1
|
He J, Liu D, Jiang L, Chen M, Ling X, Dong M, Wu T, Guo T, Xu N, Zhang J, Li T, Wang Y, Zhao J, Wei W, Yan S, Wu Y. A novel IgD-FcδR blocker, IgD-Fc-Ig fusion protein, effectively alleviates abnormal activation of T cells the disease progression in systemic lupus erythematosus. Biochem Pharmacol 2025; 237:116930. [PMID: 40194603 DOI: 10.1016/j.bcp.2025.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Systemic lupus erythematosus (SLE) is a chronic, multi-organ autoimmune disease with complex pathogenesis and unclear causes. Elevated levels of IgD have been observed in the peripheral blood of SLE patients, suggesting a potential role for IgD through its interaction with the IgD Fc receptor (FcδR). This study aimed to explore the impact of IgD on T cell function in SLE and evaluate the therapeutic potential of targeting the IgD-FcδR pathway using an IgD-Fc-Ig fusion protein. In SLE patients, biomarkers such as BAFF, ESR, anti-dsDNA and SLEDAI-2k, which are used to assess disease activity and clinical presentations, were significantly correlated with sIgD levels. As an IgD-FcδR blocker, IgD-Fc-Ig effectively suppressed the activation and proliferation of CD4+ T cells stimulated by IgD, restored the balance between Th17 and Treg cell subsets, and reduced the expression and interaction of phosphorylated Lck (p-Lck) and JAK2 (p-JAK2). Moreover, in vivo study demonstrated that IgD-Fc-Ig may also ameliorates disease manifestations in MRL/lpr mice with lupus nephritis. IgD-Fc-Ig could reduce serum IgD levels, proteinuria level and the kidney deposition of immune complex C3, ameliorate histopathological changes in kidney and spleen tissue. Additionally, it reversed the state of excessive activation and imbalance of Th17/Treg cell subsets, reduced cytokine levels, and downregulated p-JAK2 and p-STAT3 expression. In conclusion, our study revealed a correlation between abnormally increased sIgD and SLE pathogenesis, IgD-FcδR-Lck-JAK2-STAT3 may act as an important mechanism contributing to T cell activation in SLE. IgD-Fc-Ig fusion protein may represent a promising targeted therapy for SLE.
Collapse
Affiliation(s)
- Jingjing He
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Danyan Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Li Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Changshu NO.2 People's Hospital, Changshu, China
| | - Mengqin Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Xi Ling
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Manling Dong
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Tiantian Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Tingting Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Nuo Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Jing Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yueye Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Jiemin Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| |
Collapse
|
2
|
Hu MT, Ma WC, Wang JH, Jiang XQ, Yang DQ, Ao JY. Mechanistic insights into the allosteric inactivation mechanism of ZAP-70 induced by the hot spot W165C mutation. J Biomol Struct Dyn 2024; 42:7600-7609. [PMID: 37505058 DOI: 10.1080/07391102.2023.2240421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Zeta chain-associated protein kinase 70 (ZAP-70) is a non-receptor tyrosine kinase that interacts with the activated T-cell receptor to transduce downstream signals, and thus plays an important role in the adaptive immune system. The biphosphorylated immunotyrosine-based activation motifs (ITAM-Y2P) binds to the N-SH2 and C-SH2 domains of ZAP-70 to promote the activation of ZAP-70. The present study explores molecular mechanisms of allosteric inactivation of ZAP-70 induced by the hot spot W165C mutation through atomically detailed molecular dynamics simulation approaches. We report microsecond-length simulations of two states of the tandem SH2 domains of ZAP-70 in complex with the ITAM-Y2P motif, including the wild-type and W165C mutant. Extensive analysis of local flexibility and dynamical correlated motions show that W165C mutation changes coupled motions of protein domains and community networks. The binding affinities of the ITAM-Y2P motif to the wild-type and W165C mutant of ZAP-70 are predicted using binding free energy calculations. The results suggest that the driving force to decrease the binding affinity in the W165C mutant derives from the difference in the protein-protein electrostatic interactions. Moreover, the per-residue free energy decomposition unravels that the contributions from residues in the phosphorylated Tyr315 (pY315) binding site, in particular pY315 of ITAM-Y2P, and Arg43, Tyr240 of ZAP-70, are the key determinants for the loss of binding affinity. This study may insights into our understanding of the pathological mechanism of ZAP-70.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ming-Tai Hu
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Cong Ma
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing-Han Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Qing Jiang
- Department of Biliary Tract Surgery I, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Da-Qing Yang
- Department of General Surgery, The Second Affiliated Hospital of Shanghai University (Wenzhou Central Hospital), Wenzhou, Zhejiang, China
| | - Jian-Yang Ao
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
4
|
Ren Z, Wang K, Zhang Y, Chen H, Zhu Y, Li H, Lou J, Wang H, Xu C. Transient hydroxycholesterol treatment restrains TCR signaling to promote long-term immunity. Cell Chem Biol 2024; 31:920-931.e6. [PMID: 38759618 DOI: 10.1016/j.chembiol.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
T cell receptor (TCR) plays a fundamental role in adaptive immunity, and TCR-T cell therapy holds great promise for treating solid tumors and other diseases. However, there is a noticeable absence of chemical tools tuning TCR activity. In our study, we screened natural sterols for their regulatory effects on T cell function and identified 7-alpha-hydroxycholesterol (7a-HC) as a potent inhibitor of TCR signaling. Mechanistically, 7a-HC promoted membrane binding of CD3ε cytoplasmic domain, a crucial signaling component of the TCR-CD3 complex, through alterations in membrane physicochemical properties. Enhanced CD3ε membrane binding impeded the condensation between CD3ε and the key kinase Lck, thereby inhibiting Lck-mediated TCR phosphorylation. Transient treatments of TCR-T cells with 7a-HC resulted in reduced signaling strength, increased memory cell populations, and superior long-term antitumor functions. This study unveils a chemical regulation of TCR signaling, which can be exploited to enhance the long-term efficacy of TCR-T cell therapy.
Collapse
Affiliation(s)
- Zhengxu Ren
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiming Zhu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Li
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jizhong Lou
- Key Laboratory of Epigenetic Regulation and Intervention, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chenqi Xu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
5
|
Woessner NM, Brandl SM, Hartmann S, Schamel WW, Hartl FA, Minguet S. Phospho-mimetic CD3ε variants prevent TCR and CAR signaling. Front Immunol 2024; 15:1392933. [PMID: 38779683 PMCID: PMC11109380 DOI: 10.3389/fimmu.2024.1392933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Antigen binding to the T cell antigen receptor (TCR) leads to the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 complex, and thereby to T cell activation. The CD3ε subunit plays a unique role in TCR activation by recruiting the kinase LCK and the adaptor protein NCK prior to ITAM phosphorylation. Here, we aimed to investigate how phosphorylation of the individual CD3ε ITAM tyrosines impacts the CD3ε signalosome. Methods We mimicked irreversible tyrosine phosphorylation by substituting glutamic acid for the tyrosine residues in the CD3ε ITAM. Results Integrating CD3ε phospho-mimetic variants into the complete TCR-CD3 complex resulted in reduced TCR signal transduction, which was partially compensated by the involvement of the other TCR-CD3 ITAMs. By using novel CD3ε phospho-mimetic Chimeric Antigen Receptor (CAR) variants, we avoided any compensatory effects of other ITAMs in the TCR-CD3 complex. We demonstrated that irreversible CD3ε phosphorylation prevented signal transduction upon CAR engagement. Mechanistically, we demonstrated that glutamic acid substitution at the N-terminal tyrosine residue of the CD3ε ITAM (Y39E) significantly reduces NCK binding to the TCR. In contrast, mutation at the C-terminal tyrosine of the CD3ε ITAM (Y50E) abolished LCK recruitment to the TCR, while increasing NCK binding. Double mutation at the C- and N-terminal tyrosines (Y39/50E) allowed ZAP70 to bind, but reduced the interaction with LCK and NCK. Conclusions The data demonstrate that the dynamic phosphorylation of the CD3ε ITAM tyrosines is essential for CD3ε to orchestrate optimal TCR and CAR signaling and highlights the key role of CD3ε signalosome to tune signal transduction.
Collapse
MESH Headings
- Humans
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- CD3 Complex/metabolism
- HEK293 Cells
- Immunoreceptor Tyrosine-Based Activation Motif
- Jurkat Cells
- Lymphocyte Activation/immunology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Phosphorylation
- Protein Binding
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Signal Transduction/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- ZAP-70 Protein-Tyrosine Kinase/metabolism
- ZAP-70 Protein-Tyrosine Kinase/genetics
Collapse
Affiliation(s)
- Nadine M. Woessner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Simon M. Brandl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Sara Hartmann
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Wolfgang W. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Frederike A. Hartl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, University, Freiburg, Germany
| |
Collapse
|
6
|
Li Y, Sharma A, Hoffmann MJ, Skowasch D, Essler M, Weiher H, Schmidt-Wolf IGH. Discovering single cannabidiol or synergistic antitumor effects of cannabidiol and cytokine-induced killer cells on non-small cell lung cancer cells. Front Immunol 2024; 15:1268652. [PMID: 38558822 PMCID: PMC10979545 DOI: 10.3389/fimmu.2024.1268652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction A multitude of findings from cell cultures and animal studies are available to support the anti-cancer properties of cannabidiol (CBD). Since CBD acts on multiple molecular targets, its clinical adaptation, especially in combination with cancer immunotherapy regimen remains a serious concern. Methods Considering this, we extensively studied the effect of CBD on the cytokine-induced killer (CIK) cell immunotherapy approach using multiple non-small cell lung cancer (NSCLC) cells harboring diverse genotypes. Results Our analysis showed that, a) The Transient Receptor Potential Cation Channel Subfamily V Member 2 (TRPV2) channel was intracellularly expressed both in NSCLC cells and CIK cells. b) A synergistic effect of CIK combined with CBD, resulted in a significant increase in tumor lysis and Interferon gamma (IFN-g) production. c) CBD had a preference to elevate the CD25+CD69+ population and the CD62L_CD45RA+terminal effector memory (EMRA) population in NKT-CIK cells, suggesting early-stage activation and effector memory differentiation in CD3+CD56+ CIK cells. Of interest, we observed that CBD enhanced the calcium influx, which was mediated by the TRPV2 channel and elevated phosphor-Extracellular signal-Regulated Kinase (p-ERK) expression directly in CIK cells, whereas ERK selective inhibitor FR180204 inhibited the increasing cytotoxic CIK ability induced by CBD. Further examinations revealed that CBD induced DNA double-strand breaks via upregulation of histone H2AX phosphorylation in NSCLC cells and the migration and invasion ability of NSCLC cells suppressed by CBD were rescued using the TRPV2 antagonist (Tranilast) in the absence of CIK cells. We further investigated the epigenetic effects of this synergy and found that adding CBD to CIK cells decreased the Long Interspersed Nuclear Element-1 (LINE-1) mRNA expression and the global DNA methylation level in NSCLC cells carrying KRAS mutation. We further investigated the epigenetic effects of this synergy and found that adding CBD to CIK cells decreased the Long Interspersed Nuclear Element-1 (LINE-1) mRNA expression and the global DNA methylation level in NSCLC cells carrying KRAS mutation. Conclusions Taken together, CBD holds a great potential for treating NSCLC with CIK cell immunotherapy. In addition, we utilized NSCLC with different driver mutations to investigate the efficacy of CBD. Our findings might provide evidence for CBD-personized treatment with NSCLC patients.
