1
|
Ji ES, Lee BS, Mun J, Jeon SY, Hong HR, Kim HJ, Kim YJ, Do SG, Shin JH, Kim KH. Quantification of salmon nasal cartilage extracts using liquid chromatography-tandem mass spectrometry. Food Chem 2025; 475:143280. [PMID: 39956058 DOI: 10.1016/j.foodchem.2025.143280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Proteoglycans are high molecular weight glycoproteins with potential benefits in preventing osteoarthritis, reducing inflammation, enhancing immune function, and promoting skin health. Aggrecan, a key proteoglycan with glycosaminoglycan (GAG) chains, poses challenges in accurate quantification due to its complex structure. We hypothesize that by selecting target peptides from core proteins that exclude post-translational modifications such as GAG attachment, proteoglycans can be analyzed with high sensitivity and accuracy. In this study, we identified aggrecan from salmon nasal cartilage (Oncorhynchus keta) using liquid chromatography-mass spectrometry (LC-MS). We developed a quantitative multiple reaction monitoring (MRM)-MS assay with stable-isotope-labeled peptides. This method demonstrated high precision and sensitivity, achieving a limit of detection (LOD) of 0.0008 μg/mL and a lower limit of quantification (LLOQ) of 0.0025 μg/mL. These findings validate that targeting core proteins enables accurate proteoglycan quantification and support its application in quality assessment and development of salmon nasal cartilage-based foods.
Collapse
Affiliation(s)
- Eun Sun Ji
- Bio R&D Center, CellKey Inc., Seoul, 06571, Republic of Korea
| | - Bo Su Lee
- Department of Food Regulatory Science, Korea University, Sejong, 30019, Republic of Korea
| | - Jiyoung Mun
- Bio R&D Center, CellKey Inc., Seoul, 06571, Republic of Korea
| | - Se Yeong Jeon
- R&D Center, Naturetech Co., Ltd., Cheonan, 31257, Republic of Korea
| | - Hye Ryeong Hong
- R&D Center, Naturetech Co., Ltd., Cheonan, 31257, Republic of Korea
| | - Hyun Jin Kim
- R&D Center, Naturetech Co., Ltd., Cheonan, 31257, Republic of Korea
| | - Young Jun Kim
- Department of Food Regulatory Science, Korea University, Sejong, 30019, Republic of Korea
| | - Seon Gil Do
- R&D Center, Naturetech Co., Ltd., Cheonan, 31257, Republic of Korea
| | - Jong Hwan Shin
- Bio R&D Center, CellKey Inc., Seoul, 06571, Republic of Korea
| | - Kwang Hoe Kim
- Bio R&D Center, CellKey Inc., Seoul, 06571, Republic of Korea.
| |
Collapse
|
2
|
Walgrave H, Penning A, Tosoni G, Snoeck S, Davie K, Davis E, Wolfs L, Sierksma A, Mars M, Bu T, Thrupp N, Zhou L, Moechars D, Mancuso R, Fiers M, Howden AJ, De Strooper B, Salta E. microRNA-132 regulates gene expression programs involved in microglial homeostasis. iScience 2023; 26:106829. [PMID: 37250784 PMCID: PMC10213004 DOI: 10.1016/j.isci.2023.106829] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
microRNA-132 (miR-132), a known neuronal regulator, is one of the most robustly downregulated microRNAs (miRNAs) in the brain of Alzheimer's disease (AD) patients. Increasing miR-132 in AD mouse brain ameliorates amyloid and Tau pathologies, and also restores adult hippocampal neurogenesis and memory deficits. However, the functional pleiotropy of miRNAs requires in-depth analysis of the effects of miR-132 supplementation before it can be moved forward for AD therapy. We employ here miR-132 loss- and gain-of-function approaches using single-cell transcriptomics, proteomics, and in silico AGO-CLIP datasets to identify molecular pathways targeted by miR-132 in mouse hippocampus. We find that miR-132 modulation significantly affects the transition of microglia from a disease-associated to a homeostatic cell state. We confirm the regulatory role of miR-132 in shifting microglial cell states using human microglial cultures derived from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Amber Penning
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Giorgia Tosoni
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Sarah Snoeck
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Bioinformatics Core Facility, 3000 Leuven, Belgium
| | - Emma Davis
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Mayte Mars
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Taofeng Bu
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Nicola Thrupp
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Lujia Zhou
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Diederik Moechars
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Andrew J.M. Howden
- UK Dementia Research Institute, University of Dundee, Dundee DD1 4HN, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
3
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Wang X, Jiang Q, Song Y, He Z, Zhang H, Song M, Zhang X, Dai Y, Karalay O, Dieterich C, Antebi A, Wu L, Han JJ, Shen Y. Ageing induces tissue‐specific transcriptomic changes in
Caenorhabditis elegans. EMBO J 2022; 41:e109633. [PMID: 35253240 PMCID: PMC9016346 DOI: 10.15252/embj.2021109633] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
