1
|
Nishigaya Y, Takase S, Sumiya T, Kikuzato K, Hiroyama T, Maemoto Y, Aoki K, Sato T, Niwa H, Sato S, Ihara K, Nakata A, Matsuoka S, Hashimoto N, Namie R, Honma T, Umehara T, Shirouzu M, Koyama H, Nakamura Y, Yoshida M, Ito A, Shirai F. Discovery of potent substrate-type lysine methyltransferase G9a inhibitors for the treatment of sickle cell disease. Eur J Med Chem 2025; 293:117721. [PMID: 40367677 DOI: 10.1016/j.ejmech.2025.117721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Structurally novel inhibitors of the lysine methyltransferase G9a have attracted considerable interest as potential drug candidates for cancer and genetic diseases. Here, a detailed account of potency optimization from early leads 8 and 9 to compound 16g is presented. Our search for an alternative scaffold for the 4-oxo-4,5,6,7-tetrahydro-1H-indole moiety of compounds 8 and 9 via parallel synthesis led to the identification of the 4-pyridin-4-ylamino phenyl substructure in compound 16g. This substructure was found to bind to the enzyme in a horizontally flipped manner compared with compound 8 in X-ray crystallographic analysis. Compound 16g is a highly potent G9a inhibitor (IC50 = 0.0020 μM) and structurally distinct from other G9a inhibitors reported in the literature. Importantly, compound 16g exhibited dose-dependent induction of γ-globin mRNA in HUDEP-2, leading to elevated γ-globin protein levels and F cell numbers in CD34+ bone marrow (BM)‒derived hematopoietic cells. Kinetic studies using surface plasmon resonance (SPR) analysis suggested that compound 16g interacts with G9a via a unique binding mode, as indicated by the markedly higher dissociation constant (KD) compared to those of compounds 8 and 9. Interestingly, X-ray crystallographic studies revealed that the binding motif of compound 16g was quite different from our previous series, including RK-701, and somewhat resembles that of endogenous substrates. Insights obtained in this lead optimization exercise on the association/dissociation constants as well as the binding motifs are expected to help in designing future G9a inhibitors for the treatment of sickle cell disease.
Collapse
Affiliation(s)
- Yosuke Nishigaya
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi, 329-0114, Japan.
| | - Shohei Takase
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tatsunobu Sumiya
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi, 329-0114, Japan
| | - Ko Kikuzato
- Drug Discovery Chemistry Platform Unit, Japan
| | - Takashi Hiroyama
- Cell Engineering Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yuki Maemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Komei Aoki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tomohiro Sato
- Drug Discovery Computational Chemistry Platform Unit, Japan
| | - Hideaki Niwa
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shin Sato
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kentaro Ihara
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Akiko Nakata
- Drug Discovery Seed Compounds Exploratory Unit, Japan
| | | | - Noriaki Hashimoto
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi, 329-0114, Japan
| | - Ryosuke Namie
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi, 329-0114, Japan
| | - Teruki Honma
- Drug Discovery Computational Chemistry Platform Unit, Japan
| | - Takashi Umehara
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | | | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Minoru Yoshida
- Drug Discovery Seed Compounds Exploratory Unit, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akihiro Ito
- Drug Discovery Seed Compounds Exploratory Unit, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Fumiyuki Shirai
- Drug Discovery Chemistry Platform Unit, Japan; Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
2
|
Bellver‐Sanchis A, Ribalta‐Vilella M, Irisarri A, Gehlot P, Choudhary BS, Jana A, Vyas VK, Banerjee DR, Pallàs M, Guerrero A, Griñán‐Ferré C. G9a an Epigenetic Therapeutic Strategy for Neurodegenerative Conditions: From Target Discovery to Clinical Trials. Med Res Rev 2025; 45:985-1015. [PMID: 39763018 PMCID: PMC11976383 DOI: 10.1002/med.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 04/09/2025]
Abstract
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases. Hence, findings offer valuable insights into developing novel and promising therapeutic strategies targeting G9a/EHMT2 for managing these neurological conditions.
Collapse
Affiliation(s)
- Aina Bellver‐Sanchis
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Marta Ribalta‐Vilella
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Pinky Gehlot
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Bhanwar Singh Choudhary
- Department of PharmacyCentral University of RajasthanAjmerIndia
- Drug Discovery and Development Centre (H3D)University of Cape TownRondeboschSouth Africa
| | - Abhisek Jana
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Vivek Kumar Vyas
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Deb Ranjan Banerjee
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
3
|
Rohm D, Black JB, McCutcheon SR, Barrera A, Berry SS, Morone DJ, Nuttle X, de Esch CE, Tai DJC, Talkowski ME, Iglesias N, Gersbach CA. Activation of the imprinted Prader-Willi syndrome locus by CRISPR-based epigenome editing. CELL GENOMICS 2025; 5:100770. [PMID: 39947136 PMCID: PMC11872474 DOI: 10.1016/j.xgen.2025.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/01/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025]
Abstract
Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi syndrome (PWS) results from loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control the expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.
Collapse
Affiliation(s)
- Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Joshua B Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Shanté S Berry
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Daniel J Morone
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E de Esch
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J C Tai
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Mukherjee A, Suzuki T. G9a/GLP Modulators: Inhibitors to Degraders. J Med Chem 2025; 68:953-985. [PMID: 39745197 DOI: 10.1021/acs.jmedchem.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Histone methylation, a crucial aspect of epigenetics, intricately involves specialized enzymes such as G9a, a histone methyltransferase (HMT) catalyzing the methylation of histone H3 lysine 9 (H3K9) and H3K27. Apart from histone modification, G9a regulates essential cellular processes such as deoxyribonucleic acid (DNA) replication, damage repair, and gene expression via modulating DNA methylation patterns. The dysregulation and overexpression of G9a are intricately linked to cancer initiation, progression, and metastasis, making it a compelling target for anticancer therapy. Moreover, aberrant levels of H3K9 dimethylation were identified in Alzheimer's disease (AD), broadening the scope of epigenetic implications across various pathologies. The quest for potent therapy has resulted in the identification of numerous G9a inhibitors/degraders, each demonstrating the potential to disrupt aberrant signaling pathways. This perspective provides valuable insights into the evolving potential and advancement of G9a modulators as promising candidates for treating a spectrum of diseases.
Collapse
Affiliation(s)
- Anirban Mukherjee
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
5
|
Łażewska D, Kieć-Kononowicz K. Histamine H 3 receptor antagonists/inverse agonists: a patent review (October 2017 - December 2023) documenting progress. Expert Opin Ther Pat 2025:1-25. [PMID: 39757430 DOI: 10.1080/13543776.2024.2446227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Histamine H3 receptor antagonists/inverse agonists, since the discovery of histamine H3 receptor (H3R), are important ligands in the search for new potential drugs. The most interesting are CNS diseases as these receptors are mainly there present. AREAS COVERED The current review covers patent applications/patents that were published during the last 6 years (October 2017 - December 2023). Documents were found in two free available patent databases: Espacenet and PatentScope and divided into three basic categories such as methods, compounds, and therapeutic indications. It provides an overview of 51 patent applications/patents. Many pharmaceutical compositions with H3R antagonists/inverse agonists have been claimed. Furthermore, PubMed, Scopus, and ClinicalTrials databases were searched for literature to prepare this review. EXPERT OPINION Interest in the H3R field is still high and has remained almost unchanged over the last 10 years in the number of publications, but the type of publications has changed (fewer new ligands, more pharmacological studies). Currently, the search for new H3R ligands is focused on multi-target compounds. The first crystal structure of H3R with a ligand appeared. New therapeutic indications, such as autism, fatigue, and Prader-Willi syndrome, are verified in clinical trials.
Collapse
Affiliation(s)
- Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
6
|
Schubert T, Schaaf CP. MAGEL2 (patho-)physiology and Schaaf-Yang syndrome. Dev Med Child Neurol 2025; 67:35-48. [PMID: 38950199 PMCID: PMC11625468 DOI: 10.1111/dmcn.16018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
Schaaf-Yang syndrome (SYS) is a complex neurodevelopmental disorder characterized by autism spectrum disorder, joint contractures, and profound hypothalamic dysfunction. SYS is caused by variants in MAGEL2, a gene within the Prader-Willi syndrome (PWS) locus on chromosome 15. In this review, we consolidate decades of research on MAGEL2 to elucidate its physiological functions. Moreover, we synthesize current knowledge on SYS, suggesting that while MAGEL2 loss-of-function seems to underlie several SYS and PWS phenotypes, additional pathomechanisms probably contribute to the distinct and severe phenotype observed in SYS. In addition, we highlight recent therapeutic advances and identify promising avenues for future investigation.
Collapse
Affiliation(s)
- Tim Schubert
- Institute of Human GeneticsHeidelberg UniversityHeidelbergGermany
| | | |
Collapse
|
7
|
Gilmore RB, Liu Y, Stoddard CE, Chung MS, Carmichael G, Cotney J. Identifying key underlying regulatory networks and predicting targets of orphan C/D box SNORD116 snoRNAs in Prader-Willi syndrome. Nucleic Acids Res 2024; 52:13757-13774. [PMID: 39575480 PMCID: PMC11662933 DOI: 10.1093/nar/gkae1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder characterized by neonatal hypotonia, followed by hyperphagia and obesity. Most PWS cases exhibit megabase-scale deletions of paternally imprinted 15q11-q13 locus. However, several PWS patients have been identified harboring much smaller deletions encompassing the SNORD116 gene cluster, suggesting these genes are direct drivers of PWS phenotypes. This cluster contains 30 copies of individual SNORD116 C/D box small nucleolar RNAs (snoRNAs). Many C/D box snoRNAs have been shown to guide chemical modifications of RNA molecules, often ribosomal RNA (rRNA). Conversely, SNORD116 snoRNAs show no significant complementarity to rRNA and their targets are unknown. Since many reported PWS cases lack their expression, it is crucial to identify the targets and functions of SNORD116. To address this we modeled PWS in two distinct human embryonic stem cell (hESC) lines with two different sized deletions, differentiated each into neurons, and compared differential gene expression. This analysis identified a novel set of 42 consistently dysregulated genes. These genes were significantly enriched for predicted SNORD116 targeting and we demonstrated impacts on FGF13 protein levels. Our results demonstrate the need for isogenic background comparisons and indicate a novel gene regulatory network controlled by SNORD116 is likely perturbed in PWS patients.