Collapse
Affiliation(s)
- Yutao Li
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Michèle J. Hoffmann
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Liu H, Cui H, Huang Y, Yang Y, Jiao L, Zhou Y, Hu J, Wan Y. Enzyme-Catalyzed Hydrogen-Deuterium Exchange between Environmental Pollutants and Enzyme-Regulated Endogenous Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6844-6853. [PMID: 37080910 DOI: 10.1021/acs.est.2c08056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Environmental pollutants can disrupt the homeostasis of endogenous metabolites in organisms, leading to metabolic disorders and syndromes. However, it remains highly challenging to efficiently screen for critical biological molecules affected by environmental pollutants. Herein, we found that enzyme could catalyze hydrogen-deuterium (H-D) exchange between a deuterium-labeled environmental pollutant [D38-bis(2-ethylhexyl) phthalate (D38-DEHP)] and several groups of enzyme-regulated metabolites [cardiolipins (CLs), monolysocardiolipins (MLCLs), phospholipids (PLs), and lysophospholipids (LPLs)]. A high-throughput scanning identified the D-labeled endogenous metabolites in a simple enzyme [phospholipase A2 (PLA2)], enzyme mixtures (liver microsomes), and living organisms (zebrafish embryos) exposed to D38-DEHP. Mass fragmentation and structural analyses showed that similar positions were D-labeled in the CLs, MLCLs, PLs, and LPLs, and this labeling was not attributable to natural metabolic transformations of D38-DEHP or incorporation of its D-labeled side chains. Molecular docking and competitive binding analyses revealed that DEHP competed with D-labeled lipids for binding to the active site of PLA2, and this process mediated H-D exchange. Moreover, competitive binding of DEHP against biotransformation enzymes could interfere with catabolic or anabolic lipid metabolism and thereby affect the concentrations of endogenous metabolites. Our findings provide a tool for discovering more molecular targets that complement the known toxic endpoints of metabolic disruptors.
Collapse
Affiliation(s)
- Hang Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Yangshengtang Co., Ltd., Hangzhou 310007, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ling Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yulan Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Jahan F, Koski J, Schenkwein D, Ylä-Herttuala S, Göös H, Huuskonen S, Varjosalo M, Maliniemi P, Leitner J, Steinberger P, Bühring HJ, Vettenranta K, Korhonen M. Using the Jurkat reporter T cell line for evaluating the functionality of novel chimeric antigen receptors. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1070384. [PMID: 39086686 PMCID: PMC11285682 DOI: 10.3389/fmmed.2023.1070384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/17/2023] [Indexed: 08/02/2024]
Abstract
Background: T cells that are genetically modified with chimeric antigen receptor (CAR) hold promise for immunotherapy of cancer. Currently, there are intense efforts to improve the safety and efficacy of CAR T cell therapies against liquid and solid tumors. Earlier we designed a novel CAR backbone (FiCAR) where the spacer is derived from immunoglobulin (Ig) -like domains of the signal-regulatory protein alpha (SIRPα). However, the analysis of novel CAR using primary T cells is slow and laborious. Methods: To explore the versatility of the CAR backbone, we designed a set of variant FiCARs with different spacer lengths and targeting antigens. To expedite the analysis of the novel CARs, we transduced the FiCAR genes using lentiviruses into Jurkat reporter T cells carrying fluorescent reporter genes. The expression of fluorescent markers in response to FiCAR engagement with targets was analyzed by flow cytometry, and cytotoxicity was evaluated using killing assays. Furthermore, the killing mechanisms that are employed by FiCAR-equipped Jurkat T cells were investigated by flow cytometry, and the intracellular pathways involved in signaling by FiCAR were analyzed by phosphoproteomic analysis using mass spectrometry. Results: Seven different CARs were designed and transduced into Jurkat reporter cells. We show that the SIRPα derived FiCARs can be detected by flow cytometry using the SE12B6A4 antibody recognizing SIRPα. Furthermore, FiCAR engagement leads to robust activation of NFκβ and NFAT signaling, as demonstrated by the expression of the fluorescent reporter genes. Interestingly, the Jurkat reporter system also revealed tonic signaling by a HER-2 targeting FiCAR. FiCAR-equipped Jurkat T cells were cytotoxic in cocultures with target cells and target cell engagement lead to an upregulation of CD107a on the Jurkat reporter T cell surface. Phosphoproteomic analyses confirmed signal transduction via the intracellular CD28/CD3ζ sequences upon the interaction of the FiCAR1 with its antigen. In addition, downstream signaling of CD3ζ/ZAP70- SLP-76-PLCγ, PI3K-AKT-NFκB pathways and activation of NFAT and AP-1 were observed. Conclusion: We conclude that the FiCAR backbone can be shortened and lengthened at will by engineering it with one to three SIRPα derived Ig-like domains, and the FiCARs are functional when equipped with different single chain variable fragment target binding domains. The Jurkat reporter system expedites the analysis of novel CARs as to their expression, signaling function, evaluation of tonic signaling issues and cytotoxic activity.
Collapse
Affiliation(s)
- Farhana Jahan
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Jan Koski
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Diana Schenkwein
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Helka Göös
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Sini Huuskonen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans-Jörg Bühring
- Department of Internal Medicine II, University Clinic of Tübingen, Tübingen, Germany
| | - Kim Vettenranta
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
- University of Helsinki and the Children’s Hospital, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
9
|
McAffee DB, O'Dair MK, Lin JJ, Low-Nam ST, Wilhelm KB, Kim S, Morita S, Groves JT. Discrete LAT condensates encode antigen information from single pMHC:TCR binding events. Nat Commun 2022; 13:7446. [PMID: 36460640 PMCID: PMC9718779 DOI: 10.1038/s41467-022-35093-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
LAT assembly into a two-dimensional protein condensate is a prominent feature of antigen discrimination by T cells. Here, we use single-molecule imaging techniques to resolve the spatial position and temporal duration of each pMHC:TCR molecular binding event while simultaneously monitoring LAT condensation at the membrane. An individual binding event is sufficient to trigger a LAT condensate, which is self-limiting, and neither its size nor lifetime is correlated with the duration of the originating pMHC:TCR binding event. Only the probability of the LAT condensate forming is related to the pMHC:TCR binding dwell time. LAT condenses abruptly, but after an extended delay from the originating binding event. A LAT mutation that facilitates phosphorylation at the PLC-γ1 recruitment site shortens the delay time to LAT condensation and alters T cell antigen specificity. These results identify a function for the LAT protein condensation phase transition in setting antigen discrimination thresholds in T cells.
Collapse
Affiliation(s)
- Darren B McAffee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mark K O'Dair
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jenny J Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shalini T Low-Nam
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kiera B Wilhelm
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sungi Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shumpei Morita
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
10
|
Zeng PYF, Cecchini MJ, Barrett JW, Shammas-Toma M, De Cecco L, Serafini MS, Cavalieri S, Licitra L, Hoebers F, Brakenhoff RH, Leemans CR, Scheckenbach K, Poli T, Wang X, Liu X, Laxague F, Prisman E, Poh C, Bose P, Dort JC, Shaikh MH, Ryan SEB, Dawson A, Khan MI, Howlett CJ, Stecho W, Plantinga P, Daniela da Silva S, Hier M, Khan H, MacNeil D, Mendez A, Yoo J, Fung K, Lang P, Winquist E, Palma DA, Ziai H, Amelio AL, Li SSC, Boutros PC, Mymryk JS, Nichols AC. Immune-based classification of HPV-associated oropharyngeal cancer with implications for biomarker-driven treatment de-intensification. EBioMedicine 2022; 86:104373. [PMID: 36442320 PMCID: PMC9706534 DOI: 10.1016/j.ebiom.2022.104373] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND There is significant interest in treatment de-escalation for human papillomavirus-associated (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) patients given the generally favourable prognosis. However, 15-30% of patients recur after primary treatment, reflecting a need for improved risk-stratification tools. We sought to develop a molecular test to risk stratify HPV+ OPSCC patients. METHODS We created an immune score (UWO3) associated with survival outcomes in six independent cohorts comprising 906 patients, including blinded retrospective and prospective external validations. Two aggressive radiation de-escalation cohorts were used to assess the ability of UWO3 to identify patients who recur. Multivariate Cox models were used to assess the associations between the UWO3 immune class and outcomes. FINDINGS A three-gene immune score classified patients into three immune classes (immune rich, mixed, or immune desert) and was strongly associated with disease-free survival in six datasets, including large retrospective and prospective datasets. Pooled analysis demonstrated that the immune rich group had superior disease-free survival compared to the immune desert (HR = 9.0, 95% CI: 3.2-25.5, P = 3.6 × 10-5) and mixed (HR = 6.4, 95% CI: 2.2-18.7, P = 0.006) groups after adjusting for age, sex, smoking status, and AJCC8 clinical stage. Finally, UWO3 was able to identify patients from two small treatment de-escalation cohorts who remain disease-free after aggressive de-escalation to 30 Gy radiation. INTERPRETATION With additional prospective validation, the UWO3 score could enable biomarker-driven clinical decision-making for patients with HPV+ OPSCC based on robust outcome prediction across six independent cohorts. Prospective de-escalation and intensification clinical trials are currently being planned. FUNDING CIHR, European Union, and the NIH.
Collapse
Affiliation(s)
- Peter Y F Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - John W Barrett
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Matthew Shammas-Toma
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Loris De Cecco
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy
| | - Mara S Serafini
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), Research Institute GROW, Maastricht University, Maastricht, the Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - Kathrin Scheckenbach
- Department of Otolaryngology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tito Poli
- Unit of Maxillofacial Surgery, Department of Medicine and Surgery, University of Parma-University Hospital of Parma, Parma, Italy
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Francisco Laxague
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Eitan Prisman
- Division of Otolaryngology- Head and Neck Surgery, Department of Surgery, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Catherine Poh
- Division of Otolaryngology- Head and Neck Surgery, Department of Surgery, Vancouver General Hospital, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pinaki Bose
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Joseph C Dort
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Mushfiq H Shaikh
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Sarah E B Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Alice Dawson
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Mohammed I Khan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Christopher J Howlett
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - William Stecho
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Paul Plantinga
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | | | - Michael Hier
- Department of Otolaryngology Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Halema Khan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Danielle MacNeil
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Adrian Mendez
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - John Yoo
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Kevin Fung
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Pencilla Lang
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Eric Winquist
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - David A Palma
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Hedyeh Ziai
- Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Antonio L Amelio
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn S-C Li
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - Joe S Mymryk
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada; Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
11
|
Gangopadhyay K, Roy A, Chandradasan AC, Roy S, Debnath O, SenGupta S, Chowdhury S, Das D, Das R. An evolutionary divergent thermodynamic brake in ZAP-70 fine-tunes the kinetic proofreading in T cells. J Biol Chem 2022; 298:102376. [PMID: 35970395 PMCID: PMC9486129 DOI: 10.1016/j.jbc.2022.102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
T cell signaling starts with assembling several tyrosine kinases and adaptor proteins to the T cell receptor (TCR), following the antigen-binding to the TCR. The stability of the TCR-antigen complex and the delay between the recruitment and activation of each kinase determines the T cell response. Integration of such delays constitutes a kinetic proofreading mechanism to regulate T cell response to the antigen binding. However, the mechanism of these delays is not fully understood. Combining biochemical experiments and kinetic modelling, here we report a thermodynamic brake in the regulatory module of the tyrosine kinase ZAP-70, which determines the ligand selectivity, and may delay the ZAP-70 activation upon antigen binding to TCR. The regulatory module of ZAP-70 comprises of a tandem SH2 (tSH2) domain that binds to its ligand, doubly-phosphorylated ITAM peptide (ITAM-Y2P), in two kinetic steps: a fast step and a slow step. We show the initial encounter complex formation between the ITAM-Y2P and tSH2 domain follows a fast-kinetic step, whereas the conformational transition to the holo-state follows a slow-kinetic step. We further observed a thermodynamic penalty imposed during the second phosphate-binding event reduces the rate of structural transition to the holo-state. Phylogenetic analysis revealed the evolution of the thermodynamic brake coincides with the divergence of the adaptive immune system to the cell-mediated and humoral responses. In addition, the paralogous kinase Syk expressed in B cells does not possess such a functional thermodynamic brake, which may explain the higher basal activation and lack of ligand selectivity in Syk.
