1
|
Ying Y, Cai X, Dai P, Zhang Y, Lv J, Huang Z, Chen X, Hu Y, Shi Y, Li X, Jiang D, Wang Z. Neurological Emergency Treatment Strategy: A Neuron-Targeted Regulation System for Reactive Oxygen Species Metabolism through Ferroptosis Modulation. ACS NANO 2025; 19:8753-8772. [PMID: 39996314 PMCID: PMC11913020 DOI: 10.1021/acsnano.4c15705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Spinal cord injury (SCI) represents a significant clinical challenge. Following SCI, the implementation of protective measures for neurons is critically important. Current clinical applications of hormone pulse therapy exhibit variable efficacy and considerable side effects, highlighting an urgent need for therapeutic strategies. This study investigates the pathological conditions of ischemia and hypoxia in the SCI region, complemented by early transcriptome sequencing postinjury. Our findings suggest that targeting ferroptosis is pivotal for early neuroprotection following SCI. Aiming at the cascade effect of mitochondrial damage leading to reactive oxygen species (ROS) production, along with extensive ROS-mediated lysosomal damage during ferroptosis signaling, we developed a liposome-based system for regulating iron metabolism─DTLS@CAT. This innovative liposome is designed to specifically target neuronal mitochondria, effectively eliminate mitoROS, and modulate complex interactions among iron metabolism, mitochondria, lysosomes, and ROS to facilitate recovery from SCI.
Collapse
Affiliation(s)
- Yibo Ying
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiong Cai
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peng Dai
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuchao Zhang
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiali Lv
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhiyang Huang
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xuehai Chen
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yusi Hu
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yunjie Shi
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaokun Li
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Dawei Jiang
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Affiliated
Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Zhouguang Wang
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
2
|
Sharma P, Du Y, Singapuri K, Delafraz DM, Shah PK. Novel comprehensive analysis of skilled reaching and grasping behavior in adult rats. J Neurosci Methods 2024; 411:110271. [PMID: 39218256 DOI: 10.1016/j.jneumeth.2024.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Reaching and grasping (R&G) in rats is commonly used as an outcome measure to investigate the effectiveness of rehabilitation or treatment strategies to recover forelimb function post spinal cord injury. Kinematic analysis has been limited to the wrist and digit movements. Kinematic profiles of the more proximal body segments that play an equally crucial role in successfully executing the task remain unexplored. Additionally, understanding of different forelimb muscle activity, their interactions, and their correlation with the kinematics of R&G movement is scarce. NEW METHOD In this work, novel methodologies to comprehensively assess and quantify the 3D kinematics of the proximal and distal forelimb joints along with associated muscle activity during R&G movements in adult rats are developed and discussed. RESULTS Our data show that different phases of R&G identified using the novel kinematic and EMG-based approach correlate with the well-established descriptors of R&G stages derived from the Whishaw scoring system. Additionally, the developed methodology allows describing the temporal activity of individual muscles and associated mechanical and physiological properties during different phases of the motor task. COMPARISON WITH EXISTING METHOD(S) R&G phases and their sub-components are identified and quantified using the developed kinematic and EMG-based approach. Importantly, the identified R&G phases closely match the well-established qualitative descriptors of the R&G task proposed by Whishaw and colleagues. CONCLUSIONS The present work provides an in-depth objective analysis of kinematics and EMG activity of R&G behavior, paving the way to a standardized approach to assessing this critical rodent motor function in future studies.
Collapse
Affiliation(s)
- Pawan Sharma
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, USA.
| | - Yixuan Du
- Undergraduate Biology, Stony Brook University, Stony Brook, New York 11727, USA
| | - Kripi Singapuri
- Undergraduate Biology, Stony Brook University, Stony Brook, New York 11727, USA
| | | | - Prithvi K Shah
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, USA
| |
Collapse
|
3
|
Izquierdo-Altarejos P, Arenas YM, Martínez-García M, Vázquez L, Mincheva G, Doverskog M, Blackburn TP, Bohnen NI, Llansola M, Felipo V. Golexanolone reduces glial activation in the striatum and improves non-motor and some motor alterations in a rat model of Parkinson's disease. Front Aging Neurosci 2024; 16:1417938. [PMID: 38974902 PMCID: PMC11224447 DOI: 10.3389/fnagi.2024.1417938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Background Parkinson's disease (PD) affects more than 6 million people worldwide. Along with motor impairments, patients and animal models exhibiting PD symptoms also experience cognitive impairment, fatigue, anxiety, and depression. Currently, there are no drugs available for PD that alter the progression of the disease. A body of evidence suggests that increased GABA levels contribute to the reduced expression of tyrosine hydroxylase (TH) and accompanying behavioral deficits. TH expression may be restored by blocking GABAA receptors. We hypothesized that golexanolone (GR3027), a well-tolerated GABAA receptor-modulating steroid antagonist (GAMSA), may improve Parkinson's symptoms in a rat model of PD. Objectives The aims of this study were to assess whether golexanolone can ameliorate motor and non-motor symptoms in a rat model of PD and to identify some underlying mechanisms. Methods We used the unilateral 6-OHDA rat model of PD. The golexanolone treatment started 4 weeks after surgery. Motor symptoms were assessed using Motorater and CatWalk tests. We also analyzed fatigue (using a treadmill test), anhedonia (via the sucrose preference test), anxiety (with an open field test), and short-term memory (using a Y maze). Glial activation and key proteins involved in PD pathogenesis were analyzed using immunohistochemistry and Western blot. Results Rats with PD showed motor incoordination and impaired locomotor gait, increased fatigue, anxiety, depression, and impaired short-term memory. Golexanolone treatment led to improvements in motor incoordination, certain aspects of locomotor gait, fatigue, anxiety, depression, and short-term memory. Notably, golexanolone reduced the activation of microglia and astrocytes, mitigated TH loss at 5 weeks after surgery, and prevented the increase of α-synuclein levels at 10 weeks. Conclusions Golexanolone may be useful in improving both motor and non-motor symptoms that adversely affect the quality of life in PD patients, such as anxiety, depression, fatigue, motor coordination, locomotor gait, and certain cognitive alterations.
Collapse
Affiliation(s)
| | - Yaiza M. Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Mar Martínez-García
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Lola Vázquez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, United States
- Parkinson's Foundation Center of Excellence, University of Michigan, Ann Arbor, MI, United States
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
4
|
Jaarsma D, Birkisdóttir MB, van Vossen R, Oomen DWGD, Akhiyat O, Vermeij WP, Koekkoek SKE, De Zeeuw CI, Bosman LWJ. Different Purkinje cell pathologies cause specific patterns of progressive gait ataxia in mice. Neurobiol Dis 2024; 192:106422. [PMID: 38286390 DOI: 10.1016/j.nbd.2024.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Gait ataxia is one of the most common and impactful consequences of cerebellar dysfunction. Purkinje cells, the sole output neurons of the cerebellar cortex, are often involved in the underlying pathology, but their specific functions during locomotor control in health and disease remain obfuscated. We aimed to describe the effect of gradual adult-onset Purkinje cell degeneration on gaiting patterns in mice, and to determine whether two different mechanisms that both lead to Purkinje cell degeneration cause different patterns in the development of gait ataxia. Using the ErasmusLadder together with a newly developed limb detection algorithm and machine learning-based classification, we subjected mice to a challenging locomotor task with detailed analysis of single limb parameters, intralimb coordination and whole-body movement. We tested two Purkinje cell-specific mouse models, one involving stochastic cell death due to impaired DNA repair mechanisms (Pcp2-Ercc1-/-), the other carrying the mutation that causes spinocerebellar ataxia type 1 (Pcp2-ATXN1[82Q]). Both mouse models showed progressive gaiting deficits, but the sequence with which gaiting parameters deteriorated was different between mouse lines. Our longitudinal approach revealed that gradual loss of Purkinje cell function can lead to a complex pattern of loss of function over time, and that this pattern depends on the specifics of the pathological mechanisms involved. We hypothesize that this variability will also be present in disease progression in patients, and that our findings will facilitate the study of therapeutic interventions in mice, as subtle changes in locomotor abilities can be quantified by our methods.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| | - Maria B Birkisdóttir
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Randy van Vossen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Demi W G D Oomen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Oussama Akhiyat
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Wilbert P Vermeij
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands; Oncode Institute, 3521 AL, Utrecht, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA, Amsterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Yang Y, Chen X, Yang C, Liu M, Huang Q, Yang L, Wang Y, Feng H, Gao Z, Chen T. Chemogenetic stimulation of intact corticospinal tract during rehabilitative training promotes circuit rewiring and functional recovery after stroke. Exp Neurol 2024; 371:114603. [PMID: 37923187 DOI: 10.1016/j.expneurol.2023.114603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Neuromodulatory techniques have been proven to enhance functional recovery after stroke in patients and animals, such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). However, the success and feasibility of these approaches were often variable, largely due to a lack of target specificity. OBJECTIVE We explored the effects of specific chemogenetic stimulation of intact corticospinal tract during rehabilitative training on functional recovery after stroke in mice. METHODS We developed a viral-based intersectional targeting approach that allows specific chemogentic activation of contralateral hindlimb corticospinal neurons (CSNs) in a photothrombotic stroke model. RESULTS We demonstrated that specific chemogenetic activation of CSNs, when combined with daily rehabilitation training, leads to significant skilled motor functional recovery via promoting corticospinal tract (CST) axons midline crossing sprouting from intact to the denervated spinal hemicord, and rewiring new functional circuits by new synapse formation. Mechanistically, we revealed that combined chemogenetic stimulation of CSNs and daily rehabilitation training significantly enhanced the mTOR activity of CSNs. CONCLUSIONS Our findings highlight the great potential of specific neural activation protocols in combination with motor training for the recovery of skilled motor functions after stroke.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Neurosurgery, The 904(th) Hospital of PLA, Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Xuezhu Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chuanyan Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Mei Liu
- Department of Neurosurgery, The 904(th) Hospital of PLA, Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Qianying Huang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Likun Yang
- Department of Neurosurgery, The 904(th) Hospital of PLA, Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Yuhai Wang
- Department of Neurosurgery, The 904(th) Hospital of PLA, Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Zhongyang Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 31003, China.
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Molina LA, Milla-Cruz JJ, Ghavasieh Z, Kim LH, Cheng N, Whelan PJ. High-throughput gait acquisition system for freely moving mice. J Neurophysiol 2023; 130:1081-1091. [PMID: 37728487 DOI: 10.1152/jn.00133.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
Normal and pathological locomotion can be discriminated by analyzing an animal's gait on a linear walkway. This step is labor intensive and introduces experimental bias due to the handling involved while placing and removing the animal between trials. We designed a system consisting of a runway embedded within a larger arena, which can be traversed ad libitum by unsupervised, freely moving mice, triggering the recording of short clips of locomotor activity. Multiple body parts were tracked using DeepLabCut and fed to an analysis pipeline (GaitGrapher) to extract gait metrics. We compared the results from unsupervised against the standard experimenter-supervised approach and found that gait parameters analyzed via the new approach were similar to a previously validated approach (Visual Gait Lab). These data show the utility of incorporating an unsupervised, automated, approach for collecting kinematic data for gait analysis.NEW & NOTEWORTHY The acquisition and analysis of walkway data is a time-consuming task. Here, we provide an unmonitored approach for collecting gait metrics that reduces the handling and stress of mice and saves time. A detailed pipeline is outlined that provides for the collection and analysis of data using an integrated suite of tools.