Collapse
Affiliation(s)
- Rachel B Gilmore
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Institute for Human Genetics, Heidelberg University Hospital, Heidelberg, BW, 69120, Germany
| | - Yaling Liu
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Christopher E Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Michael S Chung
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Zaric V, Kang HR, Rybalchenko V, Zigman JM, Gray SJ, Butler RK. RNAi Knockdown of EHMT2 in Maternal Expression of Prader-Willi Syndrome Genes. Genes (Basel) 2024; 15:1366. [PMID: 39596566 PMCID: PMC11594117 DOI: 10.3390/genes15111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Euchromatic histone lysine methyltransferase 2 (EHMT2, also known as G9a) is a mammalian histone methyltransferase that catalyzes the dimethylation of histone 3 lysine 9 (H3K9). On human chromosome 15, the parental-specific expression of Prader-Willi Syndrome (PWS)-related genes, such as SNRPN and SNORD116, are regulated through the genetic imprinting of the PWS imprinting center (PWS-IC). On the paternal allele, PWS genes are expressed whereas the epigenetic maternal silencing of PWS genes is controlled by the EHMT2-mediated methylation of H3K9 in PWS-IC. Here, we measured the effects of RNA interference of EHMT2 on the maternal expression of genes deficient in PWS in mouse model and patient iPSC-derived cells. METHODS We used small interfering RNA (siRNA) oligonucleotides and lentiviral short harpin RNA (shRNA) to reduce Ehtm2/EHMT2 expression in mouse Snord116 deletion primary neurons, PWS patient-derived induced pluripotent stem cell (iPSC) line and PWS iPSC-derived neurons. We then measured the expression of transcript or protein (if relevant) of PWS genes normally silenced on the maternal allele. RESULTS With an approximate reduction of 90% in EHMT2 mRNA and more than 80% of the EHMT2 protein, we demonstrated close to a 2-fold increase in the expression of maternal transcripts for SNRPN and SNORD116 in PWS iPSCs treated with siEHMT2 compared to PWS iPSC siControl. A similar increase in SNORD116 and SNRPN RNA expression was observed in PWS iPSC-derived neurons treated with shEHMT2. CONCLUSIONS RNAi reduction in EHMT2 activates maternally silenced PWS genes. Further studies are needed to determine whether the increase is therapeutically relevant. This study confirms the role of EHMT2 in the epigenetic regulation of PWS genes.
Collapse
Affiliation(s)
- Violeta Zaric
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA; (V.Z.); (V.R.); (J.M.Z.)
| | - Hye Ri Kang
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA; (H.R.K.); (S.J.G.)
| | - Volodymyr Rybalchenko
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA; (V.Z.); (V.R.); (J.M.Z.)
| | - Jeffrey M. Zigman
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA; (V.Z.); (V.R.); (J.M.Z.)
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA; (H.R.K.); (S.J.G.)
- O’Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Steven J. Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA; (H.R.K.); (S.J.G.)
- O’Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan K. Butler
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA; (V.Z.); (V.R.); (J.M.Z.)
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA; (H.R.K.); (S.J.G.)
- O’Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Nishigaya Y, Takase S, Sumiya T, Sato T, Niwa H, Sato S, Nakata A, Matsuoka S, Maemoto Y, Hashimoto N, Namie R, Honma T, Umehara T, Shirouzu M, Koyama H, Yoshida M, Ito A, Shirai F. Structure-based development of novel substrate-type G9a inhibitors as epigenetic modulators for sickle cell disease treatment. Bioorg Med Chem Lett 2024; 110:129856. [PMID: 38914346 DOI: 10.1016/j.bmcl.2024.129856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The discovery and development of structurally distinct lysine methyltransferase G9a inhibitors have been the subject of intense research in epigenetics. Structure-based optimization was conducted, starting with the previously reported seed compound 7a and lead to the identification of a highly potent G9a inhibitor, compound 7i (IC50 = 0.024 μM). X-ray crystallography for the ligand-protein interaction and kinetics study, along with surface plasmon resonance (SPR) analysis, revealed that compound 7i interacts with G9a in a unique binding mode. In addition, compound 7i caused attenuation of cellular H3K9me2 levels and induction of γ-globin mRNA expression in HUDEP-2 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Yosuke Nishigaya
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan.
| | - Shohei Takase
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tatsunobu Sumiya
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Tomohiro Sato
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hideaki Niwa
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shin Sato
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Nakata
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Seiji Matsuoka
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki Maemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Noriaki Hashimoto
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Ryosuke Namie
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Teruki Honma
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Umehara
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mikako Shirouzu
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroo Koyama
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Office of University Professor, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akihiro Ito
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Fumiyuki Shirai
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
10
|
Yan Z. Targeting epigenetic enzymes for autism treatment. Trends Pharmacol Sci 2024; 45:764-767. [PMID: 39034229 PMCID: PMC11380587 DOI: 10.1016/j.tips.2024.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Emerging preclinical autism research has shown the therapeutic promise of pharmacological inhibitors for epigenetic enzymes, such as histone deacetylases (HDAC), euchromatic histone methyltransferases (EHMT), and lysine-specific histone demethylase 1A (LSD1). These interventions restore gene expression, synaptic function, and behavioral performance in autism models, highlighting a new strategy for autism treatment.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
11
|
Wang SE, Xiong Y, Jang MA, Park KS, Donahue M, Velez J, Jin J, Jiang YH. Newly developed oral bioavailable EHMT2 inhibitor as a potential epigenetic therapy for Prader-Willi syndrome. Mol Ther 2024; 32:2662-2675. [PMID: 38796700 PMCID: PMC11405540 DOI: 10.1016/j.ymthe.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Prader-Willi syndrome (PWS) is the prototypic genomic disorder resulting from deficiency of paternally expressed genes in the human chromosome 15q11-q13 region. The unique molecular mechanism involving epigenetic modifications renders PWS as the most attractive candidate to explore a proof-of-concept of epigenetic therapy in humans. The premise is that epigenetic modulations could reactivate the repressed PWS candidate genes from the maternal chromosome and offer therapeutic benefit. Our prior study identifies an EHMT2/G9a inhibitor, UNC0642, that reactivates the expression of PWS genes via reduction of H3K9me2. However, low brain permeability and poor oral bioavailability of UNC0642 preclude its advancement into translational studies in humans. In this study, a newly developed inhibitor, MS152, modified from the structure of UNC0642, has better brain penetration and greater potency and selectivity against EHMT2/G9a. MS152 reactivated maternally silenced PWS genes in PWS patient fibroblasts and in brain and liver tissues of PWS mouse models. Importantly, the molecular efficacy of oral administration is comparable with the intraperitoneal route. MS152 treatment in newborns ameliorates the perinatal lethality and poor growth, maintaining reactivation in a PWS mouse model at postnatal 90 days. Our findings provide strong support for MS152 as a first-in-class inhibitor to advance the epigenetic therapy of PWS in humans.
Collapse
Affiliation(s)
- Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Meaghan Donahue
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA.
| |
Collapse
|
12
|
Wang SE, Cheng Y, Lim J, Jang MA, Forrest EN, Kim Y, Donahue M, Qiao SN, Xiong Y, Jin J, Wang S, Jiang YH. Mechanism of EHMT2-mediated genomic imprinting associated with Prader-Willi syndrome. RESEARCH SQUARE 2024:rs.3.rs-4530649. [PMID: 39011107 PMCID: PMC11247926 DOI: 10.21203/rs.3.rs-4530649/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Prader-Willi Syndrome (PWS) is caused by loss of expression of paternally expressed genes in the human 15q11.2-q13 imprinting domain. A set of imprinted genes that are active on the paternal but silenced on the maternal chromosome are intricately regulated by a bipartite imprinting center (PWS-IC) located in the PWS imprinting domain. In past work, we discovered that euchromatic histone lysine N-methyltransferase-2 (EHMT2/G9a) inhibitors were capable of un-silencing PWS-associated genes by restoring their expression from the maternal chromosome. Here, in mice lacking the Ehmt2 gene, we document un-silencing of the imprinted Snrpn/Snhg14 gene on the maternal chromosome in the late embryonic and postnatal brain. Using PWS and Angelman syndrome patient derived cells with either paternal or maternal deletion of 15q11-q13, we have found that chromatin of maternal PWS-IC is closed and has compact 3D folding confirmation. We further show that a new and distinct noncoding RNA preferentially transcribed from upstream of the PWS-IC interacts with EHMT2 and forms a heterochromatin complex to silence gene expression of SNRPN in CIS on maternal chromosome. Taken together, these findings demonstrate that allele-specific recruitment of EHMT2 is required to maintain the maternal imprints. Our findings provide novel mechanistic insights and support a new model for imprinting maintenance of the PWS imprinted domain.
