1
|
Elu N, Subash S, R Louros S. Crosstalk between ubiquitination and translation in neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1398048. [PMID: 39286313 PMCID: PMC11402904 DOI: 10.3389/fnmol.2024.1398048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Ubiquitination is one of the most conserved post-translational modifications and together with mRNA translation contributes to cellular protein homeostasis (proteostasis). Temporal and spatial regulation of proteostasis is particularly important during synaptic plasticity, when translation of specific mRNAs requires tight regulation. Mutations in genes encoding regulators of mRNA translation and in ubiquitin ligases have been associated with several neurodevelopmental disorders. RNA metabolism and translation are regulated by RNA-binding proteins, critical for the spatial and temporal control of translation in neurons. Several ubiquitin ligases also regulate RNA-dependent mechanisms in neurons, with numerous ubiquitination events described in splicing factors and ribosomal proteins. Here we will explore how ubiquitination regulates translation in neurons, from RNA biogenesis to alternative splicing and how dysregulation of ubiquitin signaling can be the underlying cause of pathology in neurodevelopmental disorders, such as Fragile X syndrome. Finally we propose that targeting ubiquitin signaling is an attractive novel therapeutic strategy for neurodevelopmental disorders where mRNA translation and ubiquitin signaling are disrupted.
Collapse
Affiliation(s)
- Nagore Elu
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Srividya Subash
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Tovar Perez JE, Zhang S, Hodgeman W, Kapoor S, Rajendran P, Kobayashi KS, Dashwood RH. Epigenetic regulation of major histocompatibility complexes in gastrointestinal malignancies and the potential for clinical interception. Clin Epigenetics 2024; 16:83. [PMID: 38915093 PMCID: PMC11197381 DOI: 10.1186/s13148-024-01698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Gastrointestinal malignancies encompass a diverse group of cancers that pose significant challenges to global health. The major histocompatibility complex (MHC) plays a pivotal role in immune surveillance, orchestrating the recognition and elimination of tumor cells by the immune system. However, the intricate regulation of MHC gene expression is susceptible to dynamic epigenetic modification, which can influence functionality and pathological outcomes. MAIN BODY By understanding the epigenetic alterations that drive MHC downregulation, insights are gained into the molecular mechanisms underlying immune escape, tumor progression, and immunotherapy resistance. This systematic review examines the current literature on epigenetic mechanisms that contribute to MHC deregulation in esophageal, gastric, pancreatic, hepatic and colorectal malignancies. Potential clinical implications are discussed of targeting aberrant epigenetic modifications to restore MHC expression and 0 the effectiveness of immunotherapeutic interventions. CONCLUSION The integration of epigenetic-targeted therapies with immunotherapies holds great potential for improving clinical outcomes in patients with gastrointestinal malignancies and represents a compelling avenue for future research and therapeutic development.
Collapse
Affiliation(s)
| | - Shilan Zhang
- Department of Cardiovascular Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200070, China
| | - William Hodgeman
- Wolfson Medical School, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sabeeta Kapoor
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA
| | - Koichi S Kobayashi
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, 060-8638, Japan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, Bryan, TX, 77087, USA
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA.
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Gong Y, Dai L. Decoding Ubiquitin Modifications by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:1-18. [PMID: 39546132 DOI: 10.1007/978-981-97-7288-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Protein ubiquitination is a critical and widely distributed post-translational modification (PTM) involved in the regulation of almost every cellular process and pathway in cells, such as proteostasis, DNA repair, trafficking, and immunity. Mass spectrometry (MS)-based proteomics is a robust tool to decode the complexity of ubiquitin networks by disclosing the proteome-wide ubiquitination sites, the length, linkage and topology of ubiquitin chains, the chemical modification of ubiquitin chains, and the crosstalk between ubiquitination and other PTMs. In this chapter, we discuss the application of MS in the interpretation of the ubiquitin code.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
5
|
Krishnamoorthy K, Sherman LS, Romagano MP, El Far M, Etchegaray JP, Williams SF, Rameshwar P. Low dose acetyl salicylic acid (LDA) mediates epigenetic changes in preeclampsia placental mesenchymal stem cells similar to cells from healthy pregnancy. Placenta 2023; 137:49-58. [PMID: 37071955 DOI: 10.1016/j.placenta.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
INTRODUCTION Preeclampsia (PE) affects 2-8% of all pregnancies, and is the leading cause of maternal and fetal morbidity and mortality. We reported on pathophysiological changes in placenta mesenchymal stem cells (P-MSCs) in PE. P-MSCs can be isolated from different layers of the placenta at the interface between the fetus and mother. The ability of MSCs from other sources to be immune licensed as immune suppressor cells indicated that P-MSCs could mitigate fetal rejection. Acetylsalicylic acid (aspirin) is indicated for treating PE. Indeed, low-dose aspirin is recommended to prevent PE in high risk patients. METHODS We conducted robust computational analyses to study changes in gene expression in P-MSCs from PE and healthy term pregnancies as compared with PE-MSCs treated with low dose acetyl salicylic acid (LDA). Confocal microscopy studied phospho-H2AX levels in P-MSCs. RESULTS We identified changes in >400 genes with LDA, similar to levels of healthy pregnancy. The top canonical pathways that incorporate these genes were linked to DNA repair damage - Basic excision repair (BER), Nucleotide excision repair (NER) and DNA replication. A role for the sumoylation (SUMO) pathway, which could regulate gene expression and protein stabilization was significant although reduced as compared to BER and NER pathways. Labeling for phopho-H2AX indicated no evidence of double strand break in PE P-MSCs. DISCUSSION The overlapping of key genes within each pathway suggested a major role for LDA in the epigenetic landscape of PE P-MSCs. Overall, this study showed a new insight into how LDA reset the P-MSCs in PE subjects around the DNA.
Collapse
Affiliation(s)
- Kaila Krishnamoorthy
- Dept of Obstetrics, Gynecology and Reproductive Health, D - Maternal Fetal Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Lauren S Sherman
- Dept of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA; Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Matthew P Romagano
- Dept of Obstetrics, Gynecology and Reproductive Health, D - Maternal Fetal Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Markos El Far
- Dept of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Shauna F Williams
- Dept of Obstetrics, Gynecology and Reproductive Health, D - Maternal Fetal Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Pranela Rameshwar
- Dept of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
6
|
Chen Y, Zhou D, Yao Y, Sun Y, Yao F, Ma L. Monoubiquitination in Homeostasis and Cancer. Int J Mol Sci 2022; 23:ijms23115925. [PMID: 35682605 PMCID: PMC9180643 DOI: 10.3390/ijms23115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination is a post-translational modification (PTM), through which a single ubiquitin molecule is covalently conjugated to a lysine residue of the target protein. Monoubiquitination regulates the activity, subcellular localization, protein-protein interactions, or endocytosis of the substrate. In doing so, monoubiquitination is implicated in diverse cellular processes, including gene transcription, endocytosis, signal transduction, cell death, and DNA damage repair, which in turn regulate cell-cycle progression, survival, proliferation, and stress response. In this review, we summarize the functions of monoubiquitination and discuss how this PTM modulates homeostasis and cancer.
Collapse
Affiliation(s)
- Yujie Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Dandan Zhou
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yinan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: (F.Y.); (L.M.)
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence: (F.Y.); (L.M.)
| |
Collapse
|
7
|
Structural aspects of the MHC expression control system. Biophys Chem 2022; 284:106781. [PMID: 35228036 PMCID: PMC8941990 DOI: 10.1016/j.bpc.2022.106781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) spans innate and adaptive immunity by presenting antigenic peptides to CD4+ and CD8+ T cells. Multiple transcription factors form an enhanceosome complex on the MHC promoter and recruit transcriptional machinery to activate gene transcription. Immune signals such as interferon-γ (IFN-γ) control MHC level by up-regulating components of the enhanceosome complex. As MHC plays crucial roles in immune regulation, alterations in the MHC enhanceosome structure will alter the pace of rapid immune responses at the transcription level and lead to various diseases related to the immune system. In this review, we discuss the current understanding of the MHC enhanceosome, with a focus on the structures of MHC enhanceosome components and the molecular basis of MHC enhanceosome assembly.