Ageing is a complex process with common and distinct features across tissues. Unveiling the underlying processes driving ageing in individual tissues is indispensable to decipher the mechanisms of organismal longevity. Caenorhabditis elegans is a well‐established model organism that has spearheaded ageing research with the discovery of numerous genetic pathways controlling its lifespan. However, it remains challenging to dissect the ageing of worm tissues due to the limited description of tissue pathology and access to tissue‐specific molecular changes during ageing. In this study, we isolated cells from five major tissues in young and old worms and profiled the age‐induced transcriptomic changes within these tissues. We observed a striking diversity of ageing across tissues and identified different sets of longevity regulators therein. In addition, we found novel tissue‐specific factors, including irx‐1 and myrf‐2, which control the integrity of the intestinal barrier and sarcomere structure during ageing respectively. This study demonstrates the complexity of ageing across worm tissues and highlights the power of tissue‐specific transcriptomic profiling during ageing, which can serve as a resource to the field.
Collapse
Affiliation(s)
- Xueqing Wang
- State Key Laboratory of Cell Biology Shanghai Institute of Biochemistry and Cell Biology Center for Excellence in Molecular Cell Science Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Quanlong Jiang
- CAS Key Laboratory of Computational Biology Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai China
- Peking‐Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB) Peking University Beijing China
| | - Yuanyuan Song
- State Key Laboratory of Cell Biology Shanghai Institute of Biochemistry and Cell Biology Center for Excellence in Molecular Cell Science Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Zhidong He
- State Key Laboratory of Cell Biology Shanghai Institute of Biochemistry and Cell Biology Center for Excellence in Molecular Cell Science Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Hongdao Zhang
- State Key Laboratory of Cell Biology Shanghai Institute of Biochemistry and Cell Biology Center for Excellence in Molecular Cell Science Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Mengjiao Song
- State Key Laboratory of Cell Biology Shanghai Institute of Biochemistry and Cell Biology Center for Excellence in Molecular Cell Science Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaona Zhang
- State Key Laboratory of Cell Biology Shanghai Institute of Biochemistry and Cell Biology Center for Excellence in Molecular Cell Science Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Yumin Dai
- State Key Laboratory of Cell Biology Shanghai Institute of Biochemistry and Cell Biology Center for Excellence in Molecular Cell Science Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Oezlem Karalay
- Max Planck Institute for Biology of Ageing Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III University Hospital Heidelberg Heidelberg Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Ligang Wu
- State Key Laboratory of Cell Biology Shanghai Institute of Biochemistry and Cell Biology Center for Excellence in Molecular Cell Science Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Jing‐Dong J Han
- CAS Key Laboratory of Computational Biology Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai China
- Peking‐Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB) Peking University Beijing China
| | - Yidong Shen
- State Key Laboratory of Cell Biology Shanghai Institute of Biochemistry and Cell Biology Center for Excellence in Molecular Cell Science Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
5
|
Brosnan CA, Palmer AJ, Zuryn S. Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading. Nat Commun 2021; 12:2194. [PMID: 33850152 PMCID: PMC8044110 DOI: 10.1038/s41467-021-22503-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Multicellularity has coincided with the evolution of microRNAs (miRNAs), small regulatory RNAs that are integrated into cellular differentiation and homeostatic gene-regulatory networks. However, the regulatory mechanisms underpinning miRNA activity have remained largely obscured because of the precise, and thus difficult to access, cellular contexts under which they operate. To resolve these, we have generated a genome-wide map of active miRNAs in Caenorhabditis elegans by revealing cell-type-specific patterns of miRNAs loaded into Argonaute (AGO) silencing complexes. Epitope-labelled AGO proteins were selectively expressed and immunoprecipitated from three distinct tissue types and associated miRNAs sequenced. In addition to providing information on biological function, we define adaptable miRNA:AGO interactions with single-cell-type and AGO-specific resolution. We demonstrate spatial and temporal dynamicism, flexibility of miRNA loading, and suggest miRNA regulatory mechanisms via AGO selectivity in different tissues and during ageing. Additionally, we resolve widespread changes in AGO-regulated gene expression by analysing translatomes specifically in neurons.