Collapse
Affiliation(s)
- Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan J Milla-Cruz
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zahra Ghavasieh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Linda H Kim
- Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Ning Cheng
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Osanai H, Yamamoto J, Kitamura T. Extracting electromyographic signals from multi-channel LFPs using independent component analysis without direct muscular recording. CELL REPORTS METHODS 2023; 3:100482. [PMID: 37426755 PMCID: PMC10326347 DOI: 10.1016/j.crmeth.2023.100482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 07/11/2023]
Abstract
Electromyography (EMG) has been commonly used for the precise identification of animal behavior. However, it is often not recorded together with in vivo electrophysiology due to the need for additional surgeries and setups and the high risk of mechanical wire disconnection. While independent component analysis (ICA) has been used to reduce noise from field potential data, there has been no attempt to proactively use the removed "noise," of which EMG signals are thought to be one of the major sources. Here, we demonstrate that EMG signals can be reconstructed without direct EMG recording using the "noise" ICA component from local field potentials. The extracted component is highly correlated with directly measured EMG, termed IC-EMG. IC-EMG is useful for measuring an animal's sleep/wake, freezing response, and non-rapid eye movement (NREM)/REM sleep states consistently with actual EMG. Our method has advantages in precise and long-term behavioral measurement in wide-ranging in vivo electrophysiology experiments.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Bazanovich SA, Ryabov SI, Zvyagintseva MA, Yadgarov MY, Talypov AE, Grin' AA, Smirnov VA. Evaluation of the Effectiveness of Systemic Therapy of Spinal Cord Injury of Moderate Severity with Human Umbilical Cord Placental Blood Mononuclear Cells Using Indicators of Dispersion of Articular Angles in the Swimming Test. Bull Exp Biol Med 2023; 174:784-789. [PMID: 37160601 DOI: 10.1007/s10517-023-05790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 05/11/2023]
Abstract
Female Sprague-Dawley rats were used as models of moderate contusion spinal cord injury to evaluate the efficiency of single systemic (intravenous) infusion of human mononuclear cord blood cells for restoration of the motor function of hind limbs. The dynamics of recovery of hind limb motor function was assessed using a specially designed method based on calculation of selective dispersion and amplitude-dependent dispersion of hind limbs joint angles measured in the swimming test. The obtained data suggest that systemic application of human mononuclear cord blood cells significantly (p<0.05) promoted recovery of hind limb motor function in the animal models of contusion spinal cord injury of moderate severity in comparison with control animals (without cell therapy).
Collapse
Affiliation(s)
- S A Bazanovich
- Laboratory of Human Stem Cells, E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S I Ryabov
- Laboratory of Human Stem Cells, E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Zvyagintseva
- Laboratory of Human Stem Cells, E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M Ya Yadgarov
- Laboratory of Human Stem Cells, E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A E Talypov
- Scientific Department of Emergency Surgery, N. V. Sklifosovsky Research Institute for Emergency Medicine, Moscow, Russia
| | - A A Grin'
- Scientific Department of Emergency Surgery, N. V. Sklifosovsky Research Institute for Emergency Medicine, Moscow, Russia
| | - V A Smirnov
- Scientific Department of Emergency Surgery, N. V. Sklifosovsky Research Institute for Emergency Medicine, Moscow, Russia.
| |
Collapse
|
9
|
Liu F, Huang Y, Wang H. Rodent Models of Spinal Cord Injury: From Pathology to Application. Neurochem Res 2023; 48:340-361. [PMID: 36303082 DOI: 10.1007/s11064-022-03794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often has devastating consequences for the patient's physical, mental and occupational health. At present, there is no effective treatment for SCI, and appropriate animal models are very important for studying the pathological manifestations, injury mechanisms, and corresponding treatment. However, the pathological changes in each injury model are different, which creates difficulties in selecting appropriate models for different research purposes. In this article, we analyze various SCI models and introduce their pathological features, including inflammation, glial scar formation, axon regeneration, ischemia-reperfusion injury, and oxidative stress, and evaluate the advantages and disadvantages of each model, which is convenient for selecting suitable models for different injury mechanisms to study therapeutic methods.
Collapse
Affiliation(s)
- Fuze Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yue Huang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Hai Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
10
|
Sydney-Smith JD, Koltchev AM, Moon LDF, Warren PM. Delayed viral vector mediated delivery of neurotrophin-3 improves skilled hindlimb function and stability after thoracic contusion. Exp Neurol 2023; 360:114278. [PMID: 36455639 DOI: 10.1016/j.expneurol.2022.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Intramuscular injection of an Adeno-associated viral vector serotype 1 (AAV1) encoding Neurotrophin-3 (NT3) into hindlimb muscles 24 h after a severe T9 spinal level contusion in rats has been shown to induce lumbar spinal neuroplasticity, partially restore locomotive function and reduce spasms during swimming. Here we investigate whether a targeted delivery of NT3 to lumbar and thoracic motor neurons 48 h following a severe contusive injury aids locomotive recovery in rats. AAV1-NT3 was injected bilaterally into the tibialis anterior, gastrocnemius and rectus abdominus muscles 48-h following trauma, persistently elevating serum levels of the neurotrophin. NT3 modestly improved trunk stability, accuracy of stepping during skilled locomotion, and alternation of the hindlimbs during swimming, but it had no effect on gross locomotor function in the open field. The number of vGlut1+ boutons, likely arising from proprioceptive afferents, on gastrocnemius α-motor neurons was increased after injury but normalised following NT3 treatment, suggestive of a mechanism in which functional benefits may be mediated through proprioceptive feedback. Ex vivo MRI revealed substantial loss of grey and white matter at the lesion epicentre but no effect of delayed NT3 treatment to induce neuroprotection. Lower body spasms and hyperreflexia of an intrinsic paw muscle were not reliably induced in this severe injury model suggesting a more complex anatomical or physiological cause to their induction. We have shown that delayed intramuscular AAV-NT3 treatment can promote recovery in skilled stepping and coordinated swimming, supporting a role for NT3 as a therapeutic strategy for spinal injuries potentially through modulation of somatosensory feedback.
Collapse
Affiliation(s)
- Jared D Sydney-Smith
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Alice M Koltchev
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Lawrence D F Moon
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Philippa M Warren
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
11
|
Griffin JM, Hingorani Jai Prakash S, Bockemühl T, Benner JM, Schaffran B, Moreno-Manzano V, Büschges A, Bradke F. Rehabilitation enhances epothilone-induced locomotor recovery after spinal cord injury. Brain Commun 2023; 5:fcad005. [PMID: 36744011 PMCID: PMC9893225 DOI: 10.1093/braincomms/fcad005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Microtubule stabilization through epothilones is a promising preclinical therapy for functional recovery following spinal cord injury that stimulates axon regeneration, reduces growth-inhibitory molecule deposition and promotes functional improvements. Rehabilitation therapy is the only clinically validated approach to promote functional improvements following spinal cord injury. However, whether microtubule stabilization can augment the beneficial effects of rehabilitation therapy or act in concert with it to further promote repair remains unknown. Here, we investigated the pharmacokinetic, histological and functional efficacies of epothilone D, epothilone B and ixabepilone alone or in combination with rehabilitation following a moderate contusive spinal cord injury. Pharmacokinetic analysis revealed that ixabepilone only weakly crossed the blood-brain barrier and was subsequently excluded from further investigations. In contrast, epothilones B and D rapidly distributed to CNS compartments displaying similar profiles after either subcutaneous or intraperitoneal injections. Following injury and subcutaneous administration of epothilone B or D, rats were subjected to 7 weeks of sequential bipedal and quadrupedal training. For all outcome measures, epothilone B was efficacious compared with epothilone D. Specifically, epothilone B decreased fibrotic scaring which was associated with a retention of fibronectin localized to perivascular cells in sections distal to the lesion. This corresponded to a decreased number of cells present within the intralesional space, resulting in less axons within the lesion. Instead, epothilone B increased serotonergic fibre regeneration and vesicular glutamate transporter 1 expression caudal to the lesion, which was not affected by rehabilitation. Multiparametric behavioural analyses consisting of open-field locomotor scoring, horizontal ladder, catwalk gait analysis and hindlimb kinematics revealed that rehabilitation and epothilone B both improved several aspects of locomotion. Specifically, rehabilitation improved open-field locomotor and ladder scores, as well as improving the gait parameters of limb coupling, limb support, stride length and limb speed; epothilone B improved these same gait parameters but also hindlimb kinematic profiles. Functional improvements by epothilone B and rehabilitation acted complementarily on gait parameters leading to an enhanced recovery in the combination group. As a result, principal component analysis of gait showed the greatest improvement in the epothilone B plus rehabilitation group. Thus, these results support the combination of epothilone B with rehabilitation in a clinical setting.
Collapse
Affiliation(s)
- Jarred M Griffin
- Correspondence may also be addressed to: Jarred Griffin The German Center for Neurodegenerative Diseases (DZNE) Venusberg-Campus 1/99, Bonn 53127, Germany E-mail:
| | - Sonia Hingorani Jai Prakash
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Till Bockemühl
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Jessica M Benner
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Barbara Schaffran
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Frank Bradke
- Correspondence to: Frank Bradke The German Center for Neurodegenerative Diseases (DZNE) Venusberg-Campus 1/99, Bonn 53127, Germany E-mail:
| |
Collapse
|
12
|
Scarrott JM, Alves-Cruzeiro J, Marchi PM, Webster CP, Yang ZL, Karyka E, Marroccella R, Coldicott I, Thomas H, Azzouz M. Ap4b1-knockout mouse model of hereditary spastic paraplegia type 47 displays motor dysfunction, aberrant brain morphology and ATG9A mislocalization. Brain Commun 2023; 5:fcac335. [PMID: 36632189 PMCID: PMC9825813 DOI: 10.1093/braincomms/fcac335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Mutations in any one of the four subunits (ɛ4, β4, μ4 and σ4) comprising the adaptor protein Complex 4 results in a complex form of hereditary spastic paraplegia, often termed adaptor protein Complex 4 deficiency syndrome. Deficits in adaptor protein Complex 4 complex function have been shown to disrupt intracellular trafficking, resulting in a broad phenotypic spectrum encompassing severe intellectual disability and progressive spastic paraplegia of the lower limbs in patients. Here we report the presence of neuropathological hallmarks of adaptor protein Complex 4 deficiency syndrome in a clustered regularly interspaced short palindromic repeats-mediated Ap4b1-knockout mouse model. Mice lacking the β4 subunit, and therefore lacking functional adaptor protein Complex 4, have a thin corpus callosum, enlarged lateral ventricles, motor co-ordination deficits, hyperactivity, a hindlimb clasping phenotype associated with neurodegeneration, and an abnormal gait. Analysis of autophagy-related protein 9A (a known cargo of the adaptor protein Complex 4 in these mice shows both upregulation of autophagy-related protein 9A protein levels across multiple tissues, as well as a striking mislocalization of autophagy-related protein 9A from a generalized cytoplasmic distribution to a marked accumulation in the trans-Golgi network within cells. This mislocalization is present in mature animals but is also in E15.5 embryonic cortical neurons. Histological examination of brain regions also shows an accumulation of calbindin-positive spheroid aggregates in the deep cerebellar nuclei of adaptor protein Complex 4-deficient mice, at the site of Purkinje cell axonal projections. Taken together, these findings show a definitive link between loss-of-function mutations in murine Ap4b1 and the development of symptoms consistent with adaptor protein Complex 4 deficiency disease in humans. Furthermore, this study provides strong evidence for the use of this model for further research into the aetiology of adaptor protein Complex 4 deficiency in humans, as well as its use for the development and testing of new therapeutic modalities.