Collapse
Affiliation(s)
- Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Arnab Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Athira C Chandradasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Olivia Debnath
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Soumee SenGupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Dipjyoti Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India; Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| |
Collapse
|
12
|
Gangopadhyay K, Roy S, Sen Gupta S, Chandradasan A, Chowdhury S, Das R. Regulating the discriminatory response to antigen by T-cell receptor. Biosci Rep 2022; 42:BSR20212012. [PMID: 35260878 PMCID: PMC8965820 DOI: 10.1042/bsr20212012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cell-mediated immune response constitutes a robust host defense mechanism to eliminate pathogens and oncogenic cells. T cells play a central role in such a defense mechanism and creating memories to prevent any potential infection. T cell recognizes foreign antigen by its surface receptors when presented through antigen-presenting cells (APCs) and calibrates its cellular response by a network of intracellular signaling events. Activation of T-cell receptor (TCR) leads to changes in gene expression and metabolic networks regulating cell development, proliferation, and migration. TCR does not possess any catalytic activity, and the signaling initiates with the colocalization of several enzymes and scaffold proteins. Deregulation of T cell signaling is often linked to autoimmune disorders like severe combined immunodeficiency (SCID), rheumatoid arthritis, and multiple sclerosis. The TCR remarkably distinguishes the minor difference between self and non-self antigen through a kinetic proofreading mechanism. The output of TCR signaling is determined by the half-life of the receptor antigen complex and the time taken to recruit and activate the downstream enzymes. A longer half-life of a non-self antigen receptor complex could initiate downstream signaling by activating associated enzymes. Whereas, the short-lived, self-peptide receptor complex disassembles before the downstream enzymes are activated. Activation of TCR rewires the cellular metabolic response to aerobic glycolysis from oxidative phosphorylation. How does the early event in the TCR signaling cross-talk with the cellular metabolism is an open question. In this review, we have discussed the recent developments in understanding the regulation of TCR signaling, and then we reviewed the emerging role of metabolism in regulating T cell function.
Collapse
Affiliation(s)
- Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Soumee Sen Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Athira C. Chandradasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| |
Collapse
|
13
|
Nieves DJ, Pandzic E, Gunasinghe SD, Goyette J, Owen DM, Justin Gooding J, Gaus K. The T cell receptor displays lateral signal propagation involving non-engaged receptors. NANOSCALE 2022; 14:3513-3526. [PMID: 35171177 DOI: 10.1039/d1nr05855j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
T cells are highly sensitive to low levels of antigen, but how this sensitivity is achieved is currently unknown. Here, we imaged proximal TCR-CD3 signal propagation with single molecule localization microscopy (SMLM) in T cells activated with nanoscale clusters of TCR stimuli. We observed the formation of large TCR-CD3 clusters that exceeded the area of the ligand clusters, and required multivalent interactions facilitated by TCR-CD3 phosphorylation for assembly. Within these clustered TCR-CD3 domains, TCR-CD3 signaling spread laterally for ∼500 nm, far beyond the activating site, via non-engaged receptors. Local receptor density determined the functional cooperativity between engaged and non-engaged receptors, but lateral signal propagation was not influenced by the genetic deletion of ZAP70. Taken together, our data demonstrates that clustered ligands induced the clustering of non-ligated TCR-CD3 into domains that cooperatively facilitate lateral signal propagation.
Collapse
Affiliation(s)
- Daniel J Nieves
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
- Institute of Immunology and Immunotherapy, School of Mathematics, and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Dylan M Owen
- Institute of Immunology and Immunotherapy, School of Mathematics, and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| |
Collapse
|
14
|
Goyette J, Depoil D, Yang Z, Isaacson SA, Allard J, van der Merwe PA, Gaus K, Dustin ML, Dushek O. Dephosphorylation accelerates the dissociation of ZAP70 from the T cell receptor. Proc Natl Acad Sci U S A 2022; 119:e2116815119. [PMID: 35197288 PMCID: PMC8892339 DOI: 10.1073/pnas.2116815119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/11/2021] [Indexed: 11/20/2022] Open
Abstract
Protein-protein binding domains are critical in signaling networks. Src homology 2 (SH2) domains are binding domains that interact with sequences containing phosphorylated tyrosines. A subset of SH2 domain-containing proteins has tandem domains, which are thought to enhance binding affinity and specificity. However, a trade-off exists between long-lived binding and the ability to rapidly reverse signaling, which is a critical requirement of noise-filtering mechanisms such as kinetic proofreading. Here, we use modeling to show that the unbinding rate of tandem, but not single, SH2 domains can be accelerated by phosphatases. Using surface plasmon resonance, we show that the phosphatase CD45 can accelerate the unbinding rate of zeta chain-associated protein kinase 70 (ZAP70), a tandem SH2 domain-containing kinase, from biphosphorylated peptides from the T cell receptor (TCR). An important functional prediction of accelerated unbinding is that the intracellular ZAP70-TCR half-life in T cells will not be fixed but rather, dependent on the extracellular TCR-antigen half-life, and we show that this is the case in both cell lines and primary T cells. The work highlights that tandem SH2 domains can break the trade-off between signal fidelity (requiring long half-life) and signal reversibility (requiring short half-life), which is a key requirement for T cell antigen discrimination mediated by kinetic proofreading.
Collapse
Affiliation(s)
- Jesse Goyette
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, NSW, Australia
| | - David Depoil
- The Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Zhengmin Yang
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Samuel A Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | - Jun Allard
- Center for Complex Biological Systems, University of California, Irvine, CA 92697
| | - P Anton van der Merwe
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Katharina Gaus
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, NSW, Australia
| | - Michael L Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom;
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| |
Collapse
|
15
|
Griffith AA, Callahan KP, King NG, Xiao Q, Su X, Salomon AR. SILAC Phosphoproteomics Reveals Unique Signaling Circuits in CAR-T Cells and the Inhibition of B Cell-Activating Phosphorylation in Target Cells. J Proteome Res 2022; 21:395-409. [PMID: 35014847 PMCID: PMC8830406 DOI: 10.1021/acs.jproteome.1c00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) is a single-pass transmembrane receptor designed to specifically target and eliminate cancers. While CARs prove highly efficacious against B cell malignancies, the intracellular signaling events which promote CAR T cell activity remain elusive. To gain further insight into both CAR T cell signaling and the potential signaling response of cells targeted by CAR, we analyzed phosphopeptides captured by two separate phosphoenrichment strategies from third generation CD19-CAR T cells cocultured with SILAC labeled Raji B cells by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we report that CD19-CAR T cells upregulated several key phosphorylation events also observed in canonical T cell receptor (TCR) signaling, while Raji B cells exhibited a significant decrease in B cell receptor-signaling related phosphorylation events in response to coculture. Our data suggest that CD19-CAR stimulation activates a mixture of unique CD19-CAR-specific signaling pathways and canonical TCR signaling, while global phosphorylation in Raji B cells is reduced after association with the CD19-CAR T cells.
Collapse
Affiliation(s)
- Alijah A. Griffith
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Kenneth P. Callahan
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Nathan Gordo King
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Qian Xiao
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, 06520
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, 06520
| | - Arthur R. Salomon
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912,
| |
Collapse
|
16
|
Wu Y, Wang M, Yin H, Ming S, Li X, Jiang G, Liu Y, Wang P, Zhou G, Liu L, Gong S, Zhou H, Shan H, Huang X. TREM-2 is a sensor and activator of T cell response in SARS-CoV-2 infection. SCIENCE ADVANCES 2021; 7:eabi6802. [PMID: 34878838 PMCID: PMC8654301 DOI: 10.1126/sciadv.abi6802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Limited understanding of T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impeded vaccine development and drug discovery for coronavirus disease 2019 (COVID-19). We found that triggering receptor expressed on myeloid cells 2 (TREM-2) was induced in T cells in the blood and lungs of patients with COVID-19. After binding to SARS-CoV-2 membrane (M) protein through its immunoglobulin domain, TREM-2 then activated the CD3ζ/ZAP70 complex, leading to STAT1 phosphorylation and T-bet transcription. In vitro stimulation with M protein-reconstituted pseudovirus or recombinant M protein, and TREM-2 promoted the T helper cell 1 (TH1) cytokines interferon-γ and tumor necrosis factor. In vivo infection of CD4–TREM-2 conditional knockout mice with murine coronavirus mouse hepatitis virus A-59 showed that intrinsic TREM-2 in T cells enhanced TH1 response and viral clearance, thus aggravating lung destruction. These findings demonstrate a previously unidentified role for TREM-2 in SARS-CoV-2 infection, and suggest potential strategies for drug discovery and clinical management of COVID-19.
Collapse
Affiliation(s)
- Yongjian Wu
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province 519000, China
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province 510623, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong Province 511518, China
| | - Manni Wang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Huan Yin
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Siqi Ming
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Xingyu Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Ye Liu
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Peihui Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, China
| | - Guangde Zhou
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Lei Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province 510623, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong Province 511518, China
| | - Hong Shan
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province 519000, China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province 519000, China
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province 510623, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong Province 511518, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
- Corresponding author.
| |
Collapse
|
17
|
Hobbs HT, Shah NH, Badroos JM, Gee CL, Marqusee S, Kuriyan J. Differences in the dynamics of the tandem-SH2 modules of the Syk and ZAP-70 tyrosine kinases. Protein Sci 2021; 30:2373-2384. [PMID: 34601763 PMCID: PMC8605373 DOI: 10.1002/pro.4199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
The catalytic activity of Syk-family tyrosine kinases is regulated by a tandem Src homology 2 module (tSH2 module). In the autoinhibited state, this module adopts a conformation that stabilizes an inactive conformation of the kinase domain. The binding of the tSH2 module to phosphorylated immunoreceptor tyrosine-based activation motifs necessitates a conformational change, thereby relieving kinase inhibition and promoting activation. We determined the crystal structure of the isolated tSH2 module of Syk and find, in contrast to ZAP-70, that its conformation more closely resembles that of the peptide-bound state, rather than the autoinhibited state. Hydrogen-deuterium exchange by mass spectrometry, as well as molecular dynamics simulations, reveal that the dynamics of the tSH2 modules of Syk and ZAP-70 differ, with most of these differences occurring in the C-terminal SH2 domain. Our data suggest that the conformational landscapes of the tSH2 modules in Syk and ZAP-70 have been tuned differently, such that the autoinhibited conformation of the Syk tSH2 module is less stable. This feature of Syk likely contributes to its ability to more readily escape autoinhibition when compared to ZAP-70, consistent with tighter control of downstream signaling pathways in T cells.