Collapse
Affiliation(s)
- Christopher A Brosnan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia.
| | - Alexander J Palmer
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
6
|
Bagheri Khoulenjani N, Saniee Abadeh M, Sarbazi-Azad S, Jaddi NS. Cancer miRNA biomarkers classification using a new representation algorithm and evolutionary deep learning. Soft comput 2021. [DOI: 10.1007/s00500-020-05366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Derivatization strategy combined with parallel reaction monitoring for the characterization of short-chain fatty acids and their hydroxylated derivatives in mouse. Anal Chim Acta 2019; 1100:66-74. [PMID: 31987154 DOI: 10.1016/j.aca.2019.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
Short-chain fatty acids (SCFAs) and hydroxylated short-chain fatty acids (OH-SCFAs) are crucial intermediates related to a variety of diseases, such as bowel disease, cardiovascular disease, renal disease and cancer. A global profiling method to screen SCFAs and OH-SCFAs was developed by tagging these analytes with d0/d6-N, N-dimethyl-6,7-dihydro-5H-pyrrolo [3,4-d] pyrimidine-2-amine (d0/d6-DHPP) and using ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-MS/MS) in parallel reaction monitoring (PRM) mode. The derivatization procedure was simple and rapid. The targeted compounds could be derivatized within 3 min under mild condition and analyzed without the need of further purification. The derivatization significantly improved the chromatographic performance and mass spectrometry response. The d6-DHPP tagged standards were used as internal standards, which remarkably reduced the matrix effects. The use of high resolution PRM mode made it possible to locate unknown SCFA and OH-SCFA species, and greatly reduced the false positive identification results. The developed method was successfully applied to the analysis of mouse fecal, serum, and liver tissue samples harvested from the breast cancer nude mice that had been exposed with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Results showed that 40 analytes (10 SCFAs and 30 OH-SCFAs) were characterized. Semi-quantitative analysis indicated that the exposure of BDE-47 to the mice altered the SCFA and OH-SCFA metabolism, especially in the high dose group. This study provides a high-throughput method to characterize SCFAs and OH-SCFAs in mouse samples.
Collapse
|
8
|
Aeschimann F, Neagu A, Rausch M, Großhans H. let-7 coordinates the transition to adulthood through a single primary and four secondary targets. Life Sci Alliance 2019; 2:e201900335. [PMID: 30910805 PMCID: PMC6435043 DOI: 10.26508/lsa.201900335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
The juvenile-to-adult (J/A) transition, or puberty, is a period of extensive changes of animal body morphology and function. The onset of puberty is genetically controlled, and the let-7 miRNA temporally regulates J/A transition events in nematodes and mammals. Here, we uncover the targets and downstream pathways through which Caenorhabditis elegans let-7 controls male and female sexual organ morphogenesis and skin progenitor cell fates. We find that let-7 directs all three processes by silencing a single target, the post-transcriptional regulator lin-41 In turn, the RNA-binding protein LIN41/TRIM71 regulates these processes by silencing only four target mRNAs. Thus, by silencing LIN41, let-7 activates LIN-29a and MAB-10 (an early growth response-type transcription factor and its NAB1/2-orthologous cofactor, respectively) to terminate progenitor cell self-renewal and to promote vulval integrity. By contrast, let-7 promotes development of the male sexual organ by up-regulating DMD-3 and MAB-3, two Doublesex/MAB-3 domain-containing transcription factors. Our results provide mechanistic insight into how a linear chain of post-transcriptional regulators diverges in the control of a small set of transcriptional regulators to achieve a coordinated J/A transition.