Collapse
|
8
|
Liu N, Jiang C, Cai P, Shen Z, Sun W, Xu H, Fang M, Yao X, Zhu L, Gao X, Fang J, Lin J, Guo C, Qu K. Single-cell analysis of COVID-19, sepsis, and HIV infection reveals hyperinflammatory and immunosuppressive signatures in monocytes. Cell Rep 2021; 37:109793. [PMID: 34587478 PMCID: PMC8445774 DOI: 10.1016/j.celrep.2021.109793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/14/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The mortality risk of coronavirus disease 2019 (COVID-19) patients has been linked to the cytokine storm caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the inflammatory responses shared between COVID-19 and other infectious diseases that feature cytokine storms may therefore help in developing improved therapeutic strategies. Here, we use integrative analysis of single-cell transcriptomes to characterize the inflammatory signatures of peripheral blood mononuclear cells from patients with COVID-19, sepsis, and HIV infection. We identify ten hyperinflammatory cell subtypes in which monocytes are the main contributors to the transcriptional differences in these infections. Monocytes from COVID-19 patients share hyperinflammatory signatures with HIV infection and immunosuppressive signatures with sepsis. Finally, we construct a "three-stage" model of heterogeneity among COVID-19 patients, related to the hyperinflammatory and immunosuppressive signatures in monocytes. Our study thus reveals cellular and molecular insights about inflammatory responses to SARS-CoV-2 infection and provides therapeutic guidance to improve treatments for subsets of COVID-19 patients.
Collapse
Affiliation(s)
- Nianping Liu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Chen Jiang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Pengfei Cai
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Zhuoqiao Shen
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; School of Data Science, University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Hao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Minghao Fang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; School of Life Science and Technology, University of Electronic Science and Technology of China, 610054 Chengdu, Sichuan, China
| | - Xinfeng Yao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; Institute for Advanced Study, Nanchang University, 330031 Nanchang, Jiangxi, China
| | - Lin Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Xuyuan Gao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Jingwen Fang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; HanGene Biotech, Xiaoshan Innovation Polis, 31200 Hangzhou, Zhejiang, China
| | - Jun Lin
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Chuang Guo
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China.
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China; School of Data Science, University of Science and Technology of China, 230026 Hefei, Anhui, China.
| |
Collapse
|
9
|
Geysels RC, Peyret V, Martín M, Nazar M, Reale C, Bernal Barquero CE, Miranda L, Martí MA, Vito P, Masini-Repiso AM, Nicola JP. The Transcription Factor NF-κB Mediates Thyrotropin-Stimulated Expression of Thyroid Differentiation Markers. Thyroid 2021; 31:299-314. [PMID: 32935630 DOI: 10.1089/thy.2020.0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor is a key regulator of cell survival, proliferation, and gene expression. Although activation of NF-κB signaling in thyroid follicular cells after thyrotropin (TSH) receptor (TSHR) engagement has been reported, the downstream signaling leading to NF-κB activation remains unexplored. Here, we sought to elucidate the mechanisms that regulate NF-κB signaling activation in response to TSH stimulation. Methods: Fisher rat-derived thyroid cell lines and primary cultures of NF-κB essential modulator (NEMO)-deficient mice thyrocytes were used as models. Signaling pathways leading to the activation of NF-κB were investigated by using chemical inhibitors and phospho-specific antibodies. Luciferase reporter gene assays and site-directed mutagenesis were used to monitor NF-κB-dependent gene transcriptional activity and the expression of thyroid differentiation markers was assessed by reverse transcription quantitative polymerase chain reaction and Western blot, respectively. Chromatin immunoprecipitation (ChIP) was carried out to investigate NF-κB subunit p65 DNA binding, and small interfering RNA (siRNA)-mediated gene knockdown approaches were used for studying gene function. Results: Using thyroid cell lines, we observed that TSH treatment leads to protein kinase C (PKC)-mediated canonical NF-κB p65 subunit nuclear expression. Moreover, TSH stimulation phosphorylated the kinase TAK-1, and its knockdown abolished TSH-induced NF-κB transcriptional activity. TSH induced the transcriptional activity of the NF-κB subunit p65 in a protein kinase A (PKA)-dependent phosphorylation at Ser-276. In addition, p65 phosphorylation at Ser-276 induced acetyl transferase p300 recruitment, leading to its acetylation on Lys-310 and thereby enhancing its transcriptional activity. Evaluation of the role played by NF-κB in thyroid physiology demonstrated that the canonical NF-κB inhibitor BAY 11-7082 reduced TSH-induced expression of thyroid differentiation markers. The involvement of NF-κB signaling in thyroid physiology was confirmed by assessing the TSH-induced gene expression in primary cultures of NEMO-deficient mice thyrocytes. ChIP and the knockdown experiments revealed that p65 is a nuclear effector of TSH actions, inducing the transcripcional expression of thyroid differentiation markers. Conclusions: Taken together, our results point to NF-κB being a pivotal mediator in the TSH-induced thyroid follicular cell differentiation, a relevant finding with potential physiological and pathophysiological implications.
Collapse
Affiliation(s)
- Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Magalí Nazar
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Carla Reale
- Biogem Consortium, Ariano Irpino, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Carlos Eduardo Bernal Barquero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Lucas Miranda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Marcelo Adrián Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Pasquale Vito
- Biogem Consortium, Ariano Irpino, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
10
|
León Machado JA, Steimle V. The MHC Class II Transactivator CIITA: Not (Quite) the Odd-One-Out Anymore among NLR Proteins. Int J Mol Sci 2021; 22:1074. [PMID: 33499042 PMCID: PMC7866136 DOI: 10.3390/ijms22031074] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the major histocompatibility complex (MHC) class II transactivator (CIITA), which is the master regulator of MHC class II gene expression. CIITA is the founding member of the mammalian nucleotide-binding and leucine-rich-repeat (NLR) protein family but stood apart for a long time as the only transcriptional regulator. More recently, it was found that its closest homolog, NLRC5 (NLR protein caspase activation and recruitment domain (CARD)-containing 5), is a regulator of MHC-I gene expression. Both act as non-DNA-binding activators through multiple protein-protein interactions with an MHC enhanceosome complex that binds cooperatively to a highly conserved combinatorial cis-acting module. Thus, the regulation of MHC-II expression is regulated largely through the differential expression of CIITA. In addition to the well-defined role of CIITA in MHC-II GENE regulation, we will discuss several other aspects of CIITA functions, such as its role in cancer, its role as a viral restriction element contributing to intrinsic immunity, and lastly, its very recently discovered role as an inhibitor of Ebola and SARS-Cov-2 virus replication. We will briefly touch upon the recently discovered role of NLRP3 as a transcriptional regulator, which suggests that transcriptional regulation is, after all, not such an unusual feature for NLR proteins.