Collapse
Affiliation(s)
- Helen T. Hobbs
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Present address:
Department of Biomedical EngineeringUniversity of CaliforniaIrvineCaliforniaUSA
| | - Neel H. Shah
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Present address:
Department of ChemistryColumbia UniversityNew YorkNew YorkUSA
| | - Jean M. Badroos
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Christine L. Gee
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Susan Marqusee
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - John Kuriyan
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
18
|
Wu Y, Wu M, Ming S, Zhan X, Hu S, Li X, Yin H, Cao C, Liu J, Li J, Wu Z, Zhou J, Liu L, Gong S, He D, Huang X. TREM-2 promotes Th1 responses by interacting with the CD3ζ-ZAP70 complex following Mycobacterium tuberculosis infection. J Clin Invest 2021; 131:137407. [PMID: 34623322 DOI: 10.1172/jci137407] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2) is a modulator of pattern recognition receptors on innate immune cells that regulates the inflammatory response. However, the role of TREM-2 in in vivo models of infection and inflammation remains controversial. Here, we demonstrated that TREM-2 expression on CD4+ T cells was induced by Mycobacterium tuberculosis infection in both humans and mice and positively associated with T cell activation and an effector memory phenotype. Activation of TREM-2 in CD4+ T cells was dependent on interaction with the putative TREM-2 ligand expressed on DCs. Unlike the observation in myeloid cells that TREM-2 signals through DAP12, in CD4+ T cells, TREM-2 interacted with the CD3ζ-ZAP70 complex as well as with the IFN-γ receptor, leading to STAT1/-4 activation and T-bet transcription. In addition, an infection model using reconstituted Rag2-/- mice (with TREM-2-KO vs. WT cells or TREM-2+ vs. TREM-2-CD4+ T cells) or CD4+ T cell-specific TREM-2 conditional KO mice demonstrated that TREM-2 promoted a Th1-mediated host defense against M. tuberculosis infection. Taken together, these findings reveal a critical role of TREM-2 in evoking proinflammatory Th1 responses that may provide potential therapeutic targets for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yongjian Wu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Minhao Wu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Siqi Ming
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xiaoxia Zhan
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Shengfeng Hu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xingyu Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Huan Yin
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Can Cao
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jiao Liu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jinai Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhilong Wu
- The Fourth People's Hospital of Foshan, Foshan, China
| | - Jie Zhou
- The Fourth People's Hospital of Foshan, Foshan, China
| | - Lei Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Duanman He
- Shantou No. 3 People's Hospital, Shantou, Guangdong Province, China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China.,National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
19
|
Saed B, Munaweera R, Anderson J, O'Neill WD, Hu YS. Rapid statistical discrimination of fluorescence images of T cell receptors on immobilizing surfaces with different coating conditions. Sci Rep 2021; 11:15488. [PMID: 34326382 PMCID: PMC8322097 DOI: 10.1038/s41598-021-94730-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
The spatial organization of T cell receptors (TCRs) correlates with membrane-associated signal amplification, dispersion, and regulation during T cell activation. Despite its potential clinical importance, quantitative analysis of the spatial arrangement of TCRs from standard fluorescence images remains difficult. Here, we report Statistical Classification Analyses of Membrane Protein Images or SCAMPI as a technique capable of analyzing the spatial arrangement of TCRs on the plasma membrane of T cells. We leveraged medical image analysis techniques that utilize pixel-based values. We transformed grayscale pixel values from fluorescence images of TCRs into estimated model parameters of partial differential equations. The estimated model parameters enabled an accurate classification using linear discrimination techniques, including Fisher Linear Discriminant (FLD) and Logistic Regression (LR). In a proof-of-principle study, we modeled and discriminated images of fluorescently tagged TCRs from Jurkat T cells on uncoated cover glass surfaces (Null) or coated cover glass surfaces with either positively charged poly-L-lysine (PLL) or TCR cross-linking anti-CD3 antibodies (OKT3). Using 80 training images and 20 test images per class, our statistical technique achieved 85% discrimination accuracy for both OKT3 versus PLL and OKT3 versus Null conditions. The run time of image data download, model construction, and image discrimination was 21.89 s on a laptop computer, comprised of 20.43 s for image data download, 1.30 s on the FLD-SCAMPI analysis, and 0.16 s on the LR-SCAMPI analysis. SCAMPI represents an alternative approach to morphology-based qualifications for discriminating complex patterns of membrane proteins conditioned on a small sample size and fast runtime. The technique paves pathways to characterize various physiological and pathological conditions using the spatial organization of TCRs from patient T cells.
Collapse
Affiliation(s)
- Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Rangika Munaweera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jesse Anderson
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - William D O'Neill
- Department of Bioengineering, Colleges of Engineering and Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
20
|
Raiter A, Zlotnik O, Lipovetsky J, Mugami S, Dar S, Lubin I, Sharon E, Cohen CJ, Yerushalmi R. A novel role for an old target: CD45 for breast cancer immunotherapy. Oncoimmunology 2021; 10:1929725. [PMID: 34104545 PMCID: PMC8158046 DOI: 10.1080/2162402x.2021.1929725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer subtypes have not shown significant response to current immunomodulatory therapies. Although most subtypes are treatable, triple negative breast cancer (TNBC), an aggressive highly metastatic cancer, comprising 10-20% of breast cancers, remains an unmet medical need. New strategies are needed in order to overcome flaws in the responsiveness to current TNBC therapies. Our aims were: first, to determine the efficacy of a novel immunomodulatory peptide, C24D, on TNBC and second, to elucidate the molecular mechanism by which C24D induces immune-modulating tumor killing. Using mass spectrometry analysis, we identified CD45 as the C24D binding receptor. In vitro and in vivo TNBC models were used to assess the efficacy of C24D in reversing TNBC-induced immunosuppression and in triggering immune-modulated tumor cell killing. The CD45 signal transduction pathway was evaluated by western blot and FACS analyses. We revealed that addition of PBMCs from healthy female donors to TNBC cells results in a cascade of suppressive CD45 intracellular signals. On binding to CD45's extra-cellular domain on TNBC-suppressed leukocytes, the C24D peptide re-activates the Src family of tyrosine kinases, resulting in specific tumor immune response. In vitro, immune reactivation by C24D results in an increase of CD69+ T and CD69+ NK cells, triggering specific killing of TNBC cells. In vivo, C24D induced CD8+ and activated CD56+ tumor infiltrated cells, resulting in tumor apoptosis. Our results should renew interest in molecules targeting CD45, such as the C24D peptide, as a novel strategy for TNBC immunotherapy.
Collapse
Affiliation(s)
- Annat Raiter
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Oran Zlotnik
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
- Surgery Department, Breast Cancer Unit, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Julia Lipovetsky
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Shany Mugami
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Shira Dar
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ido Lubin
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Eran Sharon
- Surgery Department, Breast Cancer Unit, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Cyrille J. Cohen
- Laboratory of Tumor Immunotherapy, the Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Rinat Yerushalmi
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
- Breast Cancer Unit, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
21
|
T cells: a dedicated effector kinase pathways for every trait? Biochem J 2021; 478:1303-1307. [PMID: 33755101 DOI: 10.1042/bcj20210006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022]
Abstract
Signaling pathways play critical roles in regulating the activation of T cells. Recognition of foreign peptide presented by MHC to the T cell receptor (TCR) triggers a signaling cascade of proximal kinases and adapter molecules that lead to the activation of Effector kinase pathways. These effector kinase pathways play pivotal roles in T cell activation, differentiation, and proliferation. RNA sequencing-based methods have provided insights into the gene expression programs that support the above-mentioned cell biological responses. The proteome is often overlooked. A recent study by Damasio et al. [Biochem. J. (2021) 478, 79-98. doi:10.1042/BCJ20200661] focuses on characterizing the effect of extracellular signal-regulated kinase (ERK) on the remodeling of the proteome of activated CD8+ T cells using Mass spectrometric analysis. Surprisingly, the Effector kinase ERK pathway is responsible for only a select proportion of the proteome that restructures during T cell activation. The primary targets of ERK signaling are transcription factors, cytokines, and cytokine receptors. In this commentary, we discuss the recent findings by Damasio et al. [Biochem. J. (2021) 478, 79-98. doi:10.1042/BCJ20200661] in the context of different Effector kinase pathways in activated T cells.
Collapse
|
22
|
Shen L, Matloubian M, Kadlecek TA, Weiss A. A disease-associated mutation that weakens ZAP70 autoinhibition enhances responses to weak and self-ligands. Sci Signal 2021; 14:14/668/eabc4479. [PMID: 33531381 DOI: 10.1126/scisignal.abc4479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The cytoplasmic kinase ZAP70 is critical for T cell antigen receptor (TCR) signaling. The R360P mutation in ZAP70 is responsible for an early-onset familial autoimmune syndrome. The structural location and biochemical signaling effects of the R360P mutation are consistent with weakening of the autoinhibitory conformation of ZAP70. Mice with a ZAP70 R360P mutation and polyclonal TCR repertoires exhibited relatively normal T cell development but showed evidence of increased signaling. In addition, the R360P mutation resulted in enhanced follicular helper T cell expansion after LCMV infection. To eliminate the possibility of a TCR repertoire shift, the OTI transgenic TCR was introduced into R360P mice, which resulted in enhanced T cell responses to weaker stimuli, including weak agonists and a self-peptide. These observations suggest that disruption of ZAP70 autoinhibition by the R360P mutation enables increased mature T cell sensitivity to self-antigens that would normally be ignored by wild-type T cells, a mechanism that may contribute to the break of tolerance in human patients with R360P mutation.
Collapse
Affiliation(s)
- Lin Shen
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mehrdad Matloubian
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theresa A Kadlecek
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA. .,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
TCR Recognition of Peptide-MHC-I: Rule Makers and Breakers. Int J Mol Sci 2020; 22:ijms22010068. [PMID: 33374673 PMCID: PMC7793522 DOI: 10.3390/ijms22010068] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
T cells are a critical part of the adaptive immune system that are able to distinguish between healthy and unhealthy cells. Upon recognition of protein fragments (peptides), activated T cells will contribute to the immune response and help clear infection. The major histocompatibility complex (MHC) molecules, or human leukocyte antigens (HLA) in humans, bind these peptides to present them to T cells that recognise them with their surface T cell receptors (TCR). This recognition event is the first step that leads to T cell activation, and in turn can dictate disease outcomes. The visualisation of TCR interaction with pMHC using structural biology has been crucial in understanding this key event, unravelling the parameters that drive this interaction and their impact on the immune response. The last five years has been the most productive within the field, wherein half of current unique TCR-pMHC-I structures to date were determined within this time. Here, we review the new insights learned from these recent TCR-pMHC-I structures and their impact on T cell activation.