Collapse
Affiliation(s)
- Florian Aeschimann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Magdalene Rausch
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Quévillon Huberdeau M, Simard MJ. A guide to microRNA‐mediated gene silencing. FEBS J 2018; 286:642-652. [DOI: 10.1111/febs.14666] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Miguel Quévillon Huberdeau
- Oncology division (St‐Patrick Research Group in Basic Oncology) CHU de Québec‐Université Laval Research Center Quebec City Canada
- Laval University Cancer Research Centre Quebec City Canada
| | - Martin J. Simard
- Oncology division (St‐Patrick Research Group in Basic Oncology) CHU de Québec‐Université Laval Research Center Quebec City Canada
- Laval University Cancer Research Centre Quebec City Canada
| |
Collapse
|
10
|
Huntley RP, Kramarz B, Sawford T, Umrao Z, Kalea A, Acquaah V, Martin MJ, Mayr M, Lovering RC. Expanding the horizons of microRNA bioinformatics. RNA (NEW YORK, N.Y.) 2018; 24:1005-1017. [PMID: 29871895 PMCID: PMC6049505 DOI: 10.1261/rna.065565.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
MicroRNA regulation of key biological and developmental pathways is a rapidly expanding area of research, accompanied by vast amounts of experimental data. This data, however, is not widely available in bioinformatic resources, making it difficult for researchers to find and analyze microRNA-related experimental data and define further research projects. We are addressing this problem by providing two new bioinformatics data sets that contain experimentally verified functional information for mammalian microRNAs involved in cardiovascular-relevant, and other, processes. To date, our resource provides over 4400 Gene Ontology annotations associated with over 500 microRNAs from human, mouse, and rat and over 2400 experimentally validated microRNA:target interactions. We illustrate how this resource can be used to create microRNA-focused interaction networks with a biological context using the known biological role of microRNAs and the mRNAs they regulate, enabling discovery of associations between gene products, biological pathways and, ultimately, diseases. This data will be crucial in advancing the field of microRNA bioinformatics and will establish consistent data sets for reproducible functional analysis of microRNAs across all biological research areas.
Collapse
Affiliation(s)
- Rachael P Huntley
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Barbara Kramarz
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Tony Sawford
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Zara Umrao
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Anastasia Kalea
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Vanessa Acquaah
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Maria J Martin
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London SE5 9NU, United Kingdom
| | - Ruth C Lovering
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
11
|
Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018; 209:651-673. [PMID: 29967059 PMCID: PMC6028246 DOI: 10.1534/genetics.118.300291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of Caenorhabditis elegans biology. More than 140 genes that encode microRNAs in C. elegans regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of C. elegans microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. In vivo investigations are especially important for microRNAs because in silico extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.
Collapse
|
12
|
Zhang Y, Zhang W, Dong M. The miR-58 microRNA family is regulated by insulin signaling and contributes to lifespan regulation in Caenorhabditis elegans. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1060-1070. [PMID: 29948901 DOI: 10.1007/s11427-018-9308-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 01/21/2023]
Abstract
microRNAs regulate diverse biological processes such as development and aging by promoting degradation or inhibiting translation of their target mRNAs. In this study, we have found that the miR-58 family microRNAs regulate lifespan in C. elegans. Intriguingly, members of the miR-58 family affect lifespan differently, sometimes in opposite directions, and have complex genetic interactions. The abundances of the miR-58 family miRNAs are up-regulated in the long-lived daf-2 mutant in a daf-16-dependent manner, indicating that these miRNAs are effectors of insulin signaling in C. elegans. We also found that miR-58 is regulated by insulin signaling and partially required for the lifespan extension mediated by reduced insulin signaling, germline ablation, dietary restriction, and mild mitochondrial dysfunction. We further identified the daf-21, ins-1, and isw-1 mRNAs as endogenous targets of miR-58. Our study shows that miRNAs function in multiple lifespan extension mechanisms, and that the seed sequence is not the dominant factor defining the role of a miRNA in lifespan regulation.