Collapse
Affiliation(s)
- Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Yubao Cheng
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Jaechul Lim
- Immunobiology, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Emily N. Forrest
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Yuna Kim
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, TN 38105, USA
| | - Meaghan Donahue
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Sheng-Nan Qiao
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Cell Biology, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Yong-hui Jiang
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Neuroscience, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Pediatrics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Zhao Z, Cui R, Chi H, Wan T, Ma D, Zhang J, Cai M. A novel IRF6 gene mutation impacting the regulation of TGFβ2-AS1 in the TGFβ pathway: A mechanism in the development of Van der Woude syndrome. Front Genet 2024; 15:1397410. [PMID: 38903762 PMCID: PMC11188484 DOI: 10.3389/fgene.2024.1397410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Several mutations in the IRF6 gene have been identified as a causative link to VWS. In this investigation, whole-exome sequencing (WES) and Sanger sequencing of a three-generation pedigree with an autosomal-dominant inheritance pattern affected by VWS identified a unique stop-gain mutation-c.748C>T:p.R250X-in the IRF6 gene that co-segregated exclusively with the disease phenotype. Immunofluorescence analysis revealed that the IRF6-p.R250X mutation predominantly shifted its localization from the nucleus to the cytoplasm. WES and protein interaction analyses were conducted to understand this mutation's role in the pathogenesis of VWS. Using LC-MS/MS, we found that this mutation led to a reduction in the binding of IRF6 to histone modification-associated proteins (NAA10, SNRPN, NAP1L1). Furthermore, RNA-seq results show that the mutation resulted in a downregulation of TGFβ2-AS1 expression. The findings highlight the mutation's influence on TGFβ2-AS1 and its subsequent effects on the phosphorylation of SMAD2/3, which are critical in maxillofacial development, particularly the palate. These insights contribute to a deeper understanding of VWS's molecular underpinnings and might inform future therapeutic strategies.
Collapse
Affiliation(s)
- Zhiyang Zhao
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Renjie Cui
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoshu Chi
- Shanghai Xuhui District Dental Disease Center, Shanghai, China
| | - Teng Wan
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Cai
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
14
|
Velez J, Han Y, Yim H, Yang P, Deng Z, Park KS, Kabir M, Kaniskan HÜ, Xiong Y, Jin J. Discovery of the First-in-Class G9a/GLP PROTAC Degrader. J Med Chem 2024; 67:6397-6409. [PMID: 38602846 PMCID: PMC11069390 DOI: 10.1021/acs.jmedchem.3c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and noncatalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time-, and ubiquitin-proteasome system (UPS)-dependent manner. Futhermore, 10 does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.
Collapse
Affiliation(s)
- Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yulin Han
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peiyi Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
15
|
Xiong Y, Greschik H, Johansson C, Seifert L, Gamble V, Park KS, Fagan V, Li F, Chau I, Vedadi M, Arrowsmith CH, Brennan P, Fedorov O, Jung M, Farnie G, Liu J, Oppermann U, Schüle R, Jin J. Discovery of a Potent, Selective, and Cell-Active SPIN1 Inhibitor. J Med Chem 2024; 67:5837-5853. [PMID: 38533580 PMCID: PMC11022035 DOI: 10.1021/acs.jmedchem.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The methyl-lysine reader protein SPIN1 plays important roles in various human diseases. However, targeting methyl-lysine reader proteins has been challenging. Very few cellularly active SPIN1 inhibitors have been developed. We previously reported that our G9a/GLP inhibitor UNC0638 weakly inhibited SPIN1. Here, we present our comprehensive structure-activity relationship study that led to the discovery of compound 11, a dual SPIN1 and G9a/GLP inhibitor, and compound 18 (MS8535), a SPIN1 selective inhibitor. We solved the cocrystal structure of SPIN1 in complex with 11, confirming that 11 occupied one of the three Tudor domains. Importantly, 18 displayed high selectivity for SPIN1 over 38 epigenetic targets, including G9a/GLP, and concentration dependently disrupted the interactions of SPIN1 and H3 in cells. Furthermore, 18 was bioavailable in mice. We also developed 19 (MS8535N), which was inactive against SPIN1, as a negative control of 18. Collectively, these compounds are useful chemical tools to study biological functions of SPIN1.
Collapse
Affiliation(s)
- Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Holger Greschik
- Department of Urology and Center for Clinical Research, University Freiburg Medical Center, Freiburg 79106, Germany
| | - Catrine Johansson
- Structural Genomics Consortium, Botnar Research Center, NIHR Oxford BRU, University of Oxford, Oxford OX3 7LD, U.K
| | - Ludwig Seifert
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| | - Vicki Gamble
- Structural Genomics Consortium, Botnar Research Center, NIHR Oxford BRU, University of Oxford, Oxford OX3 7LD, U.K
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Vincent Fagan
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Masoud Vedadi
- Ontario Institute for Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Paul Brennan
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Oleg Fedorov
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
- German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), Freiburg 79104, Germany
| | - Gillian Farnie
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Udo Oppermann
- Structural Genomics Consortium, Botnar Research Center, NIHR Oxford BRU, University of Oxford, Oxford OX3 7LD, U.K
- Botnar Research Centre, University of Oxford, Oxford OX3 7LD, U.K
- Oxford Translational Myeloma Centre, University of Oxford, Oxford OX3 7LD, U.K
| | - Roland Schüle
- Department of Urology and Center for Clinical Research, University Freiburg Medical Center, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Freiburg 79104, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg 79106, Germany
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
16
|
Zhang Z, Wang R, Zhou H, Wu D, Cao Y, Zhang C, Sun H, Mu C, Hao Z, Ren H, Wang N, Yu S, Zhang J, Tao M, Wang C, Liu Y, Liu L, Liu Y, Zang J, Wang G. Inhibition of EHMT1/2 rescues synaptic damage and motor impairment in a PD mouse model. Cell Mol Life Sci 2024; 81:128. [PMID: 38472451 DOI: 10.1007/s00018-024-05176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Epigenetic dysregulation that leads to alterations in gene expression and is suggested to be one of the key pathophysiological factors of Parkinson's disease (PD). Here, we found that α-synuclein preformed fibrils (PFFs) induced histone H3 dimethylation at lysine 9 (H3K9me2) and increased the euchromatic histone methyltransferases EHMT1 and EHMT2, which were accompanied by neuronal synaptic damage, including loss of synapses and diminished expression levels of synaptic-related proteins. Furthermore, the levels of H3K9me2 at promoters in genes that encode the synaptic-related proteins SNAP25, PSD95, Synapsin 1 and vGLUT1 were increased in primary neurons after PFF treatment, which suggests a linkage between H3K9 dimethylation and synaptic dysfunction. Inhibition of EHMT1/2 with the specific inhibitor A-366 or shRNA suppressed histone methylation and alleviated synaptic damage in primary neurons that were treated with PFFs. In addition, the synaptic damage and motor impairment in mice that were injected with PFFs were repressed by treatment with the EHMT1/2 inhibitor A-366. Thus, our findings reveal the role of histone H3 modification by EHMT1/2 in synaptic damage and motor impairment in a PFF animal model, suggesting the involvement of epigenetic dysregulation in PD pathogenesis.
Collapse
Affiliation(s)
- Zhixiong Zhang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hui Zhou
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Dan Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yifan Cao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chuang Zhang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Institute of Trauma Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Nana Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Mengdan Tao
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Can Wang
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Liu Liu
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, Jiangsu, China.
- Center of Translational Medicine, First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, 215400, China.
| |
Collapse
|
17
|
Rohm D, Black JB, McCutcheon SR, Barrera A, Morone DJ, Nuttle X, de Esch CE, Tai DJ, Talkowski ME, Iglesias N, Gersbach CA. Activation of the imprinted Prader-Willi Syndrome locus by CRISPR-based epigenome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583177. [PMID: 38496583 PMCID: PMC10942373 DOI: 10.1101/2024.03.03.583177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi Syndrome (PWS) is caused by loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.
Collapse
Affiliation(s)
- Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Joshua B. Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R. McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Daniel J. Morone
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E. de Esch
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J.C. Tai
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael E. Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A. Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
18
|
De Clerck M, Manguin M, Henkous N, d’Almeida MN, Beracochea D, Mons N. Chronic alcohol-induced long-lasting working memory deficits are associated with altered histone H3K9 dimethylation in the prefrontal cortex. Front Behav Neurosci 2024; 18:1354390. [PMID: 38495426 PMCID: PMC10941761 DOI: 10.3389/fnbeh.2024.1354390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Epigenetic modifications have emerged as key contributors to the enduring behavioral, molecular and epigenetic neuroadaptations during withdrawal from chronic alcohol exposure. The present study investigated the long-term consequences of chronic alcohol exposure on spatial working memory (WM) and associated changes of transcriptionally repressive histone H3 lysine 9 dimethylation (H3K9me2) in the prefrontal cortex (PFC). Methods Male C57BL/6 mice were allowed free access to either 12% (v/v) ethanol for 5 months followed by a 3-week abstinence period or water. Spatial WM was assessed through the spontaneous alternation T-maze test. Alcoholic and water mice received daily injections of GABAB agonist baclofen or saline during alcohol fading and early withdrawal. Global levels of histone modifications were determined by immunohistochemistry. Results Withdrawal mice displayed WM impairments along with reduced prefrontal H3K9me2 levels, compared to water-drinking mice. The withdrawal-induced decrease of H3K9me2 occurred concomitantly with increased level of permissive H3K9 acetylation (H3K9ac) in the PFC. Baclofen treatment rescued withdrawal-related WM deficits and fully restored prefrontal H3K9me2 and H3K9ac. Alcohol withdrawal induced brain region-specific changes of H3K9me2 and H3K9ac after testing, with significant decreases of both histone marks in the dorsal hippocampus and no changes in the amygdala and dorsal striatum. Furthermore, the magnitude of H3K9me2 in the PFC, but not the hippocampus, significantly and positively correlated with individual WM performances. No correlation was observed between H3K9ac and behavioral performance. Results also indicate that pre-testing intraperitoneal injection of UNC0642, a selective inhibitor of histone methyltransferase G9a responsible for H3K9me2, led to WM impairments in water-drinking and withdrawal-baclofen mice. Collectively, our results demonstrate that alcohol withdrawal induced brain-region specific alterations of H3K9me2 and H3K9ac, an effect that persisted for at least three weeks after cessation of chronic alcohol intake. Conclusion The findings suggest a role for long-lasting decreased H3K9me2 specifically in the PFC in the persistent WM impairments related to alcohol withdrawal.