Collapse
|
24
|
Clemens L, Dushek O, Allard J. Intrinsic Disorder in the T Cell Receptor Creates Cooperativity and Controls ZAP70 Binding. Biophys J 2020; 120:379-392. [PMID: 33285117 PMCID: PMC7840419 DOI: 10.1016/j.bpj.2020.11.2266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/24/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
Many immunoreceptors have cytoplasmic domains that are intrinsically disordered (i.e., have high configurational entropy), have multiple sites of posttranslational modification (e.g., tyrosine phosphorylation), and participate in nonlinear signaling pathways (e.g., exhibiting switch-like behavior). Several hypotheses to explain the origin of these nonlinearities fall under the broad hypothesis that modification at one site changes the immunoreceptor’s entropy, which in turn changes further modification dynamics. Here, we use coarse-grain simulation to study three scenarios, all related to the chains that constitute the T cell receptor (TCR). We find that first, if phosphorylation induces local changes in the flexibility of the TCR ζ-chain, this naturally leads to rate enhancements and cooperativity. Second, we find that TCR CD3ɛ can provide a switch by modulating its residence in the plasma membrane. By constraining our model to be consistent with the previous observation that both basic residues and phosphorylation control membrane residence, we find that there is only a moderate rate enhancement of 10% between first and subsequent phosphorylation events. Third, we find that volume constraints do not limit the number of ZAP70s that can bind the TCR but that entropic penalties lead to a 200-fold decrease in binding rate by the seventh ZAP70, potentially explaining the observation that each TCR has around six ZAP70 molecules bound after receptor triggering. In all three scenarios, our results demonstrate that phenomena that change an immunoreceptor chain’s entropy (stiffening, confinement to a membrane, and multiple simultaneous binding) can lead to nonlinearities (rate enhancement, switching, and negative cooperativity) in how the receptor participates in signaling. These polymer-entropy-driven nonlinearities may augment the nonlinearities that arise from, e.g., kinetic proofreading and cluster formation. They also suggest different design strategies for engineered receptors, e.g., whether or not to put signaling modules on one chain or multiple clustered chains.
Collapse
Affiliation(s)
- Lara Clemens
- Center for Complex Biological Systems, University of California Irvine, Irvine, California
| | - Omer Dushek
- Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jun Allard
- Center for Complex Biological Systems, University of California Irvine, Irvine, California; Department of Mathematics and Department of Physics and Astronomy, University of California Irvine, Irvine, California.
| |
Collapse
|
25
|
An allosteric hot spot in the tandem-SH2 domain of ZAP-70 regulates T-cell signaling. Biochem J 2020; 477:1287-1308. [PMID: 32203568 DOI: 10.1042/bcj20190879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
T-cell receptor (TCR) signaling is initiated by recruiting ZAP-70 to the cytosolic part of TCR. ZAP-70, a non-receptor tyrosine kinase, is composed of an N-terminal tandem SH2 (tSH2) domain connected to the C-terminal kinase domain. The ZAP-70 is recruited to the membrane through binding of tSH2 domain and the doubly phosphorylated ITAM motifs of CD3 chains in the TCR complex. Our results show that the tSH2 domain undergoes a biphasic structural transition while binding to the doubly phosphorylated ITAM-ζ1 peptide. The C-terminal SH2 domain binds first to the phosphotyrosine residue of ITAM peptide to form an encounter complex leading to subsequent binding of second phosphotyrosine residue to the N-SH2 domain. We decipher a network of noncovalent interactions that allosterically couple the two SH2 domains during binding to doubly phosphorylated ITAMs. Mutation in the allosteric network residues, for example, W165C, uncouples the formation of encounter complex to the subsequent ITAM binding thus explaining the altered recruitment of ZAP-70 to the plasma membrane causing autoimmune arthritis in mice. The proposed mechanism of allosteric coupling is unique to ZAP-70, which is fundamentally different from Syk, a close homolog of ZAP-70 expressed in B-cells.
Collapse
|
26
|
Kolawole EM, Lamb TJ, Evavold BD. Relationship of 2D Affinity to T Cell Functional Outcomes. Int J Mol Sci 2020; 21:E7969. [PMID: 33120989 PMCID: PMC7662510 DOI: 10.3390/ijms21217969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are critical for a functioning adaptive immune response and a strong correlation exists between T cell responses and T cell receptor (TCR): peptide-loaded MHC (pMHC) binding. Studies that utilize pMHC tetramer, multimers, and assays of three-dimensional (3D) affinity have provided advancements in our understanding of T cell responses across different diseases. However, these technologies focus on higher affinity and avidity T cells while missing the lower affinity responders. Lower affinity TCRs in expanded polyclonal populations almost always constitute a significant proportion of the response with cells mediating different effector functions associated with variation in the proportion of high and low affinity T cells. Since lower affinity T cells expand and are functional, a fully inclusive view of T cell responses is required to accurately interpret the role of affinity for adaptive T cell immunity. For example, low affinity T cells are capable of inducing autoimmune disease and T cells with an intermediate affinity have been shown to exhibit an optimal anti-tumor response. Here, we focus on how affinity of the TCR may relate to T cell phenotype and provide examples where 2D affinity influences functional outcomes.
Collapse
Affiliation(s)
| | | | - Brian D. Evavold
- Department of Pathology, University of Utah, 15 N Medical Drive, Salt Lake City, UT 84112, USA; (E.M.K.); (T.J.L.)
| |
Collapse
|
27
|
Chen P, Ming S, Lao J, Li C, Wang H, Xiong L, Zhang S, Liang Z, Niu X, Deng S, Geng L, Wu M, Wu Y, Gong S. CD103 Promotes the Pro-inflammatory Response of Gastric Resident CD4 + T Cell in Helicobacter pylori-Positive Gastritis. Front Cell Infect Microbiol 2020; 10:436. [PMID: 32974219 PMCID: PMC7472738 DOI: 10.3389/fcimb.2020.00436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
CD103 is considered as a surface marker for the resident immune cells. However, little is known about the intrinsic function of CD103 in infection and inflammation. In this study, we found that CD103 was highly expressed in CD4+T cells of the gastric mucosa from patients with H. pylori-positive gastritis. Mucosal resident CD103+CD4+T cells exhibited an increase in the CD45RO+CCR7− effector memory phenotype and high expression of the chemokine receptors CXCR3 and CCR9 compared with those in CD103−CD4+T cells. An In vitro coculture study demonstrated that H. pylori-specific antigen CagA/VacA-primed dendritic cells (DCs) induced proliferation and IFN-γ, TNF as well as IL-17 production by CD103+CD4+T cells from patients with H. pylori-positive gastritis, while blocking CD103 with a neutralizing antibody reduced proliferation and IFN-γ, TNF, and IL-17 production by CD103+CD4+T cells cocultured with DCs. Moreover, immunoprecipitation revealed that CD103 interacted with TCR α/β and CD3ζ, and activation of CD103 enhanced the phosphorylation of ZAP70 induced by the TCR signal. Finally, increased T-bet and Blimp1 levels were also observed in CD103+CD4+T cells, and activating CD103 increased T-bet and Blimp1 expression in CD4+T cells. Our results explored the intrinsic function of CD103 in gastric T cells from patients with H. pylori-positive gastritis, which may provide a therapeutic target for the treatment of gastritis.
Collapse
Affiliation(s)
- Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Siqi Ming
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juanfeng Lao
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunna Li
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Liya Xiong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shunxian Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zibin Liang
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoli Niu
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Simei Deng
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Minhao Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China.,Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongjian Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China.,Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Li W, Qiu S, Chen J, Jiang S, Chen W, Jiang J, Wang F, Si W, Shu Y, Wei P, Fan G, Tian R, Wu H, Xu C, Wang H. Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy. Immunity 2020; 53:456-470.e6. [PMID: 32758419 DOI: 10.1016/j.immuni.2020.07.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023]
Abstract
Clinical evidence suggests that poor persistence of chimeric antigen receptor-T cells (CAR-T) in patients limits therapeutic efficacy. Here, we designed a CAR with recyclable capability to promote in vivo persistence and to sustain antitumor activity. We showed that the engagement of tumor antigens induced rapid ubiquitination of CARs, causing CAR downmodulation followed by lysosomal degradation. Blocking CAR ubiquitination by mutating all lysines in the CAR cytoplasmic domain (CARKR) markedly repressed CAR downmodulation by inhibiting lysosomal degradation while enhancing recycling of internalized CARs back to the cell surface. Upon encountering tumor antigens, CARKR-T cells ameliorated the loss of surface CARs, which promoted their long-term killing capacity. Moreover, CARKR-T cells containing 4-1BB signaling domains displayed elevated endosomal 4-1BB signaling that enhanced oxidative phosphorylation and promoted memory T cell differentiation, leading to superior persistence in vivo. Collectively, our study provides a straightforward strategy to optimize CAR-T antitumor efficacy by redirecting CAR trafficking.
Collapse
Affiliation(s)
- Wentao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Qiu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Chen
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shutan Jiang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wendong Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingwei Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen Si
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yilai Shu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haitao Wu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
29
|
Borna S, Fabisik M, Ilievova K, Dvoracek T, Brdicka T. Mechanisms determining a differential threshold for sensing Src family kinase activity by B and T cell antigen receptors. J Biol Chem 2020; 295:12935-12945. [PMID: 32665402 DOI: 10.1074/jbc.ra120.013552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Although signal transduction by immunoreceptors such as the T cell antigen receptor (TCR), B cell antigen receptor (BCR), and Fc receptors uses the same schematic and similar molecules, the threshold and the fine-tuning are set differently for each receptor. One manifestation of these differences is that inhibition of Src family kinases (SFK) blocks TCR but not BCR signaling. SFKs are key kinases phosphorylating immunoreceptor tyrosine-based activation motifs (ITAM) in both these receptors. However, it has been proposed that in B cells, downstream kinase SYK can phosphorylate ITAM sequences independently of SFK, allowing it to compensate for the loss of SFK activity, whereas its T cell paralog ZAP-70 is not capable of this compensation. To test this proposal, we examined signaling in SYK- and ZAP-70-deficient B and T cell lines expressing SYK or ZAP-70. We also analyzed signal transduction in T cells expressing BCR or B cells expressing part of the TCR complex. We show that when compared with ZAP-70, SYK lowered the threshold for SFK activity necessary to initiate antigen receptor signaling in both T and B cells. However, neither SYK nor ZAP-70 were able to initiate signaling independently of SFK. We further found that additional important factors are involved in setting this threshold. These include differences between the antigen receptor complexes themselves and the spatial separation of the key transmembrane adaptor protein LAT from the TCR. Thus, immunoreceptor sensing of SFK activity is a complex process regulated at multiple levels.
