1
|
Sutter PA, Dhari Z, Crocker SJ. Neuroimmunology in globoid cell leukodystrophy: A comprehensive review including treatments, models, and neuroimmune mechanisms underlying neuropathology. J Neuroimmunol 2025; 402:578573. [PMID: 40058166 DOI: 10.1016/j.jneuroim.2025.578573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a fatal genetic demyelinating disease of the central nervous system (CNS) caused by loss-of-function mutations in galactosylceramidase (GALC). As a result of the loss of GALC enzymatic activity, there is an accumulation of a toxic lipid called galactosylsphingosine, or psychosine. Current treatments have focused on restoring GALC function as a means to reduce psychosine accumulation, which show promise, however, still have limited success at improving behavioral or cognitive deficits in infants with GLD. Recent studies have discovered a role for T cells in GLD, indicating that there is a previously understudied role for the adaptive immune system as a contributing factor to GLD pathophysiology. This review aims to provide a comprehensive discussion of the current field of GLD research including treatment advances and GLD pathophysiology, with a focus on the role of neuroimmunological mechanisms contributing to GLD.
Collapse
Affiliation(s)
- Pearl A Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Zaenab Dhari
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA; Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health of New England, Hartford, CT 06105, USA; Departemnt of Rehabilitative Medicine, Frank H. Netter MD School of Medicine, North Haven, CT 06473, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
2
|
Arnaiz-Villena A, Suarez-Trujillo F, Ruiz-del-Valle V, Juarez I, Vaquero-Yuste C, Martin-Villa JM, Lledo T. The MHC (Major Histocmpatibility Complex) Exceptional Molecules of Birds and Their Relationship to Diseases. Int J Mol Sci 2025; 26:3767. [PMID: 40332403 PMCID: PMC12028091 DOI: 10.3390/ijms26083767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
There are about 5000 species of Passeriformes birds, which are half of the extant ones. Their class I MHC molecules are found to be different from all other studied vertebrates, including other bird species; i.e., amino acid residues 10 and 96 are not the seven canonic residues extant in all other vertebrate molecules. Thus, the canonic residues in MHC class I vertebrate molecules are reduced to five. These differences have physical effects in MHC (Major Histocompatibility Complex) class I alpha chain interaction with beta-2-microglobulin but have yet unknown functional effects. Also, introns show specific Passeriformes distinction both in size and invariance. The studies reviewed in this paper on MHC structure have been done in wild birds that cover most of the world's passerine habitats. In this context, we are going to expose the most commonly occurring bird diseases with the caveat that MHC and disease linkage pathogenesis is not resolved. In addition, this field is poorly studied in birds; however, common bird diseases like malaria and Marek's disease are linked to MHC. On the other hand, the main established function of MHC molecules is presenting microbial and other antigens to T cells in order to start immune responses, and they also may modulate the immune system through NK receptors and other receptors (non-classical class I MHC molecules). Also, structural and polymorphic differences between classical class I molecules and non-classical class I molecules are at present not clear, and their definition is blurred. These passerine exceptional MHC class I molecules may influence linkage to diseases, transplantation, and other MHC presentation and self-protection functions. Further studies in more Passeriformes species are ongoing and needed.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
3
|
Intonti S, Kokona D, Zinkernagel MS, Enzmann V, Stein JV, Conedera FM. Glia Modulates Immune Responses in the Retina Through Distinct MHC Pathways. Glia 2025; 73:822-839. [PMID: 39873321 PMCID: PMC11845847 DOI: 10.1002/glia.24656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025]
Abstract
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia. Glial cells act as sentinels, detecting antigens released during degeneration and interacting with T-cells via MHC molecules, which are essential for immune responses. Microglia function as APCs via the MHC Class II pathway, upregulating key molecules such as Csf1r and cytokines. In contrast, Müller cells act through the MHC Class I pathway, exhibiting upregulated antigen processing genes and promoting a CD8+ T-cell response. Distinct cytokine signaling pathways, including TNF-α and IFN Type I, contribute to the immune balance. Human retinal specimens corroborate these findings, demonstrating glial activation and MHC expression correlating with degenerative changes. In vitro assays also confirmed differential T-cell migration responses to activated microglia and Müller cells, highlighting their role in shaping the immune milieu within the retina. In summary, our study emphasizes the involvement of retinal glial cells in modulating the immune response after insults to the retinal parenchyma. Unraveling the intricacies of glia-mediated antigen presentation in RD is essential for developing precise therapeutic interventions for retinal pathologies.
Collapse
Affiliation(s)
- Simona Intonti
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Martin S. Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Jens V. Stein
- Department of Oncology, Microbiology and ImmunologyUniversity of FribourgFribourgSwitzerland
| | - Federica M. Conedera
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
- Department of Oncology, Microbiology and ImmunologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
4
|
Russo A, Putaggio S, Tellone E, Calderaro A, Cirmi S, Laganà G, Ficarra S, Barreca D, Patanè GT. Emerging Ferroptosis Involvement in Amyotrophic Lateral Sclerosis Pathogenesis: Neuroprotective Activity of Polyphenols. Molecules 2025; 30:1211. [PMID: 40141987 PMCID: PMC11944684 DOI: 10.3390/molecules30061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Neurodegenerative diseases are a group of diseases that share common features, such as the generation of misfolded protein deposits and increased oxidative stress. Among them, amyotrophic lateral sclerosis (ALS), whose pathogenesis is still not entirely clear, is a complex neurodegenerative disease linked both to gene mutations affecting different proteins, such as superoxide dismutase 1, Tar DNA binding protein 43, Chromosome 9 open frame 72, and Fused in Sarcoma, and to altered iron homeostasis, mitochondrial dysfunction, oxidative stress, and impaired glutamate metabolism. The purpose of this review is to highlight the molecular targets common to ALS and ferroptosis. Indeed, many pathways implicated in the disease are hallmarks of ferroptosis, a recently discovered type of iron-dependent programmed cell death characterized by increased reactive oxygen species (ROS) and lipid peroxidation. Iron accumulation results in mitochondrial dysfunction and increased levels of ROS, lipid peroxidation, and ferroptosis triggers; in addition, the inhibition of the Xc- system results in reduced cystine levels and glutamate accumulation, leading to excitotoxicity and the inhibition of GPx4 synthesis. These results highlight the potential involvement of ferroptosis in ALS, providing new molecular and biochemical targets that could be exploited in the treatment of the disease using polyphenols.
Collapse
Affiliation(s)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (A.C.); (S.C.); (G.L.); (S.F.); (D.B.); (G.T.P.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (A.C.); (S.C.); (G.L.); (S.F.); (D.B.); (G.T.P.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Yang EJ, Lee SH. Herbal Medicine Extracts Improve Motor Function by Anti-Inflammatory Activity in hSOD1 G93A Animal Model. Mediators Inflamm 2025; 2025:1999953. [PMID: 39981400 PMCID: PMC11842138 DOI: 10.1155/mi/1999953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multicomplex neurodegenerative disorder characterized by motor neuron death, muscle atrophy, and respiratory failure. Owing to its multicomplex mechanisms and multifactorial nature in the skeletal muscle and spinal cord (SC), no effective therapy has been developed. However, herbal medicines, known for their multitarget properties, have demonstrated promising efficacy with limited side effects in treating various diseases. Specifically, Paeonia lactiflora Pallas has been demonstrated to exhibit analgesic, antidepressant, anti-inflammatory, and neuroprotective effects. However, the pharmacological mechanisms underlying the beneficial effects of P. lactiflora in hSOD1G93A animal models remain unexplored. Therefore, this study was conducted to investigate the multitarget effects of P. lactiflora in hSOD1G93A transgenic mice, an ALS model. Footprint tests, western blot assays, and immunohistochemical analysis were used to assess the effect of P. lactiflora on the tibia anterior (TA), gastrocnemius (GC), and SC. The results revealed that P. lactiflora augmented motor function and decreased motor neuron loss in hSOD1G93A mice. Furthermore, P. lactiflora significantly lowered the expression of proteins associated with inflammation and oxidative stress in the skeletal muscle (TA and GC) and SC. P. lactiflora also regulated autophagy function by reducing the levels of key markers, such as P62/sequestosome 1 (SQSTM1), microtubule-associated proteins 1A/1B light chain 3B, and SMAD family member 2, in the muscle and SC. Overall, P. lactiflora treatment improved motor function, prevented motor neuron death, and exhibited anti-inflammatory and antioxidative effects in the skeletal muscle and SC of ALS mouse models. These results suggest that P. lactiflora could serve as a promising multitarget therapeutic agent for systemic and multipathological diseases.
Collapse
Affiliation(s)
- Eun Jin Yang
- Department of KM Science Research, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Sun Hwa Lee
- Department of Clinical Research, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
6
|
De Marchi F, Spinelli EG, Bendotti C. Neuroglia in neurodegeneration: Amyotrophic lateral sclerosis and frontotemporal dementia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:45-67. [PMID: 40148057 DOI: 10.1016/b978-0-443-19102-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases sharing significant pathologic and genetic overlap, leading to consider these diseases as a continuum in the spectrum of their pathologic features. Although FTD compromises only specific brain districts, while ALS involves both the nervous system and the skeletal muscles, several neurocentric mechanisms are in common between ALS and FTD. Also, recent research has revealed the significant involvement of nonneuronal cells, particularly glial cells such as astrocytes, oligodendrocytes, microglia, and peripheral immune cells, in disease pathology. This chapter aims to provide an extensive overview of the current understanding of the role of glia in the onset and advancement of ALS and FTD, highlighting the recent implications in terms of prognosis and future treatment options.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, Department of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Caterina Bendotti
- Laboratory of Neurobiology and Preclinical Therapeutics, ALS Center, Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy.
| |
Collapse
|
7
|
Endo F. Deciphering the spectrum of astrocyte diversity: Insights into molecular, morphological, and functional dimensions in health and neurodegenerative diseases. Neurosci Res 2025; 210:1-10. [PMID: 39098767 DOI: 10.1016/j.neures.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Astrocytes are the most abundant and morphologically complex glial cells that play active roles in the central nervous system (CNS). Recent research has identified shared and region-specific astrocytic genes and functions, elucidated the cellular origins of their regional diversity, and uncovered the molecular networks for astrocyte morphology, which are essential for their functional complexity. Reactive astrocytes exhibit a wide range of functional diversity in a context-specific manner in CNS disorders. This review discusses recent advances in understanding the molecular and morphological diversity of astrocytes in healthy individuals and those with neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
8
|
Spargo TP, Gilchrist L, Hunt GP, Dobson RJB, Proitsi P, Al-Chalabi A, Pain O, Iacoangeli A. Statistical examination of shared loci in neuropsychiatric diseases using genome-wide association study summary statistics. eLife 2024; 12:RP88768. [PMID: 39688956 DOI: 10.7554/elife.88768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Continued methodological advances have enabled numerous statistical approaches for the analysis of summary statistics from genome-wide association studies. Genetic correlation analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with significant 'local' genetic correlations can be investigated further using state-of-the-art methodologies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide local genetic correlation analysis approach for identifying genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson's disease, and schizophrenia. The correlation analysis identified several associations between traits, the majority of which were loci in the human leukocyte antigen region. Colocalisation analysis suggested that disease-implicated variants in these loci often differ between traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation analysis protocol designed for this study has been implemented in a flexible analysis pipeline that produces HTML reports and is available at: https://github.com/ThomasPSpargo/COLOC-reporter.