Collapse
Affiliation(s)
| | - Viktor Steimle
- Département de Biologie, Université de Sherbrooke, 2500 Boul., Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
11
|
Zhao Q, Ma Y, Li Z, Zhang K, Zheng M, Zhang S. The Function of SUMOylation and Its Role in the Development of Cancer Cells under Stress Conditions: A Systematic Review. Stem Cells Int 2020; 2020:8835714. [PMID: 33273928 PMCID: PMC7683158 DOI: 10.1155/2020/8835714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant tumors still pose serious threats to human health due to their high morbidity and mortality. Recurrence and metastasis are the most important factors affecting patient prognosis. Chemotherapeutic drugs and radiation used to treat these tumors mainly interfere with tumor metabolism, destroy DNA integrity, and inhibit protein synthesis. The upregulation of small ubiquitin-like modifier (SUMO) is a prevalent posttranslational modification (PTM) in various cancers and plays a critical role in tumor development. The dysregulation of SUMOylation can protect cancer cells from stresses exerted by external or internal stimuli. SUMOylation is a dynamic process finely regulated by SUMOylation enzymes and proteases to maintain a balance between SUMOylation and deSUMOylation. An increasing number of studies have reported that SUMOylation imbalance may contribute to cancer development, including metastasis, angiogenesis, invasion, and proliferation. High level of SUMOylation is required for cancer cells to survive internal or external stresses. Downregulation of SUMOylation may inhibit the development of cancer, making it an important potential clinical therapeutic target. Some studies have already begun to treat tumors by inhibiting the expression of SUMOylation family members, including SUMO E1 or E2. The tumor cells become more aggressive under internal and external stresses. The prevention of tumor development, metastasis, recurrence, and radiochemotherapy resistance by attenuating SUMOylation requires further exploration. This review focused on SUMOylation in tumor cells to discuss its effects on tumor suppressor proteins and oncoproteins as well as classical tumor pathways to identify new insights for cancer clinical therapy.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Department of Spine Center, Tianjin Union Medical Center, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kexin Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
12
|
Tan W, van Twest S, Leis A, Bythell-Douglas R, Murphy VJ, Sharp M, Parker MW, Crismani W, Deans AJ. Monoubiquitination by the human Fanconi anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays. eLife 2020; 9:e54128. [PMID: 32167469 PMCID: PMC7156235 DOI: 10.7554/elife.54128] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
FANCI:FANCD2 monoubiquitination is a critical event for replication fork stabilization by the Fanconi anemia (FA) DNA repair pathway. It has been proposed that at stalled replication forks, monoubiquitinated-FANCD2 serves to recruit DNA repair proteins that contain ubiquitin-binding motifs. Here, we have reconstituted the FA pathway in vitro to study functional consequences of FANCI:FANCD2 monoubiquitination. We report that monoubiquitination does not promote any specific exogenous protein:protein interactions, but instead stabilizes FANCI:FANCD2 heterodimers on dsDNA. This clamping requires monoubiquitination of only the FANCD2 subunit. We further show using electron microscopy that purified monoubiquitinated FANCI:FANCD2 forms filament-like arrays on long dsDNA. Our results reveal how monoubiquitinated FANCI:FANCD2, defective in many cancer types and all cases of FA, is activated upon DNA binding.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Medicine (St. Vincent’s Health), The University of MelbourneMelbourneAustralia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Andrew Leis
- Bio21 Institute, University of MelbourneParkvilleAustralia
| | | | - Vincent J Murphy
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Michael Sharp
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Michael W Parker
- Bio21 Institute, University of MelbourneParkvilleAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Medicine (St. Vincent’s Health), The University of MelbourneMelbourneAustralia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Medicine (St. Vincent’s Health), The University of MelbourneMelbourneAustralia
| |
Collapse
|
13
|
Imai J, Koganezawa Y, Tuzuki H, Ishikawa I, Sakai T. An optical and non-invasive method to detect the accumulation of ubiquitin chains. Cell Biol Int 2019; 43:1393-1406. [PMID: 31136031 DOI: 10.1002/cbin.11186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/25/2019] [Indexed: 01/24/2023]
Abstract
The accumulations of excess amounts of polyubiquitinated proteins are cytotoxic and frequently observed in pathologic tissue from patients of neurodegenerative diseases. Therefore, optical and non-invasive methods to detect the increase of the amounts of polyubiquitinated proteins in living cells is a promising strategy to find out symptoms and environmental cause of neurodegenerative diseases, also for identifying compounds that could inhibit gathering of polyubiquitinated proteins. Therefore, we generated a pair of fluorescent protein [Azamigreen (Azg) and Kusabiraorange (Kuo)] tagged ubiquitin on its N-terminus (Azg-Ub and Kuo-Ub) and developed an Azg/Kuo-based Fluorescence Resonance Energy Transfer (FRET) assay to estimate the amount of polyubiquitin chains in vitro and in vivo. The FRET intensity was attenuated in the presence of ubiquitin-activating enzyme inhibitor, PYR-41, indicating that both fluorescent ubiquitin is incorporated into ubiquitin chains likewise normal ubiquitin. The FRET intensity was enhanced by the addition of the proteasome inhibitor, MG-132, and was reduced in the presence of the autophagy activator Rapamycin, designating that ubiquitin chains with fluorescent ubiquitin act as the degradation signal equally with normal ubiquitin chains. In summary, the above optical methods provide powerful research tools to estimate the amounts of polyubiquitin chains in vitro and in vivo, especially non-invasively in living cells.
Collapse
Affiliation(s)
- Jun Imai
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Yuuta Koganezawa
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Haruka Tuzuki
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Ikumi Ishikawa
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Takahiro Sakai
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| |
Collapse
|
14
|
In S, Kim YI, Lee JE, Kim J. RNF20/40-mediated eEF1BδL monoubiquitylation stimulates transcription of heat shock-responsive genes. Nucleic Acids Res 2019; 47:2840-2855. [PMID: 30649429 PMCID: PMC6451099 DOI: 10.1093/nar/gkz006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 01/02/2023] Open
Abstract
RNF20/40 E3 ubiquitin ligase-mediated histone H2B monoubiquitylation plays important roles in many cellular processes, including transcriptional regulation. However, the multiple defects observed in RNF20-depleted cells suggest additional ubiquitylation targets of RNF20/40 beyond histone H2B. Here, using biochemically defined assays employing purified factors and cell-based analyses, we demonstrate that RNF20/40, in conjunction with its cognate E2 ubiquitin-conjugating enzyme RAD6, monoubiquitylates lysine 381 of eEF1BδL, a heat shock transcription factor. Notably, monoubiquitylation of eEF1BδL increases eEF1BδL accumulation and potentiates recruitment of p-TEFb to the promoter regions of heat shock-responsive genes, leading to enhanced transcription of these genes. We further demonstrate that cooperative physical interactions among eEF1BδL, RNF20/40, and HSF1 synergistically promote expression of heat shock-responsive genes. In addition to identifying eEF1BδL as a novel ubiquitylation target of RNF20/40 and elucidating its function, we provide a molecular mechanism for the cooperative function of distinct transcription factors in heat shock-responsive gene transcription.
Collapse
Affiliation(s)
- Suna In
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Yong-In Kim
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea
| | - J Eugene Lee
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
15
|
Fujita Y, Tinoco R, Li Y, Senft D, Ronai ZA. Ubiquitin Ligases in Cancer Immunotherapy - Balancing Antitumor and Autoimmunity. Trends Mol Med 2019; 25:428-443. [PMID: 30898473 DOI: 10.1016/j.molmed.2019.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
Abstract
Considerable progress has been made in understanding the contribution of E3 ubiquitin ligases to health and disease, including the pathogenesis of immunological disorders. Ubiquitin ligases exert exquisite spatial and temporal control over protein stability and function, and are thus crucial for the regulation of both innate and adaptive immunity. Given that immune responses can be both detrimental (autoimmunity) and beneficial (antitumor immunity), it is vital to understand how ubiquitin ligases maintain immunological homeostasis. Such knowledge could reveal novel mechanisms underlying immune regulation and identify new therapeutic approaches to enhance antitumor immunity and safeguard against autoimmunity.
Collapse
Affiliation(s)
- Yu Fujita
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Present address: Division of Respiratory Medicine, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Yan Li
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Daniela Senft
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Ze'ev A Ronai
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Abstract
Mass spectrometric methods of determining protein ubiquitination are described. Characteristic mass shifts and fragment ions indicating ubiquitinated lysine residues in tryptic and gluC digests are discussed. When a ubiquitinated protein is enzymatically digested, a portion of the ubiquitin side chain remains attached to the modified lysine. This "tag" can be used to distinguish a ubiquitinated peptide from the unmodified version, and can be incorporated into automated database searching. Several tags are discussed, the GGK and LRGGK tags, resulting from complete and incomplete tryptic digestion of the protein, and the STLHLVLRLRGG tag from a gluC-digested protein.A ubiquitinated peptide has two N-termini-one from the original peptide and the other from the ubiquitin side chain. Thus, it is possible to have two series of b ions and y ions, the additional series is the one that includes fragments containing portions of the ubiquitin side chain, and any diagnostic ions for the modification must include portions of this side chain. Fragment ions involving any part of the "normal" peptide will vary in mass according to the peptide being modified and will therefore not be of general diagnostic use. These diagnostic ions, found through examination of the MS/MS spectra of model ubiquitinated tryptic and gluC peptides, have not previously been reported. These ions can be used to trigger precursor ion scanning in automated MS/MS data acquisition scanning modes.
Collapse
|
17
|
Mitchell D, Chintala S, Dey M. Plasmacytoid dendritic cell in immunity and cancer. J Neuroimmunol 2018; 322:63-73. [PMID: 30049538 DOI: 10.1016/j.jneuroim.2018.06.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/29/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) comprise a subset of dendritic cells characterized by their ability to produce large amount of type I interferon (IFN-I/α). Originally recognized for their role in modulating immune responses to viral stimulation, growing interest has been directed toward their contribution to tumorigenesis. Under normal conditions, Toll-like receptor (TLR)-activated pDCs exhibit robust IFN-α production and promote both innate and adaptive immune responses. In cancer, however, pDCs demonstrate an impaired response to TLR7/9 activation, decreased or absent IFN-α production and contribute to the establishment of an immunosuppressive tumor microenvironment. In addition to IFN-α production, pDCs can also act as antigen presenting cells (APCs) and regulate immune responses to various antigens. The significant role played by pDCs in regulating both the innate and adaptive components of the immune system makes them a critical player in cancer immunology. In this review, we discuss the development and function of pDCs as well as their role in innate and adaptive immunity. Finally, we summarize pDC contribution to cancer pathogenesis, with a special focus on primary malignant brain tumor, their significance in the era of immunotherapy and suggest potential strategies for pDC-targeted therapy.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Neurosurgery, IU Simon Cancer Center, Indiana University, Indiana, USA
| | - Sreenivasulu Chintala
- Department of Neurosurgery, IU Simon Cancer Center, Indiana University, Indiana, USA
| | - Mahua Dey
- Department of Neurosurgery, IU Simon Cancer Center, Indiana University, Indiana, USA.
| |
Collapse
|
18
|
Development of potent class II transactivator gene delivery systems capable of inducing de novo MHC II expression in human cells, in vitro and ex vivo. Gene Ther 2017; 24:342-352. [PMID: 28414303 DOI: 10.1038/gt.2017.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 01/17/2023]
Abstract
Class II transactivator (CIITA) induces transcription of major histocompatibility complex (MHC) II genes and can potentially be used to improve genetic immunotherapies by converting non-immune cells into cells capable of presenting antigens to CD4+ T cells. However, CIITA expression is tightly controlled and it remains unclear whether distinct non-immune cells differ in this transactivator regulation. Here we describe the development of gene delivery systems capable of promoting the efficient CIITA expression in non-immune cell lines and in primary human cells of an ex vivo skin explant model. Different human cell types undergoing CIITA overexpression presented high-level de novo expression of MHC II, validating the delivery systems as suitable tools for the CIITA evaluation as a molecular adjuvant for gene therapies.