Collapse
Affiliation(s)
- Yanping Zhang
- College of Life Science, Beijing Normal University, Beijing, 100875, China.,National Institute of Biological Sciences, Beijing, 102206, China.,Beijing Key Laboratory of the Cell Biology of Animal Aging, Beijing, 102206, China
| | - Wenhong Zhang
- National Institute of Biological Sciences, Beijing, 102206, China.,Beijing Key Laboratory of the Cell Biology of Animal Aging, Beijing, 102206, China
| | - Mengqiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China. .,Beijing Key Laboratory of the Cell Biology of Animal Aging, Beijing, 102206, China.
| |
Collapse
|
13
|
Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics 2018; 189:75-90. [PMID: 29452276 DOI: 10.1016/j.jprot.2018.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 02/08/2023]
Abstract
The enormous diversity of proteoforms produces tremendous complexity within cellular proteomes, facilitates intricate networks of molecular interactions, and constitutes a formidable analytical challenge for biomedical researchers. Currently, quantitative whole-proteome profiling often relies on non-targeted liquid chromatography-mass spectrometry (LC-MS), which samples proteoforms broadly, but can suffer from lower accuracy, sensitivity, and reproducibility compared with targeted LC-MS. Recent advances in bottom-up proteomics using targeted LC-MS have enabled previously unachievable identification and quantification of target proteins and posttranslational modifications within complex samples. Consequently, targeted LC-MS is rapidly advancing biomedical research, especially systems biology research in diverse areas that include proteogenomics, interactomics, kinomics, and biological pathway modeling. With the recent development of targeted LC-MS assays for nearly the entire human proteome, targeted LC-MS is positioned to enable quantitative proteomic profiling of unprecedented quality and accessibility to support fundamental and clinical research. Here we review recent applications of bottom-up proteomics using targeted LC-MS for systems biology research. SIGNIFICANCE: Advances in targeted proteomics are rapidly advancing systems biology research. Recent applications include systems-level investigations focused on posttranslational modifications (such as phosphoproteomics), protein conformation, protein-protein interaction, kinomics, proteogenomics, and metabolic and signaling pathways. Notably, absolute quantification of metabolic and signaling pathway proteins has enabled accurate pathway modeling and engineering. Integration of targeted proteomics with other technologies, such as RNA-seq, has facilitated diverse research such as the identification of hundreds of "missing" human proteins (genes and transcripts that appear to encode proteins but direct experimental evidence was lacking).
Collapse
Affiliation(s)
- Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
High throughput deep sequencing reveals the important roles of microRNAs during sweetpotato storage at chilling temperature. Sci Rep 2017; 7:16578. [PMID: 29185497 PMCID: PMC5707365 DOI: 10.1038/s41598-017-16871-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
Sweetpotato (Impomoea batatas L.) is a globally important economic food crop with a potential of becoming a bioenergy and pharmaceutical crop. Thus, studying the molecular mechanism of tuberous root development and storage is very important. However, not too much progress has been made in this field. In this study, we employed the next generation high-throughput deep sequencing technology to sequence all small RNAs and degradome of sweetpotato for systematically investigating sweetpotato response to chilling stress during storage. A total of 190 known microRNAs (miRNAs) and 191 novel miRNAs were identified, and 428 transcripts were targeted by 184 identified miRNAs. More importantly, we identified 26 miRNAs differentially expressed between chilling stress and control conditions. The expression of these miRNAs and their targets was also confirmed by qRT-PCR. Integrated analysis of small RNAs and degradome sequencing reveals that miRNA-mediated SA signaling, ABA-dependent, and ROS response pathways are involved in sweetpotato root response to chilling stress during storage.