Collapse
Affiliation(s)
- Thomas P Spargo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
- Department of Biostatistics and Health Informatics, King's College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Lachlan Gilchrist
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Guy P Hunt
- Department of Biostatistics and Health Informatics, King's College London, London, United Kingdom
- Perron Institute for Neurological and Translational Science, Nedlands, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Australia
| | - Richard J B Dobson
- Department of Biostatistics and Health Informatics, King's College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
- NIHR Biomedical Research Centre at University College London Hospitals NHS21 Foundation Trust, London, United Kingdom
| | - Petroula Proitsi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
- King's College Hospital, London, United Kingdom
| | - Oliver Pain
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
- Department of Biostatistics and Health Informatics, King's College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| |
Collapse
|
9
|
Afify R, Lipsius K, Wyatt-Johnson SJ, Brutkiewicz RR. Myeloid antigen-presenting cells in neurodegenerative diseases: a focus on classical and non-classical MHC molecules. Front Neurosci 2024; 18:1488382. [PMID: 39720231 PMCID: PMC11667120 DOI: 10.3389/fnins.2024.1488382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
In recent years, increasing evidence has highlighted the critical role of myeloid cells, specifically those that present antigen (APCs) in health and disease. These shape the progression and development of neurodegenerative disorders, where considerable interplay between the immune system and neurons influences the course of disease pathogenesis. Antigen-presenting myeloid cells display different classes of major histocompatibility complex (MHC) and MHC-like proteins on their surface for presenting various types of antigens to a wide variety of T cells. While most studies focus on the role of myeloid MHC class I and II molecules in health and disease, there is still much that remains unknown about non-polymorphic MHC-like molecules such as CD1d and MR1. Thus, in this review, we will summarize the recent findings regarding the contributions of both classical and non-classical MHC molecules, particularly on myeloid microglial APCs, in neurodegenerative diseases. This will offer a better understanding of altered mechanisms that may pave the way for the development of novel therapeutic strategies targeting immune cell-MHC interactions, to mitigate neurodegeneration and its associated pathology.
Collapse
Affiliation(s)
| | | | | | - Randy R. Brutkiewicz
- Department of Microbiology and Immunology and Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Grant OA, Iacoangeli A, Zwamborn RAJ, van Rheenen W, Byrne R, Van Eijk KR, Kenna K, van Vugt JJFA, Cooper-Knock J, Kenna B, Vural A, Topp S, Campos Y, Weber M, Smith B, Dobson R, van Es MA, Vourc'h P, Corcia P, de Carvalho M, Gotkine M, Panades MP, Mora JS, Mill J, Garton F, McRae A, Wray NR, Shaw PJ, Landers JE, Glass JD, Shaw CE, Basak N, Hardiman O, Van Damme P, McLaughlin RL, van den Berg LH, Veldink JH, Al-Chalabi A, Al Khleifat A. Sex-specific DNA methylation differences in Amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624866. [PMID: 39651197 PMCID: PMC11623544 DOI: 10.1101/2024.11.22.624866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Sex is an important covariate in all genetic and epigenetic research due to its role in the incidence, progression and outcome of many phenotypic characteristics and human diseases. Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a sex bias towards higher incidence in males. Here, we report for the first time a blood-based epigenome-wide association study meta-analysis in 9274 individuals after stringent quality control (5529 males and 3975 females). We identified a total of 226 ALS saDMPs (sex-associated DMPs) annotated to a total of 159 unique genes. These ALS saDMPs were depleted at transposable elements yet significantly enriched at enhancers and slightly enriched at 3'UTRs. These ALS saDMPs were enriched for transcription factor motifs such as ESR1 and REST. Moreover, we identified an additional 10 genes associated with ALS saDMPs through chromatin loop interactions, suggesting a potential regulatory role for these saDMPs on distant genes. Furthermore, we investigated the relationship between DNA methylation at specific CpG sites and overall survival in ALS using Cox proportional hazards models. We identified two ALS saDMPs, cg14380013 and cg06729676, that showed significant associations with survival. Overall, our study reports a reliable catalogue of sex-associated ALS saDMPs in ALS and elucidates several characteristics of these sites using a large-scale dataset. This resource will benefit future studies aiming to investigate the role of sex in the incidence, progression and risk for ALS.
Collapse
|
11
|
Liu J, Zhao W, Guo J, Kang K, Li H, Yang X, Li J, Wang Q, Qiao H. Electroacupuncture alleviates motor dysfunction by regulating neuromuscular junction disruption and neuronal degeneration in SOD1 G93A mice. Brain Res Bull 2024; 216:111036. [PMID: 39084570 DOI: 10.1016/j.brainresbull.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the progressive destruction of the neuromuscular junction (NMJ) and the degeneration of motor neurons, eventually leading to atrophy and paralysis of voluntary muscles responsible for motion and breathing. NMJs, synaptic connections between motor neurons and skeletal muscle fibers, are extremely fragile in ALS. To determine the effects of early electroacupuncture (EA) intervention on nerve reinnervation and regeneration following injury, a model of sciatic nerve injury (SNI) was first established using SOD1G93A mice, and early electroacupuncture (EA) intervention was conducted at Baihui (DU20), and bilateral Zusanli (ST36). The results revealed that EA increased the Sciatic nerve Functional Index, the structural integrity of the gastrocnemius muscles, and the cross-sectional area of muscle fibers, as well as up-regulated the expression of acetylcholinesterase and facilitated the co-location of α7 nicotinic acetate choline receptors and α-actinin. Overall, these results suggested that EA can promote the repair and regeneration of injured nerves and delay NMJ degeneration in SOD1G93A-SNI mice. Moreover, analysis of the cerebral cortex demonstrated that EA alleviated cortical motor neuron damage in SOD1G93A mice, potentially attributed to the inhibition of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway and the release of interferon-β suppressing the activation of natural killer cells and the secretion of interferon-γ, thereby further inhibiting microglial activation and the expression of inflammatory factors. In summary, EA delayed the degeneration of NMJ and mitigated the loss of cortical motor neurons, thus delaying disease onset, accompanied by alleviation of muscle atrophy and improvements in motor function in SOD1G93A mice.
Collapse
Affiliation(s)
- Junyang Liu
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Weijia Zhao
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jie Guo
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Kaiwen Kang
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hua Li
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaohang Yang
- Shaanxi Provincial Key Laboratory of Acupuncture and Drug Combination, Xianyang 712046, China
| | - Jie Li
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Qiang Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Haifa Qiao
- Shaanxi Provincial Key Laboratory of Acupuncture and Drug Combination, Xianyang 712046, China.
| |
Collapse
|
12
|
Du R, Wang P, Tian N. CD3ζ-Mediated Signaling Protects Retinal Ganglion Cells in Glutamate Excitotoxicity of the Retina. Cells 2024; 13:1006. [PMID: 38920637 PMCID: PMC11201742 DOI: 10.3390/cells13121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.
Collapse
Affiliation(s)
- Rui Du
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84132, USA
- Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| |
Collapse
|
13
|
Pinilla-González V, Montecinos-Barrientos B, Martin-Kommer C, Chichiarelli S, Saso L, Rodrigo R. Exploring antioxidant strategies in the pathogenesis of ALS. Open Life Sci 2024; 19:20220842. [PMID: 38585631 PMCID: PMC10997151 DOI: 10.1515/biol-2022-0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
The central nervous system is essential for maintaining homeostasis and controlling the body's physiological functions. However, its biochemical characteristics make it highly vulnerable to oxidative damage, which is a common factor in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). ALS is a leading cause of motor neuron disease, characterized by a rapidly progressing and incurable condition. ALS often results in death from respiratory failure within 3-5 years from the onset of the first symptoms, underscoring the urgent need to address this medical challenge. The aim of this study is to present available data supporting the role of oxidative stress in the mechanisms underlying ALS and to discuss potential antioxidant therapies currently in development. These therapies aim to improve the quality of life and life expectancy for patients affected by this devastating disease.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | | | - Clemente Martin-Kommer
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185Rome, Italy
| | - Ramón Rodrigo
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| |
Collapse
|
14
|
He D, Xu Y, Liu M, Cui L. The Inflammatory Puzzle: Piecing together the Links between Neuroinflammation and Amyotrophic Lateral Sclerosis. Aging Dis 2024; 15:96-114. [PMID: 37307819 PMCID: PMC10796096 DOI: 10.14336/ad.2023.0519] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has a complex genetic basis. Through advancements in genetic screening, researchers have identified more than 40 mutant genes associated with ALS, some of which impact immune function. Neuroinflammation, with abnormal activation of immune cells and excessive production of inflammatory cytokines in the central nervous system, significantly contributes to the pathophysiology of ALS. In this review, we examine recent evidence on the involvement of ALS-associated mutant genes in immune dysregulation, with a specific focus on the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and N6-methyladenosine (m6A)-mediated immune regulation in the context of neurodegeneration. We also discuss the perturbation of immune cell homeostasis in both the central nervous system and peripheral tissues in ALS. Furthermore, we explore the advancements made in the emerging genetic and cell-based therapies for ALS. This review underscores the complex relationship between ALS and neuroinflammation, highlighting the potential to identify modifiable factors for therapeutic intervention. A deeper understanding of the connection between neuroinflammation and the risk of ALS is crucial for advancing effective treatments for this debilitating disorder.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yan Xu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
15
|
Mimic S, Aru B, Pehlivanoğlu C, Sleiman H, Andjus PR, Yanıkkaya Demirel G. Immunology of amyotrophic lateral sclerosis - role of the innate and adaptive immunity. Front Neurosci 2023; 17:1277399. [PMID: 38105925 PMCID: PMC10723830 DOI: 10.3389/fnins.2023.1277399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
This review aims to summarize the latest evidence about the role of innate and adaptive immunity in Amyotrophic Lateral Sclerosis (ALS). ALS is a devastating neurodegenerative disease affecting upper and lower motor neurons, which involves essential cells of the immune system that play a basic role in innate or adaptive immunity, that can be neurotoxic or neuroprotective for neurons. However, distinguishing between the sole neurotoxic or neuroprotective function of certain cells such as astrocytes can be challenging due to intricate nature of these cells, the complexity of the microenvironment and the contextual factors. In this review, in regard to innate immunity we focus on the involvement of monocytes/macrophages, microglia, the complement, NK cells, neutrophils, mast cells, and astrocytes, while regarding adaptive immunity, in addition to humoral immunity the most important features and roles of T and B cells are highlighted, specifically different subsets of CD4+ as well as CD8+ T cells. The role of autoantibodies and cytokines is also discussed in distinct sections of this review.