Collapse
|
19
|
Pulling a Ligase out of a "HAT": pCAF Mediates Ubiquitination of the Class II Transactivator. Int J Cell Biol 2017; 2017:8093813. [PMID: 28286521 PMCID: PMC5327758 DOI: 10.1155/2017/8093813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
The Class II Transactivator (CIITA) is essential to the regulation of Major Histocompatibility Class II (MHC II) genes transcription. As the “master regulator” of MHC II transcription, CIITA regulation is imperative and requires various posttranslational modifications (PTMs) in order to facilitate its role. Previously we identified various ubiquitination events on CIITA. Monoubiquitination is important for CIITA transactivity, while K63 linked ubiquitination is involved in crosstalk with ERK1/2 phosphorylation, where together they mediate cellular movement from the cytoplasm to nuclear region. Further, CIITA is also modified by degradative K48 polyubiquitination. However, the E3 ligase responsible for these modifications was unknown. We show CIITA ubiquitination and transactivity are enhanced with the histone acetyltransferase (HAT), p300/CBP associated factor (pCAF), and the E3 ligase region within pCAF is necessary for both. Additionally, pCAF mediated ubiquitination is independent of pCAF's HAT domain, and acetylation deficient CIITA is K48 polyubiquitinated and degraded in the presence of pCAF. Lastly, we identify the histone acetyltransferase, pCAF, as the E3 ligase responsible for CIITA's ubiquitination.
Collapse
|
20
|
Protein arginine methyltransferase 1 (PRMT1) represses MHC II transcription in macrophages by methylating CIITA. Sci Rep 2017; 7:40531. [PMID: 28094290 PMCID: PMC5240148 DOI: 10.1038/srep40531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022] Open
Abstract
Efficient presentation of alien antigens triggers activation of T lymphocytes and robust host defense against invading pathogens. This pathophysiological process relies on the expression of major histocompatibility complex (MHC) molecules in antigen presenting cells such as macrophages. Aberrant MHC II transactivation plays a crucial role in the pathogenesis of atherosclerosis. Class II transactivator (CIITA) mediates MHC II induction by interferon gamma (IFN-γ). CIITA activity can be fine-tuned at the post-translational level, but the mechanisms are not fully appreciated. We investigated the role of protein arginine methyltransferase 1 (PRMT1) in this process. We report here that CIITA interacted with PRMT1. IFN-γ treatment down-regulated PRMT1 expression and attenuated PRMT1 binding on the MHC II promoter. Over-expression of PRMT1 repressed MHC II promoter activity while PRMT1 depletion enhanced MHC II transactivation. Mechanistically, PRMT1 methylated CIITA and promoted CIITA degradation. Therefore, our data reveal a previously unrecognized role for PRMT1 in suppressing CIITA-mediated MHC II transactivation.
Collapse
|
21
|
Cross AR, Lion J, Loiseau P, Charron D, Taupin JL, Glotz D, Mooney N. Donor Specific Antibodies are not only directed against HLA-DR: Minding your Ps and Qs. Hum Immunol 2016; 77:1092-1100. [PMID: 27060781 DOI: 10.1016/j.humimm.2016.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/08/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022]
Abstract
During solid organ transplantation, interactions between recipient and donor immune cells occur chiefly in the allograft microvasculature. All three HLA class II antigens, DR, DP and DQ, have been detected on renal EC with a markedly increased expression of HLA class II observed in renal allografts undergoing rejection. Recent studies of donor-specific antibodies (DSA) have exposed the prevalence of de novo DSA directed against HLA-DQ, as well as a strong association between these antibodies and allograft damage. The HLA-DQ molecule can be distinguished from the other class II antigens by its transcription, expression and peptide repertoire. The distinct intragraft expression and immunogenicity of HLA-DQ may contribute to the incidence of HLA-DQ DSA, as well as directing the DSA-mediated damage. The possibility of HLA class II antigen-specific signaling in EC may reveal different mechanisms of allograft damage that act in tandem with complement-dependent injury. This review addresses the features of the HLA-DQ heterodimer that may underlie the high incidence of HLA-DQ directed DSA and their association with allograft damage. We also consider existing data in hematopoietic stem cell transplantation concerning HLA directed DSA.
Collapse
Affiliation(s)
- Amy R Cross
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France
| | - Julien Lion
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France
| | - Pascale Loiseau
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France; Laboratoire de Histocompatibilité, Hôpital Saint Louis, Paris 75010, France
| | - Dominique Charron
- Laboratoire de Histocompatibilité, Hôpital Saint Louis, Paris 75010, France; Université Paris Diderot, Sorbonne Paris Cité, F-75013, France
| | - Jean-Luc Taupin
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France; Laboratoire de Histocompatibilité, Hôpital Saint Louis, Paris 75010, France; Université Paris Diderot, Sorbonne Paris Cité, F-75013, France
| | - Denis Glotz
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France; Service de Néphrologie et Transplantation, Hôpital Saint Louis, Paris 75010, France; Université Paris Diderot, Sorbonne Paris Cité, F-75013, France
| | - Nuala Mooney
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France.
| |
Collapse
|
22
|
Beaulieu YB, Leon Machado JA, Ethier S, Gaudreau L, Steimle V. Degradation, Promoter Recruitment and Transactivation Mediated by the Extreme N-Terminus of MHC Class II Transactivator CIITA Isoform III. PLoS One 2016; 11:e0148753. [PMID: 26871568 PMCID: PMC4752451 DOI: 10.1371/journal.pone.0148753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
Abstract
Multiple relationships between ubiquitin-proteasome mediated protein turnover and transcriptional activation have been well documented, but the underlying mechanisms are still poorly understood. One way to induce degradation is via ubiquitination of the N-terminal α-amino group of proteins. The major histocompatibility complex (MHC) class II transactivator CIITA is the master regulator of MHC class II gene expression and we found earlier that CIITA is a short-lived protein. Using stable and transient transfections of different CIITA constructs into HEK-293 and HeLa cell lines, we show here that the extreme N-terminal end of CIITA isoform III induces both rapid degradation and transactivation. It is essential that this sequence resides at the N-terminal end of the protein since blocking of the N-terminal end with an epitope-tag stabilizes the protein and reduces transactivation potential. The first ten amino acids of CIITA isoform III act as a portable degron and transactivation sequence when transferred as N-terminal extension to truncated CIITA constructs and are also able to destabilize a heterologous protein. The same is observed with the N-terminal ends of several known N-terminal ubiquitination substrates, such as Id2, Cdt1 and MyoD. Arginine and proline residues within the N-terminal ends contribute to rapid turnover. The N-terminal end of CIITA isoform III is responsible for efficient in vivo recruitment to the HLA-DRA promoter and increased interaction with components of the transcription machinery, such as TBP, p300, p400/Domino, the 19S ATPase S8, and the MHC-II promoter binding complex RFX. These experiments reveal a novel function of free N-terminal ends of proteins in degradation-dependent transcriptional activation.