Collapse
Affiliation(s)
- Joseph M Scarrott
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - João Alves-Cruzeiro
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- URI Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Paolo M Marchi
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- URI Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- URI Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Zih-Liang Yang
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- URI Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Evangelia Karyka
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- URI Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Raffaele Marroccella
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- URI Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Hannah Thomas
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- URI Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- URI Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
13
|
Mincheva G, Gimenez‐Garzo C, Izquierdo‐Altarejos P, Martinez‐Garcia M, Doverskog M, Blackburn TP, Hällgren A, Bäckström T, Llansola M, Felipo V. Golexanolone, a GABA A receptor modulating steroid antagonist, restores motor coordination and cognitive function in hyperammonemic rats by dual effects on peripheral inflammation and neuroinflammation. CNS Neurosci Ther 2022; 28:1861-1874. [PMID: 35880480 PMCID: PMC9532914 DOI: 10.1111/cns.13926] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022] Open
Abstract
AIMS Hyperammonemic rats show peripheral inflammation, increased GABAergic neurotransmission and neuroinflammation in cerebellum and hippocampus which induce motor incoordination and cognitive impairment. Neuroinflammation enhances GABAergic neurotransmission in cerebellum by enhancing the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways. Golexanolone reduces GABAA receptors potentiation by allopregnanolone. This work aimed to assess if treatment of hyperammonemic rats with golexanolone reduces peripheral inflammation and neuroinflammation and restores cognitive and motor function and to analyze underlying mechanisms. METHODS Rats were treated with golexanolone and effects on peripheral inflammation, neuroinflammation, TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways, and cognitive and motor function were analyzed. RESULTS Hyperammonemic rats show increased TNFα and reduced IL-10 in plasma, microglia and astrocytes activation in cerebellum and hippocampus, and impaired motor coordination and spatial and short-term memories. Treating hyperammonemic rats with golexanolone reversed changes in peripheral inflammation, microglia and astrocytes activation and restored motor coordination and spatial and short-term memory. This was associated with reversal of the hyperammonemia-enhanced activation in cerebellum of the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways. CONCLUSION Reducing GABAA receptors activation with golexanolone reduces peripheral inflammation and neuroinflammation and improves cognitive and motor function in hyperammonemic rats. The effects identified would also occur in patients with hepatic encephalopathy and, likely, in other pathologies associated with neuroinflammation.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | - Carla Gimenez‐Garzo
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | | | - Mar Martinez‐Garcia
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | | | | | | | - Torbjörn Bäckström
- Umecrine Cognition ABSolnaSweden
- Umeå Neurosteroid Research CenterClinical Sciences at Umeå UniversityUmeåSweden
| | - Marta Llansola
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | - Vicente Felipo
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| |
Collapse
|
14
|
Hofer AS, Scheuber MI, Sartori AM, Good N, Stalder SA, Hammer N, Fricke K, Schalbetter SM, Engmann AK, Weber RZ, Rust R, Schneider MP, Russi N, Favre G, Schwab ME. Stimulation of the cuneiform nucleus enables training and boosts recovery after spinal cord injury. Brain 2022; 145:3681-3697. [PMID: 35583160 PMCID: PMC9586551 DOI: 10.1093/brain/awac184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Severe spinal cord injuries result in permanent paraparesis in spite of the frequent sparing of small portions of white matter. Spared fibre tracts are often incapable of maintaining and modulating the activity of lower spinal motor centres. Effects of rehabilitative training thus remain limited. Here, we activated spared descending brainstem fibres by electrical deep brain stimulation of the cuneiform nucleus of the mesencephalic locomotor region, the main control centre for locomotion in the brainstem, in adult female Lewis rats. We show that deep brain stimulation of the cuneiform nucleus enhances the weak remaining motor drive in highly paraparetic rats with severe, incomplete spinal cord injuries and enables high-intensity locomotor training. Stimulation of the cuneiform nucleus during rehabilitative aquatraining after subchronic (n = 8 stimulated versus n = 7 unstimulated versus n = 7 untrained rats) and chronic (n = 14 stimulated versus n = 9 unstimulated versus n = 9 untrained rats) spinal cord injury re-established substantial locomotion and improved long-term recovery of motor function. We additionally identified a safety window of stimulation parameters ensuring context-specific locomotor control in intact rats (n = 18) and illustrate the importance of timing of treatment initiation after spinal cord injury (n = 14). This study highlights stimulation of the cuneiform nucleus as a highly promising therapeutic strategy to enhance motor recovery after subchronic and chronic incomplete spinal cord injury with direct clinical applicability.
Collapse
Affiliation(s)
- Anna-Sophie Hofer
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Myriam I Scheuber
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Andrea M Sartori
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nicolas Good
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Stephanie A Stalder
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nicole Hammer
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Kai Fricke
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sina M Schalbetter
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Anne K Engmann
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Rebecca Z Weber
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Ruslan Rust
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Marc P Schneider
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Natalie Russi
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Giacomin Favre
- Department of Economics, University of Zurich, 8032 Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
15
|
Weber RZ, Mulders G, Kaiser J, Tackenberg C, Rust R. Deep learning-based behavioral profiling of rodent stroke recovery. BMC Biol 2022; 20:232. [PMID: 36243716 PMCID: PMC9571460 DOI: 10.1186/s12915-022-01434-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Stroke research heavily relies on rodent behavior when assessing underlying disease mechanisms and treatment efficacy. Although functional motor recovery is considered the primary targeted outcome, tests in rodents are still poorly reproducible and often unsuitable for unraveling the complex behavior after injury. RESULTS Here, we provide a comprehensive 3D gait analysis of mice after focal cerebral ischemia based on the new deep learning-based software (DeepLabCut, DLC) that only requires basic behavioral equipment. We demonstrate a high precision 3D tracking of 10 body parts (including all relevant joints and reference landmarks) in several mouse strains. Building on this rigor motion tracking, a comprehensive post-analysis (with >100 parameters) unveils biologically relevant differences in locomotor profiles after a stroke over a time course of 3 weeks. We further refine the widely used ladder rung test using deep learning and compare its performance to human annotators. The generated DLC-assisted tests were then benchmarked to five widely used conventional behavioral set-ups (neurological scoring, rotarod, ladder rung walk, cylinder test, and single-pellet grasping) regarding sensitivity, accuracy, time use, and costs. CONCLUSIONS We conclude that deep learning-based motion tracking with comprehensive post-analysis provides accurate and sensitive data to describe the complex recovery of rodents following a stroke. The experimental set-up and analysis can also benefit a range of other neurological injuries that affect locomotion.
Collapse
Affiliation(s)
- Rebecca Z Weber
- Institute for Regenerative Medicine (IREM), University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Geertje Mulders
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Julia Kaiser
- Burke Neurological Institute, White Plains, NY, USA
| | - Christian Tackenberg
- Institute for Regenerative Medicine (IREM), University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Schlieren, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Ruslan Rust
- Institute for Regenerative Medicine (IREM), University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Schlieren, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Bakalkin G. The left-right side-specific endocrine signaling in the effects of brain lesions: questioning of the neurological dogma. Cell Mol Life Sci 2022; 79:545. [PMID: 36219330 PMCID: PMC9553812 DOI: 10.1007/s00018-022-04576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Each cerebral hemisphere is functionally connected to the contralateral side of the body through the decussating neural tracts. The crossed neural pathways set a basis for contralateral effects of brain injury such hemiparesis and hemiplegia as it has been already noted by Hippocrates. Recent studies demonstrated that, in addition to neural mechanisms, the contralateral effects of brain lesions are mediated through the humoral pathway by neurohormones that produce either the left or right side-specific effects. The side-specific humoral signaling defines whether the left or right limbs are affected after a unilateral brain injury. The hormonal signals are released by the pituitary gland and may operate through their receptors that are lateralized in the spinal cord and involved in the side-specific control of symmetric neurocircuits innervating the left and right limbs. Identification of features and a proportion of neurological deficits transmitted by neurohormonal signals vs. those mediated by neural pathways is essential for better understanding of mechanisms of brain trauma and stroke and development of new therapies. In a biological context, the left-right side-specific neuroendocrine signaling may be fundamental for the control of the left- and right-sided processes in bilaterally symmetric animals.
Collapse
Affiliation(s)
- Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
17
|
Peotter JL, Pustova I, Lettman MM, Shatadal S, Bradberry MM, Winter-Reed AD, Charan M, Sharkey EE, Alvin JR, Bren AM, Oie AK, Chapman ER, Salamat MS, Audhya A. TFG regulates secretory and endosomal sorting pathways in neurons to promote their activity and maintenance. Proc Natl Acad Sci U S A 2022; 119:e2210649119. [PMID: 36161950 PMCID: PMC9546632 DOI: 10.1073/pnas.2210649119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular pathways that intrinsically regulate neuronal maintenance are poorly understood, but rare pathogenic mutations that underlie neurodegenerative disease can offer important insights into the mechanisms that facilitate lifelong neuronal function. Here, we leverage a rat model to demonstrate directly that the TFG p.R106C variant implicated previously in complicated forms of hereditary spastic paraplegia (HSP) underlies progressive spastic paraparesis with accompanying ventriculomegaly and thinning of the corpus callosum, consistent with disease phenotypes identified in adolescent patients. Analyses of primary cortical neurons obtained from CRISPR-Cas9-edited animals reveal a kinetic delay in biosynthetic secretory protein transport from the endoplasmic reticulum (ER), in agreement with prior induced pluripotent stem cell-based studies. Moreover, we identify an unexpected role for TFG in the trafficking of Rab4A-positive recycling endosomes specifically within axons and dendrites. Impaired TFG function compromises the transport of at least a subset of endosomal cargoes, which we show results in down-regulated inhibitory receptor signaling that may contribute to excitation-inhibition imbalances. In contrast, the morphology and trafficking of other organelles, including mitochondria and lysosomes, are unaffected by the TFG p.R106C mutation. Our findings demonstrate a multifaceted role for TFG in secretory and endosomal protein sorting that is unique to cells of the central nervous system and highlight the importance of these pathways to maintenance of corticospinal tract motor neurons.