Collapse
Affiliation(s)
- Stefan Mimic
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Başak Aru
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Cemil Pehlivanoğlu
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Hadi Sleiman
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Pavle R. Andjus
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
16
|
Richardson PJ, Smith DP, de Giorgio A, Snetkov X, Almond-Thynne J, Cronin S, Mead RJ, McDermott CJ, Shaw PJ. Janus kinase inhibitors are potential therapeutics for amyotrophic lateral sclerosis. Transl Neurodegener 2023; 12:47. [PMID: 37828541 PMCID: PMC10568794 DOI: 10.1186/s40035-023-00380-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a poorly treated multifactorial neurodegenerative disease associated with multiple cell types and subcellular organelles. As with other multifactorial diseases, it is likely that drugs will need to target multiple disease processes and cell types to be effective. We review here the role of Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) signalling in ALS, confirm the association of this signalling with fundamental ALS disease processes using the BenevolentAI Knowledge Graph, and demonstrate that inhibitors of this pathway could reduce the ALS pathophysiology in neurons, glia, muscle fibres, and blood cells. Specifically, we suggest that inhibition of the JAK enzymes by approved inhibitors known as Jakinibs could reduce STAT3 activation and modify the progress of this disease. Analysis of the Jakinibs highlights baricitinib as a suitable candidate due to its ability to penetrate the central nervous system and exert beneficial effects on the immune system. Therefore, we recommend that this drug be tested in appropriately designed clinical trials for ALS.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara Cronin
- BenevolentAI, 15 MetroTech Centre, 8th FL, Brooklyn, NY, 11201, USA
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
17
|
Tomiyama ALMR, Cartarozzi LP, de Oliveira Coser L, Chiarotto GB, Oliveira ALR. Neuroprotection by upregulation of the major histocompatibility complex class I (MHC I) in SOD1 G93A mice. Front Cell Neurosci 2023; 17:1211486. [PMID: 37711512 PMCID: PMC10498468 DOI: 10.3389/fncel.2023.1211486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that progressively affects motoneurons, causing muscle atrophy and evolving to death. Astrocytes inhibit the expression of MHC-I by neurons, contributing to a degenerative outcome. The present study verified the influence of interferon β (IFN β) treatment, a proinflammatory cytokine that upregulates MHC-I expression, in SOD1G93A transgenic mice. For that, 17 days old presymptomatic female mice were subjected to subcutaneous application of IFN β (250, 1,000, and 10,000 IU) every other day for 20 days. Rotarod motor test, clinical score, and body weight assessment were conducted every third day throughout the treatment period. No significant intergroup variations were observed in such parameters during the pre-symptomatic phase. All mice were then euthanized, and the spinal cords collected for comparative analysis of motoneuron survival, reactive gliosis, synapse coverage, microglia morphology classification, cytokine analysis by flow cytometry, and RT-qPCR quantification of gene transcripts. Additionally, mice underwent Rotarod motor assessment, weight monitoring, and neurological scoring. The results show that IFN β treatment led to an increase in the expression of MHC-I, which, even at the lowest dose (250 IU), resulted in a significant increase in neuronal survival in the ALS presymptomatic period which lasted until the onset of the disease. The treatment also influenced synaptic preservation by decreasing excitatory inputs and upregulating the expression of AMPA receptors by astrocytes. Microglial reactivity quantified by the integrated density of pixels did not decrease with treatment but showed a less activated morphology, coupled with polarization to an M1 profile. Disease progression upregulated gene transcripts for pro- and anti-inflammatory cytokines, and IFN β treatment significantly decreased mRNA expression for IL4. Overall, the present results demonstrate that a low dosage of IFN β shows therapeutic potential by increasing MHC-I expression, resulting in neuroprotection and immunomodulation.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre L. R. Oliveira
- Department of Structural and Functional Biology, Institute of Biology—University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
18
|
Valori CF, Sulmona C, Brambilla L, Rossi D. Astrocytes: Dissecting Their Diverse Roles in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2023; 12:1450. [PMID: 37296571 PMCID: PMC10252425 DOI: 10.3390/cells12111450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders often co-occurring in the same patient, a feature that suggests a common origin of the two diseases. Consistently, pathological inclusions of the same proteins as well as mutations in the same genes can be identified in both ALS/FTD. Although many studies have described several disrupted pathways within neurons, glial cells are also regarded as crucial pathogenetic contributors in ALS/FTD. Here, we focus our attention on astrocytes, a heterogenous population of glial cells that perform several functions for optimal central nervous system homeostasis. Firstly, we discuss how post-mortem material from ALS/FTD patients supports astrocyte dysfunction around three pillars: neuroinflammation, abnormal protein aggregation, and atrophy/degeneration. Furthermore, we summarize current attempts at monitoring astrocyte functions in living patients using either novel imaging strategies or soluble biomarkers. We then address how astrocyte pathology is recapitulated in animal and cellular models of ALS/FTD and how we used these models both to understand the molecular mechanisms driving glial dysfunction and as platforms for pre-clinical testing of therapeutics. Finally, we present the current clinical trials for ALS/FTD, restricting our discussion to treatments that modulate astrocyte functions, directly or indirectly.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72072 Tübingen, Germany
- Department of Neuropathology, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
19
|
Dominov JA, Madigan LA, Whitt JP, Rademacher KL, Webster KM, Zhang H, Banno H, Tang S, Zhang Y, Wightman N, Shychuck EM, Page J, Weiss A, Kelly K, Kucukural A, Brodsky MH, Jaworski A, Fallon JR, Lipscombe D, Brown RH. Up-regulation of cholesterol synthesis pathways and limited neurodegeneration in a knock-in Sod1 mutant mouse model of ALS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539444. [PMID: 37205335 PMCID: PMC10187330 DOI: 10.1101/2023.05.05.539444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder affecting brain and spinal cord motor neurons. Mutations in the copper/zinc superoxide dismutase gene ( SOD1 ) are associated with ∼20% of inherited and 1-2% of sporadic ALS cases. Much has been learned from mice expressing transgenic copies of mutant SOD1, which typically involve high-level transgene expression, thereby differing from ALS patients expressing one mutant gene copy. To generate a model that more closely represents patient gene expression, we created a knock-in point mutation (G85R, a human ALS-causing mutation) in the endogenous mouse Sod1 gene, leading to mutant SOD1 G85R protein expression. Heterozygous Sod1 G85R mutant mice resemble wild type, whereas homozygous mutants have reduced body weight and lifespan, a mild neurodegenerative phenotype, and express very low mutant SOD1 protein levels with no detectable SOD1 activity. Homozygous mutants exhibit partial neuromuscular junction denervation at 3-4 months of age. Spinal cord motor neuron transcriptome analyses of homozygous Sod1 G85R mice revealed up-regulation of cholesterol synthesis pathway genes compared to wild type. Transcriptome and phenotypic features of these mice are similar to Sod1 knock-out mice, suggesting the Sod1 G85R phenotype is largely driven by loss of SOD1 function. By contrast, cholesterol synthesis genes are down-regulated in severely affected human TgSOD1 G93A transgenic mice at 4 months. Our analyses implicate dysregulation of cholesterol or related lipid pathway genes in ALS pathogenesis. The Sod1 G85R knock-in mouse is a useful ALS model to examine the importance of SOD1 activity in control of cholesterol homeostasis and motor neuron survival. SIGNIFICANCE STATEMENT Amyotrophic lateral sclerosis is a devastating disease involving the progressive loss of motor neurons and motor function for which there is currently no cure. Understanding biological mechanisms leading to motor neuron death is critical for developing new treatments. Using a new knock-in mutant mouse model carrying a Sod1 mutation that causes ALS in patients, and in the mouse, causes a limited neurodegenerative phenotype similar to Sod1 loss-of-function, we show that cholesterol synthesis pathway genes are up-regulated in mutant motor neurons, whereas the same genes are down-regulated in transgenic SOD1 mice with a severe phenotype. Our data implicate dysregulation of cholesterol or other related lipid genes in ALS pathogenesis and provide new insights that could contribute to strategies for disease intervention.
Collapse
|
20
|
Stoklund Dittlau K, Van Den Bosch L. Why should we care about astrocytes in a motor neuron disease? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1047540. [PMID: 39086676 PMCID: PMC11285655 DOI: 10.3389/fmmed.2023.1047540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/13/2023] [Indexed: 08/02/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults, causing progressive degeneration of motor neurons, which results in muscle atrophy, respiratory failure and ultimately death of the patients. The pathogenesis of ALS is complex, and extensive efforts have focused on unravelling the underlying molecular mechanisms with a large emphasis on the dying motor neurons. However, a recent shift in focus towards the supporting glial population has revealed a large contribution and influence in ALS, which stresses the need to explore this area in more detail. Especially studies into astrocytes, the residential homeostatic supporter cells of neurons, have revealed a remarkable astrocytic dysfunction in ALS, and therefore could present a target for new and promising therapeutic entry points. In this review, we provide an overview of general astrocyte function and summarize the current literature on the role of astrocytes in ALS by categorizing the potentially underlying molecular mechanisms. We discuss the current efforts in astrocyte-targeted therapy, and highlight the potential and shortcomings of available models.