Collapse
Affiliation(s)
- Yves B. Beaulieu
- Département de biologie, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | | | - Sylvain Ethier
- Département de biologie, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Luc Gaudreau
- Département de biologie, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Viktor Steimle
- Département de biologie, Université de Sherbrooke, Sherbrooke, Qc, Canada
- * E-mail:
| |
Collapse
|
23
|
Boyd NH, Morgan JE, Greer SF. Polycomb recruitment at the Class II transactivator gene. Mol Immunol 2015; 67:482-91. [PMID: 26283540 DOI: 10.1016/j.molimm.2015.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022]
Abstract
The Class II Transactivator (CIITA) is the master regulator of Major Histocompatibility Class II (MHC II) genes. Transcription of CIITA through the IFN-γ inducible CIITA promoter IV (CIITA pIV) during activation is characterized by a decrease in trimethylation of histone H3 lysine 27 (H3K27me3), catalyzed by the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2). While EZH2 is the known catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) and is present at the inactive CIITA pIV, the mechanism of PRC2 recruitment to mammalian promoters remains unknown. Here we identify two DNA-binding proteins, which interact with and regulate PRC2 recruitment to CIITA pIV. We demonstrate Yin Yang 1 (YY1) and Jumonji domain containing protein 2 (JARID2) are binding partners along with EZH2 in mammalian cells. Upon IFN-γ stimulation, YY1 dissociates from CIITA pIV while JARID2 binding to CIITA pIV increases, suggesting novel roles for these proteins in regulating expression of CIITA pIV. Knockdown of YY1 and JARID2 yields decreased binding of EZH2 and H3K27me3 at CIITA pIV, suggesting important roles for YY1 and JARID2 at CIITA pIV. JARID2 knockdown also results in significantly elevated levels of CIITA mRNA upon IFN-γ stimulation. This study is the first to identify novel roles of YY1 and JARID2 in the epigenetic regulation of the CIITA pIV by recruitment of PRC2. Our observations indicate the importance of JARID2 in CIITA pIV silencing, and also provide a novel YY1-JARID2-PRC2 regulatory complex as a possible explanation of differential PRC2 recruitment at inducible versus permanently silenced genes.
Collapse
Affiliation(s)
- Nathaniel H Boyd
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30302, United States.
| | - Julie E Morgan
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30302, United States.
| | - Susanna F Greer
- Department of Biology, Georgia State University, Petit Science Center, 100 Piedmont Avenue, Suite 632, Atlanta, GA 30302-4010, United States.
| |
Collapse
|
24
|
Landré V, Rotblat B, Melino S, Bernassola F, Melino G. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 2015; 5:7988-8013. [PMID: 25237759 PMCID: PMC4226663 DOI: 10.18632/oncotarget.2431] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides.
Collapse
Affiliation(s)
- Vivien Landré
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Barak Rotblat
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Sonia Melino
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Bernassola
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester, UK. Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
25
|
The class II transactivator (CIITA) is regulated by post-translational modification cross-talk between ERK1/2 phosphorylation, mono-ubiquitination and Lys63 ubiquitination. Biosci Rep 2015; 35:BSR20150091. [PMID: 26181363 PMCID: PMC4613680 DOI: 10.1042/bsr20150091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/11/2015] [Indexed: 02/01/2023] Open
Abstract
The class II transactivator (CIITA) is known as the master regulator for the major histocompatibility class II (MHC II) molecules. CIITA is dynamically regulated through a series of intricate post-translational modifications (PTMs). CIITA's role is to initiate transcription of MHC II genes, which are responsible for presenting extracellular antigen to CD4(+) T-cells. In the present study, we identified extracellular signal-regulated kinase (ERK)1/2 as the kinase responsible for phosphorylating the regulatory site, Ser(280), which leads to increased levels of mono-ubiquitination and an overall increase in MHC II activity. Further, we identify that CIITA is also modified by Lys(63)-linked ubiquitination. Lys(63) ubiquitinated CIITA is concentrated in the cytoplasm and following activation of ERK1/2, CIITA phosphorylation occurs and Lys=ubiquitinated CIITA translocates to the nucleus. CIITA ubiquitination and phosphorylation perfectly demonstrates how CIITA location and activity is regulated through PTM cross-talk. Identifying CIITA PTMs and understanding how they mediate CIITA regulation is necessary due to the critical role CIITA has in the initiation of the adaptive immune response.
Collapse
|
26
|
Chiu E, Gold T, Fettig V, LeVasseur MT, Cressman DE. Identification of a nuclear export sequence in the MHC CIITA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:6102-11. [PMID: 25948812 DOI: 10.4049/jimmunol.1402026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/02/2015] [Indexed: 01/15/2023]
Abstract
Initiation of an immune response through expression of MHC class II and related genes is under the control of the CIITA. Normally found in both the cytoplasm and nucleus, CIITA is tightly controlled by a variety of posttranslational modifications as well as interactions with other nuclear and cytoplasmic factors, whereas disruption of this dual subcellular localization impairs CIITA functioning and expression of target genes. Although CIITA has well-defined domains necessary for its nuclear import, the region responsible for the translocation of CIITA from the nucleus has not been characterized. In this study, we identify a leucine-rich motif at residues 717-724 that bears strong homology to known nuclear export sequence (NES) domains. Mutation of this region renders CIITA insensitive to treatment with leptomycin B, an inhibitor of nuclear export, whereas fusion of this domain to a heterologous GFP is sufficient to induce its export to the cytoplasm or cause its retention in the nucleus following leptomycin B treatment. Point mutations of specific leucine residues within the NES disrupt the normal subcellular distribution of the full-length CIITA, impair its ability to interact with the nuclear export factor CRM1, and enhance CIITA-induced gene expression from an MHC class II gene promoter. IFN-γ stimulation of class II genes is further enhanced by inhibiting the nuclear export of endogenous CIITA. Collectively, these data demonstrate the first identification of a specific NES within CIITA and place it among the other protein domains that contribute to the posttranslational regulation of CIITA activity.
Collapse
Affiliation(s)
- Emily Chiu
- Department of Biology, Sarah Lawrence College, Bronxville, NY 10708
| | - Theresa Gold
- Department of Biology, Sarah Lawrence College, Bronxville, NY 10708
| | - Veronica Fettig
- Department of Biology, Sarah Lawrence College, Bronxville, NY 10708
| | | | - Drew E Cressman
- Department of Biology, Sarah Lawrence College, Bronxville, NY 10708
| |
Collapse
|
27
|
Furniss JJ, Spoel SH. Cullin-RING ubiquitin ligases in salicylic acid-mediated plant immune signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:154. [PMID: 25821454 PMCID: PMC4358073 DOI: 10.3389/fpls.2015.00154] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/26/2015] [Indexed: 05/19/2023]
Abstract
Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA). SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD) to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR) which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e., the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs), which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses.
Collapse
Affiliation(s)
| | - Steven H. Spoel
- *Correspondence: Steven H. Spoel, Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| |
Collapse
|
28
|
Yang H, Qiu Q, Gao B, Kong S, Lin Z, Fang D. Hrd1-mediated BLIMP-1 ubiquitination promotes dendritic cell MHCII expression for CD4 T cell priming during inflammation. ACTA ACUST UNITED AC 2014; 211:2467-79. [PMID: 25366967 PMCID: PMC4235642 DOI: 10.1084/jem.20140283] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ubiquitin pathway plays critical roles in antigen presentation. However, the ubiquitin ligases that regulate MHC gene transcription remain unidentified. We showed that the ubiquitin ligase Hrd1, expression of which is induced by Toll-like receptor (TLR) stimulation, is required for MHC-II but not MHC-I transcription in dendritic cells (DCs). Targeted Hrd1 gene deletion in DCs diminished MHC-II expression. As a consequence, Hrd1-null DCs failed to prime CD4(+) T cells without affecting the activation of CD8(+) T cells. Hrd1 catalyzed ubiquitination and degradation of the transcriptional suppressor B lymphocyte-induced maturation protein 1 (BLIMP1) to promote MHC-II expression. Genetic suppression of Hrd1 function in DCs protected mice from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). We identified Hrd1-mediated BLIMP1 ubiquitination as a previously unknown mechanism in programming DC for CD4(+) T cell activation during inflammation.
Collapse
Affiliation(s)
- Heeyoung Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sinyi Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Zhenghong Lin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
29
|
Forlani G, Abdallah R, Accolla RS, Tosi G. The MHC-II transactivator CIITA, a restriction factor against oncogenic HTLV-1 and HTLV-2 retroviruses: similarities and differences in the inhibition of Tax-1 and Tax-2 viral transactivators. Front Microbiol 2013; 4:234. [PMID: 23986750 PMCID: PMC3749491 DOI: 10.3389/fmicb.2013.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/30/2013] [Indexed: 11/13/2022] Open
Abstract
The activation of CD4(+) T helper cells is strictly dependent on the presentation of antigenic peptides by MHC class II (MHC-II) molecules. MHC-II expression is primarily regulated at the transcriptional level by the AIR-1 gene product CIITA (class II transactivator). Thus, CIITA plays a pivotal role in the triggering of the adaptive immune response against pathogens. Besides this well known function, we recently found that CIITA acts as an endogenous restriction factor against HTLV-1 (human T cell lymphotropic virus type 1) and HTLV-2 oncogenic retroviruses by targeting their viral transactivators Tax-1 and Tax-2, respectively. Here we review our findings on CIITA-mediated inhibition of viral replication and discuss similarities and differences in the molecular mechanisms by which CIITA specifically counteracts the function of Tax-1 and Tax-2 molecules. The dual function of CIITA as a key regulator of adaptive and intrinsic immunity represents a rather unique example of adaptation of host-derived factors against pathogen infections during evolution.