Collapse
|
19
|
Velez J, Han Y, Yim H, Yang P, Deng Z, Park KS, Kabir M, Kaniskan HÜ, Xiong Y, Jin J. Discovery of the First-in-class G9a/GLP PROTAC Degrader. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582210. [PMID: 38464025 PMCID: PMC10925177 DOI: 10.1101/2024.02.26.582210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and di-methylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and non-catalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader, 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time, and ubiquitin-proteasome system (UPS)-dependent manner, does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.
Collapse
Affiliation(s)
- Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yulin Han
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peiyi Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kwang-su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current address: College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - H. Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Bellver-Sanchis A, Geng Q, Navarro G, Ávila-López PA, Companys-Alemany J, Marsal-García L, Larramona-Arcas R, Miró L, Perez-Bosque A, Ortuño-Sahagún D, Banerjee DR, Choudhary BS, Soriano FX, Poulard C, Pallàs M, Du HN, Griñán-Ferré C. G9a Inhibition Promotes Neuroprotection through GMFB Regulation in Alzheimer's Disease. Aging Dis 2024; 15:311-337. [PMID: 37307824 PMCID: PMC10796087 DOI: 10.14336/ad.2023.0424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Epigenetic alterations are a fundamental pathological hallmark of Alzheimer's disease (AD). Herein, we show the upregulation of G9a and H3K9me2 in the brains of AD patients. Interestingly, treatment with a G9a inhibitor (G9ai) in SAMP8 mice reversed the high levels of H3K9me2 and rescued cognitive decline. A transcriptional profile analysis after G9ai treatment revealed increased gene expression of glia maturation factor β (GMFB) in SAMP8 mice. Besides, a H3K9me2 ChIP-seq analysis after G9a inhibition treatment showed the enrichment of gene promoters associated with neural functions. We observed the induction of neuronal plasticity and a reduction of neuroinflammation after G9ai treatment, and more strikingly, these neuroprotective effects were reverted by the pharmacological inhibition of GMFB in mice and cell cultures; this was also validated by the RNAi approach generating the knockdown of GMFB/Y507A.10 in Caenorhabditis elegans. Importantly, we present evidence that GMFB activity is controlled by G9a-mediated lysine methylation as well as we identified that G9a directly bound GMFB and catalyzed the methylation at lysine (K) 20 and K25 in vitro. Furthermore, we found that the neurodegenerative role of G9a as a GMFB suppressor would mainly rely on methylation of the K25 position of GMFB, and thus G9a pharmacological inhibition removes this methylation promoting neuroprotective effects. Then, our findings confirm an undescribed mechanism by which G9a inhibition acts at two levels, increasing GMFB and regulating its function to promote neuroprotective effects in age-related cognitive decline.
Collapse
Affiliation(s)
- Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Qizhi Geng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Department Biochemistry and Physiology, Faculty of Pharmacy. Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Pedro A. Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Laura Marsal-García
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada.
| | - Raquel Larramona-Arcas
- Department of Cell Biology, Physiology, and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Lluisa Miró
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Anna Perez-Bosque
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Jalisco 44340, México.
| | | | - Bhanwar Singh Choudhary
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India.
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, India.
| | - Francesc X Soriano
- Department of Cell Biology, Physiology, and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Coralie Poulard
- Cancer Research Cancer Lyon, Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérlogie de Lyon, F-69000 Lyon, France.
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Nuttle X, Burt ND, Currall B, Moysés-Oliveira M, Mohajeri K, Bhavsar R, Lucente D, Yadav R, Tai DJC, Gusella JF, Talkowski ME. Parallelized engineering of mutational models using piggyBac transposon delivery of CRISPR libraries. CELL REPORTS METHODS 2024; 4:100672. [PMID: 38091988 PMCID: PMC10831954 DOI: 10.1016/j.crmeth.2023.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 01/25/2024]
Abstract
New technologies and large-cohort studies have enabled novel variant discovery and association at unprecedented scale, yet functional characterization of these variants remains paramount to deciphering disease mechanisms. Approaches that facilitate parallelized genome editing of cells of interest or induced pluripotent stem cells (iPSCs) have become critical tools toward this goal. Here, we developed an approach that incorporates libraries of CRISPR-Cas9 guide RNAs (gRNAs) together with inducible Cas9 into a piggyBac (PB) transposon system to engineer dozens to hundreds of genomic variants in parallel against isogenic cellular backgrounds. This method empowers loss-of-function (LoF) studies through the introduction of insertions or deletions (indels) and copy-number variants (CNVs), though generating specific nucleotide changes is possible with prime editing. The ability to rapidly establish high-quality mutational models at scale will facilitate the development of isogenic cellular collections and catalyze comparative functional genomic studies investigating the roles of hundreds of genes and mutations in development and disease.
Collapse
Affiliation(s)
- Xander Nuttle
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| | - Nicholas D Burt
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin Currall
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mariana Moysés-Oliveira
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Kiana Mohajeri
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; PhD program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Riya Bhavsar
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Diane Lucente
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Rachita Yadav
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Derek J C Tai
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - James F Gusella
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
22
|
Wang J, Zhang W, Xu H, Ellenbroek B, Dai J, Wang L, Yan C, Wang W. The Changes of Histone Methylation Induced by Adolescent Social Stress Regulate the Resting-State Activity in mPFC. RESEARCH (WASHINGTON, D.C.) 2023; 6:0264. [PMID: 38434244 PMCID: PMC10907022 DOI: 10.34133/research.0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/15/2023] [Indexed: 03/05/2024]
Abstract
Early-life stress can lead to sustained alterations in regional resting-state brain functions, but the underlying molecular mechanism remains unclear. Stress can also induce sustained changes in epigenetic modifications across brain regions, which are not limited to a few genes; rather, they often tend to produce global levels of change. The functional implication of these changes also remains to be elucidated. We hypothesize that global epigenetic changes may partly modulate the resting-state functions of brain regions to influence behavior. To test this hypothesis, we used an adolescent social stress (ASS) model in mice and examined the relationship between epigenetic modifications and regional resting-state brain activity using resting-state functional magnetic resonance imaging (rs-fMRI). The results showed that, compared to the control mice, the stressed mice showed increased anxiety and social avoidance behaviors and greater levels of dimethylation of histone H3 at lysine 9 (H3K9me2) in the medial prefrontal cortex (mPFC). In addition, the resting-state activity represented by the amplitude of low-frequency fluctuation (ALFF) was significantly lower in the mPFC of stressed mice. To verify the relationship of H3K9me2 and ALFF, the specific inhibition of H3Kme2 was performed by using the drug UNC0642, which reversed the anxiety behavior induced by ASS and significantly increase the ALFF value of mPFC in both normal and ASS animals. Our study is the first to report an association between histone modifications and rs-fMRI findings, providing a new perspective for understanding of the significance of regional brain epigenetic changes and a possible molecular explanation for rs-fMRI findings.
Collapse
Affiliation(s)
- Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Bart Ellenbroek
- School of Psychology, Victoria University of Wellington, Kelburn, Wellington 6012, New Zealand
| | - Jiajie Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chaogan Yan
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Gilmore RB, Liu Y, Stoddard CE, Chung MS, Carmichael GG, Cotney J. Identifying key underlying regulatory networks and predicting targets of orphan C/D box SNORD116 snoRNAs in Prader-Willi syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560773. [PMID: 37873184 PMCID: PMC10592975 DOI: 10.1101/2023.10.03.560773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder characterized principally by initial symptoms of neonatal hypotonia and failure-to-thrive in infancy, followed by hyperphagia and obesity. It is well established that PWS is caused by loss of paternal expression of the imprinted region on chromosome 15q11-q13. While most PWS cases exhibit megabase-scale deletions of the paternal chromosome 15q11-q13 allele, several PWS patients have been identified harboring a much smaller deletion encompassing primarily SNORD116. This finding suggests SNORD116 is a direct driver of PWS phenotypes. The SNORD116 gene cluster is composed of 30 copies of individual SNORD116 C/D box small nucleolar RNAs (snoRNAs). Many C/D box snoRNAs have been shown to guide chemical modifications of other RNA molecules, often ribosomal RNA (rRNA). However, SNORD116 snoRNAs are termed 'orphans' because no verified targets have been identified and their sequences show no significant complementarity to rRNA. It is crucial to identify the targets and functions of SNORD116 snoRNAs because all reported PWS cases lack their expression. To address this, we engineered two different deletions modelling PWS in two distinct human embryonic stem cell (hESC) lines to control for effects of genetic background. Utilizing an inducible expression system enabled quick, reproducible differentiation of these lines into neurons. Systematic comparisons of neuronal gene expression across deletion types and genetic backgrounds revealed a novel list of 42 consistently dysregulated genes. Employing the recently described computational tool snoGloBe, we discovered these dysregulated genes are significantly enriched for predicted SNORD116 targeting versus multiple control analyses. Importantly, our results showed it is critical to use multiple isogenic cell line pairs, as this eliminated many spuriously differentially expressed genes. Our results indicate a novel gene regulatory network controlled by SNORD116 is likely perturbed in PWS patients.