Collapse
Affiliation(s)
- Katarina Stoklund Dittlau
- KU Leuven—University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, Leuven, Belgium
- VIB Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven—University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, Leuven, Belgium
- VIB Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
21
|
Yazit NAA, Juliana N, Kadiman S, Hafidz KM, Mohd Fahmi Teng NI, Abdul Hamid N, Effendy N, Azmani S, Abu IF, Aziz NASA, Das S. Microarray Profiling of Differentially Expressed Genes in Coronary Artery Bypass Grafts of High-Risk Patients with Postoperative Cognitive Dysfunctions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1457. [PMID: 36674212 PMCID: PMC9859359 DOI: 10.3390/ijerph20021457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is cognitive decline after surgery. The authors hypothesized that gene-level changes could be involved in the pathogenesis of POCD. The present study evaluated the incidence of POCD and its associated differentially expressed genes. This was a prospective cohort study conducted on high-risk coronary artery bypass graft patients aged 40 to 75 years. POCD classification was based on a one standard deviation decline in the postoperative scores compared to the preoperative scores. The differentially expressed genes were identified using microarray analysis and validated using quantitative RT-PCR. Forty-six patients were recruited and completed the study. The incidence of POCD was identified using a set of neurocognitive assessments and found to be at 17% in these high-risk CABG patients. Six samples were selected for the gene expression analyses (3 non-POCD and 3 POCD samples). The findings showed five differentially expressed genes in the POCD group compared to the non-POCD group. The upregulated gene was ERFE, whereas the downregulated genes were KIR2DS2, KIR2DS3, KIR3DL2, and LIM2. According to the results, the gene expression profiles of POCD can be used to find potential proteins for POCD diagnostic and predictive biomarkers. Understanding the molecular mechanism of POCD development will further lead to early detection and intervention to reduce the severity of POCD, and hence, reduce the mortality and morbidity rate due to the condition.
Collapse
Affiliation(s)
- Noor Anisah Abu Yazit
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Norsham Juliana
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Suhaini Kadiman
- Anaesthesia and Intensive Care Unit, National Heart Institute, Kuala Lumpur 50400, Malaysia
| | | | | | - Nazefah Abdul Hamid
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Nadia Effendy
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Sahar Azmani
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Malaysia
| | | | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
22
|
Connexin 30 Deficiency Ameliorates Disease Progression at the Early Phase in a Mouse Model of Amyotrophic Lateral Sclerosis by Suppressing Glial Inflammation. Int J Mol Sci 2022; 23:ijms232416046. [PMID: 36555685 PMCID: PMC9782489 DOI: 10.3390/ijms232416046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Connexin 30 (Cx30), which forms gap junctions between astrocytes, regulates cell adhesion and migration, and modulates glutamate transport. Cx30 is upregulated on activated astroglia in central nervous system inflammatory lesions, including spinal cord lesions in mutant superoxide dismutase 1 (mSOD1) transgenic amyotrophic lateral sclerosis (ALS) model mice. Here, we investigated the role of Cx30 in mSOD1 mice. Cx30 was highly expressed in the pre-onset stage in mSOD1 mice. mSOD1 mice with knockout (KO) of the Cx30 gene (Cx30KO-mSOD1 mice) showed delayed disease onset and tended to have an extended survival period (log-rank, p = 0.09). At the progressive and end stages of the disease, anterior horn cells were significantly preserved in Cx30KO-mSOD1 mice. In lesions of these mice, glial fibrillary acidic protein/C3-positive inflammatory astroglia were decreased. Additionally, the activation of astrocytes in Cx30KO-mSOD1 mice was reduced compared with mSOD1 mice by gene expression microarray. Furthermore, expression of connexin 43 at the pre-onset stage was downregulated in Cx30KO-mSOD1 mice. These findings suggest that reduced expression of astroglial Cx30 at the early disease stage in ALS model mice protects neurons by attenuating astroglial inflammation.
Collapse
|
23
|
Sutter PA, Crocker SJ. Glia as antigen-presenting cells in the central nervous system. Curr Opin Neurobiol 2022; 77:102646. [PMID: 36371828 PMCID: PMC10183975 DOI: 10.1016/j.conb.2022.102646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
The contribution of the cells within the central nervous system (CNS) toward adaptive immune responses is emerging and incompletely understood. Recent findings indicate important functional interactions between T-cells and glial cells within the CNS that may contribute to disease and neuropathology through antigen presentation. Although glia are not classically considered antigen-presenting cell (APC) types, there is growing evidence indicating that glial antigen presentation plays an important role in several neurological diseases. This review discusses these findings which incriminate microglia, astrocytes, and oligodendrocyte lineage cells as CNS-resident APC types with implications for understanding disease.
Collapse
Affiliation(s)
- Pearl A Sutter
- Departments of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Stephen J Crocker
- Departments of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
24
|
Méresse S, Larrigaldie V, Oummadi A, de Concini V, Morisset-Lopez S, Reverchon F, Menuet A, Montécot-Dubourg C, Mortaud S. β-N-Methyl-Amino-L-Alanine cyanotoxin promotes modification of undifferentiated cells population and disrupts the inflammatory status in primary cultures of neural stem cells. Toxicology 2022; 482:153358. [DOI: 10.1016/j.tox.2022.153358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
25
|
Quach TT, Stratton HJ, Khanna R, Mackey-Alfonso S, Deems N, Honnorat J, Meyer K, Duchemin AM. Neurodegenerative Diseases: From Dysproteostasis, Altered Calcium Signalosome to Selective Neuronal Vulnerability to AAV-Mediated Gene Therapy. Int J Mol Sci 2022; 23:ijms232214188. [PMID: 36430666 PMCID: PMC9694178 DOI: 10.3390/ijms232214188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Despite intense research into the multifaceted etiology of neurodegenerative diseases (ND), they remain incurable. Here we provide a brief overview of several major ND and explore novel therapeutic approaches. Although the cause (s) of ND are not fully understood, the accumulation of misfolded/aggregated proteins in the brain is a common pathological feature. This aggregation may initiate disruption of Ca++ signaling, which is an early pathological event leading to altered dendritic structure, neuronal dysfunction, and cell death. Presently, ND gene therapies remain unidimensional, elusive, and limited to modifying one pathological feature while ignoring others. Considering the complexity of signaling cascades in ND, we discuss emerging therapeutic concepts and suggest that deciphering the molecular mechanisms involved in dendritic pathology may broaden the phenotypic spectrum of ND treatment. An innovative multiplexed gene transfer strategy that employs silencing and/or over-expressing multiple effectors could preserve vulnerable neurons before they are lost. Such therapeutic approaches may extend brain health span and ameliorate burdensome chronic disease states.
Collapse
Affiliation(s)
- Tam T. Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, 69677 Lyon, France
| | | | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Sabrina Mackey-Alfonso
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nicolas Deems
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jérome Honnorat
- INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, 69677 Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677 Lyon, France
- SynatAc Team, Institut NeuroMyoGène, 69677 Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-293-5517; Fax: +1-614-293-7599
| |
Collapse
|
26
|
Interferon-beta induces major histocompatibility complex of class I (MHC-I) expression and a proinflammatory phenotype in cultivated human astrocytes. Differentiation 2022; 128:43-56. [DOI: 10.1016/j.diff.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022]
|
27
|
Gong Z, Liu Y, Ding F, Ba L, Zhang M. Natural killer cells-related immune traits and amyotrophic lateral sclerosis: A Mendelian randomization study. Front Neurosci 2022; 16:981371. [PMID: 36248644 PMCID: PMC9562140 DOI: 10.3389/fnins.2022.981371] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundObservational studies have suggested that peripheral immune disorders are associated with amyotrophic lateral sclerosis (ALS). Previous studies predominantly focused on changes in adaptive immunity. However, emerging evidence showed natural killer (NK) cells, an essential component of innate immunity, were involved in the degeneration of motor neurons. However, the causal relationship between dysregulated NK cells-related immune traits and ALS remains unclear.ObjectiveThis study aimed to explore the causal relationship between NK cells-related immune traits and the risk of ALS.Materials and methodsSingle nucleotide polymorphisms (SNPs) significantly associated with NK cells-related immune traits were selected as instrumental variables to estimate their causal effects on ALS. SNPs from a genome-wide association study (GWAS) on NK cells-related immune traits were used as exposure instruments, including an absolute NK-cells count, absolute HLA-DR+ NK-cells count, NK cells/lymphocytes, NK cells/CD3– lymphocytes, HLA DR+ NK cells/NK cells, HLA DR+ NK cells/CD3– lymphocytes, and the median fluorescence intensities of CD16–CD56+ on NK cells and HLA-DR+ NK cells. Summary-level GWAS statistics of ALS were used as the outcome data. Exposure and outcome data were analyzed using the two-sample Mendelian randomization (MR) method.ResultsEach one standard deviation increase in the expression levels of CD16–CD56+ on NK cells and HLA-DR+ NK cells were associated with a lower risk of ALS in both the MR-Egger and inverse variance weighted methods (P < 0.05). The results proved robust under all sensitivity analyses. Neither instrumental outliers nor heterogeneity were detected.ConclusionOur results suggest that higher expression levels of CD16–CD56+ on NK cells and HLA-DR+ NK cells are associated with a lower risk of ALS.