Collapse
Affiliation(s)
| | | | - Roberto S. Accolla
- Laboratory of General Pathology and Immunology, Department of Surgical and Morphological Sciences, University of InsubriaVarese, Italy
| | | |
Collapse
|
30
|
Jia Y, Takeda K, Han J, Joetham A, Marcus RA, Lucas JJ, O'Connor BP, Gelfand EW. Stepwise epigenetic and phenotypic alterations poise CD8+ T cells to mediate airway hyperresponsiveness and inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4056-65. [PMID: 23509358 DOI: 10.4049/jimmunol.1202640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The functional plasticity of CD8(+) T cells in an atopic environment, encompassing a spectrum from IFN-γ- to IL-13-producing cells, is pivotal in the development of allergic airway hyperresponsiveness and inflammation, and yet remains mechanistically undefined. We demonstrate that CD8(+) T cell IL-13 induction proceeded through a series of distinct IL-4/GATA3-regulated stages characterized by gene expression and epigenetic changes. In vivo, CD8(+) T cells exposed to an environment rich in IL-4 displayed epigenetic changes at the GATA3 and IL-13 promoter indicative of transcriptional activation and IL-13 production. In vitro, IL-4 triggered the stepwise molecular conversion of CD8(+) T cells from IFN-γ to IL-13 production. During the initial stage, IL-4 suppressed T-bet and induced GATA3 expression, characterized by enhanced activating histone modifications and RNA polymerase II (Pol II) recruitment to the GATA3 locus. Notably, recruitment of GATA3 and RNA Pol II to the IL-13 promoter was also detected at this initial stage. However, enhanced IL-13 transcription only occurred at a later stage after TCR stimulation, indicating that IL-4-induced GATA3 recruitment poises the IL-13 locus for TCR-mediated transcription. Thus, both in vivo and in vitro, an atopic (IL-4) environment poises CD8(+) T cells via stepwise epigenetic and phenotypic mechanisms for pathogenic conversion to IL-13 production, which is ultimately triggered via an allergen-mediated TCR stimulus.
Collapse
Affiliation(s)
- Yi Jia
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Severo MS, Sakhon OS, Choy A, Stephens KD, Pedra JHF. The 'ubiquitous' reality of vector immunology. Cell Microbiol 2013; 15:1070-8. [PMID: 23433059 DOI: 10.1111/cmi.12128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 12/17/2022]
Abstract
Ubiquitination (ubiquitylation) is a common protein modification that regulates a multitude of processes within the cell. This modification is typically accomplished through the covalent binding of ubiquitin to a lysine residue onto a target protein and is catalysed by the presence of three enzymes: an activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin-protein ligase (E3). In recent years, ubiquitination has risen as a major signalling regulator of immunity and microbial pathogenesis in the mammalian system. Still, little is known about how ubiquitin relates specifically to vector immunology. Here, we provide a brief overview of ubiquitin biochemistry and describe how ubiquitination regulates immune responses in arthropods of medical relevance. We also discuss scientific gaps in the literature and suggest that, similar to mammals, ubiquitin is a major regulator of immunity in medically important arthropods.
Collapse
Affiliation(s)
- Maiara S Severo
- Center for Disease Vector Research and Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
32
|
PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins. PLoS One 2013; 8:e55992. [PMID: 23418492 PMCID: PMC3572148 DOI: 10.1371/journal.pone.0055992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 01/04/2013] [Indexed: 11/25/2022] Open
Abstract
Background Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG) are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. Methodology/Principal Findings Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs) up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5′regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, −147/−140), was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA). This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT) function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. Conclusions/Significance Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.
Collapse
|
33
|
Moffat JM, Mintern JD, Villadangos JA. Control of MHC II antigen presentation by ubiquitination. Curr Opin Immunol 2013. [DOI: 10.1016/j.coi.2012.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Malatesta M, Peschiaroli A, Memmi EM, Zhang J, Antonov A, Green DR, Barlev NA, Garabadgiu AV, Zhou P, Melino G, Bernassola F. The Cul4A-DDB1 E3 ubiquitin ligase complex represses p73 transcriptional activity. Oncogene 2012; 32:4721-6. [PMID: 23085759 DOI: 10.1038/onc.2012.463] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 11/09/2022]
Abstract
The Cullin4A (cul4A)-dependent ligase (CDL4A) E3 has been implicated in a variety of biological processes, including cell cycle progression and DNA damage response. Remarkably, CDL4A exerts its function through both proteolytic and non-proteolytic events. Here, we show that the p53 family member p73 is able to interact with the CDL4A complex through its direct binding to the receptor subunit DNA-binding protein 1 (DDB1). As a result, the CDL4A complex is able to monoubiquitylate p73. Modification of p73 by CDL4A-mediated ubiquitylation does not affect p73 protein stability, but negatively regulates p73-dependent transcriptional activity. Indeed, genetic or RNA interference-mediated depletion of DDB1 induces the expression of several p73 target genes in a p53-independent manner. In addition, by exploiting a bioinformatic approach, we found that elevated expression of Cul4A in human breast carcinomas is associated with repression of p73 target genes. In conclusion, our findings add a novel insight into the regulation of p73 by the CDL4A complex, through the inhibition of its transcriptional function.
Collapse
Affiliation(s)
- M Malatesta
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Baptista MS, Duarte CB, Maciel P. Role of the ubiquitin-proteasome system in nervous system function and disease: using C. elegans as a dissecting tool. Cell Mol Life Sci 2012; 69:2691-715. [PMID: 22382927 PMCID: PMC11115168 DOI: 10.1007/s00018-012-0946-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 01/12/2023]
Abstract
In addition to its central roles in protein quality control, regulation of cell cycle, intracellular signaling, DNA damage response and transcription regulation, the ubiquitin-proteasome system (UPS) plays specific roles in the nervous system, where it contributes to precise connectivity through development, and later assures functionality by regulating a wide spectrum of neuron-specific cellular processes. Aberrations in this system have been implicated in the etiology of neurodevelopmental and neurodegenerative diseases. In this review, we provide an updated view on the UPS and highlight recent findings concerning its role in normal and diseased nervous systems. We discuss the advantages of the model organism Caenorhabditis elegans as a tool to unravel the major unsolved questions concerning this biochemical pathway and its involvement in nervous system function and dysfunction, and expose the new possibilities, using state-of-the-art techniques, to assess UPS function using this model system.
Collapse
Affiliation(s)
- Márcio S Baptista
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
36
|
Abstract
Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription-from transcription initiation through to export of mRNA from the nucleus-is influenced by the UPS and that all major arms of the system--from the first step in ubiquitin (Ub) conjugation through to the proteasome-are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power.
Collapse
Affiliation(s)
- Fuqiang Geng
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8240, USA.
| | | | | |
Collapse
|
37
|
Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011; 11:823-36. [PMID: 22076556 DOI: 10.1038/nri3084] [Citation(s) in RCA: 1316] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.
Collapse
|
38
|
Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011. [PMID: 22076556 DOI: 10.1038/nri3084.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.
Collapse
|
39
|
Major histocompatibility complex class II transactivator CIITA is a viral restriction factor that targets human T-cell lymphotropic virus type 1 Tax-1 function and inhibits viral replication. J Virol 2011; 85:10719-29. [PMID: 21813598 DOI: 10.1128/jvi.00813-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of an aggressive malignancy of CD4+ T lymphocytes. Since the viral transactivator Tax-1 is a major player in T-cell transformation, targeting Tax-1 protein is regarded as a possible strategy to arrest viral replication and to counteract neoplastic transformation. We demonstrate that CIITA, the master regulator of major histocompatibility complex class II gene transcription, inhibits HTLV-1 replication by blocking the transactivating function of Tax-1 both when exogenously transfected in 293T cells and when endogenously expressed by a subset of U937 promonocytic cells. Tax-1 and CIITA physically interact in vivo via the first 108 amino acids of Tax-1 and two CIITA adjacent regions (amino acids 1 to 252 and 253 to 410). Interestingly, only CIITA 1-252 mediated Tax-1 inhibition, in agreement with the fact that CIITA residues from positions 64 to 124 were required to block Tax-1 transactivation. CIITA inhibitory action on Tax-1 correlated with the nuclear localization of CIITA and was independent of the transcription factor NF-YB, previously involved in CIITA-mediated inhibition of Tax-2 of HTLV-2. Instead, CIITA severely impaired the physical and functional interaction of Tax-1 with the cellular coactivators p300/CBP-associated factor (PCAF), cyclic AMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1), which are required for the optimal activation of HTLV-1 promoter. Accordingly, the overexpression of PCAF, CREB, and ATF1 restored Tax-1-dependent transactivation of the viral long-terminal-repeat promoter inhibited by CIITA. These findings strongly support our original observation that CIITA, beside increasing the antigen-presenting function for pathogen antigens, acts as an endogenous restriction factor against human retroviruses by blocking virus replication and spreading.