Collapse
Affiliation(s)
- Simon Borna
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristyna Ilievova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Dvoracek
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
30
|
IgD-Fc-Ig fusion protein, a new biological agent, inhibits T cell function in CIA rats by inhibiting IgD-IgDR-Lck-NF-κB signaling pathways. Acta Pharmacol Sin 2020; 41:800-812. [PMID: 31937932 PMCID: PMC7470893 DOI: 10.1038/s41401-019-0337-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
IgD-Fc-Ig fusion protein, a new biological agent, is constructed by linking a segment of human IgD-Fc with a segment of human IgG1-Fc, which specifically blocks the IgD-IgDR pathway and selectively inhibits the abnormal proliferation, activation, and differentiation of T cells. In this study we investigated whether IgD-Fc-Ig exerted therapeutic effects in collagen-induced arthritis (CIA) rats. CIA rats were treated with IgD-Fc-Ig (1, 3, and 9 mg/kg) or injected with biological agents etanercept (3 mg/kg) once every 3 days for 40 days. In the PBMCs and spleen lymphocytes of CIA rats, both T and B cells exhibited abnormal proliferation; the percentages of CD3+ total T cells, CD3+CD4+ Th cells, CD3+CD4+CD25+-activated Th cells, Th1(CD4+IFN-γ+), and Th17(CD4+IL-17+) were significantly increased, whereas the Treg (CD4+CD25+Foxp3+) cell percentage was decreased. IgD-Fc-Ig administration dose-dependently decreased the indicators of arthritis; alleviated the histopathology of spleen and joint; reduced serum inflammatory cytokines levels; decreased the percentages of CD3+ total T cells, CD3+CD4+ Th cells, CD3+CD4+CD25+-activated Th cells, Th1 (CD4+IFN-γ+), and Th17(CD4+IL-17+); increased Treg (CD4+CD25+Foxp3+) cell percentage; and down-regulated the expression of key molecules in IgD-IgDR-Lck-NF-κB signaling (p-Lck, p-ZAP70, p-P38, p-NF-κB65). Treatment of normal T cells with IgD (9 μg/mL) in vitro promoted their proliferation. Co-treatment with IgD-Fc-Ig (0.1–10 μg/mL) dose-dependently decreased IgD-stimulated T cell subsets percentages and down-regulated the IgD-IgDR-Lck-NF-κB signaling. In summary, this study demonstrates that IgD-Fc-Ig alleviates CIA and regulates the functions of T cells through inhibiting IgD-IgDR-Lck-NF-κB signaling.
Collapse
|
31
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Alhabbab RY. Targeting Cancer Stem Cells by Genetically Engineered Chimeric Antigen Receptor T Cells. Front Genet 2020; 11:312. [PMID: 32391048 PMCID: PMC7188929 DOI: 10.3389/fgene.2020.00312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The term cancer stem cell (CSC) starts 25 years ago with the evidence that CSC is a subpopulation of tumor cells that have renewal ability and can differentiate into several distinct linages. Therefore, CSCs play crucial role in the initiation and the maintenance of cancer. Moreover, it has been proposed throughout several studies that CSCs are behind the failure of the conventional chemo-/radiotherapy as well as cancer recurrence due to their ability to resist the therapy and their ability to re-regenerate. Thus, the need for targeted therapy to eliminate CSCs is crucial; for that reason, chimeric antigen receptor (CAR) T cells has currently been in use with high rate of success in leukemia and, to some degree, in patients with solid tumors. This review outlines the most common CSC populations and their common markers, in particular CD133, CD90, EpCAM, CD44, ALDH, and EGFRVIII, the interaction between CSCs and the immune system, CAR T cell genetic engineering and signaling, CAR T cells in targeting CSCs, and the barriers in using CAR T cells as immunotherapy to treat solid cancers.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Division of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Myers DR, Wheeler B, Roose JP. mTOR and other effector kinase signals that impact T cell function and activity. Immunol Rev 2020; 291:134-153. [PMID: 31402496 DOI: 10.1111/imr.12796] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 12/27/2022]
Abstract
T cells play important roles in autoimmune diseases and cancer. Following the cloning of the T cell receptor (TCR), the race was on to map signaling proteins that contributed to T cell activation downstream of the TCR as well as co-stimulatory molecules such as CD28. We term this "canonical TCR signaling" here. More recently, it has been appreciated that T cells need to accommodate increased metabolic needs that stem from T cell activation in order to function properly. A central role herein has emerged for mechanistic/mammalian target of rapamycin (mTOR). In this review we briefly cover canonical TCR signaling to set the stage for discussion on mTOR signaling, mRNA translation, and metabolic adaptation in T cells. We also discuss the role of mTOR in follicular helper T cells, regulatory T cells, and other T cell subsets. Our lab recently uncovered that "tonic signals", which pass through proximal TCR signaling components, are robustly and selectively transduced to mTOR to promote baseline translation of various mRNA targets. We discuss insights on (tonic) mTOR signaling in the context of T cell function in autoimmune diseases such as lupus as well as in cancer immunotherapy through CAR-T cell or checkpoint blockade approaches.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Wheeler
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
34
|
Thumkeo D, Katsura Y, Nishimura Y, Kanchanawong P, Tohyama K, Ishizaki T, Kitajima S, Takahashi C, Hirata T, Watanabe N, Krummel MF, Narumiya S. mDia1/3-dependent actin polymerization spatiotemporally controls LAT phosphorylation by Zap70 at the immune synapse. SCIENCE ADVANCES 2020; 6:eaay2432. [PMID: 31911947 PMCID: PMC6938706 DOI: 10.1126/sciadv.aay2432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/31/2019] [Indexed: 05/06/2023]
Abstract
The mechanism by which the cytosolic protein Zap70 physically interacts with and phosphorylates its substrate, the transmembrane protein LAT, upon T cell receptor (TCR) stimulation remains largely obscure. In this study, we found that the pharmacological inhibition of formins, a major class of actin nucleators, suppressed LAT phosphorylation by Zap70, despite TCR stimulation-dependent phosphorylation of Zap70 remaining intact. High-resolution imaging and three-dimensional image reconstruction revealed that localization of phosphorylated Zap70 to the immune synapse (IS) and subsequent LAT phosphorylation are critically dependent on formin-mediated actin polymerization. Using knockout mice, we identify mDia1 and mDia3, which are highly expressed in T cells and which localize to the IS upon TCR activation, as the critical formins mediating this process. Our findings therefore describe previously unsuspected roles for mDia1 and mDia3 in the spatiotemporal control of Zap70-dependent LAT phosphorylation at the IS through regulation of filamentous actin, and underscore their physiological importance in TCR signaling.
Collapse
Affiliation(s)
- D. Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Corresponding author. (D.T.); (S.N.)
| | - Y. Katsura
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan
| | - Y. Nishimura
- Mechanobiology Institute, National University of Singapore, Singapore, Republic of Singapore
| | - P. Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - K. Tohyama
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan
| | - T. Ishizaki
- Department of Pharmacology, Oita University Graduate School of Medicine, Oita, Japan
| | - S. Kitajima
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - C. Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - T. Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Shiga, Japan
| | - N. Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - M. F. Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - S. Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Corresponding author. (D.T.); (S.N.)
| |
Collapse
|
35
|
Wan R, Wu J, Ouyang M, Lei L, Wei J, Peng Q, Harrison R, Wu Y, Cheng B, Li K, Zhu C, Tang L, Wang Y, Lu S. Biophysical basis underlying dynamic Lck activation visualized by ZapLck FRET biosensor. SCIENCE ADVANCES 2019; 5:eaau2001. [PMID: 31223643 PMCID: PMC6584686 DOI: 10.1126/sciadv.aau2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/15/2019] [Indexed: 05/25/2023]
Abstract
Lck plays crucial roles in TCR signaling. We developed a new and sensitive FRET biosensor (ZapLck) to visualize Lck kinase activity with high spatiotemporal resolutions in live cells. ZapLck revealed that 62% of Lck signal was preactivated in T-cells. In Lck-deficient JCam T-cells, Lck preactivation was abolished, which can be restored to 51% by reconstitution with wild-type Lck (LckWT) but not a putatively inactive mutant LckY394F. LckWT also showed a stronger basal Lck-Lck interaction and a slower diffusion rate than LckY394F. Interestingly, aggregation of TCR receptors by antibodies in JCam cells led to a strong activation of reconstituted LckY394F similar to LckWT. Both activated LckY394F and LckWT diffused more slowly and displayed increased Lck-Lck interaction at a similar level. Therefore, these results suggest that a phosphorylatable Y394 is necessary for the basal-level interaction and preactivation of LckWT, while antibody-induced TCR aggregation can trigger the full activation of LckY394F.
Collapse
Affiliation(s)
- Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jenny Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mingxing Ouyang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lei Lei
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiaming Wei
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reed Harrison
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yiqian Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Binbin Cheng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaitao Li
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cheng Zhu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaoying Lu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
36
|
Xie J, Han X, Zhao C, Canonigo-Balancio AJ, Yates JR, Li Y, Lillemeier BF, Altman A. Phosphotyrosine-dependent interaction between the kinases PKCθ and Zap70 promotes proximal TCR signaling. Sci Signal 2019; 12:12/577/eaar3349. [PMID: 30992398 DOI: 10.1126/scisignal.aar3349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein kinase C-θ (PKCθ) is an important component of proximal T cell receptor (TCR) signaling. We previously identified the amino-terminal C2 domain of PKCθ as a phosphotyrosine (pTyr)-binding domain. Using a mutant form of PKCθ that cannot bind pTyr (PKCθHR2A), we showed that pTyr binding by PKCθ was required for TCR-induced T cell activation, proliferation, and TH2 cell differentiation but not for T cell development. Using tandem mass spectrometry and coimmunoprecipitation, we identified the kinase ζ-associated protein kinase of 70 kDa (Zap70) as a binding partner of the PKCθ pTyr-binding pocket. Tyr126 of Zap70 directly bound to PKCθ, and the interdomain B residues Tyr315 and Tyr319 were indirectly required for binding to PKCθ, reflecting their role in promoting the open conformation of Zap70. PKCθHR2A-expressing CD4+ T cells displayed defects not only in known PKCθ-dependent signaling events, such as nuclear factor κB (NF-κB) activation and TH2 cell differentiation, but also in full activation of Zap70 itself and in the activating phosphorylation of linker of activation of T cells (LAT) and phospholipase C-γ1 (PLCγ1), signaling proteins that are traditionally considered to be activated independently of PKC. These findings demonstrate that PKCθ plays an important role in a positive feedback regulatory loop that modulates TCR-proximal signaling and, moreover, provide a mechanistic explanation for earlier reports that documented an important role for PKCθ in T cell Ca2+ signaling. This PKCθ-Zap70 interaction could potentially serve as a promising and highly selective immunosuppressive drug target in autoimmunity and organ transplantation.