Collapse
Affiliation(s)
- Zhenxiang Gong
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Ba
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Ba,
| | - Min Zhang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Ba,
| |
Collapse
|
28
|
Arnaiz-Villena A, Suarez-Trujillo F, Juarez I, Rodríguez-Sainz C, Palacio-Gruber J, Vaquero-Yuste C, Molina-Alejandre M, Fernández-Cruz E, Martin-Villa JM. Evolution and molecular interactions of major histocompatibility complex (MHC)-G, -E and -F genes. Cell Mol Life Sci 2022; 79:464. [PMID: 35925520 PMCID: PMC9352621 DOI: 10.1007/s00018-022-04491-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Classical HLA (Human Leukocyte Antigen) is the Major Histocompatibility Complex (MHC) in man. HLA genes and disease association has been studied at least since 1967 and no firm pathogenic mechanisms have been established yet. HLA-G immune modulation gene (and also -E and -F) are starting the same arduous way: statistics and allele association are the trending subjects with the same few results obtained by HLA classical genes, i.e., no pathogenesis may be discovered after many years of a great amount of researchers' effort. Thus, we believe that it is necessary to follow different research methodologies: (1) to approach this problem, based on how evolution has worked maintaining together a cluster of immune-related genes (the MHC) in a relatively short chromosome area since amniotes to human at least, i.e., immune regulatory genes (MHC-G, -E and -F), adaptive immune classical class I and II genes, non-adaptive immune genes like (C2, C4 and Bf) (2); in addition to using new in vitro models which explain pathogenetics of HLA and disease associations. In fact, this evolution may be quite reliably studied during about 40 million years by analyzing the evolution of MHC-G, -E, -F, and their receptors (KIR-killer-cell immunoglobulin-like receptor, NKG2-natural killer group 2-, or TCR-T-cell receptor-among others) in the primate evolutionary lineage, where orthology of these molecules is apparently established, although cladistic studies show that MHC-G and MHC-B genes are the ancestral class I genes, and that New World apes MHC-G is paralogous and not orthologous to all other apes and man MHC-G genes. In the present review, we outline past and possible future research topics: co-evolution of adaptive MHC classical (class I and II), non-adaptive (i.e., complement) and modulation (i.e., non-classical class I) immune genes may imply that the study of full or part of MHC haplotypes involving several loci/alleles instead of single alleles is important for uncovering HLA and disease pathogenesis. It would mainly apply to starting research on HLA-G extended haplotypes and disease association and not only using single HLA-G genetic markers.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Fabio Suarez-Trujillo
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Carmen Rodríguez-Sainz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Palacio-Gruber
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Christian Vaquero-Yuste
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Marta Molina-Alejandre
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Eduardo Fernández-Cruz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Manuel Martin-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
29
|
Chiarotto GB, Cartarozzi LP, Perez M, Tomiyama ALMR, de Castro MV, Duarte ASS, Luzo ÂCM, Oliveira ALRD. Delayed onset, immunomodulation, and lifespan improvement of SOD1 G93A mice after intravenous injection of human mesenchymal stem cells derived from adipose tissue. Brain Res Bull 2022; 186:153-164. [PMID: 35718222 DOI: 10.1016/j.brainresbull.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective and progressive loss of motor neurons from the spinal cord, brain stem, and motor cortex. Although the hallmark of ALS is motor neuron degeneration, astrocytes, microglia, and T cells actively participate. Pharmacological treatment with riluzole has little effect on the lifespan of the patient. Thus, the development of new therapeutic strategies is of utmost importance. The objective of this study was to verify whether human mesenchymal stem cells (hMSCs) from adipose tissue have therapeutic potential in SOD1G93A transgenic mice. The treatment was carried out in the asymptomatic phase of the disease (10th week) by a single systemic application of ad-hMSCs (1 ×105 cells). The animals were sacrificed at the 14th week (the initial stage of symptoms) or the end-stage (ES) of the disease. The lumbar spinal cords were dissected and processed for Nissl staining (neuronal survival), immunohistochemistry (gliosis and synaptic preservation), and gene transcript expression (qRT-PCR). Behavioral analyses considering the onset of disease and its progression, neurological score, body weight, and motor control (rotarod test) started on the 10th week and were performed every three days until the ES of the disease. The results revealed that treatment with ad-hMSCs promoted greater neuronal survival (44%) than vehicle treatment. However, no effect was seen at the ES of the disease. Better structural preservation of the ventral horn in animals treated with ad-hMSCs was observed, together with decreased gliosis and greater synapse protection. In line with this, we found that the transcript levels of Hgf1 were upregulated in ad-hMSCs-treated mice. These results corroborate the behavioral data showing that ad-hMSCs had delayed motor deficits and reduced weight loss compared to vehicle animals. Additionally, cell therapy delayed the course of the disease and significantly improved survival by 20 days. Overall, our results indicate that treatment with ad-hMSCs has beneficial effects, enhancing neuronal survival and promoting a less degenerative neuronal microenvironment. Thus, this may be a potential therapy to improve the quality of life and to extend the lifespan of ALS patients.
Collapse
Affiliation(s)
- Gabriela Bortolança Chiarotto
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Luciana Politti Cartarozzi
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Matheus Perez
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14040-907 Ribeirão Preto, SP, Brazil
| | - Ana Laura Midori Rossi Tomiyama
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Mateus Vidigal de Castro
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Adriana S S Duarte
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Ângela Cristina Malheiros Luzo
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil.
| |
Collapse
|
30
|
Zang X, Chen S, Zhu J, Ma J, Zhai Y. The Emerging Role of Central and Peripheral Immune Systems in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:872134. [PMID: 35547626 PMCID: PMC9082639 DOI: 10.3389/fnagi.2022.872134] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
For decades, it has been widely believed that the blood-brain barrier (BBB) provides an immune privileged environment in the central nervous system (CNS) by blocking peripheral immune cells and humoral immune factors. This view has been revised in recent years, with increasing evidence revealing that the peripheral immune system plays a critical role in regulating CNS homeostasis and disease. Neurodegenerative diseases are characterized by progressive dysfunction and the loss of neurons in the CNS. An increasing number of studies have focused on the role of the connection between the peripheral immune system and the CNS in neurodegenerative diseases. On the one hand, peripherally released cytokines can cross the BBB, cause direct neurotoxicity and contribute to the activation of microglia and astrocytes. On the other hand, peripheral immune cells can also infiltrate the brain and participate in the progression of neuroinflammatory and neurodegenerative diseases. Neurodegenerative diseases have a high morbidity and disability rate, yet there are no effective therapies to stop or reverse their progression. In recent years, neuroinflammation has received much attention as a therapeutic target for many neurodegenerative diseases. In this review, we highlight the emerging role of the peripheral and central immune systems in neurodegenerative diseases, as well as their interactions. A better understanding of the emerging role of the immune systems may improve therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si Chen
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - JunYao Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junwen Ma
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Cx43 hemichannels contribute to astrocyte-mediated toxicity in sporadic and familial ALS. Proc Natl Acad Sci U S A 2022; 119:e2107391119. [PMID: 35312356 PMCID: PMC9060483 DOI: 10.1073/pnas.2107391119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our results demonstrate that connexin 43 hemichannels are the conduits for amyotrophic lateral sclerosis (ALS) astrocyte-mediated motor neuron toxicity and disease spread, acting as a common mechanism that can target both familial ALS and sporadic ALS populations. Furthermore, our present work provides proof of principle that tonabersat, as a drug already studied in clinical trials for other indications, could serve as a potential ALS therapeutic. Connexin 43 (Cx43) gap junctions and hemichannels mediate astrocyte intercellular communication in the central nervous system under normal conditions and contribute to astrocyte-mediated neurotoxicity in amyotrophic lateral sclerosis (ALS). Here, we show that astrocyte-specific knockout of Cx43 in a mouse model of ALS slows disease progression both spatially and temporally, provides motor neuron (MN) protection, and improves survival. In addition, Cx43 expression is up-regulated in human postmortem tissue and cerebrospinal fluid from ALS patients. Using human induced pluripotent stem cell–derived astrocytes (hiPSC-A) from both familial and sporadic ALS, we establish that Cx43 is up-regulated and that Cx43-hemichannels are enriched at the astrocyte membrane. We also demonstrate that the pharmacological blockade of Cx43-hemichannels in ALS astrocytes using GAP 19, a mimetic peptide blocker, and tonabersat, a clinically tested small molecule, provides neuroprotection of hiPSC-MN and reduces ALS astrocyte-mediated neuronal hyperexcitability. Extending the in vitro application of tonabersat with chronic administration to SOD1G93A mice results in MN protection with a reduction in reactive astrocytosis and microgliosis. Taking these data together, our studies identify Cx43 hemichannels as conduits of astrocyte-mediated disease progression and a pharmacological target for disease-modifying ALS therapies.
Collapse
|
32
|
Killoy KM, Harlan BA, Pehar M, Vargas MR. NR1D1 downregulation in astrocytes induces a phenotype that is detrimental to cocultured motor neurons. FASEB J 2022; 36:e22262. [PMID: 35319791 PMCID: PMC9223394 DOI: 10.1096/fj.202101275r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Nuclear receptor subfamily 1 group D member 1 (NR1D1, also known as Rev-erbα) is a nuclear transcription factor that is part of the molecular clock encoding circadian rhythms and may link daily rhythms with metabolism and inflammation. NR1D1, unlike most nuclear receptors, lacks a ligand-dependent activation function domain 2 and is a constitutive transcriptional repressor. Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease, caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Approximately 10%-20% of familial ALS is caused by a toxic gain-of-function induced by mutations of the Cu/Zn superoxide dismutase (SOD1). Dysregulated clock and clock-controlled gene expression occur in multiple tissues from mutant hSOD1-linked ALS mouse models. Here we explore NR1D1 dysregulation in the spinal cord of ALS mouse models and its consequences on astrocyte-motor neuron interaction. NR1D1 protein and mRNA expression are significantly downregulated in the spinal cord of symptomatic mice expressing mutant hSOD1, while no changes were observed in age-matched animals overexpressing wild-type hSOD1. In addition, NR1D1 downregulation in primary astrocyte cultures induces a pro-inflammatory phenotype and decreases the survival of cocultured motor neurons. NR1D1 orchestrates the cross talk between physiological pathways identified to be disrupted in ALS (e.g., metabolism, inflammation, redox homeostasis, and circadian rhythms) and we observed that downregulation of NR1D1 alters astrocyte-motor neuron interaction. Our results suggest that NR1D1 could be a potential therapeutic target to prevent astrocyte-mediated motor neuron toxicity in ALS.
Collapse
Affiliation(s)
- Kelby M Killoy
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin A Harlan
- Biomedical Sciences Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin, USA
| | - Marcelo R Vargas
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
33
|
Figueroa-Romero C, Monteagudo A, Murdock BJ, Famie JP, Webber-Davis IF, Piecuch CE, Teener SJ, Pacut C, Goutman SA, Feldman EL. Tofacitinib Suppresses Natural Killer Cells In Vitro and In Vivo: Implications for Amyotrophic Lateral Sclerosis. Front Immunol 2022; 13:773288. [PMID: 35197969 PMCID: PMC8859451 DOI: 10.3389/fimmu.2022.773288] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease with few therapeutic options. However, the immune system, including natural killer (NK) cells, is linked to ALS progression and may constitute a viable therapeutic ALS target. Tofacitinib is an FDA-approved immunomodulating small molecule which suppresses immune cell function by blocking proinflammatory cytokine signaling. This includes the cytokine IL-15 which is the primary cytokine associated with NK cell function and proliferation. However, the impact of tofacitinib on NK activation and cytotoxicity has not been thoroughly investigated, particularly in ALS. We therefore tested the ability of tofacitinib to suppress cytotoxicity and cytokine production in an NK cell line and in primary NK cells derived from control and ALS participants. We also investigated whether tofacitinib protected ALS neurons from NK cell cytotoxicity. Finally, we conducted a comprehensive pharmacokinetic study of tofacitinib in mice and tested the feasibility of administration formulated in chow. Success was assessed through the impact of tofacitinib on peripheral NK cell levels in mice. We found tofacitinib suppressed IL-15-induced activation as measured by STAT1 phosphorylation, cytotoxicity, pro-inflammatory gene expression, and pro-inflammatory cytokine secretion in both an NK cell line and primary NK cells. Furthermore, tofacitinib protected ALS neurons from NK cell-mediated cytotoxicity. In mice, we found tofacitinib bioavailability was 37% in both male and female mice; using these data we formulated mouse containing low and high doses of tofacitinib and found that the drug suppressed peripheral NK cell levels in a dose-dependent manner. These results demonstrate that tofacitinib can suppress NK cell function and may be a viable therapeutic strategy for ALS.
