728. [PMID: 35711433 PMCID: PMC9197227 DOI: 10.3389/fimmu.2022.883728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 01/12/2023] Open
Abstract
Rapid and synchronized responses of innate immune cells are an integral part of managing viral spread in acute virus infections. In human immunodeficiency virus type 1 (HIV-1) infection, increased immune control has been associated with the expression of certain natural killer (NK) cell receptors. Further, immune activation of monocytes/macrophages and the presence of specific cytokines was linked to low levels of HIV-1 replication. In addition to the intrinsic antiviral capabilities of NK cells and monocytes/macrophages, interaction between these cell types has been shown to substantially enhance NK cell function in the context of viral infections. This review discusses the involvement of NK cells and monocytes/macrophages in the effective control of HIV-1 and highlights aspects of innate immune crosstalk in viral infections that may be of relevance to HIV-1 infection.
Collapse
Affiliation(s)
- Leonore Mensching
- Research Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany.,I. Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angelique Hoelzemer
- Research Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany.,I. Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
46
|
Zhou GF, Chen CX, Cai QC, Yan X, Peng NN, Li XC, Cui JH, Han YF, Zhang Q, Meng JH, Tang HM, Cai CH, Long J, Luo KJ. Bracovirus Sneaks Into Apoptotic Bodies Transmitting Immunosuppressive Signaling Driven by Integration-Mediated eIF5A Hypusination. Front Immunol 2022; 13:901593. [PMID: 35664011 PMCID: PMC9156803 DOI: 10.3389/fimmu.2022.901593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
A typical characteristics of polydnavirus (PDV) infection is a persistent immunosuppression, governed by the viral integration and expression of virulence genes. Recently, activation of caspase-3 by Microplitis bicoloratus bracovirus (MbBV) to cleave Innexins, gap junction proteins, has been highlighted, further promoting apoptotic cell disassembly and apoptotic body (AB) formation. However, whether ABs play a role in immune suppression remains to be determined. Herein, we show that ABs transmitted immunosuppressive signaling, causing recipient cells to undergo apoptosis and dismigration. Furthermore, the insertion of viral–host integrated motif sites damaged the host genome, stimulating eIF5A nucleocytoplasmic transport and activating the eIF5A-hypusination translation pathway. This pathway specifically translates apoptosis-related host proteins, such as P53, CypA, CypD, and CypJ, to drive cellular apoptosis owing to broken dsDNA. Furthermore, translated viral proteins, such Vank86, 92, and 101, known to complex with transcription factor Dip3, positively regulated DHYS and DOHH transcription maintaining the activation of the eIF5A-hypusination. Mechanistically, MbBV-mediated extracellular vesicles contained inserted viral fragments that re-integrated into recipients, potentially via the homologous recombinant repair system. Meanwhile, this stimulation regulated activated caspase-3 levels via PI3K/AKT 308 and 473 dephosphorylation to promote apoptosis of granulocyte-like recipients Sf9 cell; maintaining PI3K/AKT 473 phosphorylation and 308 dephosphorylation inhibited caspase-3 activation leading to dismigration of plasmatocyte-like recipient High Five cells. Together, our results suggest that integration-mediated eIF5A hypusination drives extracellular vesicles for continuous immunosuppression.