Collapse
Affiliation(s)
- Rachel B. Gilmore
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Yaling Liu
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Christopher E. Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Michael S. Chung
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Gordon G. Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
24
|
Kang Z, Fu P, Ma H, Li T, Lu K, Liu J, Ginjala V, Romanienko P, Feng Z, Guan M, Ganesan S, Xia B. Distinct functions of EHMT1 and EHMT2 in cancer chemotherapy and immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560719. [PMID: 37873068 PMCID: PMC10592889 DOI: 10.1101/2023.10.03.560719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
EHTM1 (GLP) and EHMT2 (G9a) are closely related protein lysine methyltransferases often thought to function together as a heterodimer to methylate histone H3 and non-histone substrates in diverse cellular processes including transcriptional regulation, genome methylation, and DNA repair. Here we show that EHMT1/2 inhibitors cause ATM-mediated slowdown of replication fork progression, accumulation of single-stranded replication gaps, emergence of cytosolic DNA, and increased expression of STING. EHMT1/2 inhibition strongly potentiates the efficacy of alkylating chemotherapy and anti-PD-1 immunotherapy in mouse models of tripe negative breast cancer. The effects on DNA replication and alkylating agent sensitivity are largely caused by the loss of EHMT1-mediated methylation of LIG1, whereas the elevated STING expression and remarkable response to immunotherapy appear mainly elicited by the loss of EHMT2 activity. Depletion of UHRF1, a protein known to be associated with EHMT1/2 and LIG1, also induces STING expression, and depletion of either EHMT2 or UHRF1 leads to demethylation of specific CpG sites in the STING1 promoter, suggestive of a distinct EHMT2-UHRF1 axis that regulates DNA methylation and gene transcription. These results highlight distinct functions of the two EHMT paralogs and provide enlightening paradigms and corresponding molecular basis for combination therapies involving alkylating agents and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Zhihua Kang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Pan Fu
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Clinical Microbiology Laboratory, Children’s Hospital of Fudan University, Shanghai, China
| | - Hui Ma
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Li
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kevin Lu
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Vasudeva Ginjala
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Lead contact
| |
Collapse
|
25
|
Kioutchoukova IP, Foster DT, Thakkar RN, Foreman MA, Burgess BJ, Toms RM, Molina Valero EE, Lucke-Wold B. Neurologic orphan diseases: Emerging innovations and role for genetic treatments. World J Exp Med 2023; 13:59-74. [PMID: 37767543 PMCID: PMC10520757 DOI: 10.5493/wjem.v13.i4.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Orphan diseases are rare diseases that affect less than 200000 individuals within the United States. Most orphan diseases are of neurologic and genetic origin. With the current advances in technology, more funding has been devoted to developing therapeutic agents for patients with these conditions. In our review, we highlight emerging options for patients with neurologic orphan diseases, specifically including diseases resulting in muscular deterioration, epilepsy, seizures, neurodegenerative movement disorders, inhibited cognitive development, neuron deterioration, and tumors. After extensive literature review, gene therapy offers a promising route for the treatment of neurologic orphan diseases. The use of clustered regularly interspaced palindromic repeats/Cas9 has demonstrated positive results in experiments investigating its role in several diseases. Additionally, the use of adeno-associated viral vectors has shown improvement in survival, motor function, and developmental milestones, while also demonstrating reversal of sensory ataxia and cardiomyopathy in Friedreich ataxia patients. Antisense oligonucleotides have also been used in some neurologic orphan diseases with positive outcomes. Mammalian target of rapamycin inhibitors are currently being investigated and have reduced abnormal cell growth, proliferation, and angiogenesis. Emerging innovations and the role of genetic treatments open a new window of opportunity for the treatment of neurologic orphan diseases.
Collapse
Affiliation(s)
| | - Devon T Foster
- Florida International University Herbert Wertheim College of Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Rajvi N Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Marco A Foreman
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Brandon J Burgess
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Rebecca M Toms
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
26
|
Wang SE, Jiang YH. Novel epigenetic molecular therapies for imprinting disorders. Mol Psychiatry 2023; 28:3182-3193. [PMID: 37626134 PMCID: PMC10618104 DOI: 10.1038/s41380-023-02208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Genomic imprinting disorders are caused by the disruption of genomic imprinting processes leading to a deficit or increase of an active allele. Their unique molecular mechanisms underlying imprinted genes offer an opportunity to investigate epigenetic-based therapy for reactivation of an inactive allele or reduction of an active allele. Current treatments are based on managing symptoms, not targeting the molecular mechanisms underlying imprinting disorders. Here, we highlight molecular approaches of therapeutic candidates in preclinical and clinical studies for individual imprinting disorders. These include the significant progress of discovery and testing of small molecules, antisense oligonucleotides, and CRISPR mediated genome editing approaches as new therapeutic strategies. We discuss the significant challenges of translating these promising therapies from the preclinical stage to the clinic, especially for genome editing based approaches.
Collapse
Affiliation(s)
- Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
| |
Collapse
|
27
|
Feng Z, Yang C, Zhang Y, Li H, Fang W, Wang J, Nie Y, Wang CY, Liu Z, Jiang Z, Wang J, Wang Y. Structure-Based Design and Characterization of the Highly Potent and Selective Covalent Inhibitors Targeting the Lysine Methyltransferases G9a/GLP. J Med Chem 2023. [PMID: 37268593 DOI: 10.1021/acs.jmedchem.3c00411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein lysine methyltransferases G9a and GLP, which catalyze mono- and di-methylation of histone H3K9 and nonhistone proteins, play important roles in diverse cellular processes. Overexpression or dysregulation of G9a and GLP has been identified in various types of cancer. Here, we report the discovery of a highly potent and selective covalent inhibitor 27 of G9a/GLP via the structure-based drug design approach following structure-activity relationship exploration and cellular potency optimization. Mass spectrometry assays and washout experiments confirmed its covalent inhibition mechanism. Compound 27 displayed improved potency in inhibiting the proliferation and colony formation of PANC-1 and MDA-MB-231 cell lines and exhibited enhanced potency in reducing the levels of H3K9me2 in cells compared to noncovalent inhibitor 26. In vivo, 27 showed significant antitumor efficacy in the PANC-1 xenograft model with good safety. These results clearly indicate that 27 is a highly potent and selective covalent inhibitor of G9a/GLP.
Collapse
Affiliation(s)
- Zongbo Feng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- School of Pharmacy, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Chunju Yang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Zhang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huaxuan Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wei Fang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Junhua Wang
- The Department of Biliary-Pancreatic Surgery, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Chang-Yun Wang
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhiqing Liu
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhimin Jiang
- School of Pharmacy, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Junjian Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
28
|
Yang X, Xu L, Yang L. Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2023; 256:115461. [PMID: 37156182 DOI: 10.1016/j.ejmech.2023.115461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) protein is the catalytic subunit of one of the histone methyltransferases. EZH2 catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3) and further alters downstream target levels. EZH2 is upregulated in cancer tissues, wherein its levels correlate strongly with cancer genesis, progression, metastasis, and invasion. Consequently, it has emerged as a novel anticancer therapeutic target. Nonetheless, developing EZH2 inhibitors (EZH2i) has encountered numerous difficulties, such as pre-clinical drug resistance and poor therapeutic effect. The EZH2i synergistically suppresses cancers when used in combination with additional antitumor drugs, such as PARP inhibitors, HDAC inhibitors, BRD4 inhibitors, EZH1 inhibitors, and EHMT2 inhibitors. Typically, the use of dual inhibitors of two different targets mediated by one individual molecule has been recognized as the preferred approach for overcoming the limitations of EZH2 monotherapy. The present review discusses the theoretical basis for designing EZH2-based dual-target inhibitors, and also describes some in vitro and in vivo analysis results.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| |
Collapse
|
29
|
Nishigaya Y, Takase S, Sumiya T, Kikuzato K, Sato T, Niwa H, Sato S, Nakata A, Sonoda T, Hashimoto N, Namie R, Honma T, Umehara T, Shirouzu M, Koyama H, Yoshida M, Ito A, Shirai F. Discovery of Novel Substrate-Competitive Lysine Methyltransferase G9a Inhibitors as Anticancer Agents. J Med Chem 2023; 66:4059-4085. [PMID: 36882960 DOI: 10.1021/acs.jmedchem.2c02059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Identification of structurally novel inhibitors of lysine methyltransferase G9a has been a subject of intense research in cancer epigenetics. Starting with the high-throughput screening (HTS) hit rac-10a obtained from the chemical library of the University of Tokyo Drug Discovery Initiative, the structure-activity relationship of the unique substrate-competitive inhibitors was established with the help of X-ray crystallography and fragment molecular orbital (FMO) calculations for the ligand-protein interaction. Further optimization of the in vitro characteristics and drug metabolism and pharmacokinetics (DMPK) properties led to the identification of 26j (RK-701), which is a structurally distinct potent inhibitor of G9a/GLP (IC50 = 27/53 nM). Compound 26j exhibited remarkable selectivity against other related methyltransferases, dose-dependent attenuation of cellular H3K9me2 levels, and tumor growth inhibition in MOLT-4 cells in vitro. Moreover, compound 26j showed inhibition of tumor initiation and growth in a carcinogen-induced hepatocellular carcinoma (HCC) in vivo mouse model without overt acute toxicity.
Collapse
Affiliation(s)
- Yosuke Nishigaya
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Shohei Takase
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tatsunobu Sumiya
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | | | | | | | | | | | | | - Noriaki Hashimoto
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Ryosuke Namie
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | | | | | | | | | - Minoru Yoshida
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | |
Collapse
|
30
|
Liao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs. J Pharm Anal 2023; 13:127-141. [PMID: 36908859 PMCID: PMC9999304 DOI: 10.1016/j.jpha.2022.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases (KMTs) is essential for epigenome homeostasis. The dysregulation of KMTs is associated with tumor initiation, metastasis, chemoresistance, invasiveness, and the immune microenvironment. Therapeutically, their promising effects are being evaluated in diversified preclinical and clinical trials, demonstrating encouraging outcomes in multiple malignancies. In this review, we have updated recent understandings of KMTs' functions and the development of their targeted inhibitors. First, we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis, tumor suppression, and immune regulation. In addition, we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors. In summary, we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| |
Collapse
|
31
|
Chao Y, Qin Y, Zou X, Wang X, Hu C, Xia F, Zou C. Promising therapeutic aspects in human genetic imprinting disorders. Clin Epigenetics 2022; 14:146. [PMID: 36371218 PMCID: PMC9655922 DOI: 10.1186/s13148-022-01369-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon of monoallelic gene expression pattern depending on parental origin. In humans, congenital imprinting disruptions resulting from genetic or epigenetic mechanisms can cause a group of diseases known as genetic imprinting disorders (IDs). Genetic IDs involve several distinct syndromes sharing homologies in terms of genetic etiologies and phenotypic features. However, the molecular pathogenesis of genetic IDs is complex and remains largely uncharacterized, resulting in a lack of effective therapeutic approaches for patients. In this review, we begin with an overview of the genomic and epigenomic molecular basis of human genetic IDs. Notably, we address ethical aspects as a priority of employing emerging techniques for therapeutic applications in human IDs. With a particular focus, we delineate the current field of emerging therapeutics for genetic IDs. We briefly summarize novel symptomatic drugs and highlight the key milestones of new techniques and therapeutic programs as they stand today which can offer highly promising disease-modifying interventions for genetic IDs accompanied by various challenges.