Collapse
Affiliation(s)
| | - Alina Monteagudo
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Joshua P Famie
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Ian F Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Caroline E Piecuch
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Samuel J Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
34
|
Ni YQ, Xu H, Liu YS. Roles of Long Non-coding RNAs in the Development of Aging-Related Neurodegenerative Diseases. Front Mol Neurosci 2022; 15:844193. [PMID: 35359573 PMCID: PMC8964039 DOI: 10.3389/fnmol.2022.844193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Aging-related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are gradually becoming the primary burden of society and cause significant health-care concerns. Aging is a critical independent risk factor for neurodegenerative diseases. The pathological alterations of neurodegenerative diseases are tightly associated with mitochondrial dysfunction, inflammation, and oxidative stress, which in turn stimulates the further progression of neurodegenerative diseases. Given the potential research value, lncRNAs have attracted considerable attention. LncRNAs play complex and dynamic roles in multiple signal transduction axis of neurodegeneration. Emerging evidence indicates that lncRNAs exert crucial regulatory effects in the initiation and development of aging-related neurodegenerative diseases. This review compiles the underlying pathological mechanisms of aging and related neurodegenerative diseases. Besides, we discuss the roles of lncRNAs in aging. In addition, the crosstalk and network of lncRNAs in neurodegenerative diseases are also explored.
Collapse
Affiliation(s)
- Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
- *Correspondence: You-Shuo Liu,
| |
Collapse
|
35
|
Kumar D, Hassan MI. Neurodegenerative brain models vs. cell replacement or restoration therapy: A review on promises and pitfalls. Biochem Biophys Res Commun 2021; 585:124-131. [PMID: 34801932 DOI: 10.1016/j.bbrc.2021.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 01/17/2023]
Abstract
Disease models have proven useful tools for gaining deeper mechanistic insights into neurodegenerative diseases. In this context, stem cell technology is effective, especially induced pluripotent stem cell (iPSC)-derived brain organoids and cell replacement/restoration which can be used for personalized medicine, allowing physicians to test the efficacy of drugs in vitro before delivering them to patients, enabling more precise and personalized treatment. Nonetheless, it offers the potential to minimize (or even eliminate) the use of animals, provides important clues for disease processes, and accelerates therapeutic strategies. Perhaps in the not-too-distant future, organoid models of the human brain will be able to link blood-brain barrier cultures with other liver cultures, simulating blood flow across organs and as a method of testing medicines, giving crucial pharmacokinetics and pharmacodynamics data. Simultaneously, stem cell interventions for cell replacements or restoration therapy would enable us to realize efficacious and realistic therapeutic options for Neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
36
|
Pandi S, Chinniah R, Sevak V, Ravi PM, Raju M, Vellaiappan NA, Karuppiah B. Association of HLA-DRB1, DQA1 and DQB1 alleles and haplotype in Parkinson's disease from South India. Neurosci Lett 2021; 765:136296. [PMID: 34655711 DOI: 10.1016/j.neulet.2021.136296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative motor disease exhibiting familial and sporadic forms. The present study was aimed to elucidate the association of HLA-DRB1*, DQA1* and DQB1* alleles with PD. A total of 105 PD patients and 100 healthy controls were typed by PCR-SSP method. We further carried out high-resolution genotyping for DQB1 and DQA1. Results revealed the increased frequencies of alleles DRB1*04 (OR = 2.36), DRB1* 13 (OR = 4.04), DQA1* 01:04:01 (OR = 4.51), DQB1*02:01 (OR = 2.66) and DQB1*06:03 (OR = 2.65) in PD patients suggesting susceptible associations. Further, decreased frequencies observed for alleles DRB1*10 (OR = 0.34), DRB1*15 (OR = 0.44), DQA1*04:01 (OR = 0.28), DQA1*06:01 (OR = 0.11) and HLA-DQB1*05:01 (OR = 0.37) among patients have suggested protective associations. Significant disease associations were observed for two-locus haplotype such as DRB1*13-DQB1*06:03 (OR = 11.52), DQA1*01:041-DQB1*06:03 (OR = 16.50), DQA1*01:041-DQB1*05:02 (OR = 5.38) and DQA1*04:01-DQB1*06:03 (OR = 3.027). Protective associations were observed for haplotypes DRB1*10-DQB1*05:01 (OR = 0.21), DRB1*15-DQB1*06 (OR = 0.006), DQA1*04:01-DQB1*05:01 (OR = 0.400) and DQA1*04:01-DQB1*05:03 (OR = 0.196). The critical amino acid residue analyses have revealed strong susceptible association for the residues of DQB1 alleles such as: L26, S28, K71, T71 and A74, Y9, S30, D37, I37, A38, A57 and S57; and for the residues of DQA1 alleles such as: C11, F61, I74, and M76. Similarly, amino acid residues such as A13, G26, Y26, A71, S74, L9 and V38 of HLA-DQB1 alleles and residues such as Y11, G61, S74 and L76 of DQA1 alleles showed protective associations. Thus, our study documented the susceptible and protective associations of DRB1*, DQB1 and DQA1 alleles and haplotypes in developing the disease and their influence on longevity of PD patients in south India.
Collapse
Affiliation(s)
- Sasiharan Pandi
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India
| | - Rathika Chinniah
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India
| | - Vandit Sevak
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India
| | - Padma Malini Ravi
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India
| | - Muthuppandi Raju
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India
| | | | - Balakrishnan Karuppiah
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India.
| |
Collapse
|
37
|
Analysis of whole exome sequencing in severe mental illness hints at selection of brain development and immune related genes. Sci Rep 2021; 11:21088. [PMID: 34702870 PMCID: PMC8548332 DOI: 10.1038/s41598-021-00123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022] Open
Abstract
Evolutionary trends may underlie some aspects of the risk for common, non-communicable disorders, including psychiatric disease. We analyzed whole exome sequencing data from 80 unique individuals from India coming from families with two or more individuals with severe mental illness. We used Population Branch Statistics (PBS) to identify variants and genes under positive selection and identified 74 genes as candidates for positive selection. Of these, 20 were previously associated with Schizophrenia, Alzheimer’s disease and cognitive abilities in genome wide association studies. We then checked whether any of these 74 genes were involved in common biological pathways or related to specific cellular or molecular functions. We found that immune related pathways and functions related to innate immunity such as antigen binding were over-represented. We also evaluated for the presence of Neanderthal introgressed segments in these genes and found Neanderthal introgression in a single gene out of the 74 candidate genes. However, the introgression pattern indicates the region is unlikely to be the source for selection. Our findings hint at how selection pressures in individuals from families with a history of severe mental illness may diverge from the general population. Further, it also provides insights into the genetic architecture of severe mental illness, such as schizophrenia and its link to immune factors.
Collapse
|
38
|
Jin M, Akgün K, Ziemssen T, Kipp M, Günther R, Hermann A. Interleukin-17 and Th17 Lymphocytes Directly Impair Motoneuron Survival of Wildtype and FUS-ALS Mutant Human iPSCs. Int J Mol Sci 2021; 22:ijms22158042. [PMID: 34360808 PMCID: PMC8348495 DOI: 10.3390/ijms22158042] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive disease leading to the degeneration of motor neurons (MNs). Neuroinflammation is involved in the pathogenesis of ALS; however, interactions of specific immune cell types and MNs are not well studied. We recently found a shift toward T helper (Th)1/Th17 cell-mediated, pro-inflammatory immune responses in the peripheral immune system of ALS patients, which positively correlated with disease severity and progression. Whether Th17 cells or their central mediator, Interleukin-17 (IL-17), directly affects human motor neuron survival is currently unknown. Here, we evaluated the contribution of Th17 cells and IL-17 on MN degeneration using the co-culture of iPSC-derived MNs of fused in sarcoma (FUS)-ALS patients and isogenic controls with Th17 lymphocytes derived from ALS patients, healthy controls, and multiple sclerosis (MS) patients (positive control). Only Th17 cells from MS patients induced severe MN degeneration in FUS-ALS as well as in wildtype MNs. Their main effector, IL-17A, yielded in a dose-dependent decline of the viability and neurite length of MNs. Surprisingly, IL-17F did not influence MNs. Importantly, neutralizing IL-17A and anti-IL-17 receptor A treatment reverted all effects of IL-17A. Our results offer compelling evidence that Th17 cells and IL-17A do directly contribute to MN degeneration.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (M.J.); (K.A.); (T.Z.); (R.G.)
- Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (M.J.); (K.A.); (T.Z.); (R.G.)
- Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (M.J.); (K.A.); (T.Z.); (R.G.)
- Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Markus Kipp
- Institute of Anatomy, University Medical Center Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany;
- Center for Transdisciplinary Neurosciences, University Medical Center Rostock, 18057 Rostock, Germany
| | - Rene Günther
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (M.J.); (K.A.); (T.Z.); (R.G.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (M.J.); (K.A.); (T.Z.); (R.G.)