Collapse
|
40
|
Bruno MEC, Frantz AL, Rogier EW, Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells. Mucosal Immunol 2011; 4:468-78. [PMID: 21451502 PMCID: PMC3125104 DOI: 10.1038/mi.2011.8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The polymeric immunoglobulin receptor (pIgR) transports IgA antibodies across intestinal epithelial cells (IECs). Expression of pIgR is upregulated by proinflammatory signaling pathways via activation of nuclear factor-κB (NF-κB). Here, we examined the contributions of the RelA-dependent classical and RelB-dependent alternative pathways of NF-κB to pIgR regulation in the HT-29 human IEC line following stimulation with tumor necrosis factor (TNF), lipopolysaccharide (LPS; Toll-like receptor 4 (TLR4) ligand), and polyinosinic: polycytidylic acid (pIC; TLR3 ligand). Whereas induction of proinflammatory genes such as interleukin-8 (IL-8) required only RelA, pIgR expression was regulated by complex mechanisms that involved both RelA and RelB. Upregulation of pIgR expression by ligation of the lymphotoxin-β receptor suggested a direct role for the alternative NF-κB pathway. Inhibition of mitogen-activated protein kinases reduced the induction of IL-8, but enhanced the induction of pIgR by TNF and TLR signaling. Regulation of pIgR through unique signaling pathways could allow IECs to sustain high levels of IgA transport while limiting the proinflammatory responses.
Collapse
Affiliation(s)
- M E C Bruno
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA,()
| | - A L Frantz
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - E W Rogier
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - F-E Johansen
- Institute of Pathology and Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - C S Kaetzel
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
41
|
Lee AW, Wang N, Hornell TM, Harding JJ, Deshpande C, Hertel L, Lacaille V, Pashine A, Macaubas C, Mocarski ES, Mellins ED. Human cytomegalovirus decreases constitutive transcription of MHC class II genes in mature Langerhans cells by reducing CIITA transcript levels. Mol Immunol 2011; 48:1160-7. [PMID: 21458073 PMCID: PMC3086682 DOI: 10.1016/j.molimm.2011.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 02/20/2011] [Accepted: 02/21/2011] [Indexed: 11/29/2022]
Abstract
Human cytomegalovirus (HCMV) productively infects CD34(+) progenitor-derived, mature Langerhans-type dendritic cells (matLC) and reduces surface expression of MHC class II complexes (MHC II) by increasing intracellular retention of these molecules. To determine whether HCMV also inhibits MHC II expression by other mechanisms, we assessed mRNA levels of the class II transcriptional regulator, CIITA, and several of its target genes in infected matLC. Levels of CIITA, HLA-DRA (DRA) and DRB transcripts, and new DR protein synthesis were compared in mock-infected and HCMV-infected cells by quantitative PCR and pulse-chase immunoprecipitation analyses, respectively. CIITA mRNA levels were significantly lower in HCMV-infected matLC as compared to mock-infected cells. When assessed in the presence of Actinomycin D, the stability of CIITA transcripts was not diminished by HCMV. Analysis of promoter-specific CIITA isoforms revealed that types I, III and IV all were decreased by HCMV, a result that differs from changes after incubation of these cells with lipopolysaccharide (LPS). Exposure to UV-inactivated virus failed to reduce CIITA mRNA levels, implicating de novo viral gene expression in this effect. HCMV-infected matLC also expressed lower levels of DR transcripts and reduced DR protein synthesis rates compared to mock-infected matLC. In summary, we demonstrate that HCMV infection of a human dendritic cell subset inhibits constitutive CIITA expression, most likely at the transcriptional level, resulting in reduced MHC II biosynthesis. We suggest this represents a new mechanism of modulation of mature LC by HCMV.
Collapse
Affiliation(s)
- Andrew W. Lee
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine (Division of Infectious Diseases), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Wang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tara M.C. Hornell
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James J. Harding
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chetan Deshpande
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Hertel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vashti Lacaille
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Achal Pashine
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Claudia Macaubas
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edward S. Mocarski
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth D. Mellins
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
42
|
Bhat KP, Greer SF. Proteolytic and non-proteolytic roles of ubiquitin and the ubiquitin proteasome system in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:150-5. [PMID: 21184853 DOI: 10.1016/j.bbagrm.2010.11.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 01/15/2023]
Abstract
The ubiquitin proteasome system (UPS) regulates perhaps the most intriguing balance in all of biology: how cells control protein function and malfunction in order to regulate, and eventually eliminate, the old and error prone while simultaneously synthesizing and orchestrating the new. In light of the growing notion that ubiquitination and the 26S proteasome are central to a multiplicity of diverse cellular functions, we discuss here the proteolytic and non-proteolytic roles of the UPS in regulating pathways ultimately involved in protein synthesis and activity including roles in epigenetics, transcription, and post-translational modifications. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Kavita P Bhat
- Division of Cellular and Molecular Biology and Phsyiclogy, Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | |
Collapse
|
43
|
Peschiaroli A, Scialpi F, Bernassola F, El Sherbini ES, Melino G. The E3 ubiquitin ligase WWP1 regulates ΔNp63-dependent transcription through Lys63 linkages. Biochem Biophys Res Commun 2010; 402:425-30. [PMID: 20951678 DOI: 10.1016/j.bbrc.2010.10.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 10/11/2010] [Indexed: 11/27/2022]
Abstract
The transcription factor p63, a member of the p53 family, plays a crucial role in epithelial development and tumorigenesis through the regulation of epithelial progenitor cell proliferation, differentiation and apoptosis. Similarly to p53, p63 activity is regulated by post-translational modifications, including ubiquitylation. Here, we report that the WWP1 E3 ubiquitin ligase binds specifically to ΔNp63 isoform but it does not trigger ΔNp63 proteasome-dependent degradation. Accordingly, we found that WWP1-dependent ubiquitylation of ΔNp63 occurs through the formation of Lys63-linked poly-ubiquitin chains. Importantly, we found that WWP1 is able to increase ΔNp63-dependent transcription and depletion of WWP1 in human primary keratinocytes induces cell cycle arrest. All together these results indicate that WWP1 regulates ΔNp63 transcriptional activity, acting thus as a potential regulator of the proliferation and survival of epithelial-derived cells.
Collapse
Affiliation(s)
- Angelo Peschiaroli
- IDI IRCCS Biochemistry Laboratory, Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
44
|
Bhat KP, Truax AD, Greer SF. Phosphorylation and ubiquitination of degron proximal residues are essential for class II transactivator (CIITA) transactivation and major histocompatibility class II expression. J Biol Chem 2010; 285:25893-903. [PMID: 20538595 PMCID: PMC2923977 DOI: 10.1074/jbc.m110.127746] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/06/2010] [Indexed: 11/06/2022] Open
Abstract
Major histocompatibility (MHC) class II molecules are cell surface glycoproteins that present extracellular antigens to CD4(+) T cells and are essential for initiation of the adaptive immune response. MHC class II expression requires recruitment of a master regulator, the class II transactivator (CIITA), to the MHC class II promoter. Post-translational modifications to CIITA play important roles in modulating CIITA mediated transcription of various genes in different cell types. We have previously linked regulation of CIITA to the Ubiquitin Proteasome System (UPS), and we and others have demonstrated that mono-ubiquitination of CIITA dramatically increases its transactivity whereas poly-ubiquitination leads to CIITA degradation. Here we identify three degron proximal lysine residues, Lys-315, Lys-330, and Lys-333, and a phosphorylation site, Ser-280, located within the CIITA degron, that regulate CIITA ubiquitination, stability, and MHC class II expression. Together, these findings contribute to the developing post-translational modification code for CIITA.