Collapse
Affiliation(s)
- Yunqi Chao
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Yifang Qin
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Xinyi Zou
- grid.13402.340000 0004 1759 700XZhejiang University City College, Hangzhou, 310015 Zhejiang China
| | - Xiangzhi Wang
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Chenxi Hu
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Fangling Xia
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Chaochun Zou
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| |
Collapse
|
32
|
Pribluda A, Daemen A, Lima AN, Wang X, Hafner M, Poon C, Modrusan Z, Katakam AK, Foreman O, Eastham J, Hung J, Haley B, Garcia JT, Jackson EL, Junttila MR. EHMT2 methyltransferase governs cell identity in the lung and is required for KRAS G12D tumor development and propagation. eLife 2022; 11:57648. [PMID: 35983994 PMCID: PMC9439681 DOI: 10.7554/elife.57648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Lung development, integrity and repair rely on precise Wnt signaling, which is corrupted in diverse diseases, including cancer. Here, we discover that EHMT2 methyltransferase regulates Wnt signaling in the lung by controlling the transcriptional activity of chromatin-bound β-catenin, through a non-histone substrate in mouse lung. Inhibition of EHMT2 induces transcriptional, morphologic, and molecular changes consistent with alveolar type 2 (AT2) lineage commitment. Mechanistically, EHMT2 activity functions to support regenerative properties of KrasG12D tumors and normal AT2 cells—the predominant cell of origin of this cancer. Consequently, EHMT2 inhibition prevents KrasG12D lung adenocarcinoma (LUAD) tumor formation and propagation and disrupts normal AT2 cell differentiation. Consistent with these findings, low gene EHMT2 expression in human LUAD correlates with enhanced AT2 gene expression and improved prognosis. These data reveal EHMT2 as a critical regulator of Wnt signaling, implicating Ehmt2 as a potential target in lung cancer and other AT2-mediated lung pathologies.
Collapse
Affiliation(s)
- Ariel Pribluda
- Discovery Biology, Surrozen, South San Francisco, United States
| | - Anneleen Daemen
- Computational biology, Oric Pharma, South San Francisco, United States
| | - Anthony Nelson Lima
- Department of Translational Oncology, Genentech, Inc, South San Francisco, United States
| | - Xi Wang
- Department of Translational Oncology, Genentech, Inc, South San Francisco, United States
| | - Marc Hafner
- Department of Bioinformatics and Computational Biology, Genentech, Inc, South San Francisco, United States
| | - Chungkee Poon
- Department of Immunology, Genentech, Inc, South San Francisco, United States
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, Inc, South San Francisco, United States
| | | | - Oded Foreman
- Department of Pathology, Genentech, Inc, South San Francisco, United States
| | - Jefferey Eastham
- Department of Pathology, Genentech, Inc, South San Francisco, United States
| | - Jefferey Hung
- Department of Pathology, Genentech, Inc, South San Francisco, United States
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc, South San Francisco, United States
| | - Julia T Garcia
- Department of Genetics, Stanford University, Stanford, United States
| | | | | |
Collapse
|
33
|
Oxytocin-based therapies for treatment of Prader-Willi and Schaaf-Yang syndromes: evidence, disappointments, and future research strategies. Transl Psychiatry 2022; 12:318. [PMID: 35941105 PMCID: PMC9360032 DOI: 10.1038/s41398-022-02054-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
The prosocial neuropeptide oxytocin is being developed as a potential treatment for various neuropsychiatric disorders including autism spectrum disorder (ASD). Early studies using intranasal oxytocin in patients with ASD yielded encouraging results and for some time, scientists and affected families placed high hopes on the use of intranasal oxytocin for behavioral therapy in ASD. However, a recent Phase III trial obtained negative results using intranasal oxytocin for the treatment of behavioral symptoms in children with ASD. Given the frequently observed autism-like behavioral phenotypes in Prader-Willi and Schaaf-Yang syndromes, it is unclear whether oxytocin treatment represents a viable option to treat behavioral symptoms in these diseases. Here we review the latest findings on intranasal OT treatment, Prader-Willi and Schaaf-Yang syndromes, and propose novel research strategies for tailored oxytocin-based therapies for affected individuals. Finally, we propose the critical period theory, which could explain why oxytocin-based treatment seems to be most efficient in infants, but not adolescents.
Collapse
|
34
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|
35
|
Park KS, Xiong Y, Yim H, Velez J, Babault N, Kumar P, Liu J, Jin J. Discovery of the First-in-Class G9a/GLP Covalent Inhibitors. J Med Chem 2022; 65:10506-10522. [PMID: 35763668 DOI: 10.1021/acs.jmedchem.2c00652] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highly homologous protein lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in various human diseases. To investigate functions of G9a and GLP in human diseases, we and others reported several noncovalent reversible small-molecule inhibitors of G9a and GLP. Here, we report the discovery of the first-in-class G9a/GLP covalent irreversible inhibitors, 1 and 8 (MS8511), by targeting a cysteine residue at the substrate binding site. We characterized these covalent inhibitors in enzymatic, mass spectrometry based and cellular assays and using X-ray crystallography. Compared to the noncovalent G9a/GLP inhibitor UNC0642, covalent inhibitor 8 displayed improved potency in enzymatic and cellular assays. Interestingly, compound 8 also displayed potential kinetic preference for covalently modifying G9a over GLP. Collectively, compound 8 could be a useful chemical tool for studying the functional roles of G9a and GLP by covalently modifying and inhibiting these methyltransferases.
Collapse
Affiliation(s)
- Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Nicolas Babault
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Prashasti Kumar
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
36
|
A Review of Prader–Willi Syndrome. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prader–Willi Syndrome (PWS, OMIM #176270) is a rare complex genetic disorder due to the loss of expression of paternally derived genes in the PWS critical region on chromosome 15q11-q13. It affects multiple neuroendocrine systems and may present failure to thrive in infancy, but then, hyperphagia and morbid obesity starting in early childhood became the hallmark of this condition. Short stature, hypogonadism, sleep abnormalities, intellectual disability, and behavioral disturbances highlight the main features of this syndrome. There have been a significant number of advances in our understanding of the genetic mechanisms underlying the disease, especially discoveries of MAGEL2, NDN, MKRN3, and SNORD116 genes in the pathophysiology of PWS. However, early diagnosis and difficulty in treating some of the disease’s most disabling features remain challenging. As our understanding of PWS continues to grow, so does the availability of new therapies and management strategies available to clinicians and families.
Collapse
|
37
|
Isles AR. The contribution of imprinted genes to neurodevelopmental and neuropsychiatric disorders. Transl Psychiatry 2022; 12:210. [PMID: 35597773 PMCID: PMC9124202 DOI: 10.1038/s41398-022-01972-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Imprinted genes are a subset of mammalian genes that are subject to germline parent-specific epigenetic modifications leading monoallelic expression. Imprinted gene expression is particularly prevalent in the brain and it is unsurprising that mutations affecting their expression can lead to neurodevelopmental and/or neuropsychiatric disorders in humans. Here I review the evidence for this, detailing key neurodevelopmental disorders linked to imprinted gene clusters on human chromosomes 15q11-q13 and 14q32, highlighting genes and possible regulatory links between these different syndromes. Similarly, rare copy number variant mutations at imprinted clusters also provide strong links between abnormal imprinted gene expression and the predisposition to severe psychiatric illness. In addition to direct links between brain-expressed imprinted genes and neurodevelopmental and/or neuropsychiatric disorders, I outline how imprinted genes that are expressed in another tissue hotspot, the placenta, contribute indirectly to abnormal brain and behaviour. Specifically, altered nutrient provisioning or endocrine signalling by the placenta caused by abnormal expression of imprinted genes may lead to increased prevalence of neurodevelopmental and/or neuropsychiatric problems in both the offspring and the mother.
Collapse
Affiliation(s)
- Anthony R. Isles
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ UK
| |
Collapse
|
38
|
Müller HL, Tauber M, Lawson EA, Özyurt J, Bison B, Martinez-Barbera JP, Puget S, Merchant TE, van Santen HM. Hypothalamic syndrome. Nat Rev Dis Primers 2022; 8:24. [PMID: 35449162 DOI: 10.1038/s41572-022-00351-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
Abstract
Hypothalamic syndrome (HS) is a rare disorder caused by disease-related and/or treatment-related injury to the hypothalamus, most commonly associated with rare, non-cancerous parasellar masses, such as craniopharyngiomas, germ cell tumours, gliomas, cysts of Rathke's pouch and Langerhans cell histiocytosis, as well as with genetic neurodevelopmental syndromes, such as Prader-Willi syndrome and septo-optic dysplasia. HS is characterized by intractable weight gain associated with severe morbid obesity, multiple endocrine abnormalities and memory impairment, attention deficit and reduced impulse control as well as increased risk of cardiovascular and metabolic disorders. Currently, there is no cure for this condition but treatments for general obesity are often used in patients with HS, including surgery, medication and counselling. However, these are mostly ineffective and no medications that are specifically approved for the treatment of HS are available. Specific challenges in HS are because the syndrome represents an adverse effect of different diseases, and that diagnostic criteria, aetiology, pathogenesis and management of HS are not completely defined.