Collapse
Affiliation(s)
- Jiji Xie
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chensi Zhao
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | | | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yingqiu Li
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Björn F Lillemeier
- Nomis Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Motsch V, Brameshuber M, Baumgart F, Schütz GJ, Sevcsik E. A micropatterning platform for quantifying interaction kinetics between the T cell receptor and an intracellular binding protein. Sci Rep 2019; 9:3288. [PMID: 30824760 PMCID: PMC6397226 DOI: 10.1038/s41598-019-39865-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
A complete understanding of signaling processes at the plasma membrane depends on a quantitative characterization of the interactions of the involved proteins. Fluorescence recovery after photobleaching (FRAP) is a widely used and convenient technique to obtain kinetic parameters on protein interactions in living cells. FRAP experiments to determine unbinding time constants for proteins at the plasma membrane, however, are often hampered by non-specific contributions to the fluorescence recovery signal. On the example of the interaction between the T cell receptor (TCR) and the Syk kinase ZAP70, we present here an approach based on protein micropatterning that allows the elimination of such non-specific contributions and considerably simplifies analysis of FRAP data. Specifically, detection and reference areas are created within single cells, each being either enriched or depleted in TCR, which permits the isolation of ZAP70-TCR binding in a straight-forward manner. We demonstrate the applicability of our method by comparing it to a conventional FRAP approach.
Collapse
Affiliation(s)
- Viktoria Motsch
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Mario Brameshuber
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Florian Baumgart
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria.
| |
Collapse
|
38
|
Arulraj T, Barik D. Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling. PLoS One 2018; 13:e0206232. [PMID: 30356330 PMCID: PMC6200280 DOI: 10.1371/journal.pone.0206232] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
Programmed cell death-1 (PD-1) is an inhibitory immune checkpoint receptor that negatively regulates the functioning of T cell. Although the direct targets of PD-1 were not identified, its inhibitory action on the TCR signaling pathway was known much earlier. Recent experiments suggest that the PD-1 inhibits the TCR and CD28 signaling pathways at a very early stage ─ at the level of phosphorylation of the cytoplasmic domain of TCR and CD28 receptors. Here, we develop a mathematical model to investigate the influence of inhibitory effect of PD-1 on the activation of early TCR and CD28 signaling molecules. Proposed model recaptures several quantitative experimental observations of PD-1 mediated inhibition. Model simulations show that PD-1 imposes a net inhibitory effect on the Lck kinase. Further, the inhibitory effect of PD-1 on the activation of TCR signaling molecules such as Zap70 and SLP76 is significantly enhanced by the PD-1 mediated inhibition of Lck. These results suggest a critical role for Lck as a mediator for PD-1 induced inhibition of TCR signaling network. Multi parametric sensitivity analysis explores the effect of parameter uncertainty on model simulations.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Centre for Systems Biology, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, Telangana, India
| | - Debashis Barik
- School of Chemistry, University of Hyderabad, Central University P.O., Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
39
|
Sibener LV, Fernandes RA, Kolawole EM, Carbone CB, Liu F, McAffee D, Birnbaum ME, Yang X, Su LF, Yu W, Dong S, Gee MH, Jude KM, Davis MM, Groves JT, Goddard WA, Heath JR, Evavold BD, Vale RD, Garcia KC. Isolation of a Structural Mechanism for Uncoupling T Cell Receptor Signaling from Peptide-MHC Binding. Cell 2018; 174:672-687.e27. [PMID: 30053426 PMCID: PMC6140336 DOI: 10.1016/j.cell.2018.06.017] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/13/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
TCR-signaling strength generally correlates with peptide-MHC binding affinity; however, exceptions exist. We find high-affinity, yet non-stimulatory, interactions occur with high frequency in the human T cell repertoire. Here, we studied human TCRs that are refractory to activation by pMHC ligands despite robust binding. Analysis of 3D affinity, 2D dwell time, and crystal structures of stimulatory versus non-stimulatory TCR-pMHC interactions failed to account for their different signaling outcomes. Using yeast pMHC display, we identified peptide agonists of a formerly non-responsive TCR. Single-molecule force measurements demonstrated the emergence of catch bonds in the activating TCR-pMHC interactions, correlating with exclusion of CD45 from the TCR-APC contact site. Molecular dynamics simulations of TCR-pMHC disengagement distinguished agonist from non-agonist ligands based on the acquisition of catch bonds within the TCR-pMHC interface. The isolation of catch bonds as a parameter mediating the coupling of TCR binding and signaling has important implications for TCR and antigen engineering for immunotherapy.
Collapse
Affiliation(s)
- Leah V Sibener
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ricardo A Fernandes
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth M Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Catherine B Carbone
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fan Liu
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA; Institute for Systems Biology, Seattle, WA 98109, USA
| | - Darren McAffee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael E Birnbaum
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinbo Yang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura F Su
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wong Yu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shen Dong
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marvin H Gee
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - William A Goddard
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - James R Heath
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Tuttle KD, Krovi SH, Zhang J, Bedel R, Harmacek L, Peterson LK, Dragone LL, Lefferts A, Halluszczak C, Riemondy K, Hesselberth JR, Rao A, O'Connor BP, Marrack P, Scott-Browne J, Gapin L. TCR signal strength controls thymic differentiation of iNKT cell subsets. Nat Commun 2018; 9:2650. [PMID: 29985393 PMCID: PMC6037704 DOI: 10.1038/s41467-018-05026-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
During development in the thymus, invariant natural killer T (iNKT) cells commit to one of three major functionally different subsets, iNKT1, iNKT2, and iNKT17. Here, we show that T cell antigen receptor (TCR) signal strength governs the development of iNKT cell subsets, with strong signaling promoting iNKT2 and iNKT17 development. Altering TCR diversity or signaling diminishes iNKT2 and iNKT17 cell subset development in a cell-intrinsic manner. Decreased TCR signaling affects the persistence of Egr2 expression and the upregulation of PLZF. By genome-wide comparison of chromatin accessibility, we identify a subset of iNKT2-specific regulatory elements containing NFAT and Egr binding motifs that is less accessible in iNKT2 cells that develop from reduced TCR signaling. These data suggest that variable TCR signaling modulates regulatory element activity at NFAT and Egr binding sites exerting a determinative influence on the dynamics of gene enhancer accessibility and the developmental fate of iNKT cells. Invariant natural killer T (iNKT) cells can be subsetted by their cytokine profiles, but how they develop in the thymus is unclear. Here the authors show, by analysing mice carrying mutant Zap70 genes, that T cell receptor signaling strength induces epigenetic changes of genes to modulate iNKT lineages.
Collapse
Affiliation(s)
- Kathryn D Tuttle
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - S Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Jingjing Zhang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Romain Bedel
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.,Department of Oncology, University of Lausanne, Chemin des Boveresses 155, Epalinges, 1066, Switzerland
| | - Laura Harmacek
- Center for Genes, Environment, and Health, Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.,Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, 80206, CO, USA
| | - Lisa K Peterson
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, 80206, CO, USA.,ARUP Laboratories, Institute of Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, 84108, UT, Switzerland.,Department of Pathology, University of Utah, 30N 1900E, Salt Lake City, 84132, UT, USA
| | - Leonard L Dragone
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, 80206, CO, USA.,Merck Research Laboratories, San Francisco, CA, USA
| | - Adam Lefferts
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Catherine Halluszczak
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, 12800 E. 19th Ave, Aurora, 80045, CO, USA
| | - Jay R Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, 12800 E. 19th Ave, Aurora, 80045, CO, USA.,Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA
| | - Anjana Rao
- La Jolla Institute, 9420 Athena Cir, La Jolla, 92037, CA, USA.,Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Dr, La Jolla, CA, 92037, USA.,University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Brian P O'Connor
- Center for Genes, Environment, and Health, Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.,Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, 80206, CO, USA
| | - Philippa Marrack
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.,Department of Medicine, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA
| | - James Scott-Browne
- La Jolla Institute, 9420 Athena Cir, La Jolla, 92037, CA, USA.,Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Dr, La Jolla, CA, 92037, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA. .,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.
| |
Collapse
|
41
|
Waight JD, Chand D, Dietrich S, Gombos R, Horn T, Gonzalez AM, Manrique M, Swiech L, Morin B, Brittsan C, Tanne A, Akpeng B, Croker BA, Buell JS, Stein R, Savitsky DA, Wilson NS. Selective FcγR Co-engagement on APCs Modulates the Activity of Therapeutic Antibodies Targeting T Cell Antigens. Cancer Cell 2018; 33:1033-1047.e5. [PMID: 29894690 PMCID: PMC6292441 DOI: 10.1016/j.ccell.2018.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/03/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
The co-engagement of fragment crystallizable (Fc) gamma receptors (FcγRs) with the Fc region of recombinant immunoglobulin monoclonal antibodies (mAbs) and its contribution to therapeutic activity has been extensively studied. For example, Fc-FcγR interactions have been shown to be important for mAb-directed effector cell activities, as well as mAb-dependent forward signaling into target cells via receptor clustering. Here we identify a function of mAbs targeting T cell-expressed antigens that involves FcγR co-engagement on antigen-presenting cells (APCs). In the case of mAbs targeting CTLA-4 and TIGIT, the interaction with FcγR on APCs enhanced antigen-specific T cell responses and tumoricidal activity. This mechanism extended to an anti-CD45RB mAb, which led to FcγR-dependent regulatory T cell expansion in mice.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- Humans
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
| | | | - Sylvia Dietrich
- Agenus Inc., Lexington, MA 02421, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | - Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
44
|
Glassman CR, Parrish HL, Lee MS, Kuhns MS. Reciprocal TCR-CD3 and CD4 Engagement of a Nucleating pMHCII Stabilizes a Functional Receptor Macrocomplex. Cell Rep 2018; 22:1263-1275. [PMID: 29386113 PMCID: PMC5813697 DOI: 10.1016/j.celrep.2017.12.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022] Open
Abstract
CD4+ T cells convert the time that T cell receptors (TCRs) interact with peptides embedded within class II major histocompatibility complex molecules (pMHCII) into signals that direct cell-fate decisions. In principle, TCRs relay information to intracellular signaling motifs of the associated CD3 subunits, while CD4 recruits the kinase Lck to those motifs upon coincident detection of pMHCII. But the mechanics by which this occurs remain enigmatic. In one model, the TCR and CD4 bind pMHCII independently, while in another, CD4 interacts with a composite surface formed by the TCR-CD3 complex bound to pMHCII. Here, we report that the duration of TCR-pMHCII interactions impact CD4 binding to MHCII. In turn, CD4 increases TCR confinement to pMHCII via reciprocal interactions involving membrane distal and proximal CD4 ectodomains. The data suggest that a precisely assembled macrocomplex functions to reliably convert TCR-pMHCII confinement into reproducible signals that orchestrate adaptive immunity.