Collapse
Affiliation(s)
- Gui-Fang Zhou
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xiang Yan
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Nan-Nan Peng
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xing-Cheng Li
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Ji-Hui Cui
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Yun-Feng Han
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qi Zhang
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Hong-Mei Tang
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chen-Hui Cai
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jin Long
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| |
Collapse
|
47
|
Galvão-Lima LJ, Zambuzi FA, Soares LS, Fontanari C, Meireles AFG, Brauer VS, Faccioli LH, Gama L, Figueiredo LTM, Bou-Habib DC, Frantz FG. HIV-1 Gag and Vpr impair the inflammasome activation and contribute to the establishment of chronic infection in human primary macrophages. Mol Immunol 2022; 148:68-80. [PMID: 35659727 DOI: 10.1016/j.molimm.2022.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023]
Abstract
The successful establishment of HIV-1 infection is related to inflammasome blocking or inactivation, which can result in the viral evasion of the immune responses and formation of reservoirs in several tissues. In this sense, we aimed to evaluate the viral and cellular mechanisms activated during HIV-1 infection in human primary macrophages that allow an effective viral replication in these cells. We found that resting HIV-1-infected macrophages, but not those activated in classical or alternative patterns, released IL-1β and other pro-inflammatory cytokines, and showed increased CXCL10 expression, without changes in the NLRP3, AIM2 or RIG-I inflammasome pathways. Also, similar levels of Casp-1, phosphorylated NF-κB (p65) and NLRP3 proteins were found in uninfected and HIV-1-infected macrophages. Likewise, no alterations were detected in ASC specks released in the culture supernatant after HIV-1 infection, suggesting that macrophages remain viable after infection. Using in silico prediction studies, we found that the HIV-1 proteins Gag and Vpr interact with several host proteins. Comparable levels of trans-LTB4 were found in the supernatants of uninfected and HIV-1-infected macrophages, whereas ROS production was impaired in infected cells, which was not reversed after the PMA stimulus. Immunofluorescence analysis showed structural alterations in the mitochondrial architecture and an increase of BIM in the cytoplasm of infected cells. Our data suggest that HIV-1 proteins Gag and Vpr, through interacting with cellular proteins in the early steps of infection, preclude the inflammasome activation and the development of effective immune responses, thus allowing the establishment of the infection.
Collapse
Affiliation(s)
- Leonardo J Galvão-Lima
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Brazil; Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Fabiana A Zambuzi
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luana S Soares
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Caroline Fontanari
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Aline F Galvão Meireles
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Verônica S Brauer
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Lúcia H Faccioli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Lúcio Gama
- Retrovirus Lab, Johns Hopkins University - School of Medicine, Baltimore, MD, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Luiz T M Figueiredo
- Virology Research Center, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Fabiani G Frantz
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| |
Collapse
|
48
|
Shi Y, Su J, Chen R, Wei W, Yuan Z, Chen X, Wang X, Liang H, Ye L, Jiang J. The Role of Innate Immunity in Natural Elite Controllers of HIV-1 Infection. Front Immunol 2022; 13:780922. [PMID: 35211115 PMCID: PMC8861487 DOI: 10.3389/fimmu.2022.780922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
The natural process of human immunodeficiency virus type 1(HIV-1) infection is characterized by high viral load, immune cell exhaustion, and immunodeficiency, which eventually leads to the stage of acquired immunodeficiency syndrome (AIDS) and opportunistic infections. Rapidly progressing HIV-1 individuals often die of AIDS several years after infection without treatment. The promotion of ART greatly prolongs the survival time of HIV-infected persons. However, some patients have incomplete immune function reconstruction after ART due to latent storage of HIV-infected cells. Therefore, how to achieve a functional cure has always been the focus and hot spot of global AIDS research. Fortunately, the emergence of ECs/LTNPs who can control virus replication naturally has ignited new hope for realizing a functional cure for AIDS. Recently, a special category of infected individuals has attracted attention that can delay the progression of the disease more rigorously than the natural progression of HIV-1 infection described above. These patients are characterized by years of HIV-1 infection, long-term asymptomatic status, and normal CD4+T cell count without ART, classified as HIV-infected long-term nonprogressors (LTNPs) and elite controllers (ECs). Numerous studies have shown that the host and virus jointly determine the progression of HIV-1 infection, in which the level of innate immunity activation plays an important role. As the first line of defense against pathogen invasion, innate immunity is also a bridge to induce adaptive immunity. Compared with natural progressors, innate immunity plays an antiviral role in HIV-1 infection by inducing or activating many innate immune-related factors in the natural ECs. Learning the regulation of ECs immunity, especially the innate immunity in different characteristics, and thus studying the mechanism of the control of disease progression naturally, will contribute to the realization of the functional cure of AIDS. Therefore, this review will explore the relationship between innate immunity and disease progression in ECs of HIV-1 infection from the aspects of innate immune cells, signaling pathways, cytokines, which is helpful to provide new targets and theoretical references for the functional cure, prevention and control of AIDS, and development of a vaccine.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