- Center for Transdisciplinary Neurosciences, University Medical Center Rostock, 18057 Rostock, Germany
- Translational Neurodegeneration Section, “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18057 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)381-494-9541
| |
Collapse
|
39
|
Murdock BJ, Famie JP, Piecuch CE, Pawlowski KD, Mendelson FE, Pieroni CH, Iniguez SD, Zhao L, Goutman SA, Feldman EL. NK cells associate with ALS in a sex- and age-dependent manner. JCI Insight 2021; 6:147129. [PMID: 33974561 PMCID: PMC8262328 DOI: 10.1172/jci.insight.147129] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
NK cells are innate immune cells implicated in ALS; whether NK cells impact ALS in a sex- and age-specific manner was investigated. Herein, NK cells were depleted in male and female SOD1G93A ALS mice, survival and neuroinflammation were assessed, and data were stratified by sex. NK cell depletion extended survival in female but not male ALS mice with sex-specific effects on spinal cord microglia. In humans, NK cell numbers, NK cell subpopulations, and NK cell surface markers were examined in prospectively blood collected from subjects with ALS and control subjects; longitudinal changes in these metrics were correlated to revised ALS functional rating scale (ALSFRS-R) slope and stratified by sex and age. Expression of NK cell trafficking and cytotoxicity markers was elevated in subjects with ALS, and changes in CXCR3+ NK cells and 7 trafficking and cytotoxicity markers (CD11a, CD11b, CD38, CX3CR1, NKG2D, NKp30, NKp46) correlated with disease progression. Age affected the associations between ALSFRS-R and markers NKG2D and NKp46, whereas sex impacted the NKp30 association. Collectively, these findings suggest that NK cells contribute to ALS progression in a sex- and age-specific manner and demonstrate that age and sex are critical variables when designing and assessing ALS immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lili Zhao
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
40
|
Ziff OJ, Taha DM, Crerar H, Clarke BE, Chakrabarti AM, Kelly G, Neeves J, Tyzack GE, Luscombe NM, Patani R. Reactive astrocytes in ALS display diminished intron retention. Nucleic Acids Res 2021; 49:3168-3184. [PMID: 33684213 PMCID: PMC8034657 DOI: 10.1093/nar/gkab115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive astrocytes are implicated in amyotrophic lateral sclerosis (ALS), although the mechanisms controlling reactive transformation are unknown. We show that decreased intron retention (IR) is common to human-induced pluripotent stem cell (hiPSC)-derived astrocytes carrying ALS-causing mutations in VCP, SOD1 and C9orf72. Notably, transcripts with decreased IR and increased expression are overrepresented in reactivity processes including cell adhesion, stress response and immune activation. This was recapitulated in public-datasets for (i) hiPSC-derived astrocytes stimulated with cytokines to undergo reactive transformation and (ii) in vivo astrocytes following selective deletion of TDP-43. We also re-examined public translatome sequencing (TRAP-seq) of astrocytes from a SOD1 mouse model, which revealed that transcripts upregulated in translation significantly overlap with transcripts exhibiting decreased IR. Using nucleocytoplasmic fractionation of VCP mutant astrocytes coupled with mRNA sequencing and proteomics, we identify that decreased IR in nuclear transcripts is associated with enhanced nonsense mediated decay and increased cytoplasmic expression of transcripts and proteins regulating reactive transformation. These findings are consistent with a molecular model for reactive transformation in astrocytes whereby poised nuclear reactivity-related IR transcripts are spliced, undergo nuclear-to-cytoplasmic translocation and translation. Our study therefore provides new insights into the molecular regulation of reactive transformation in astrocytes.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Doaa M Taha
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Hamish Crerar
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Benjamin E Clarke
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Anob M Chakrabarti
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jacob Neeves
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giulia E Tyzack
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK.,Okinawa Institute of Science & Technology Graduate University, Okinawa 904-0495, Japan
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| |
Collapse
|
41
|
Chen X, Sun N, Li R, Sang X, Li X, Zhao J, Han J, Yang J, Ikezoe T. Targeting HLA-F suppresses the proliferation of glioma cells via a reduction in hexokinase 2-dependent glycolysis. Int J Biol Sci 2021; 17:1263-1276. [PMID: 33867844 PMCID: PMC8040476 DOI: 10.7150/ijbs.56357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
HLA-F, a nonclassical HLA class I molecule, is required for regulating immune tolerance. In recent years, HLA-F has been found to play a role in a variety of cancers, including glioma (GM). Additionally, high expression of HLA-F predicts the poor overall survival of individuals with GM. However, the functions of HLA-F in GM remain to be further elucidated. In this study, we found that HLA-F expression was elevated in GM tissues. High levels of HLA-F resulted in a high cell proliferation index and predicted GM recurrence. Forced expression of HLA-F promoted the growth of murine C8-D1A cells transplanted in immunodeficient Rag2-/- mice. In contrast, silencing HLA-F inhibited cell growth in vitro. Furthermore, targeting HLA-F with an anti-HLA-F antibody suppressed the growth of C8-D1A cells stably expressing HLA-F transplanted in immunodeficient Rag2-/- mice. In further experiments, we found that forced expression of HLA-F contributed to the aerobic glycolysis phenotype in C8-D1A cells along with an increase in HK2 protein stabilization. Conversely, silencing HK2 by shRNA reduced HLA-F-mediated glycolysis and cell proliferation. Our data indicated that HLA-F promoted cell proliferation via HK2-dependent glycolysis. HLA-F could be a potential therapeutic target for the treatment of GM.
Collapse
Affiliation(s)
- Xin Chen
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Na Sun
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Rongqin Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xuejia Sang
- China University of Mining and Technology, Xuzhou, China
| | - Xueqin Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jie Zhao
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jing Han
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jing Yang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Takayuki Ikezoe
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
42
|
Rodrigues Lima-Junior J, Sulzer D, Lindestam Arlehamn CS, Sette A. The role of immune-mediated alterations and disorders in ALS disease. Hum Immunol 2021; 82:155-161. [PMID: 33583639 PMCID: PMC7942756 DOI: 10.1016/j.humimm.2021.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that leads to neuronal death in the brain and spinal cord. Over the last decades, evidence has emerged regarding the functional diversity of astrocytes, microglia, and T cells in the central nervous system (CNS), and the role of neuroinflammation in ALS. In this review, we summarize current knowledge regarding neuroinflammation in ALS, both at the level of specific molecular pathways and potential cellular pathways as well as outline questions about the immune mechanisms involved in ALS pathogenesis.
Collapse
Affiliation(s)
| | - David Sulzer
- Department of Neurology, Columbia University; New York State Psychiatric Institute, New York, NY 10032, USA; Departments of Psychiatry and Pharmacology, Columbia University; New York State Psychiatric Institute, New York, NY 10032, USA
| | | | - Alessandro Sette
- La Jolla Institute for Immunology, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Trolese MC, Mariani A, Terao M, de Paola M, Fabbrizio P, Sironi F, Kurosaki M, Bonanno S, Marcuzzo S, Bernasconi P, Trojsi F, Aronica E, Bendotti C, Nardo G. CXCL13/CXCR5 signalling is pivotal to preserve motor neurons in amyotrophic lateral sclerosis. EBioMedicine 2020; 62:103097. [PMID: 33161233 PMCID: PMC7670099 DOI: 10.1016/j.ebiom.2020.103097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CXCL13 is a B and T lymphocyte chemokine that mediates neuroinflammation through its receptor CXCR5. This chemokine is highly expressed by motoneurons (MNs) in Amyotrophic Lateral Sclerosis (ALS) SOD1G93A (mSOD1) mice during the disease, particularly in fast-progressing mice. Accordingly, in this study, we investigated the role of this chemokine in ALS. METHODS We used in vitro and in vivo experimental paradigms derived from ALS mice and patients to investigate the expression level and distribution of CXCL13/CXCR5 axis and its role in MN death and disease progression. Moreover, we compared the levels of CXCL13 in the CSF and serum of ALS patients and controls. FINDINGS CXCL13 and CXCR5 are overexpressed in the spinal MNs and peripheral axons in mSOD1 mice. CXCL13 inhibition in the CNS of ALS mice resulted in the exacerbation of motor impairment (n = 4/group;Mean_Diff.=27.81) and decrease survival (n = 14_Treated:19.2 ± 1.05wks, n = 17_Controls:20.2 ± 0.6wks; 95% CI: 0.4687-1.929). This was corroborated by evidence from primary spinal cultures where the inhibition or activation of CXCL13 exacerbated or prevented the MN loss. Besides, we found that CXCL13/CXCR5 axis is overexpressed in the spinal cord MNs of ALS patients, and CXCL13 levels in the CSF discriminate ALS (n = 30) from Multiple Sclerosis (n = 16) patients with a sensitivity of 97.56%. INTERPRETATION We hypothesise that MNs activate CXCL13 signalling to attenuate CNS inflammation and prevent the neuromuscular denervation. The low levels of CXCL13 in the CSF of ALS patients might reflect the MN dysfunction, suggesting this chemokine as a potential clinical adjunct to discriminate ALS from other neurological diseases. FUNDING Vaccinex, Inc.; Regione Lombardia (TRANS-ALS).