Collapse
Affiliation(s)
- Hermann L Müller
- Department of Paediatrics and Paediatric Hematology/Oncology, University Children's Hospital, Klinikum Oldenburg AöR, Carl von Ossietzky University, Oldenburg, Germany.
| | - Maithé Tauber
- Centre de Référence du Syndrome de Prader-Willi et autres syndromes avec troubles du comportement alimentaire, Hôpital des Enfants, CHU-Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jale Özyurt
- Biological Psychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| | - Brigitte Bison
- Department of Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Juan-Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Stephanie Puget
- Service de Neurochirurgie, Hôpital Necker-Enfants Malades, Sorbonne Paris Cité, Paris, France
- Service de Neurochirurgie, Hopital Pierre Zobda Quitman, Martinique, France
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hanneke M van Santen
- Department of Paediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, Netherlands
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
39
|
Zhao M, Zhu Z, Li H, Wang W, Cheng S, Qin X, Wu H, Liu D, Pan F. Effects of traumatic stress in adolescence on PTSD-like behaviors, dendrite development, and H3K9me2/BDNF expression in the amygdala of male rats. J Affect Disord 2022; 296:388-399. [PMID: 34619155 DOI: 10.1016/j.jad.2021.09.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/04/2021] [Accepted: 09/26/2021] [Indexed: 12/22/2022]
Abstract
Early detrimental experiences increase the risk of psychiatric disorders, including posttraumatic stress disorder (PTSD). In a previous experiment, we demonstrated that traumatic stress in adolescence triggers changes in the expression of the epigenetic marker H3K9me2 in the hippocampus and prefrontal cortex of adolescent and adult rats, which suppresses transcription of the brain-derived neurotrophic factor (Bdnf) gene that promotes dendrite development and synaptic growth. However, corresponding changes in the amygdala in response to traumatic stress in early life have not yet been fully elucidated. In the current study, we used the inescapable foot shock (IFS) procedure to establish a PTSD model. Half an hour after the end of electric shocks, intraperitoneal injection of the G9a enzyme inhibitor Unc0642, a small molecule inhibitor of EHMT2 that can decrease H3K9me2 expression, was applied to reverse the corresponding epigenetic changes. Exploratory behaviors, anxiety-like behavior, social communication ability, spatial exploration and memory were determined using the open field test (OFT), elevated plus maze (EPM) test, three-chamber sociability test (SIT), Morris water maze (MWM) test, and Y maze test (YMZ), respectively. Additionally, the levels of H3K9me2 and BDNF were measured by quantitative reverse transcription-polymerase chain reaction (qPCR) and Western blotting. Furthermore, neuronal development was examined using Golgi staining. The results showed that the IFS procedure induced anxiety-like and depression-like behaviors, social skills dysfunction, and spatial exploration and memory disorders. It also decreased the mRNA expression of BDNF and BDNF and increased the expression of H3K9me2 in the amygdala. More importantly, compared to unstressed animals, traumatic stress during adolescence induced dendrite maldevelopment in adolescent and adult rats. In summary, the present study indicates that early-life stress alters the epigenetic marker expression of H3K9me2 and decreases levels of BDNF in the amygdala, resulting in dendrite maldevelopment and a higher risk of mental disorders.
Collapse
Affiliation(s)
- Mingyue Zhao
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Haonan Li
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Shuyue Cheng
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xiaqing Qin
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Huiran Wu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
40
|
Rao V, Bhushan R, Kumari P, Cheruku SP, Ravichandiran V, Kumar N. Chemobrain: A review on mechanistic insight, targets and treatments. Adv Cancer Res 2022; 155:29-76. [DOI: 10.1016/bs.acr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun 2021; 12:6718. [PMID: 34795250 PMCID: PMC8602306 DOI: 10.1038/s41467-021-26949-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity. Genetic imprinting ensures monoallelic gene expression critical for normal embryonic development. Here the authors take advantage of human haploid parthenogenic embryonic stem cells lacking paternal alleles to identify, by genome-wide screening, factors involved in the regulation of imprinted genes.
Collapse
|
42
|
Wang T, Li J, Yang L, Wu M, Ma Q. The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets. Front Cell Dev Biol 2021; 9:730014. [PMID: 34760887 PMCID: PMC8573313 DOI: 10.3389/fcell.2021.730014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting is a term used for an intergenerational epigenetic inheritance and involves a subset of genes expressed in a parent-of-origin-dependent way. Imprinted genes are expressed preferentially from either the paternally or maternally inherited allele. Long non-coding RNAs play essential roles in regulating this allele-specific expression. In several well-studied imprinting clusters, long non-coding RNAs have been found to be essential in regulating temporal- and spatial-specific establishment and maintenance of imprinting patterns. Furthermore, recent insights into the epigenetic pathological mechanisms underlying human genomic imprinting disorders suggest that allele-specific expressed imprinted long non-coding RNAs serve as an upstream regulator of the expression of other protein-coding or non-coding imprinted genes in the same cluster. Aberrantly expressed long non-coding RNAs result in bi-allelic expression or silencing of neighboring imprinted genes. Here, we review the emerging roles of long non-coding RNAs in regulating the expression of imprinted genes, especially in human imprinting disorders, and discuss three strategies targeting the central long non-coding RNA UBE3A-ATS for the purpose of developing therapies for the imprinting disorders Prader-Willi syndrome and Angelman syndrome. In summary, a better understanding of long non-coding RNA-related mechanisms is key to the development of potential therapeutic targets for human imprinting disorders.
Collapse
Affiliation(s)
- Tingxuan Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
43
|
Wang W, Cao Q, Tan T, Yang F, Williams JB, Yan Z. Epigenetic treatment of behavioral and physiological deficits in a tauopathy mouse model. Aging Cell 2021; 20:e13456. [PMID: 34547169 PMCID: PMC8520711 DOI: 10.1111/acel.13456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/08/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Epigenetic abnormality is implicated in neurodegenerative diseases associated with cognitive deficits, such as Alzheimer's disease (AD). A common feature of AD is the accumulation of neurofibrillary tangles composed of hyperphosphorylated tau. Transgenic mice expressing mutant P301S human tau protein develop AD‐like progressive tau pathology and cognitive impairment. Here, we show that the euchromatic histone‐lysine N‐methyltransferase 2 (EHMT2) is significantly elevated in the prefrontal cortex (PFC) of P301S Tau mice (5–7 months old), leading to the increased repressive histone mark, H3K9me2, which is reversed by treatment with the selective EHMT inhibitor UNC0642. Behavioral assays show that UNC0642 treatment induces the robust rescue of spatial and recognition memory deficits in P301S Tau mice. Concomitantly, the diminished PFC neuronal excitability and glutamatergic synaptic transmission in P301S Tau mice are also normalized by UNC0642 treatment. In addition, EHMT inhibition dramatically attenuates the hyperphosphorylated tau level in PFC of P301S Tau mice. Transcriptomic analysis reveals that UNC0642 treatment of P301S Tau mice has normalized a number of dysregulated genes in PFC, which are enriched in cytoskeleton and extracellular matrix organization, ion channels and transporters, receptor signaling, and stress responses. Together, these data suggest that targeting histone methylation enzymes to adjust gene expression could be used to treat cognitive and synaptic deficits in neurodegenerative diseases linked to tauopathies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Qing Cao
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Tao Tan
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Fengwei Yang
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Jamal B. Williams
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Zhen Yan
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| |
Collapse
|
44
|
SPOP mutation induces DNA methylation via stabilizing GLP/G9a. Nat Commun 2021; 12:5716. [PMID: 34588438 PMCID: PMC8481544 DOI: 10.1038/s41467-021-25951-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Mutations in SPOP E3 ligase gene are reportedly associated with genome-wide DNA hypermethylation in prostate cancer (PCa) although the underlying mechanisms remain elusive. Here, we demonstrate that SPOP binds and promotes polyubiquitination and degradation of histone methyltransferase and DNMT interactor GLP. SPOP mutation induces stabilization of GLP and its partner protein G9a and aberrant upregulation of global DNA hypermethylation in cultured PCa cells and primary PCa specimens. Genome-wide DNA methylome analysis shows that a subset of tumor suppressor genes (TSGs) including FOXO3, GATA5, and NDRG1, are hypermethylated and downregulated in SPOP-mutated PCa cells. DNA methylation inhibitor 5-azacytidine effectively reverses expression of the TSGs examined, inhibits SPOP-mutated PCa cell growth in vitro and in mice, and enhances docetaxel anti-cancer efficacy. Our findings reveal the GLP/G9a-DNMT module as a mediator of DNA hypermethylation in SPOP-mutated PCa. They suggest that SPOP mutation could be a biomarker for effective treatment of PCa with DNA methylation inhibitor alone or in combination with taxane chemotherapeutics. The molecular mechanism underlying the DNA hypermethylation phenotype observed in the SPOP-mutant prostate cancers is unclear. Here, the authors show that mutant SPOP induces global aberrant DNA methylation patterns through GLP/G9a and renders prostate cancer cells susceptible to DNA demethylating agents.