Collapse
Affiliation(s)
- Jennifer L. Peotter
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Molly M. Lettman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Shalini Shatadal
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Mazdak M. Bradberry
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Allison D. Winter-Reed
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Maya Charan
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Erin E. Sharkey
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - James R. Alvin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Alyssa M. Bren
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Annika K. Oie
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Edwin R. Chapman
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- HHMI, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - M. Shahriar Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
18
|
Osimanjiang W, Allgood JE, Van Sandt RL, Burns DT, Bushman JS. Sexual Dimorphism in Lesion Size and Sensorimotor Responses Following Spinal Cord Injury. Front Neurol 2022; 13:925797. [PMID: 36994113 PMCID: PMC10041393 DOI: 10.3389/fneur.2022.925797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/31/2022] [Indexed: 03/14/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder, which impacts the lives of millions of people worldwide with no clinically standardized treatment. Both pro-recovery and anti-recovery factors contribute to the overall outcome after the initial SCI. Sex is emerging as an important variable, which can affect recovery post-SCI. Contusion SCI at T10 was generated in male and female rats. Open-field Basso, Beattie, Bresnahan (BBB) behavioral test, Von Frey test, and CatWalk gate analysis were performed. Histological analysis was performed at the 45-day post-SCI end point. Male/female differences in sensorimotor function recovery, lesion size, and the recruitment of immune cells to the lesion area were measured. A group of males with less severe injuries was included to compare the outcomes for severity. Our results show that both sexes with the same injury level plateaued at a similar final score for locomotor function. Males in the less severe injury group recovered faster and plateaued at a higher BBB score compared to the more severe injury group. Von Frey tests show faster recovery of sensory function in females compared to both male groups. All three groups exhibited reduced mechanical response thresholds after SCI. The lesion area was significantly larger in the male group with severe injury than in females, as well as in males of less severe injury. No significant differences in immune cell recruitment were identified when comparing the three groups. The faster sensorimotor recovery and significantly smaller lesion area in females potentially indicate that neuroprotection against the secondary injury is a likely reason for sex-dependent differences in functional outcomes after SCI.
Collapse
Affiliation(s)
- Wupu Osimanjiang
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, United States
| | - JuliAnne E. Allgood
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, United States
| | - Rae L. Van Sandt
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Daniel T. Burns
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, United States
| | - Jared S. Bushman
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, United States
- *Correspondence: Jared S. Bushman
| |
Collapse
|
19
|
Targosinski S, Henzi A, Engmann AK, Rushing EJ, Barth AA, Klein HJ, Kim BS, Giovanoli P, Schwab ME, Plock JA, Schweizer R. A swim test for functional assessment of rodent peripheral nerve regeneration. J Neurosci Methods 2022; 379:109663. [PMID: 35809863 DOI: 10.1016/j.jneumeth.2022.109663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Affiliation(s)
- Stefan Targosinski
- Department of Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Anna Henzi
- Institute of Neuropathology, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Anne K Engmann
- Department of Health Sciences and Technology, ETH Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland
| | | | - André A Barth
- Department of Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Holger J Klein
- Department of Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Riccardo Schweizer
- Department of Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland.
| |
Collapse
|
20
|
Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V. The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol 2022; 48:e12799. [PMID: 35152448 DOI: 10.1111/nan.12799] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/21/2021] [Accepted: 02/05/2022] [Indexed: 11/18/2024]
Abstract
AIMS Chronic hyperammonaemia and inflammation synergistically induce neurological impairment, including motor incoordination, in hepatic encephalopathy. Hyperammonaemic rats show neuroinflammation in the cerebellum which enhances GABAergic neurotransmission leading to motor incoordination. We aimed to identify underlying mechanisms. The aims were (1) to assess if S1PR2 is involved in microglial and astrocytic activation in the cerebellum of hyperammonaemic rats; (2) to identify pathways by which enhanced S1PR2 activation induces neuroinflammation and alters neurotransmission; (3) to assess if blocking S1PR2 reduces neuroinflammation and restores motor coordination in hyperammonaemic rats. METHODS We performed ex vivo studies in cerebellar slices from control or hyperammonaemic rats to identify pathways by which neuroinflammation enhances GABAergic neurotransmission in hyperammonaemia. Neuroinflammation and neurotransmission were assessed by immunochemistry/immunofluorescence and western blot. S1PR2 was blocked by intracerebral treatment with JTE-013 using osmotic mini-pumps. Motor coordination was assessed by beam walking. RESULTS Chronic hyperammonaemia enhances S1PR2 activation in the cerebellum by increasing its membrane expression. This increases CCL2, especially in Purkinje neurons. CCL2 activates CCR2 in microglia, leading to microglial activation, increased P2X4 membrane expression and BDNF in microglia. BDNF enhances TrkB activation in neurons, increasing KCC2 membrane expression. This enhances GABAergic neurotransmission, leading to motor incoordination in hyperammonaemic rats. Blocking S1PR2 in hyperammonaemic rats by intracerebral administration of JTE-013 normalises the S1PR2-CCL2-CCR2-BDNF-TrkB-KCC2 pathway, reduces glial activation and restores motor coordination in hyperammonaemic rats. CONCLUSIONS Enhanced S1PR2-CCL2-BDNF-TrkB pathway activation mediates neuroinflammation and incoordination in hyperammonaemia. The data raise a promising therapy for patients with hepatic encephalopathy using compounds targeting this pathway.
Collapse
Affiliation(s)
- Yaiza M Arenas
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Gergana Ivaylova
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
21
|
Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022; 10:35. [PMID: 35396505 PMCID: PMC8993811 DOI: 10.1038/s41413-022-00199-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.
Collapse
|
22
|
Detecting fine and elaborate movements with piezo sensors provides non-invasive access to overlooked behavioral components. Neuropsychopharmacology 2022; 47:933-943. [PMID: 34764433 PMCID: PMC8882191 DOI: 10.1038/s41386-021-01217-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023]
Abstract
Behavioral phenotyping devices have been successfully used to build ethograms, but many aspects of behavior remain out of reach of available phenotyping systems. We now report on a novel device, which consists in an open-field platform resting on highly sensitive piezoelectric (electromechanical) pressure-sensors, with which we could detect the slightest movements (up to individual heart beats during rest) from freely moving rats and mice. The combination with video recordings and signal analysis based on time-frequency decomposition, clustering, and machine learning algorithms provided non-invasive access to previously overlooked behavioral components. The detection of shaking/shivering provided an original readout of fear, distinct from but complementary to behavioral freezing. Analyzing the dynamics of momentum in locomotion and grooming allowed to identify the signature of gait and neurodevelopmental pathological phenotypes. We believe that this device represents a significant progress and offers new opportunities for the awaited advance of behavioral phenotyping.
Collapse
|
23
|
Bazanovich SA, Yadgarov MY, Zvyagintseva MA, Ryabov SI, Grin' AA, Smirnov VA. A Method of Assessment of the Motor Function of Hind Limbs by Swim Test in Spinal Cord Injury Models. Bull Exp Biol Med 2022; 172:499-503. [PMID: 35175478 DOI: 10.1007/s10517-022-05422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 10/19/2022]
Abstract
In most studies, various load tests are used to assess the recovery of functions after spinal cord injury in animals. However, the existing methods of assessing the movement in animals are not sufficiently accurate and objective. We developed a new method for assessing motor activity of laboratory animals that allows objective and highly accurate evaluation of movements in animals with serious neurological disorders caused by spinal cord injury. The swimming test was used as the main load test. Motor activity of swimming animals was assessed by measuring angles relative to the axis of motion, and the degree of angle spread for each joint and limb was estimated using the dispersion parameters depending on the values of the angles of the joints and the dispersion depending on the amplitudes of the angles. In Sprague-Dawley rats, contusion of the spinal cord at the Th9 level was modeled. In the swimming test, healthy control animals showed stability of both variance indicators over 6 weeks. In rats with spinal cord injury, motor activity of the hind limbs tended to increase from the first to the third weeks and remained at this level from the third to sixth weeks. The results suggest that the proposed method can become a good analogue of modern methods for assessing motor activity.
Collapse
Affiliation(s)
- S A Bazanovich
- Laboratory of Stem Cells, National Medical Research Center of Cardiology, Ministry of the Health of the Russian Federation, Moscow, Russia
| | - M Ya Yadgarov
- Laboratory of Stem Cells, National Medical Research Center of Cardiology, Ministry of the Health of the Russian Federation, Moscow, Russia
| | - M A Zvyagintseva
- Laboratory of Stem Cells, National Medical Research Center of Cardiology, Ministry of the Health of the Russian Federation, Moscow, Russia
| | - S I Ryabov
- Laboratory of Stem Cells, National Medical Research Center of Cardiology, Ministry of the Health of the Russian Federation, Moscow, Russia
| | - A A Grin'
- Department of Neurosurgery, N. V. Sklifosovsky Research Institute of Emergency Care, Moscow Healthcare Department, Russian Federation, Moscow, Russia
| | - V A Smirnov
- Laboratory of Stem Cells, National Medical Research Center of Cardiology, Ministry of the Health of the Russian Federation, Moscow, Russia. .,Department of Neurosurgery, N. V. Sklifosovsky Research Institute of Emergency Care, Moscow Healthcare Department, Russian Federation, Moscow, Russia.
| |
Collapse
|
24
|
Masini D, Kiehn O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat Commun 2022; 13:504. [PMID: 35082287 PMCID: PMC8791953 DOI: 10.1038/s41467-022-28075-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD. Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora Masini
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Lukoyanov N, Watanabe H, Carvalho LS, Kononenko O, Sarkisyan D, Zhang M, Andersen MS, Lukoyanova EA, Galatenko V, Tonevitsky A, Bazov I, Iakovleva T, Schouenborg J, Bakalkin G. Left-right side-specific endocrine signaling complements neural pathways to mediate acute asymmetric effects of brain injury. eLife 2021; 10:e65247. [PMID: 34372969 PMCID: PMC8354641 DOI: 10.7554/elife.65247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Brain injuries can interrupt descending neural pathways that convey motor commands from the cortex to spinal motoneurons. Here, we demonstrate that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion and asymmetric hindlimb withdrawal reflexes within 3 hr, as well as asymmetry in gene expression patterns in the lumbar spinal cord. The injury-induced postural effects were abolished by hypophysectomy and were mimicked by transfusion of serum from animals with brain injury. Administration of the pituitary neurohormones β-endorphin or Arg-vasopressin-induced side-specific hindlimb responses in naive animals, while antagonists of the opioid and vasopressin receptors blocked hindlimb postural asymmetry in rats with brain injury. Thus, in addition to the well-established involvement of motor pathways descending from the brain to spinal circuits, the side-specific humoral signaling may also add to postural and reflex asymmetries seen after brain injury.
Collapse
Affiliation(s)
- Nikolay Lukoyanov
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e CelularPortoPortugal
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Liliana S Carvalho
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e CelularPortoPortugal
| | - Olga Kononenko
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Daniil Sarkisyan
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Mengliang Zhang
- Neuronano Research Center, Department of Experimental Medical Science, Lund UniversityLundSweden
- Department of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | | | - Elena A Lukoyanova
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e CelularPortoPortugal
| | - Vladimir Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Alex Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of EconomicsMoscowRussian Federation
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Tatiana Iakovleva
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Science, Lund UniversityLundSweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| |
Collapse
|
26
|
Seto T, Suzuki H, Okazaki T, Imajo Y, Nishida N, Funaba M, Kanchiku T, Taguchi T, Sakai T. Three-dimensional analysis of the characteristics of joint motion and gait pattern in a rodent model following spinal nerve ligation. Biomed Eng Online 2021; 20:55. [PMID: 34090446 PMCID: PMC8180104 DOI: 10.1186/s12938-021-00892-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spinal nerve ligation (SNL) rat is well known as the most common rodent model of neuropathic pain without motor deficit. Researchers have performed analyses using only the von Frey and thermal withdrawal tests to evaluate pain intensity in the rat experimental model. However, these test are completely different from the neurological examinations performed clinically. We think that several behavioral reactions must be observed following SNL because the patients with neuropathic pain usually have impaired coordination of the motions of the right-left limbs and right-left joint motion differences. In this study, we attempted to clarify the pain behavioral reactions in SNL rat model as in patients. We used the Kinema-Tracer system for 3D kinematics gait analysis to identify new characteristic parameters of each joint movement and gait pattern. RESULTS The effect of SNL on mechanical allodynia was a 47 ± 6.1% decrease in the withdrawal threshold during 1-8 weeks post-operation. Sagittal trajectories of the hip, knee and ankle markers in SNL rats showed a large sagittal fluctuation of each joint while walking. Top minus bottom height of the left hip and knee that represents instability during walking was significantly larger in the SNL than sham rats. Both-foot contact time, which is one of the gait characteristics, was significantly longer in the SNL versus sham rats: 1.9 ± 0.15 s vs. 1.03 ± 0.15 s at 4 weeks post-operation (p = 0.003). We also examined the circular phase time to evaluate coordination of the right and left hind-limbs. The ratio of the right/left circular time was 1.0 ± 0.08 in the sham rats and 0.62 ± 0.15 in the SNL rats at 4 weeks post-operation. CONCLUSIONS We revealed new quantitative parameters in an SNL rat model that are directly relevant to the neurological symptoms in patients with neuropathic pain, in whom the von Frey and thermal withdrawal tests are not used at all clinically. This new 3D analysis system can contribute to the analysis of pain intensity of SNL rats in detail similar to human patients' reactions following neuropathic pain.