Collapse
Affiliation(s)
- Caleb R Glassman
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Mark S Lee
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The University of Arizona Cancer Center, The University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
45
|
Wu YJ, Chen HS, Chen WS, Dong J, Dong XJ, Dai X, Huang Q, Wei W. CP-25 Attenuates the Activation of CD4 + T Cells Stimulated with Immunoglobulin D in Human. Front Pharmacol 2018; 9:4. [PMID: 29410624 PMCID: PMC5787084 DOI: 10.3389/fphar.2018.00004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Researchers have shown that the level of immunoglobulin D (IgD) is often elevated in patients with autoimmune diseases. The possible roles of IgD on the function of human T cell activation are still unclear. Paeoniflorin-6′-O-benzene sulfonate (code: CP-25), the chemistry structural modifications of paeoniflorin, was a novel drug of anti-inflammation and immunomodulation. The aims of this study were to determine if human CD4+ T cells could be activated by IgD via the IgD receptor (IgDR)-Lck pathway and whether the novel compound CP-25 could affect the activation of T cells by regulating Lck. Human CD4+ T cells were purified from peripheral blood mononuclear cells using microbeads. T cell viability and proliferation were detected by Cell Counting Kit-8 and CFSE Cell Proliferation Kit. Cytokines secreted by T cells were assessed with the Quantibody Human Inflammation Array. The binding affinity and expression of IgDR on T cells were detected by flow cytometry, and protein expression of IgDR, Lck, and P-Lck were analyzed by western blot. IgD was shown to bind to IgDR on CD4+ T cells in a concentration-dependent manner and stimulate the activation and proliferation of these cells by enhancing phosphorylation of the activating tyrosine residue of Lck (Tyr394). CP-25 inhibited the IgD-stimulated activation and proliferation of CD4+ T cells, as well as the production of inflammatory cytokines; it was thus suggested that this process might be related to the downregulation of Lck (Tyr394) phosphorylation. These results demonstrate that IgD amplifies the activation of CD4+ T cells, which could be mediated by Lck phosphorylation. Further, CP-25, via its ability to modulate Lck, is a novel potential therapeutic agent for the treatment of human autoimmune diseases.
Collapse
Affiliation(s)
- Yu-Jing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Heng-Shi Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wen-Sheng Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Jin Dong
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Xiao-Jie Dong
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Xing Dai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Qiong Huang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
46
|
Ngoenkam J, Schamel WW, Pongcharoen S. Selected signalling proteins recruited to the T-cell receptor-CD3 complex. Immunology 2018; 153:42-50. [PMID: 28771705 PMCID: PMC5721247 DOI: 10.1111/imm.12809] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
The T-cell receptor (TCR)-CD3 complex, expressed on T cells, determines the outcome of a T-cell response. It consists of the TCR-αβ heterodimer and the non-covalently associated signalling dimers of CD3εγ, CD3εδ and CD3ζζ. TCR-αβ binds specifically to a cognate peptide antigen bound to an MHC molecule, whereas the CD3 subunits transmit the signal into the cytosol to activate signalling events. Recruitment of proteins to specialized localizations is one mechanism to regulate activation and termination of signalling. In the last 25 years a large number of signalling molecules recruited to the TCR-CD3 complex upon antigen binding to TCR-αβ have been described. Here, we review knowledge about five of those interaction partners: Lck, ZAP-70, Nck, WASP and Numb. Some of these proteins have been targeted in the development of immunomodulatory drugs aiming to treat patients with autoimmune diseases and organ transplants.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Humans
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Proteins/metabolism
- Mutation
- Nerve Tissue Proteins/metabolism
- Oncogene Proteins/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Wiskott-Aldrich Syndrome Protein/metabolism
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Jatuporn Ngoenkam
- Department of Microbiology and ParasitologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Wolfgang W. Schamel
- Department of ImmunologyInstitute for Biology IIIFaculty of BiologyUniversity of FreiburgFreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Centre for Chronic Immunodeficiency (CCI)Medical Centre‐University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Sutatip Pongcharoen
- Centre of Excellence in Medical BiotechnologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
- Centre of Excellence in Petroleum, Petrochemicals and Advanced MaterialsFaculty of ScienceNaresuan UniversityPhitsanulokThailand
- Department of MedicineFaculty of MedicineNaresuan UniversityPhitsanulokThailand
| |
Collapse
|
47
|
Bonura A, Vizzini A, Vlah S, Gervasi F, Longo A, Melis MR, Schildberg FA, Colombo P. Ci8 short, a novel LPS-induced peptide from the ascidian Ciona intestinalis, modulates responses of the human immune system. Immunobiology 2017; 223:210-219. [PMID: 29066254 DOI: 10.1016/j.imbio.2017.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
The selective modulation of immunity is an emerging concept driven by the vast advances in our understanding of this crucial host defense system. Invertebrates have raised researchers' interest as potential sources of new bioactive molecules owing to their antibacterial, anticancer and immunomodulatory activities. A LipoPolySaccharide (LPS) challenge in the ascidian Ciona intestinalis generates the transcript, Ci8 short, with cis-regulatory elements in the 3' UTR region that are essential for shaping innate immune responses. The derived amino acidic sequence in silico analysis showed specific binding to human Major Histocompatibility Complex (MHC) Class I and Class II alleles. The role of Ci8 short peptide was investigated in a more evolved immune system using human Peripheral Blood Mononuclear Cells (PBMCs) as in vitro model. The biological activities of this molecule include the activation of 70kDa TCR ζ chain Associated Protein kinase (ZAP-70) and T Cell Receptor (TCR) Vβ oligo clonal selection on CD4+ T lymphocytes as well as increased proliferation and IFN-γ secretion. Furthermore Ci8 short affects CD4+/CD25high induced regulatory T cells (iTreg) subset selection which co-expressed the functional markers TGF-β1/Latency Associated Protein (LAP) and CD39/CD73. This paper describes a new molecule that modulates important responses of the human adaptive immune system.
Collapse
Affiliation(s)
- Angela Bonura
- Istituto di Biomedicina e di Immunologia Molecolare "Alberto Monroy" del Consiglio Nazionale delle Ricerche, Palermo, Italy.
| | - Aiti Vizzini
- Marine Immunobiology Laboratory, Department of Biological Chemical Pharmaceutical Science and Technology, University of Palermo, Italy
| | - Sara Vlah
- Istituto di Biomedicina e di Immunologia Molecolare "Alberto Monroy" del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Francesco Gervasi
- U.O.S.D. Laboratorio Specialistico Oncologia, Ematologia e Colture Cellulari per Uso Clinico, ARNAS Civico, Palermo, Italy
| | - Alessandra Longo
- Istituto di Biomedicina e di Immunologia Molecolare "Alberto Monroy" del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Mario R Melis
- Istituto di Biomedicina e di Immunologia Molecolare "Alberto Monroy" del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Frank A Schildberg
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Paolo Colombo
- Istituto di Biomedicina e di Immunologia Molecolare "Alberto Monroy" del Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|
48
|
Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M, Cartwright HN, Ronceray P, Plitzko JM, Förster F, Wingreen NS, Engel BD, Mackinder LCM, Jonikas MC. The Eukaryotic CO 2-Concentrating Organelle Is Liquid-like and Exhibits Dynamic Reorganization. Cell 2017; 171:148-162.e19. [PMID: 28938114 PMCID: PMC5671343 DOI: 10.1016/j.cell.2017.08.008] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/12/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022]
Abstract
Approximately 30%-40% of global CO2 fixation occurs inside a non-membrane-bound organelle called the pyrenoid, which is found within the chloroplasts of most eukaryotic algae. The pyrenoid matrix is densely packed with the CO2-fixing enzyme Rubisco and is thought to be a crystalline or amorphous solid. Here, we show that the pyrenoid matrix of the unicellular alga Chlamydomonas reinhardtii is not crystalline but behaves as a liquid that dissolves and condenses during cell division. Furthermore, we show that new pyrenoids are formed both by fission and de novo assembly. Our modeling predicts the existence of a "magic number" effect associated with special, highly stable heterocomplexes that influences phase separation in liquid-like organelles. This view of the pyrenoid matrix as a phase-separated compartment provides a paradigm for understanding its structure, biogenesis, and regulation. More broadly, our findings expand our understanding of the principles that govern the architecture and inheritance of liquid-like organelles.
Collapse
Affiliation(s)
- Elizabeth S Freeman Rosenzweig
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Bin Xu
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Luis Kuhn Cuellar
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Antonio Martinez-Sanchez
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mike Strauss
- Cryo-EM Facility, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Heather N Cartwright
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Pierre Ronceray
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Luke C M Mackinder
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Martin C Jonikas
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
49
|
Schwartz SL, Cleyrat C, Olah MJ, Relich PK, Phillips GK, Hlavacek WS, Lidke KA, Wilson BS, Lidke DS. Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Mol Biol Cell 2017; 28:3397-3414. [PMID: 28855374 PMCID: PMC5687039 DOI: 10.1091/mbc.e17-06-0350] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/11/2022] Open
Abstract
Cross-linking of immunoglobulin E-bound FcεRI triggers multiple cellular responses, including degranulation and cytokine production. Signaling is dependent on recruitment of Syk via docking of its dual SH2 domains to phosphorylated tyrosines within the FcεRI immunoreceptor tyrosine-based activation motifs. Using single-molecule imaging in live cells, we directly visualized and quantified the binding of individual mNeonGreen-tagged Syk molecules as they associated with the plasma membrane after FcεRI activation. We found that Syk colocalizes transiently to FcεRI and that Syk-FcεRI binding dynamics are independent of receptor aggregate size. Substitution of glutamic acid for tyrosine between the Syk SH2 domains (Syk-Y130E) led to an increased Syk-FcεRI off-rate, loss of site-specific Syk autophosphorylation, and impaired downstream signaling. Genome edited cells expressing only Syk-Y130E were deficient in antigen-stimulated calcium release, degranulation, and production of some cytokines (TNF-a, IL-3) but not others (MCP-1, IL-4). We propose that kinetic discrimination along the FcεRI signaling pathway occurs at the level of Syk-FcεRI interactions, with key outcomes dependent upon sufficiently long-lived Syk binding events.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mark J Olah
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Peter K Relich
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Genevieve K Phillips
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 .,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
50
|
Taylor MJ, Husain K, Gartner ZJ, Mayor S, Vale RD. A DNA-Based T Cell Receptor Reveals a Role for Receptor Clustering in Ligand Discrimination. Cell 2017; 169:108-119.e20. [PMID: 28340336 DOI: 10.1016/j.cell.2017.03.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/02/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
A T cell mounts an immune response by measuring the binding strength of its T cell receptor (TCR) for peptide-loaded MHCs (pMHC) on an antigen-presenting cell. How T cells convert the lifetime of the extracellular TCR-pMHC interaction into an intracellular signal remains unknown. Here, we developed a synthetic signaling system in which the extracellular domains of the TCR and pMHC were replaced with short hybridizing strands of DNA. Remarkably, T cells can discriminate between DNA ligands differing by a single base pair. Single-molecule imaging reveals that signaling is initiated when single ligand-bound receptors are converted into clusters, a time-dependent process requiring ligands with longer bound times. A computation model reveals that receptor clustering serves a kinetic proofreading function, enabling ligands with longer bound times to have disproportionally greater signaling outputs. These results suggest that spatial reorganization of receptors plays an important role in ligand discrimination in T cell signaling.
Collapse
Affiliation(s)
- Marcus J Taylor
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA; National Centre for Biological Sciences, Bangalore 560065, India; HHMI Summer Institute, Woods Hole, MA 02543, USA
| | - Kabir Husain
- National Centre for Biological Sciences, Bangalore 560065, India; The Simons Centre for the Study of Living Machines, Bangalore 560065, India
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Satyajit Mayor
- National Centre for Biological Sciences, Bangalore 560065, India; HHMI Summer Institute, Woods Hole, MA 02543, USA.
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA; HHMI Summer Institute, Woods Hole, MA 02543, USA.
| |
Collapse
|