Collapse
|
45
|
Langouët M, Gorka D, Orniacki C, Dupont-Thibert CM, Chung MS, Glatt-Deeley HR, Germain N, Crandall LJ, Cotney JL, Stoddard CE, Lalande M, Chamberlain SJ. Specific ZNF274 binding interference at SNORD116 activates the maternal transcripts in Prader-Willi syndrome neurons. Hum Mol Genet 2021; 29:3285-3295. [PMID: 32977341 DOI: 10.1093/hmg/ddaa210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity. This disorder is caused by the absence of paternally expressed gene products from chromosome 15q11-q13. We previously demonstrated that knocking out ZNF274, a Kruppel-associated box-A-domain zinc finger protein capable of recruiting epigenetic machinery to deposit the H3K9me3 repressive histone modification, can activate expression from the normally silent maternal allele of SNORD116 in neurons derived from PWS induced pluripotent stem cells (iPSCs). However, ZNF274 has many other targets in the genome in addition to SNORD116. Depleting ZNF274 will surely affect the expression of other important genes and disrupt other pathways. Here, we used CRISPR/Cas9 to delete ZNF274 binding sites at the SNORD116 locus to determine whether activation of the maternal copy of SNORD116 could be achieved without altering ZNF274 protein levels. We obtained similar activation of gene expression from the normally silenced maternal allele in neurons derived from PWS iPSCs, compared with ZNF274 knockout, demonstrating that ZNF274 is directly involved in the repression of SNORD116. These results suggest that interfering with ZNF274 binding at the maternal SNORD116 locus is a potential therapeutic strategy for PWS.
Collapse
Affiliation(s)
- Maéva Langouët
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Dea Gorka
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Clarisse Orniacki
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Clémence M Dupont-Thibert
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Michael S Chung
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Heather R Glatt-Deeley
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Noelle Germain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Leann J Crandall
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Christopher E Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Marc Lalande
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
46
|
Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer's disease. Neurobiol Aging 2021; 107:86-95. [PMID: 34416493 DOI: 10.1016/j.neurobiolaging.2021.07.014] [Citation(s) in RCA: 352] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS) are metabolic byproducts that are necessary for physiological function but can be toxic at high levels. Levels of these oxidative stressors increase gradually throughout the lifespan, impairing mitochondrial function and damaging all parts of the body, particularly the central nervous system. Emerging evidence suggests that accumulated oxidative stress may be one of the key mechanisms causing cognitive aging and neurodegenerative diseases such as Alzheimer's disease (AD). Here, we synthesize the current literature on the effect of neuronal oxidative stress on mitochondrial dysfunction, DNA damage and epigenetic changes related to cognitive aging and AD. We further describe how oxidative stress therapeutics such as antioxidants, caloric restriction and physical activity can reduce oxidation and prevent cognitive decline in brain aging and AD. Of the currently available therapeutics, we propose that long term physical activity is the most promising avenue for improving cognitive health by reducing ROS while promoting the low levels required for optimal function.
Collapse
Affiliation(s)
- Andra Ionescu-Tucker
- Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California.
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California.
| |
Collapse
|
47
|
Li K, Zheng X, Tang H, Zang YS, Zeng C, Liu X, Shen Y, Pang Y, Wang S, Xie F, Lu X, Luo Y, Li Z, Bi W, Jia X, Huang T, Wei R, Huang K, Chen Z, Zhu Q, He Y, Zhang M, Gu Z, Xiao Y, Zhang X, Fletcher JA, Wang Y. E3 ligase MKRN3 is a tumor suppressor regulating PABPC1 ubiquitination in non-small cell lung cancer. J Exp Med 2021; 218:e20210151. [PMID: 34143182 PMCID: PMC8217967 DOI: 10.1084/jem.20210151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/23/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Central precocious puberty (CPP), largely caused by germline mutations in the MKRN3 gene, has been epidemiologically linked to cancers. MKRN3 is frequently mutated in non-small cell lung cancers (NSCLCs) with five cohorts. Genomic MKRN3 aberrations are significantly enriched in NSCLC samples harboring oncogenic KRAS mutations. Low MKRN3 expression levels correlate with poor patient survival. Reconstitution of MKRN3 in MKRN3-inactivated NSCLC cells directly abrogates in vitro and in vivo tumor growth and proliferation. MKRN3 knockout mice are susceptible to urethane-induced lung cancer, and lung cell-specific knockout of endogenous MKRN3 accelerates NSCLC tumorigenesis in vivo. A mass spectrometry-based proteomics screen identified PABPC1 as a major substrate for MKRN3. The tumor suppressor function of MKRN3 is dependent on its E3 ligase activity, and MKRN3 missense mutations identified in patients substantially compromise MKRN3-mediated PABPC1 ubiquitination. Furthermore, MKRN3 modulates cell proliferation through PABPC1 nonproteolytic ubiquitination and subsequently, PABPC1-mediated global protein synthesis. Our integrated approaches demonstrate that the CPP-associated gene MKRN3 is a tumor suppressor.
Collapse
Affiliation(s)
- Ke Li
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xufen Zheng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Tang
- Department of Thoracic Surgery, Changzheng Hospital, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Shanghai, China
| | - Chunling Zeng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxiao Liu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanying Shen
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuzhi Pang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Simin Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifei Xie
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Lu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuxiang Luo
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhang Li
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenbo Bi
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaona Jia
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- Bioinformatics Core, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rongqiang Wei
- Department of Thoracic Surgery, Changzheng Hospital, Shanghai, China
| | - Kenan Huang
- Department of Thoracic Surgery, Changzheng Hospital, Shanghai, China
| | - Zihao Chen
- Department of Thoracic Surgery, Changzheng Hospital, Shanghai, China
| | - Qingchen Zhu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi He
- Department of Urology, No. 1 Hospital of Jiaxing, Jiaxing, China
| | - Miaoying Zhang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Zhizhan Gu
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Yuexiang Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Trager MH, Sah B, Chen Z, Liu L. Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase. Endocrinology 2021; 162:6259332. [PMID: 33928351 PMCID: PMC8237996 DOI: 10.1210/endocr/bqab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is a highly heterogeneous disease, encompassing many subtypes that have distinct origins, behaviors, and prognoses. Although traditionally seen as a genetic disease, breast cancer is now also known to involve epigenetic abnormalities. Epigenetic regulators, such as DNA methyltransferases and histone-modifying enzymes, play essential roles in gene regulation and cancer development. Dysregulation of epigenetic regulator activity has been causally linked with breast cancer pathogenesis. Hairless (HR) encodes a 130-kDa transcription factor that is essential for development and tissue homeostasis. Its role in transcription regulation is partly mediated by its interaction with multiple nuclear receptors, including thyroid hormone receptor, retinoic acid receptor-related orphan receptors, and vitamin D receptor. HR has been studied primarily in epidermal development and homeostasis. Hr-mutant mice are highly susceptible to ultraviolet- or carcinogen-induced skin tumors. Besides its putative tumor suppressor function in skin, loss of HR function has also been implicated in increased leukemia susceptibility and promotes the growth of melanoma and brain cancer cells. HR has also been demonstrated to function as a histone H3 lysine 9 demethylase. Recent genomics studies have identified HR mutations in a variety of human cancers, including breast cancer. The anticancer function and mechanism of action by HR in mammary tissue remains to be investigated. Here, we review the emerging role of HR, its histone demethylase activity and histone methylation in breast cancer development, and potential for epigenetic therapy.
Collapse
Affiliation(s)
- Megan H Trager
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Bindeshwar Sah
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Zhongming Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
- Correspondence: Liang Liu, PhD, The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
49
|
Mian-Ling Z, Yun-Qi C, Chao-Chun Z. Prader-Willi Syndrome: Molecular Mechanism and Epigenetic Therapy. Curr Gene Ther 2021; 20:36-43. [PMID: 32329685 DOI: 10.2174/1566523220666200424085336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023]
Abstract
Prader-Willi syndrome (PWS) is an imprinted neurodevelopmental disease characterized by cognitive impairments, developmental delay, hyperphagia, obesity, and sleep abnormalities. It is caused by a lack of expression of the paternally active genes in the PWS imprinting center on chromosome 15 (15q11.2-q13). Owing to the imprinted gene regulation, the same genes in the maternal chromosome, 15q11-q13, are intact in structure but repressed at the transcriptional level because of the epigenetic mechanism. The specific molecular defect underlying PWS provides an opportunity to explore epigenetic therapy to reactivate the expression of repressed PWS genes inherited from the maternal chromosome. The purpose of this review is to summarize the main advances in the molecular study of PWS and discuss current and future perspectives on the development of CRISPR/Cas9- mediated epigenome editing in the epigenetic therapy of PWS. Twelve studies on the molecular mechanism or epigenetic therapy of PWS were included in the review. Although our understanding of the molecular basis of PWS has changed fundamentally, there has been a little progress in the epigenetic therapy of PWS that targets its underlying genetic defects.
Collapse
Affiliation(s)
- Zhong Mian-Ling
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| | - Chao Yun-Qi
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| | - Zou Chao-Chun
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| |
Collapse
|
50
|
Mendiola AJP, LaSalle JM. Epigenetics in Prader-Willi Syndrome. Front Genet 2021; 12:624581. [PMID: 33659026 PMCID: PMC7917289 DOI: 10.3389/fgene.2021.624581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder that affects approximately 1 in 20,000 individuals worldwide. Symptom progression in PWS is classically characterized by two nutritional stages. Stage 1 is hypotonia characterized by poor muscle tone that leads to poor feeding behavior causing failure to thrive in early neonatal life. Stage 2 is followed by the development of extreme hyperphagia, also known as insatiable eating and fixation on food that often leads to obesity in early childhood. Other major features of PWS include obsessive-compulsive and hoarding behaviors, intellectual disability, and sleep abnormalities. PWS is genetic disorder mapping to imprinted 15q11.2-q13.3 locus, specifically at the paternally expressed SNORD116 locus of small nucleolar RNAs and noncoding host gene transcripts. SNORD116 is processed into several noncoding components and is hypothesized to orchestrate diurnal changes in metabolism through epigenetics, according to functional studies. Here, we review the current status of epigenetic mechanisms in PWS, with an emphasis on an emerging role for SNORD116 in circadian and sleep phenotypes. We also summarize current ongoing therapeutic strategies, as well as potential implications for more common human metabolic and psychiatric disorders.
Collapse
Affiliation(s)
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|