Collapse
Affiliation(s)
- Takayuki Seto
- Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hidenori Suzuki
- Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Tomoya Okazaki
- Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yasuaki Imajo
- Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Norihiro Nishida
- Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masahiro Funaba
- Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tsukasa Kanchiku
- Department of Spine and Spinal Cord Surgery, Yamaguchi Rosai Hospital, Sanyoonoda, Yamaguchi, Japan
| | - Toshihiko Taguchi
- Department of Orthopaedic Surgery, Yamaguchi Rosai Hospital, Sanyoonoda, Yamaguchi, Japan
| | - Takashi Sakai
- Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
27
|
Brown AR, Martinez M. Chronic inactivation of the contralesional hindlimb motor cortex after thoracic spinal cord hemisection impedes locomotor recovery in the rat. Exp Neurol 2021; 343:113775. [PMID: 34081986 DOI: 10.1016/j.expneurol.2021.113775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
After incomplete spinal cord injury (SCI), cortical plasticity is involved in hindlimb locomotor recovery. Nevertheless, whether cortical activity is required for motor map plasticity and recovery remains unresolved. Here, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical inactivation protocol that uncovered a functional role of contralesional cortical activity in hindlimb recovery and ipsilesional map plasticity. In adult rats, left hindlimb paralysis was induced by sectioning half of the spinal cord at the thoracic level (hemisection) and we used a continuous infusion of muscimol (GABAA agonist, 10 mM, 0.11 µl/h) delivered via implanted osmotic pump (n = 9) to chronically inactivate the contralesional hindlimb motor cortex. Hemisected rats with saline infusion served as a SCI control group (n = 8), and intact rats with muscimol infusion served as an inactivation control group (n = 6). Locomotion was assessed in an open field, on a horizontal ladder, and on a treadmill prior to and for three weeks after hemisection. Cortical inactivation after hemisection significantly impeded hindlimb locomotor recovery in all tasks and specifically disrupted the ability of rats to generate proper flexion of the affected hindlimb during stepping compared to SCI controls, with no significant effect of inactivation in intact rats. Chronic and acute (n = 4) cortical inactivation after hemisection also significantly reduced the representation of the affected hindlimb in the ipsilesional motor cortex derived with intracortical microsimulation (ICMS). Our results provide evidence that residual activity in the contralesional hindlimb motor cortex after thoracic hemisection contributes to spontaneous locomotor recovery and map plasticity.
Collapse
Affiliation(s)
- Andrew R Brown
- Département de Neurosciences Groupe de recherche sur le système nerveux central (GRSNC) and Centre Interdisciplinaire de Recherche sur le Cerveau au service de l'Apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada
| | - Marina Martinez
- Département de Neurosciences Groupe de recherche sur le système nerveux central (GRSNC) and Centre Interdisciplinaire de Recherche sur le Cerveau au service de l'Apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada.
| |
Collapse
|
28
|
Chemogenetic stimulation of proprioceptors remodels lumbar interneuron excitability and promotes motor recovery after SCI. Mol Ther 2021; 29:2483-2498. [PMID: 33895324 DOI: 10.1016/j.ymthe.2021.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/05/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Motor recovery after severe spinal cord injury (SCI) is limited due to the disruption of direct descending commands. Despite the absence of brain-derived descending inputs, sensory afferents below injury sites remain intact. Among them, proprioception acts as an important sensory source to modulate local spinal circuits and determine motor outputs. Yet, it remains unclear whether enhancing proprioceptive inputs promotes motor recovery after severe SCI. Here, we first established a viral system to selectively target lumbar proprioceptive neurons and then introduced the excitatory Gq-coupled Designer Receptors Exclusively Activated by Designer Drugs (DREADD) virus into proprioceptors to achieve specific activation of lumbar proprioceptive neurons upon CNO administration. We demonstrated that chronic activation of lumbar proprioceptive neurons promoted the recovery of hindlimb stepping ability in a bilateral hemisection SCI mouse model. We further revealed that chemogenetic proprioceptive stimulation led to coordinated activation of proprioception-receptive spinal interneurons and facilitated transmission of supraspinal commands to lumbar motor neurons, without affecting the regrowth of proprioceptive afferents or brain-derived descending axons. Moreover, application of 4-aminopyridine-3-methanol (4-AP-MeOH) that enhances nerve conductance further improved the transmission of supraspinal inputs and motor recovery in proprioception-stimulated mice. Our study demonstrates that proprioception-based combinatorial modality may be a promising strategy to restore the motor function after severe SCI.
Collapse
|
29
|
Sanches EF, Carvalho AS, van de Looij Y, Toulotte A, Wyse AT, Netto CA, Sizonenko SV. Experimental cerebral palsy causes microstructural brain damage in areas associated to motor deficits but no spatial memory impairments in the developing rat. Brain Res 2021; 1761:147389. [PMID: 33639200 DOI: 10.1016/j.brainres.2021.147389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Cerebral palsy (CP) is the major cause of motor and cognitive impairments during childhood. CP can result from direct or indirect structural injury to the developing brain. In this study, we aimed to describe brain damage and behavioural alterations during early adult life in a CP model using the combination of maternal inflammation, perinatal anoxia and postnatal sensorimotor restriction. METHODS Pregnant Wistar rats were injected intraperitoneally with 200 µg/kg LPS at embryonic days E18 and E19. Between 3 and 6 h after birth (postnatal day 0 - PND0), pups of both sexes were exposed to anoxia for 20 min. From postnatal day 2 to 21, hindlimbs of animals were immobilized for 16 h daily during their active phase. From PND40, locomotor and cognitive tests were performed using Rota-Rod, Ladder Walking and Morris water Maze. Ex-vivo MRI Diffusion Tensor Imaging (DTI) and Neurite Orientation Dispersion and Density Imaging (NODDI) were used to assess macro and microstructural damage and brain volume alterations induced by the model. Myelination and expression of neuronal, astroglial and microglial markers, as well as apoptotic cell death were evaluated by immunofluorescence. RESULTS CP animals showed decreased body weight, deficits in gross (rota-rod) and fine (ladder walking) motor tasks compared to Controls. No cognitive impairments were observed. Ex-vivo MRI showed decreased brain volumes and impaired microstructure in the cingulate gyrus and sensory cortex in CP brains. Histological analysis showed increased cell death, astrocytic reactivity and decreased thickness of the corpus callosum and altered myelination in CP animals. Hindlimb primary motor cortex analysis showed increased apoptosis in CP animals. Despite the increase in NeuN and GFAP, no differences between groups were observed as well as no co-localization with the apoptotic marker. However, an increase in Iba-1+ microglia with co-localization to cleaved caspase 3 was observed. CONCLUSION Our results suggest that experimental CP induces long-term brain microstructural alterations in myelinated structures, cell death in the hindlimb primary motor cortex and locomotor impairments. Such new evidence of brain damage could help to better understand CP pathophysiological mechanisms and guide further research for neuroprotective and neurorehabilitative strategies for CP patients.
Collapse
Affiliation(s)
- E F Sanches
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - A S Carvalho
- Post-graduation Program of Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil
| | - Y van de Looij
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging - Animal Imaging and Technology (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - A Toulotte
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - A T Wyse
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C A Netto
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
30
|
Brommer B, He M, Zhang Z, Yang Z, Page JC, Su J, Zhang Y, Zhu J, Gouy E, Tang J, Williams P, Dai W, Wang Q, Solinsky R, Chen B, He Z. Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury. Nat Commun 2021; 12:781. [PMID: 33536416 PMCID: PMC7859413 DOI: 10.1038/s41467-021-20980-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
After complete spinal cord injuries (SCI), spinal segments below the lesion maintain inter-segmental communication via the intraspinal propriospinal network. However, it is unknown whether selective manipulation of these circuits can restore locomotor function in the absence of brain-derived inputs. By taking advantage of the compromised blood-spinal cord barrier following SCI, we optimized a set of procedures in which AAV9 vectors administered via the tail vein efficiently transduce neurons in lesion-adjacent spinal segments after a thoracic crush injury in adult mice. With this method, we used chemogenetic actuators to alter the excitability of propriospinal neurons in the thoracic cord of the adult mice with a complete thoracic crush injury. We showed that activating these thoracic neurons enables consistent and significant hindlimb stepping improvement, whereas direct manipulations of the neurons in the lumbar spinal cord led to muscle spasms without meaningful locomotion. Strikingly, manipulating either excitatory or inhibitory propriospinal neurons in the thoracic levels leads to distinct behavioural outcomes, with preferential effects on standing or stepping, two key elements of the locomotor function. These results demonstrate a strategy of engaging thoracic propriospinal neurons to improve hindlimb function and provide insights into optimizing neuromodulation-based strategies for treating SCI.
Collapse
Affiliation(s)
- Benedikt Brommer
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miao He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Zicong Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhiyun Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jessica C Page
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yu Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Junjie Zhu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Emilia Gouy
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jing Tang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Philip Williams
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Dai
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Qi Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ryan Solinsky
- Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Bo Chen
- Department of Neuroscience, Cell Biology, & Anatomy, University of Texas Medical Branch, Galveston, TX, USA.
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Heikkinen T, Bragge T, Bhattarai N, Parkkari T, Puoliväli J, Kontkanen O, Sweeney P, Park LC, Munoz-Sanjuan I. Rapid and robust patterns of spontaneous locomotor deficits in mouse models of Huntington's disease. PLoS One 2020; 15:e0243052. [PMID: 33370315 PMCID: PMC7769440 DOI: 10.1371/journal.pone.0243052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/15/2020] [Indexed: 11/25/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by severe disruption of cognitive and motor functions, including changes in posture and gait. A number of HD mouse models have been engineered that display behavioral and neuropathological features of the disease, but gait alterations in these models are poorly characterized. Sensitive high-throughput tests of fine motor function and gait in mice might be informative in evaluating disease-modifying interventions. Here, we describe a hypothesis-free workflow that determines progressively changing locomotor patterns across 79 parameters in the R6/2 and Q175 mouse models of HD. R6/2 mice (120 CAG repeats) showed motor disturbances as early as at 4 weeks of age. Similar disturbances were observed in homozygous and heterozygous Q175 KI mice at 3 and 6 months of age, respectively. Interestingly, only the R6/2 mice developed forelimb ataxia. The principal components of the behavioral phenotypes produced two phenotypic scores of progressive postural instability based on kinematic parameters and trajectory waveform data, which were shared by both HD models. This approach adds to the available HD mouse model research toolbox and has a potential to facilitate the development of therapeutics for HD and other debilitating movement disorders with high unmet medical need.