Collapse
Affiliation(s)
- Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Alessandro Mariani
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Massimiliano de Paola
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Silvia Bonanno
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Pia Bernasconi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Eleonora Aronica
- Department of Pathology, Academic Medic\\\al Centre, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|
44
|
Wang J, Hu W, Feng Z, Feng M. BDNF-overexpressing human umbilical cord mesenchymal stem cell-derived motor neurons improve motor function and prolong survival in amyotrophic lateral sclerosis mice. Neurol Res 2020; 43:199-209. [PMID: 33076784 DOI: 10.1080/01616412.2020.1834775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the beneficial effect of brain-derived neurotrophic factor (BDNF) -overexpressing human umbilical cord mesenchymal stem cell (hUC-MSC)-derived motor neurons in the human Cu, Zn-superoxide dismutase1 (hSOD1)G93A amyotrophic lateral sclerosis (ALS) mice. METHODS The BDNF gene was transfected into hUC-MSC-derived motor neurons by the lentivirus-mediated method. hSOD1G93A mice were assigned to the ALS, ALS/MN, and ALS/MN-BDNF groups, and intrathecally administrated phosphate-buffered saline (PBS), motor neurons, or motor neurons overexpressing BDNF, respectively. The control group included non-transgenic wild-type littermates administrated PBS. One month after transplantation, the motor function of the mice was assessed by the rotarod test, and the lumbar enlargements were then isolated to detect the expression of hSOD1 and BDNF by western blotting, and the expression of choline acetyltransferase (ChAT), homeobox protein 9 (HB9), major histocompatibility complex I (MHCI) and microtubule-associated protein-2 (MAP-2) by immunofluorescence assay. RESULTS After transplantation, mice in the ALS/MN-BDNF and ALS/MN groups both exhibited longer latency to fall and longer survival than those in the ALS group (P < 0.01 vs. P < 0.05), and the improvement was more significant in the former than in the latter. However, cell transplantation did not delay disease onset. In the lumbar enlargements of the ALS/MN-BDNF and ALS/MN groups, the expression of hSOD1 was slightly reduced without statistical significance (P > 0.05), but the expression of BDNF, ChAT and HB9, and the co-expression of MHCI and MAP-2 were significantly greater than in the ALS group (P < 0.01), with the differences also being more prominent in the former group than in the latter. CONCLUSIONS Transplantation of BDNF-overexpressing hUC-MSC-derived motor neurons can improve motor performance and prolong the survival of hSOD1G93A mice. Combining stem cell-derived motor neurons with BDNF might provide a new therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Jie Wang
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University , Nanjing, China.,Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing, China
| | - Weiwei Hu
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University , Nanjing, China
| | - Zehua Feng
- School of Stomatology, Nanjing Medical University , Nanjing, China
| | - Meijiang Feng
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University , Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University , Nanjing, China
| |
Collapse
|
45
|
Trujillo-Estrada L, Gomez-Arboledas A, Forner S, Martini AC, Gutierrez A, Baglietto-Vargas D, LaFerla FM. Astrocytes: From the Physiology to the Disease. Curr Alzheimer Res 2020; 16:675-698. [PMID: 31470787 DOI: 10.2174/1567205016666190830110152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/12/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
Abstract
Astrocytes are key cells for adequate brain formation and regulation of cerebral blood flow as well as for the maintenance of neuronal metabolism, neurotransmitter synthesis and exocytosis, and synaptic transmission. Many of these functions are intrinsically related to neurodegeneration, allowing refocusing on the role of astrocytes in physiological and neurodegenerative states. Indeed, emerging evidence in the field indicates that abnormalities in the astrocytic function are involved in the pathogenesis of multiple neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In the present review, we highlight the physiological role of astrocytes in the CNS, including their communication with other cells in the brain. Furthermore, we discuss exciting findings and novel experimental approaches that elucidate the role of astrocytes in multiple neurological disorders.
Collapse
Affiliation(s)
- Laura Trujillo-Estrada
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Angela Gomez-Arboledas
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Stefânia Forner
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Alessandra Cadete Martini
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Antonia Gutierrez
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States.,Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States.,Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States
| |
Collapse
|
46
|
Liu L, Killoy KM, Vargas MR, Yamamoto Y, Pehar M. Effects of RAGE inhibition on the progression of the disease in hSOD1 G93A ALS mice. Pharmacol Res Perspect 2020; 8:e00636. [PMID: 32776498 PMCID: PMC7415959 DOI: 10.1002/prp2.636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Astrocytes play a key role in the progression of amyotrophic lateral sclerosis (ALS) by actively inducing the degeneration of motor neurons. Motor neurons isolated from receptor for advanced glycation end products (RAGE)-knockout mice are resistant to the neurotoxic signal derived from ALS-astrocytes. Here, we confirmed that in a co-culture model, the neuronal death induced by astrocytes over-expressing the ALS-linked mutant hSOD1G93A is prevented by the addition of the RAGE inhibitors FPS-ZM1 or RAP. These inhibitors also prevented the motor neuron death induced by spinal cord extracts from symptomatic hSOD1G93A mice. To evaluate the relevance of this neurotoxic mechanism in ALS pathology, we assessed the therapeutic potential of FPS-ZM1 in hSOD1G93A mice. FPS-ZM1 treatment significantly improved hind-limb grip strength in hSOD1G93A mice during the progression of the disease, reduced the expression of atrophy markers in the gastrocnemius muscle, improved the survival of large motor neurons, and reduced gliosis in the ventral horn of the spinal cord. However, we did not observe a statistically significant effect of the drug in symptoms onset nor in the survival of hSOD1G93A mice. Maintenance of hind-limb grip strength was also observed in hSOD1G93A mice with RAGE haploinsufficiency [hSOD1G93A ;RAGE(+/-)], further supporting the beneficial effect of RAGE inhibition on muscle function. However, no benefits were observed after complete RAGE ablation. Moreover, genetic RAGE ablation significantly shortened the median survival of hSOD1G93A mice. These results indicate that the advance of new therapies targeting RAGE in ALS demands a better understanding of its physiological role in a cell type/tissue-specific context.
Collapse
Affiliation(s)
- Liping Liu
- Biomedical Sciences Training ProgramDepartment of Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSCUSA
| | - Kelby M. Killoy
- Biomedical Sciences Training ProgramDepartment of Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSCUSA
| | | | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular BiologyKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Mariana Pehar
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- Geriatric Research Education Clinical CenterVeterans Affairs Medical CenterMadisonWIUSA
| |
Collapse
|
47
|
Karagiannis P, Inoue H. ALS, a cellular whodunit on motor neuron degeneration. Mol Cell Neurosci 2020; 107:103524. [PMID: 32629110 DOI: 10.1016/j.mcn.2020.103524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily targets motor neurons. Motor neurons from ALS patients show cytoplasmic inclusions that are reflective of an altered RNA metabolism and protein degradation. Causal gene mutations are found in all cell types even though patient motor neurons are by far the most susceptible to the degeneration. Using induced pluripotent stem cell (iPSC) technology, researchers have generated motor neurons with the same genotype as the patient including sporadic ones. They have also generated other cell types associated with the disease such as astrocytes, microglia and oligodendrocytes. These cells provide not only new insights on the mechanisms of the disease from the early stage, but also a platform for drug screening that has led to several clinical trials. This review examines the knowledge gained from iPSC studies using patient cells on the gene mutations and cellular networks in ALS and relevant experimental therapies.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| |
Collapse
|
48
|
Killoy KM, Harlan BA, Pehar M, Vargas MR. FABP7 upregulation induces a neurotoxic phenotype in astrocytes. Glia 2020; 68:2693-2704. [PMID: 32619303 DOI: 10.1002/glia.23879] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 01/15/2023]
Abstract
Fatty acid binding proteins (FABPs) are key regulators of lipid metabolism, energy homeostasis, and inflammation. They participate in fatty acid metabolism by regulating their uptake, transport, and availability of ligands to nuclear receptors. In the adult brain, FABP7 is especially abundant in astrocytes that are rich in cytoplasmic granules originated from damaged mitochondria. Mitochondrial dysfunction and oxidative stress have been implicated in the neurodegenerative process observed in amyotrophic lateral sclerosis (ALS), either as a primary cause or as a secondary component of the pathogenic process. Here we investigated the expression of FABP7 in animal models of human superoxide dismutase 1 (hSOD1)-linked ALS. In the spinal cord of symptomatic mutant hSOD1-expressing mice, FABP7 is upregulated in gray matter astrocytes. Using a coculture model, we examined the effect of increased FABP7 expression in astrocyte-motor neuron interaction. Our data show that FABP7 overexpression directly promotes an NF-κB-driven pro-inflammatory response in nontransgenic astrocytes that ultimately is detrimental for motor neuron survival. Addition of trophic factors, capable of supporting motor neuron survival in pure cultures, did not prevent motor neuron loss in cocultures with FABP7 overexpressing astrocytes. In addition, astrocyte cultures obtained from symptomatic hSOD1-expressing mice display upregulated FABP7 expression. Silencing endogenous FABP7 in these cultures decreases the expression of inflammatory markers and their toxicity toward cocultured motor neurons. Our results identify a key role of FABP7 in the regulation of the inflammatory response in astrocytes and identify FABP7 as a potential therapeutic target to prevent astrocyte-mediated motor neuron toxicity in ALS.
Collapse
Affiliation(s)
- Kelby M Killoy
- Biomedical Sciences Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin A Harlan
- Biomedical Sciences Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marcelo R Vargas
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
49
|
McCombe PA, Garton FC, Katz M, Wray NR, Henderson RD. What do we know about the variability in survival of patients with amyotrophic lateral sclerosis? Expert Rev Neurother 2020; 20:921-941. [PMID: 32569484 DOI: 10.1080/14737175.2020.1785873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION ALS is a fatal neurodegenerative disease. However, patients show variability in the length of survival after symptom onset. Understanding the mechanisms of long survival could lead to possible avenues for therapy. AREAS COVERED This review surveys the reported length of survival in ALS, the clinical features that predict survival in individual patients, and possible factors, particularly genetic factors, that could cause short or long survival. The authors also speculate on possible mechanisms. EXPERT OPINION a small number of known factors can explain some variability in ALS survival. However, other disease-modifying factors likely exist. Factors that alter motor neurone vulnerability and immune, metabolic, and muscle function could affect survival by modulating the disease process. Knowing these factors could lead to interventions to change the course of the disease. The authors suggest a broad approach is needed to quantify the proportion of variation survival attributable to genetic and non-genetic factors and to identify and estimate the effect size of specific factors. Studies of this nature could not only identify novel avenues for therapeutic research but also play an important role in clinical trial design and personalized medicine.
Collapse
Affiliation(s)
- Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, Australia
| | - Fleur C Garton
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Australia
| | - Matthew Katz
- Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, Australia
| | - Naomi R Wray
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Australia.,Queensland Brain Institute, The University of Queensland , Brisbane, Australia
| | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland , Brisbane, Australia
| |
Collapse
|
50
|
Liu Z, Cheng X, Zhong S, Zhang X, Liu C, Liu F, Zhao C. Peripheral and Central Nervous System Immune Response Crosstalk in Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:575. [PMID: 32612503 PMCID: PMC7308438 DOI: 10.3389/fnins.2020.00575] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by muscle weakness due to the degeneration of the upper and lower motor neurons. Neuroinflammation is known as a prominent pathological feature of ALS. Although neuroinflammation cannot trigger ALS, activated central nervous system (CNS) microglia and astrocytes, proinflammatory periphery monocytes/macrophages and T lymphocytes, and infiltrated monocytes/macrophages and T lymphocytes, as well as the immunoreactive molecules they release, are closely related to disease progression. The crosstalk between the peripheral and CNS immune components mentioned above significantly correlates with survival in patients with ALS. This review provides an update on the role of this crosstalk between the CNS and peripheral immune responses in ALS. Additionally, we discuss changes in the composition of gut microbiota because these can directly or indirectly influence this crosstalk. These recent advances may well provide innovative ways for targeting the molecules associated with this crosstalk and breaking the current treatment impasse in ALS.
Collapse
Affiliation(s)
- Zhouyang Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Zhong
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xiuchun Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Chang Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Fangxi Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
- Stroke Center, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|