Collapse
Affiliation(s)
- Kavita Purnanda Bhat
- From the Division of Cellular and Molecular Biology and Physiology, Department of Biology, Georgia State University, Atlanta, Georgia 30302
| | - Agnieszka Dorota Truax
- From the Division of Cellular and Molecular Biology and Physiology, Department of Biology, Georgia State University, Atlanta, Georgia 30302
| | - Susanna Fletcher Greer
- From the Division of Cellular and Molecular Biology and Physiology, Department of Biology, Georgia State University, Atlanta, Georgia 30302
| |
Collapse
|
45
|
Regulation of LIM-domain-binding 1 protein expression by ubiquitination of Lys134. Biochem J 2010; 429:127-36. [PMID: 20423330 DOI: 10.1042/bj20091461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LDB1 (LIM-domain-binding 1) is a cofactor that participates in formation of transcriptional regulatory complexes involving transcription factors containing LIM domains as well as other factors. The amount of LDB1 protein in cells has previously been shown to be modulated by RNF12 (RING finger protein 12). RNF12 is an E3 ubiquitin ligase that can target LDB1 for poly-ubiquitination and degradation via the proteasome. We find that in HEK (human embryonic kidney)-293 cells expression of RNF12 leads to mono-ubiquitination of LDB1 and increased levels of LDB1 protein. Mutagenesis studies identified Lys134 of LDB1 as the residue that is mono-ubiquitinated by RNF12. Mutation of Lys134 of LDB1 to arginine blocks the formation of mono-ubiquitinated LDB1 and surprisingly also increases LDB1 protein expression in HEK-293 cells. This leads to a model in which Lys134 of LDB1 can be either mono-ubiquitinated, leading to stabilization, or poly-ubiquitinated, leading to degradation by the proteasome pathway. We also find that ubiquitin-LDB1 fusion proteins are stabilized in HEK-293 cells, offering further evidence that mono-ubiquitination stabilizes LDB1 in these cells. Expression in Xenopus laevis embryos of an LDB1 protein in which Lys134 is replaced with arginine leads to enhanced expression of the mutant protein as compared with the wild-type protein. These findings provide evidence that modification of Lys134 can play a major role in regulating LDB1 expression.
Collapse
|
46
|
Bhat KP, Truax AD, Brooks JK, Greer SF. Association of the 19S proteasomal ATPases with the ATPase-binding domain of CIITA is essential for CIITA stability and MHC class II expression. Immunol Cell Biol 2010; 88:807-16. [PMID: 20351748 DOI: 10.1038/icb.2010.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Major histocompatibility class II (MHC class II) molecules are glycoproteins that present extracellular antigens to CD4(+) T cells and are essential for initiation of adaptive immune responses. MHC class II expression requires recruitment of a master regulator, the class II transactivator (CIITA), to the MHC class II promoter. Others and we have earlier linked CIITA to the ubiquitin-proteasome system by showing that mono-ubiquitination of CIITA increases its transactivity, whereas poly-ubiquitination of CIITA leads to its degradation. We have further shown that the 26S proteasome also has non-proteolytic functions in MHC class II transcription, as 19S ATPase subunits of the 26S proteasome positively regulate MHC class II transcription and are necessary for stable promoter binding of CIITA. Although these basic requirements of the proteasome to initiate MHC class II transcription are known, how CIITA is recruited, stabilized, and degraded remains unclear. Here, we identify a novel N-terminal 19S ATPase-binding domain of CIITA. The ATPase-binding domain lies within the proline/serine/threonine-rich region of CIITA and encompasses a majority of the CIITA degron sequence. Absence of the ATPase-binding domain increases the half-life of CIITA, but blocks MHC class II surface expression, indicating that CIITA requires interaction with the 19S ATPases for both appropriate deployment and destruction.
Collapse
Affiliation(s)
- Kavita Purnanda Bhat
- Division of Cellular and Molecular Biology and Physiology, Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | |
Collapse
|
47
|
Koues OI, Mehta NT, Truax AD, Dudley RK, Brooks JK, Greer SF. Roles for common MLL/COMPASS subunits and the 19S proteasome in regulating CIITA pIV and MHC class II gene expression and promoter methylation. Epigenetics Chromatin 2010; 3:5. [PMID: 20181089 PMCID: PMC2829561 DOI: 10.1186/1756-8935-3-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 02/04/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Studies indicate that the 19S proteasome contributes to chromatin reorganization, independent of the role the proteasome plays in protein degradation. We have previously shown that components of the 19S proteasome are crucial for regulating inducible histone activation events in mammalian cells. The 19S ATPase Sug1 binds to histone-remodeling enzymes, and in the absence of Sug1, a subset of activating epigenetic modifications including histone H3 acetylation, H3 lysine 4 trimethylation and H3 arginine 17 dimethylation are inhibited at cytokine-inducible major histocompatibilty complex (MHC)-II and class II transactivator (CIITA) promoters, implicating Sug1 in events required to initiate mammalian transcription. RESULTS Our previous studies indicate that H3 lysine 4 trimethylation at cytokine-inducible MHC-II and CIITA promoters is dependent on proteolytic-independent functions of 19S ATPases. In this report, we show that multiple common subunits of the mixed lineage leukemia (MLL)/complex of proteins associated with Set I (COMPASS) complexes bind to the inducible MHC-II and CIITA promoters; that overexpressing a single common MLL/COMPASS subunit significantly enhances promoter activity and MHC-II HLA-DRA expression; and that these common subunits are important for H3 lysine 4 trimethylation at MHC-II and CIITA promoters. In addition, we show that H3 lysine 27 trimethylation, which is inversely correlated with H3 lysine 4 trimethylation, is significantly elevated in the presence of diminished 19S ATPase Sug1. CONCLUSION Taken together, these experiments suggest that the 19S proteasome plays a crucial role in the initial reorganization of events enabling the relaxation of the repressive chromatin structure surrounding inducible promoters.
Collapse
Affiliation(s)
- Olivia I Koues
- Division of Cellular and Molecular Biology and Physiology, Georgia State University, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kodadek T. No Splicing, no dicing: non-proteolytic roles of the ubiquitin-proteasome system in transcription. J Biol Chem 2009; 285:2221-6. [PMID: 19955182 DOI: 10.1074/jbc.r109.077883] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is responsible for most programmed turnover of proteins in eukaryotic cells, and this activity has been known for some time to be involved in transcriptional regulation. More recently, intersections of the UPP and transcription have been discovered that are not proteolytic in nature and appear to revolve around the chaperonin-like activities of the ATPases in the 19 S regulatory subunit of the proteasome. Moreover, monoubiquitylation, which does not signal degradation, has been found to be a key modification of many transcription factors and histones. These various non-proteolytic roles of the UPP in transcription are reviewed here, and plausible mechanistic models are discussed.
Collapse
Affiliation(s)
- Thomas Kodadek
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA.
| |
Collapse
|
49
|
Kim YC, Wu SY, Lim HS, Chiang CM, Kodadek T. Non-proteolytic regulation of p53-mediated transcription through destabilization of the activator.promoter complex by the proteasomal ATPases. J Biol Chem 2009; 284:34522-30. [PMID: 19846554 DOI: 10.1074/jbc.m109.017277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It has been shown previously that sub-complexes of the 26 S proteasome can regulate gene expression via non-proteolytic mechanisms. One such mechanism is the disruption of activator.promoter complexes in an ATP-dependent fashion, which was discovered in the context of the yeast Gal4 system. This activity strongly inhibits Gal4-driven gene expression unless the activator is mono-ubiquitylated, which protects it from the ATPases. To address whether this paradigm is also applicable to medically important mammalian transcriptional activators we report here a study of the interaction of the proteasomal ATPases with p53. It is shown that p53 binds directly to the ATPases via its C-terminal tetramerization and regulatory domain and that p53.promoter complexes are indeed vulnerable to ATPase-dependent disruption by the ATPase complex in vitro. Knockdown of one of the ATPases, Rpt6, in living cells results in increased occupancy of the p21(waf1) promoter by p53 and increased expression of the gene, consistent with the idea that the proteasomal ATPases negatively regulate p53 function in a non-proteolytic fashion.
Collapse
Affiliation(s)
- Young-Chan Kim
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9185, USA
| | | | | | | | | |
Collapse
|
50
|
The 19S ATPase S6a (S6'/TBP1) regulates the transcription initiation of class II transactivator. J Mol Biol 2009; 395:254-69. [PMID: 19853614 DOI: 10.1016/j.jmb.2009.10.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 01/24/2023]
Abstract
Class II transactivator (CIITA) is the master regulator of the major histocompatibility class II transcription complex (MHC-II) and is critical for initiation of adaptive immune responses. We have previously demonstrated that the 19S proteasome ATPase Sug1 plays a significant role in regulating CIITA activity and MHC-II expression. We now show that an additional component of the 19S complex, the 19S ATPase S6a (S6'/Tat-binding protein 1), is crucial for regulating cytokine-inducible transcription of CIITA. Lack of S6a negatively impacts CIITA activity and CIITA expression. Decreased expression of S6a significantly diminishes the recruitment of transcription factors to the CIITA interferon-gamma-inducible promoter [CIITA promoter IV (pIV)] and significantly decreases CIITApIV histone H3 and histone H4 acetylation, with a preferential loss of acetylation at H3 lysine 18 and H4 lysine 8. In addition, we provide evidence for the involvement of the 19S AAA (ATPases associated with diverse cellular activity) ATPase hexamer as the 19S ATPase S6b binds CIITApIV in an S6a-dependent fashion and has effects similar to S6a on CIITApIV histone acetylation. These analyses demonstrate the importance of 19S ATPases in the assembly of CIITApIV transcription machinery and provide additional insight into the regulatory mechanisms of the 19S proteasome in mammalian transcription.
Collapse
|