Collapse
Affiliation(s)
| | - Timo Bragge
- Charles River Discovery Services, Kuopio, Finland
| | - Niina Bhattarai
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | - Larry C Park
- Naason Science Inc., Chungcheongbuk-do, South Korea.,CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | | |
Collapse
|
32
|
Meyer C, Filli L, Stalder SA, Awai Easthope C, Killeen T, von Tscharner V, Curt A, Zörner B, Bolliger M. Targeted Walking in Incomplete Spinal Cord Injury: Role of Corticospinal Control. J Neurotrauma 2020; 37:2302-2314. [PMID: 32552335 DOI: 10.1089/neu.2020.7030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Locomotor recovery after incomplete spinal cord injury (iSCI) is influenced by spinal and supraspinal networks. Conventional clinical gait analysis fails to differentiate between these components. There is evidence that corticospinal control is enhanced during targeted walking, where each foot must be continuously placed on visual targets in randomized order. This study investigates the potential of targeted walking in the functional assessment of corticospinal integrity. Twenty-one controls and 16 individuals with chronic iSCI performed normal and targeted walking on a treadmill while electromyograms (EMGs) and kinematics were recorded. Precision (% of accurate foot placements) in targeted walking was significantly lower in individuals with iSCI (82.9 ± 14.7%, controls: 94.9 ± 4.0%). Although the overall kinematic pattern was comparable between walking conditions, controls showed significantly higher semitendinosus (ST) activity before heel-strike during targeted walking. This was accompanied by a shift of relative EMG intensity from 90-120 Hz to lower frequencies of 20-60 Hz, previously associated with corticospinal control of muscle activity. Targeted walking in individuals with iSCI evoked smaller EMG changes, suggesting that the switch to more corticospinal control is impaired. Accordingly, mildly impaired iSCI individuals revealed higher adaptations to the targeted walking task than more-impaired individuals. Recording of EMGs during targeted walking holds potential as a research tool to reveal further insights into the neuromuscular control of locomotion. It also complements findings of pre-clinical studies and is a promising novel surrogate marker of integrity of corticospinal control in individuals with iSCI and other neurological impairments. Future studies should investigate its potential for diagnosis or tracking recovery during rehabilitation.
Collapse
Affiliation(s)
- Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Linard Filli
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Stephanie A Stalder
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | | | - Tim Killeen
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | | | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Björn Zörner
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
33
|
Engmann AK, Bizzozzero F, Schneider MP, Pfyffer D, Imobersteg S, Schneider R, Hofer AS, Wieckhorst M, Schwab ME. The Gigantocellular Reticular Nucleus Plays a Significant Role in Locomotor Recovery after Incomplete Spinal Cord Injury. J Neurosci 2020; 40:8292-8305. [PMID: 32978289 PMCID: PMC7577599 DOI: 10.1523/jneurosci.0474-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
Abstract
Traditionally, the brainstem has been seen as hardwired and poorly capable of plastic adaptations following spinal cord injury (SCI). Data acquired over the past decades, however, suggest differently: following SCI in various animal models (lamprey, chick, rodents, nonhuman primates), different forms of spontaneous anatomic plasticity of reticulospinal projections, many of them originating from the gigantocellular reticular nucleus (NRG), have been observed. In line with these anatomic observations, animals and humans with incomplete SCI often show various degrees of spontaneous motor recovery of hindlimb/leg function. Here, we investigated the functional relevance of two different modes of reticulospinal fiber growth after cervical hemisection, local rewiring of axotomized projections at the lesion site versus compensatory outgrowth of spared axons, using projection-specific, adeno-associated virus-mediated chemogenetic neuronal silencing. Detailed assessment of joint movements and limb kinetics during overground locomotion in female adult rats showed that locally rewired as well as compensatory NRG fibers were responsible for different aspects of recovered forelimb and hindlimb functions (i.e., stability, strength, coordination, speed, or timing). During walking and swimming, both locally rewired as well as compensatory NRG plasticity were crucial for recovered function, while the contribution of locally rewired NRG plasticity to wading performance was limited. Our data demonstrate comprehensively that locally rewired as well as compensatory plasticity of reticulospinal axons functionally contribute to the observed spontaneous improvement of stepping performance after incomplete SCI and are at least partially causative to the observed recovery of function, which can also be observed in human patients with spinal hemisection lesions.SIGNIFICANCE STATEMENT Following unilateral hemisection of the spinal cord, reticulospinal projections are destroyed on the injured side, resulting in impaired locomotion. Over time, a high degree of recovery can be observed in lesioned animals, like in human hemicord patients. In the rat, recovery is accompanied by pronounced spontaneous plasticity of axotomized and spared reticulospinal axons. We demonstrate the causative relevance of locally rewired as well as compensatory reticulospinal plasticity for the recovery of locomotor functions following spinal hemisection, using chemogenetic tools to selectively silence newly formed connections in behaviorally recovered animals. Moving from a correlative to a causative understanding of the role of neuroanatomical plasticity for functional recovery is fundamental for successful translation of treatment approaches from experimental studies to the clinics.
Collapse
Affiliation(s)
- Anne K Engmann
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Flavio Bizzozzero
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Marc P Schneider
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Dario Pfyffer
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Stefan Imobersteg
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Regula Schneider
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Anna-Sophie Hofer
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Martin Wieckhorst
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Martin E Schwab
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
34
|
Effect of Systemic Adipose-derived Stem Cell Therapy on Functional Nerve Regeneration in a Rodent Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2953. [PMID: 32802651 PMCID: PMC7413771 DOI: 10.1097/gox.0000000000002953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Regardless of etiology, peripheral nerve injuries (PNI) result in disruption/loss of neuromuscular junctions, target muscle denervation, and poor sensorimotor outcomes with associated pain and disability. Adipose-derived stem cells (ASCs) have shown promise in neuroregeneration. However, there is a paucity of objective assessments reflective of functional neuroregeneration in experimental PNI. Here, we use a multimodal, static, and dynamic approach to evaluate functional outcomes after ASC therapy in a rodent PNI model.
Collapse
|
35
|
Machado AS, Marques HG, Duarte DF, Darmohray DM, Carey MR. Shared and specific signatures of locomotor ataxia in mutant mice. eLife 2020; 9:55356. [PMID: 32718435 PMCID: PMC7386913 DOI: 10.7554/elife.55356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/09/2020] [Indexed: 01/30/2023] Open
Abstract
Several spontaneous mouse mutants with deficits in motor coordination and associated cerebellar neuropathology have been described. Intriguingly, both visible gait alterations and neuroanatomical abnormalities throughout the brain differ across mutants. We previously used the LocoMouse system to quantify specific deficits in locomotor coordination in mildly ataxic Purkinje cell degeneration mice (pcd; Machado et al., 2015). Here, we analyze the locomotor behavior of severely ataxic reeler mutants and compare and contrast it with that of pcd. Despite clearly visible gait differences, direct comparison of locomotor kinematics and linear discriminant analysis reveal a surprisingly similar pattern of impairments in multijoint, interlimb, and whole-body coordination in the two mutants. These findings capture both shared and specific signatures of gait ataxia and provide a quantitative foundation for mapping specific locomotor impairments onto distinct neuropathologies in mice.
Collapse
Affiliation(s)
- Ana S Machado
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Hugo G Marques
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Diogo F Duarte
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Dana M Darmohray
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Megan R Carey
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| |
Collapse
|
36
|
Takeoka A, Arber S. Functional Local Proprioceptive Feedback Circuits Initiate and Maintain Locomotor Recovery after Spinal Cord Injury. Cell Rep 2020; 27:71-85.e3. [PMID: 30943416 DOI: 10.1016/j.celrep.2019.03.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Somatosensory feedback from proprioceptive afferents (PAs) is essential for locomotor recovery after spinal cord injury. To determine where or when proprioception is required for locomotor recovery after injury, we established an intersectional genetic model for PA ablation with spatial and temporal confinement. We found that complete or spatially restricted PA ablation in intact mice differentially affects locomotor performance. Following incomplete spinal cord injury, PA ablation below but not above the lesion severely restricts locomotor recovery and descending circuit reorganization. Furthermore, ablation of PAs after behavioral recovery permanently reverts functional improvements, demonstrating their essential role for maintaining regained locomotor function despite the presence of reorganized descending circuits. In parallel to recovery, PAs undergo reorganization of activity-dependent synaptic connectivity to specific local spinal targets. Our study reveals that PAs interacting with local spinal circuits serve as a continued driving force to initiate and maintain locomotor output after injury.