49
|
Kota NK, Vigorito M, Krishnan V, Chang SL. Using IPA tools to characterize molecular pathways underlying the involvement of IRF7 in antiviral response to HIV. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2022; 1:23-35. [PMID: 36827648 PMCID: PMC9923504 DOI: 10.1515/nipt-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
Abstract
Objectives Interferon Regulatory Factors (IRFs) regulate transcription of type-I interferons (IFNs) and IFN-stimulated genes. We previously reported that IFN-regulatory factor 7 (IRF7) is significantly upregulated in the brain of HIV-1 transgenic (HIV-1Tg) rats compared to F344 control rats in a region dependent manner [Li MD, Cao J, Wang S, Wang J, Sarkar S, Vigorito M, et al. Transcriptome sequencing of gene expression in the brain of the HIV-1 transgenic rat. PLoS One 2013]. The RNA deep-sequencing data were deposited in the NCBI SRA database with Gene Expression Omnibus (GEO) number GSE47474. Our current study utilized QIAGEN CLC Genomics Workbench and Ingenuity Pathway Analysis (IPA) to identify molecular pathways underlying the involvement of IRF7 in the HIV antiviral response. Methods The differential RNA expression data between HIV-1Tg and F344 rats as well as HAND+ and HIV+ cognitively normal patients was collected from GSE47474 and GSE152416, respectively. The "Core Expression Data Analysis" function identified the significant canonical pathways in the datasets with or without IRF7 and its 455 associated molecules. Results It was found that IRF7 and its 455 associated molecules altered the expression of pathways involving neurotransmission, neuronal survival, and immune function. Conclusions This in-silico study reveals that IRF7 is involved in the promotion of macrophage activity, neuronal differentiation, the modulation of the Th-1/Th-2 ratio, and the suppression of HIV-1 translation. Furthermore, we demonstrate that bioinformatics tools such as IPA can be employed to simulate the complete knockout of a target molecule such as IRF7 to study its involvement in biological pathways.
Collapse
Affiliation(s)
- Nikhil K. Kota
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA,Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Michael Vigorito
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA,Department of Psychology, Seton Hall University, South Orange, NJ, USA
| | - Velu Krishnan
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA,Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA,Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| |
Collapse
|
50
|
Martins LJ, Szaniawski MA, Williams ESCP, Coiras M, Hanley TM, Planelles V. HIV-1 Accessory Proteins Impart a Modest Interferon Response and Upregulate Cell Cycle-Related Genes in Macrophages. Pathogens 2022; 11:163. [PMID: 35215107 PMCID: PMC8878269 DOI: 10.3390/pathogens11020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 01/23/2022] [Indexed: 12/10/2022] Open
Abstract
HIV-1 infection of myeloid cells is associated with the induction of an IFN response. How HIV-1 manipulates and subverts the IFN response is of key interest for the design of therapeutics to improve immune function and mitigate immune dysregulation in people living with HIV. HIV-1 accessory genes function to improve viral fitness by altering host pathways in ways that enable transmission to occur without interference from the immune response. We previously described changes in transcriptomes from HIV-1 infected and from IFN-stimulated macrophages and noted that transcription of IFN-regulated genes and genes related to cell cycle processes were upregulated during HIV-1 infection. In the present study, we sought to define the roles of individual viral accessory genes in upregulation of IFN-regulated and cell cycle-related genes using RNA sequencing. We observed that Vif induces a set of genes involved in mitotic processes and that these genes are potently downregulated upon stimulation with type-I and -II IFNs. Vpr also upregulated cell cycle-related genes and was largely responsible for inducing an attenuated IFN response. We note that the induced IFN response most closely resembled a type-III IFN response. Vpu and Nef-regulated smaller sets of genes whose transcriptomic signatures upon infection related to cytokine and chemokine processes. This work provides more insight regarding processes that are manipulated by HIV-1 accessory proteins at the transcriptional level.
Collapse
Affiliation(s)
- Laura J. Martins
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
| | - Matthew A. Szaniawski
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
| | - Elizabeth S. C. P. Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology (CNM) Instituto de Salud Carlos III (ISDIII), 28222 Madrid, Spain;
| | - Timothy M. Hanley
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
- Division of Hematopathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
| |
Collapse
|