Collapse
Affiliation(s)
- Aya Takeoka
- Neuro-electronics Research Flanders (NERF), 3001 Leuven, Belgium; Vlaams Institute for Biotechnology (VIB), 3001 Leuven, Belgium; Department of Neuroscience and Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
37
|
Johnson TB, Brudvig JJ, Lehtimäki KK, Cain JT, White KA, Bragge T, Rytkönen J, Huhtala T, Timm D, Vihma M, Puoliväli JT, Poutiainen P, Nurmi A, Weimer JM. A multimodal approach to identify clinically relevant biomarkers to comprehensively monitor disease progression in a mouse model of pediatric neurodegenerative disease. Prog Neurobiol 2020; 189:101789. [PMID: 32198061 DOI: 10.1016/j.pneurobio.2020.101789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/21/2020] [Accepted: 03/13/2020] [Indexed: 12/24/2022]
Abstract
While research has accelerated the development of new treatments for pediatric neurodegenerative disorders, the ability to demonstrate the long-term efficacy of these therapies has been hindered by the lack of convincing, noninvasive methods for tracking disease progression both in animal models and in human clinical trials. Here, we unveil a new translational platform for tracking disease progression in an animal model of a pediatric neurodegenerative disorder, CLN6-Batten disease. Instead of looking at a handful of parameters or a single "needle in a haystack", we embrace the idea that disease progression, in mice and patients alike, is a diverse phenomenon best characterized by a combination of relevant biomarkers. Thus, we employed a multi-modal quantitative approach where 144 parameters were longitudinally monitored to allow for individual variability. We use a range of noninvasive neuroimaging modalities and kinematic gait analysis, all methods that parallel those commonly used in the clinic, followed by a powerful statistical platform to identify key progressive anatomical and metabolic changes that correlate strongly with the progression of pathological and behavioral deficits. This innovative, highly sensitive platform can be used as a powerful tool for preclinical studies on neurodegenerative diseases, and provides proof-of-principle for use as a potentially translatable tool for clinicians in the future.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jon J Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Timo Bragge
- Discovery Research Services, Charles River, Kuopio, Finland
| | - Jussi Rytkönen
- Discovery Research Services, Charles River, Kuopio, Finland
| | - Tuulia Huhtala
- Discovery Research Services, Charles River, Kuopio, Finland
| | - Derek Timm
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Maria Vihma
- Discovery Research Services, Charles River, Kuopio, Finland
| | | | - Pekka Poutiainen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Antti Nurmi
- Discovery Research Services, Charles River, Kuopio, Finland.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
38
|
Zhou P, Guan J, Xu P, Zhao J, Zhang C, Zhang B, Mao Y, Cui W. Cell Therapeutic Strategies for Spinal Cord Injury. Adv Wound Care (New Rochelle) 2019; 8:585-605. [PMID: 31637103 PMCID: PMC6798812 DOI: 10.1089/wound.2019.1046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Significance: Spinal cord injury (SCI) is a neurological disorder that resulted from destroyed long axis of spinal cord, affecting thousands of people every year. With the occurrence of SCI, the lesions can form cystic cavities and produce glial scar, myelin inhibitor, and inflammation that negatively impact repair of spinal cord. Therefore, SCI remains a difficult problem to overcome with present therapeutics. This review of cell therapeutics in SCI provides a systematic review of combinatory therapeutics of SCI and helps the realization of regeneration of spinal cord in the future. Recent Advances: With major breakthroughs in neurobiology in recent years, present therapeutic strategies for SCI mainly aim at nerve regeneration or neuroprotection. For nerve regeneration, the application approaches are tissue engineering and cell transplantation, while drug therapeutics is applied for neuroprotection. Cell therapeutics is a new approach that treats SCI by cell transplantation. Cell therapeutics possesses advantages of neuroprotection, immune regulation, axonal regeneration, neuron relay formation, and remyelination. Critical Issues: Neurons cannot regenerate at the site of injury. Therefore, it is essential to find a repair strategy for remyelination, axon regeneration, and functional recovery. Cell therapeutics is emerging as the most promising approach for treating SCI. Future Directions: The future application of SCI therapy in clinical practice may require a combination of multiple strategies. A comprehensive treatment of injury of spinal cord is the focus of the present research. With the combination of different cell therapy strategies, future experiments will achieve more dramatic success in spinal cord repair.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Jingjing Guan
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Panpan Xu
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Changchun Zhang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- School of Life Science, Bengbu Medical College, Bengbu, P.R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
39
|
Yang D, Yang W, Li L, Zhou K, Hao M, Feng X, Zhang T, Liu Y. Highly Sensitive Microstructure-Based Flexible Pressure Sensor for Quantitative Evaluation of Motor Function Recovery after Spinal Cord Injury. SENSORS 2019; 19:s19214673. [PMID: 31661821 PMCID: PMC6864470 DOI: 10.3390/s19214673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
Behavioral assessment, such as systematic scoring or biomechanical measurement, is often used to evaluate the extent of the damage and the degree of recovery after spinal cord injury. However, the use of these methods in standardized evaluation is limited because they are subjective and require complex test systems to implement. Here, we report a novel, flexible, microstructure-based pressure sensor and demonstrate its superior sensitivity (235.12 kPa−1 for 5.5~135 Pa and 2.24 kPa−1 for 0.6~25 kPa), good waterproofness, fast response and recovery times (response time: 8 ms, recovery time: 12 ms), stable response over 8000 loading/unloading cycles, and wide sensing range. These features readily allow the sensor to be comfortably attached to the hindlimbs of mice for full-range, real-time detection of their behavior, such as crawling and swimming, helping to realize quantitative evaluation of animal motor function recovery after spinal cord injury.
Collapse
Affiliation(s)
- Dan Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
- Department of Anatomy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China.
| | - Wei Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Lianhui Li
- i-Lab., Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Kai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Mingming Hao
- i-Lab., Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xingyu Feng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Ting Zhang
- i-Lab., Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| |
Collapse
|
40
|
Context-dependent limb movement encoding in neuronal populations of motor cortex. Nat Commun 2019; 10:4812. [PMID: 31645554 PMCID: PMC6811620 DOI: 10.1038/s41467-019-12670-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Neuronal networks of the mammalian motor cortex (M1) are important for dexterous control of limb joints. Yet it remains unclear how encoding of joint movement in M1 depends on varying environmental contexts. Using calcium imaging we measured neuronal activity in layer 2/3 of the M1 forelimb region while mice grasped regularly or irregularly spaced ladder rungs during locomotion. We found that population coding of forelimb joint movements is sparse and varies according to the flexibility demanded from individual joints in the regular and irregular context, even for equivalent grasping actions across conditions. This context-dependence of M1 encoding emerged during task learning, fostering higher precision of grasping actions, but broke apart upon silencing of projections from secondary motor cortex (M2). These findings suggest that M1 exploits information from M2 to adapt encoding of joint movements to the flexibility demands of distinct familiar contexts, thereby increasing the accuracy of motor output. Network activity in primary motor cortex (M1) controls dexterous limb movements. Here, the authors show that the M1 population code varies according to contextual motor demands that are conveyed via the secondary motor cortex (M2).
Collapse
|
41
|
Richards TM, Sharma P, Kuang A, Whitty D, Ahmed Z, Shah PK. Novel Speed-Controlled Automated Ladder Walking Device Reveals Walking Speed as a Critical Determinant of Skilled Locomotion after a Spinal Cord Injury in Adult Rats. J Neurotrauma 2019; 36:2698-2721. [DOI: 10.1089/neu.2018.6152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Tiffany M. Richards
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Pawan Sharma
- Department of Physical Therapy, Stony Brook University, Stony Brook, New York
| | - Aaron Kuang
- Department of Physical Therapy, Stony Brook University, Stony Brook, New York
| | - Douglas Whitty
- Department of Physical Therapy, Stony Brook University, Stony Brook, New York
| | - Zaghloul Ahmed
- Department of Physical Therapy, Center for Developmental Neuroscience, The College of Staten Island, Staten Island, New York
- Graduate Center, City University of New York, New York, New York
| | - Prithvi K. Shah
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
- Department of Physical Therapy, Stony Brook University, Stony Brook, New York
| |
Collapse
|
42
|
Yoshizaki S, Kijima K, Hara M, Saito T, Tamaru T, Tanaka M, Konno DJ, Nakashima Y, Okada S. Tranexamic acid reduces heme cytotoxicity via the TLR4/TNF axis and ameliorates functional recovery after spinal cord injury. J Neuroinflammation 2019; 16:160. [PMID: 31358003 PMCID: PMC6661785 DOI: 10.1186/s12974-019-1536-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/05/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a catastrophic trauma accompanied by intralesional bleeding and neuroinflammation. Recently, there is increasing interest in tranexamic acid (TXA), an anti-fibrinolytic drug, which can reduce the bleeding volume after physical trauma. However, the efficacy of TXA on the pathology of SCI remains unknown. METHODS After producing a contusion SCI at the thoracic level of mice, TXA was intraperitoneally administered and the bleeding volume in the lesion area was quantified. Tissue damage was evaluated by immunohistochemical and gene expression analyses. Since heme is one of the degraded products of red blood cells (RBCs) and damage-associated molecular pattern molecules (DAMPs), we examined the influence of heme on the pathology of SCI. Functional recovery was assessed using the open field motor score, a foot print analysis, a grid walk test, and a novel kinematic analysis system. Statistical analyses were performed using Wilcoxon's rank-sum test, Dunnett's test, and an ANOVA with the Tukey-Kramer post-hoc test. RESULTS After SCI, the intralesional bleeding volume was correlated with the heme content and the demyelinated area at the lesion site, which were significantly reduced by the administration of TXA. In the injured spinal cord, toll-like receptor 4 (TLR4), which is a DAMP receptor, was predominantly expressed in microglial cells. Heme stimulation increased TLR4 and tumor necrosis factor (TNF) expression levels in primary microglial cells in a dose-dependent manner. Similarly to the in vitro experiments, the injection of non-lysed RBCs had little pathological influence on the spinal cord, whereas the injection of lysed RBCs or heme solution significantly upregulated the TLR4 and TNF expression in microglial cells. In TXA-treated SCI mice, the decreased expressions of TLR4 and TNF were observed at the lesion sites, accompanied by a significant reduction in the number of apoptotic cells and better functional recovery in comparison to saline-treated control mice. CONCLUSION The administration of TXA ameliorated the intralesional cytotoxicity both by reducing the intralesional bleeding volume and preventing heme induction of the TLR4/TNF axis in the SCI lesion. Our findings suggest that TXA treatment may be a therapeutic option for acute-phase SCI.
Collapse
Affiliation(s)
- Shingo Yoshizaki
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Ken Kijima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masamitsu Hara
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Takeyuki Saito
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Tetsuya Tamaru
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masatake Tanaka
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Dai-jiro Konno
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Seiji Okada
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
43
|
V. S. H, Krishnan LK, Abelson KSP. A novel technique to develop thoracic spinal laminectomy and a methodology to assess the functionality and welfare of the contusion spinal cord injury (SCI) rat model. PLoS One 2019; 14:e0219001. [PMID: 31265469 PMCID: PMC6605676 DOI: 10.1371/journal.pone.0219001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 11/26/2022] Open
Abstract
This study reports the advantage of a novel technique employing a motorised dental burr to assist laminectomy over the conventional manual technique at T10-T11 vertebra level in a rat model of spinal cord injury. Twenty-four female rats were randomly assigned to four groups: (1) conventionally laminectomised, (2) dental burr assisted laminectomised, (3) conventionally laminectomised with spinal cord contusion and (4) dental burr assisted laminectomised with spinal cord contusion. Basso Beattie Bresnahan (BBB) score, postoperative body weights, rat grimace scale (RGS), open cage activity and rearing was studied at 1, 7, 14, 21 and 28 days postoperatively, and area of spinal tissue affected was evaluated histologically. Laminectomised and spinal cord injured rats from dental burr groups showed significantly more weight gain and less weight loss respectively in comparison with respective conventionally laminectomised groups at various time points. Significantly higher RGS score was noticed in conventionally laminectomised animals on Day 1 in comparison to burr assisted laminectomy and presence of pain was evident until Day 7 in the conventionally spinal cord injured group. BBB score did not differ between techniques, whereas laminectomy groups showed more resting time than spinal injury groups. High rearing score was significantly higher in groups which underwent dental burr assisted technique at various time points with respect to their conventional counterparts. This study suggests that the use of dental burr assisted technique to perform laminectomy will bring refinement by producing less pain, aiding in better recovery, removing procedural artefacts without affecting the outcome of the model.
Collapse
Affiliation(s)
- Harikrishnan V. S.
- Division of Laboratory Animal Science, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lissy K. Krishnan
- Division of Thrombosis Research, Department of Applied Biology, Bio Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Klas S. P. Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Svobodova B, Kloudova A, Ruzicka J, Kajtmanova L, Navratil L, Sedlacek R, Suchy T, Jhanwar-Uniyal M, Jendelova P, Machova Urdzikova L. The effect of 808 nm and 905 nm wavelength light on recovery after spinal cord injury. Sci Rep 2019; 9:7660. [PMID: 31113985 PMCID: PMC6529518 DOI: 10.1038/s41598-019-44141-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 05/08/2019] [Indexed: 01/01/2023] Open
Abstract
We investigated the effect of a Multiwave Locked System laser (with a simultaneous 808 nm continuous emission and 905 nm pulse emission) on the spinal cord after spinal cord injury (SCI) in rats. The functional recovery was measured by locomotor tests (BBB, Beam walking, MotoRater) and a sensitivity test (Plantar test). The locomotor tests showed a significant improvement of the locomotor functions of the rats after laser treatment from the first week following lesioning, compared to the controls. The laser treatment significantly diminished thermal hyperalgesia after SCI as measured by the Plantar test. The atrophy of the soleus muscle was reduced in the laser treated rats. The histopathological investigation showed a positive effect of the laser therapy on white and gray matter sparing. Our data suggests an upregulation of M2 macrophages in laser treated animals by the increasing number of double labeled CD68+/CD206+ cells in the cranial and central parts of the lesion, compared to the control animals. A shift in microglial/macrophage polarization was confirmed by gene expression analysis by significant mRNA downregulation of Cd86 (marker of inflammatory M1), and non-significant upregulation of Arg1 (marker of M2). These results demonstrated that the combination of 808 nm and 905 nm wavelength light is a promising non-invasive therapy for improving functional recovery and tissue sparing after SCI.
Collapse
Affiliation(s)
- Barbora Svobodova
- Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic.,2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Kloudova
- Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic
| | - Jiri Ruzicka
- Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic
| | | | - Leos Navratil
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University, Kladno, Czech Republic
| | - Radek Sedlacek
- Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Tomas Suchy
- Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | | | - Pavla Jendelova
- Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic. .,2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic. .,2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
45
|
Sankavaram SR, Hakim R, Covacu R, Frostell A, Neumann S, Svensson M, Brundin L. Adult Neural Progenitor Cells Transplanted into Spinal Cord Injury Differentiate into Oligodendrocytes, Enhance Myelination, and Contribute to Recovery. Stem Cell Reports 2019; 12:950-966. [PMID: 31031190 PMCID: PMC6524946 DOI: 10.1016/j.stemcr.2019.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Long-term survival and integration of neural progenitor cells (NPCs) transplanted following spinal cord injury (SCI) have been observed. However, questions concerning the differentiation choice, the mechanism of action, and the contribution of NPCs to functional recovery remains unanswered. Therefore, we investigated the differentiation of NPCs, global transcriptomal changes in transplanted NPCs, the effect of NPCs on neuroinflammation, and the causality between NPC transplantation and functional recovery. We found that NPCs transplanted following SCI differentiate mainly into oligodendrocytes and enhance myelination, upregulate genes related to synaptic signaling and mitochondrial activity, and downregulate genes related to cytokine production and immune system response. NPCs suppress the expression of pro-inflammatory cytokines/chemokines; moreover, NPC ablation confirm that NPCs were responsible for enhanced recovery in hindlimb locomotor function. Understanding the reaction of transplanted NPCs is important for exploiting their full potential. Existence of causality implies that NPCs are useful in the treatment of SCI. NPCs differentiate mainly into oligodendrocytes and enhance myelination NPCs suppress expression of pro-inflammatory cytokines/chemokines Causality exists between transplantation of NPCs and functional recovery NPCs upregulate genes related to synaptic signaling, oligodendrocytes/myelination
Collapse
Affiliation(s)
- Sreenivasa Raghavan Sankavaram
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Ramil Hakim
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ruxandra Covacu
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Susanne Neumann
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden.
| |
Collapse
|
46
|
Hakim R, Covacu R, Zachariadis V, Frostell A, Sankavaram S, Svensson M, Brundin L. Syngeneic, in contrast to allogeneic, mesenchymal stem cells have superior therapeutic potential following spinal cord injury. J Neuroimmunol 2019; 328:5-19. [PMID: 30551037 DOI: 10.1016/j.jneuroim.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023]
Abstract
We evaluated the importance of histocompatibility of transplanted MSCs in terms of therapeutic potential. Mouse syngeneic MSCs or allogeneic MSCs were transplanted following SCI in mouse. In this study we found that syngeneic, but not allogeneic, MSCs alternatively activated macrophages resulting in a down-regulation of pro-inflammation. Syngeneic MSCs also had a general suppressive effect on the immune response as compared to allogeneic MSCs. Additionally, syngeneic, but not allogeneic, MSCs significantly enhanced the recovery of hind limb function. In this study we show that the histocompatibility of transplanted MSCs is of importance for their therapeutic potential.
Collapse
Affiliation(s)
- Ramil Hakim
- Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Ruxandra Covacu
- Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Vasilios Zachariadis
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Sreenivasa Sankavaram
- Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Mikael Svensson
- Department of Neurology and Neurosurgery, Karolinska University Hospital, BioClinicum, Solnavägen 30, Solna, Stockholm 17176, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Lou Brundin
- Department of Neurology and Neurosurgery, Karolinska University Hospital, BioClinicum, Solnavägen 30, Solna, Stockholm 17176, Sweden; Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| |
Collapse
|
47
|
Filli L, Meyer C, Killeen T, Lörincz L, Göpfert B, Linnebank M, von Tscharner V, Curt A, Bolliger M, Zörner B. Probing Corticospinal Control During Different Locomotor Tasks Using Detailed Time-Frequency Analysis of Electromyograms. Front Neurol 2019; 10:17. [PMID: 30761064 PMCID: PMC6361808 DOI: 10.3389/fneur.2019.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Locomotion relies on the fine-tuned coordination of different muscles which are controlled by particular neural circuits. Depending on the attendant conditions, walking patterns must be modified to optimally meet the demands of the task. Assessing neuromuscular control during dynamic conditions is methodologically highly challenging and prone to artifacts. Here we aim at assessing corticospinal involvement during different locomotor tasks using non-invasive surface electromyography. Activity in tibialis anterior (TA) and gastrocnemius medialis (GM) muscles was monitored by electromyograms (EMGs) in 27 healthy volunteers (11 female) during regular walking, walking while engaged in simultaneous cognitive dual tasks, walking with partial visual restriction, and skilled, targeted locomotion. Whereas EMG intensity of the TA and GM was considerably altered while walking with partial visual restriction and during targeted locomotion, dual-task walking induced only minor changes in total EMG intensity compared to regular walking. Targeted walking resulted in enhanced EMG intensity of GM in the frequency range associated with Piper rhythm synchronies. Likewise, targeted walking induced enhanced EMG intensity of TA at the Piper rhythm frequency around heelstrike, but not during the swing phase. Our findings indicate task- and phase-dependent modulations of neuromuscular control in distal leg muscles during various locomotor conditions in healthy subjects. Enhanced EMG intensity in the Piper rhythm frequency during targeted walking points toward enforced corticospinal drive during challenging locomotor tasks. These findings indicate that comprehensive time-frequency EMG analysis is able to gauge cortical involvement during different movement programs in a non-invasive manner and might be used as complementary diagnostic tool to assess baseline integrity of the corticospinal tract and to monitor changes in corticospinal drive as induced by neurorehabilitation interventions or during disease progression.
Collapse
Affiliation(s)
- Linard Filli
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Tim Killeen
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Lilla Lörincz
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Beat Göpfert
- Department of Biomedical Engineering, Center for Biomechanics and Biocalorimetry, University of Basel, Basel, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Department of Neurology, Helios-Klinik Hagen-Ambrock, Hagen, Germany
| | | | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Björn Zörner
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
48
|
Genetic deletion of vesicular glutamate transporter in dopamine neurons increases vulnerability to MPTP-induced neurotoxicity in mice. Proc Natl Acad Sci U S A 2018; 115:E11532-E11541. [PMID: 30442663 PMCID: PMC6298109 DOI: 10.1073/pnas.1800886115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A subset of midbrain dopamine (DA) neurons express vesicular glutamate transporter 2 (VgluT2), which facilitates synaptic vesicle loading of glutamate. Recent studies indicate that such expression can modulate DA-dependent reward behaviors, but little is known about functional consequences of DA neuron VgluT2 expression in neurodegenerative diseases like Parkinson's disease (PD). Here, we report that selective deletion of VgluT2 in DA neurons in conditional VgluT2-KO (VgluT2-cKO) mice abolished glutamate release from DA neurons, reduced their expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB), and exacerbated the pathological effects of exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, viral rescue of VgluT2 expression in DA neurons of VglutT2-cKO mice restored BDNF/TrkB expression and attenuated MPTP-induced DA neuron loss and locomotor impairment. Together, these findings indicate that VgluT2 expression in DA neurons is neuroprotective. Genetic or environmental factors causing reduced expression or function of VgluT2 in DA neurons may place some individuals at increased risk for DA neuron degeneration. Therefore, maintaining physiological expression and function of VgluT2 in DA neurons may represent a valid molecular target for the development of preventive therapeutic interventions for PD.
Collapse
|
49
|
Three-dimensional motion analysis for comprehensive understanding of gait characteristics after sciatic nerve lesion in rodents. Sci Rep 2018; 8:13585. [PMID: 30206259 PMCID: PMC6133925 DOI: 10.1038/s41598-018-31579-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/21/2018] [Indexed: 01/08/2023] Open
Abstract
Rodent models of sciatic nerve lesion are regularly used to assess functional deficits in nerves. Impaired locomotor functions induced by sciatic nerve lesion are currently evaluated with scoring systems despite their limitations. To overcome these shortcomings, which includes low sensitivity, little significance, and the representation of only marginal components of motion profiles, some additional metrics have been introduced. However, a quantitative determination of motion deficits is yet to be established. We used a three-dimensional motion analysis to investigate gait deficits after sciatic nerve lesion in rats. This enabled us to depict the distorted gait motion using both traditional parameters and novel readouts that are specific for the three-dimensional analysis. Our results suggest that three-dimensional motion analysis facilitates a comprehensive understanding of the gait impairment specifically, but not limited to, a sciatic lesion rat model. A broad application of these methods will improve understanding and standardized motor assessment.
Collapse
|
50
|
Chen B, Li Y, Yu B, Zhang Z, Brommer B, Williams PR, Liu Y, Hegarty SV, Zhou S, Zhu J, Guo H, Lu Y, Zhang Y, Gu X, He Z. Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations. Cell 2018; 174:521-535.e13. [PMID: 30033363 PMCID: PMC6063786 DOI: 10.1016/j.cell.2018.06.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/24/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022]
Abstract
Many human spinal cord injuries are anatomically incomplete but exhibit complete paralysis. It is unknown why spared axons fail to mediate functional recovery in these cases. To investigate this, we undertook a small-molecule screen in mice with staggered bilateral hemisections in which the lumbar spinal cord is deprived of all direct brain-derived innervation, but dormant relay circuits remain. We discovered that a KCC2 agonist restored stepping ability, which could be mimicked by selective expression of KCC2, or hyperpolarizing DREADDs, in the inhibitory interneurons between and around the staggered spinal lesions. Mechanistically, these treatments transformed this injury-induced dysfunctional spinal circuit to a functional state, facilitating the relay of brain-derived commands toward the lumbar spinal cord. Thus, our results identify spinal inhibitory interneurons as a roadblock limiting the integration of descending inputs into relay circuits after injury and suggest KCC2 agonists as promising treatments for promoting functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Bo Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yi Li
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001 Jiangsu, China
| | - Zicong Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Benedikt Brommer
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Philip Raymond Williams
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yuanyuan Liu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shane Vincent Hegarty
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001 Jiangsu, China
| | - Junjie Zhu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Hong Guo
- Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road., BTM 4th Floor, Boston, MA 02115, USA
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road., BTM 4th Floor, Boston, MA 02115, USA
| | - Yiming Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001 Jiangsu, China.
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|