Collapse
|
15
|
Torres S, Garcia-Palmero I, Bartolomé RA, Fernandez-Aceñero MJ, Molina E, Calviño E, Segura MF, Casal JI. Combined miRNA profiling and proteomics demonstrates that different miRNAs target a common set of proteins to promote colorectal cancer metastasis. J Pathol 2017; 242:39-51. [PMID: 28054337 DOI: 10.1002/path.4874] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 12/13/2022]
Abstract
The process of liver colonization in colorectal cancer remains poorly characterized. Here, we addressed the role of microRNA (miRNA) dysregulation in metastasis. We first compared miRNA expression profiles between colorectal cancer cell lines with different metastatic properties and then identified target proteins of the dysregulated miRNAs to establish their functions and prognostic value. We found that 38 miRNAs were differentially expressed between highly metastatic (KM12SM/SW620) and poorly metastatic (KM12C/SW480) cancer cell lines. After initial validation, we determined that three miRNAs (miR-424-3p, -503, and -1292) were overexpressed in metastatic colorectal cancer cell lines and human samples. Stable transduction of non-metastatic cells with each of the three miRNAs promoted metastatic properties in culture and increased liver colonization in vivo. Moreover, miR-424-3p and miR-1292 were associated with poor prognosis in human patients. A quantitative proteomic analysis of colorectal cancer cells transfected with miR-424-3p, miR-503, or miR-1292 identified alterations in 149, 129, or 121 proteins, respectively, with an extensive overlap of the target proteins of the three miRNAs. Importantly, down-regulation of two of these shared target proteins, CKB and UBA2, increased cell adhesion and proliferation in colorectal cancer cells. The capacity of distinct miRNAs to regulate the same mRNAs boosts the capacity of miRNAs to regulate cancer metastasis and underscores the necessity of targeting multiple miRNAs for effective cancer therapy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sofía Torres
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Irene Garcia-Palmero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Rubén A Bartolomé
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | - Elena Molina
- Surgical Pathology Department, Hospital Clínico, Madrid, Spain
| | - Eva Calviño
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - J Ignacio Casal
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
16
|
Vialas V, Colomé-Calls N, Abian J, Aloria K, Alvarez-Llamas G, Antúnez O, Arizmendi JM, Azkargorta M, Barceló-Batllori S, Barderas MG, Blanco F, Casal JI, Casas V, de la Torre C, Chicano-Gálvez E, Elortza F, Espadas G, Estanyol JM, Fernandez-Irigoyen J, Fernandez-Puente P, Fidalgo MJ, Fuentes M, Gay M, Gil C, Hainard A, Hernaez ML, Ibarrola N, Kopylov AT, Lario A, Lopez JA, López-Lucendo M, Marcilla M, Marina-Ramírez A, Marko-Varga G, Martín L, Mora MI, Morato-López E, Muñoz J, Odena MA, de Oliveira E, Orera I, Ortea I, Pasquarello C, Ray KB, Rezeli M, Ruppen I, Sabidó E, Del Pino MMS, Sancho J, Santamaría E, Vazquez J, Vilaseca M, Vivanco F, Walters JJ, Zgoda VG, Corrales FJ, Canals F, Paradela A. A multicentric study to evaluate the use of relative retention times in targeted proteomics. J Proteomics 2017; 152:138-149. [PMID: 27989941 DOI: 10.1016/j.jprot.2016.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Despite the maturity reached by targeted proteomic strategies, reliable and standardized protocols are urgently needed to enhance reproducibility among different laboratories and analytical platforms, facilitating a more widespread use in biomedical research. To achieve this goal, the use of dimensionless relative retention times (iRT), defined on the basis of peptide standard retention times (RT), has lately emerged as a powerful tool. The robustness, reproducibility and utility of this strategy were examined for the first time in a multicentric setting, involving 28 laboratories that included 24 of the Spanish network of proteomics laboratories (ProteoRed-ISCIII). According to the results obtained in this study, dimensionless retention time values (iRTs) demonstrated to be a useful tool for transferring and sharing peptide retention times across different chromatographic set-ups both intra- and inter-laboratories. iRT values also showed very low variability over long time periods. Furthermore, parallel quantitative analyses showed a high reproducibility despite the variety of experimental strategies used, either MRM (multiple reaction monitoring) or pseudoMRM, and the diversity of analytical platforms employed. BIOLOGICAL SIGNIFICANCE From the very beginning of proteomics as an analytical science there has been a growing interest in developing standardized methods and experimental procedures in order to ensure the highest quality and reproducibility of the results. In this regard, the recent (2012) introduction of the dimensionless retention time concept has been a significant advance. In our multicentric (28 laboratories) study we explore the usefulness of this concept in the context of a targeted proteomics experiment, demonstrating that dimensionless retention time values is a useful tool for transferring and sharing peptide retention times across different chromatographic set-ups.
Collapse
Affiliation(s)
- Vital Vialas
- ProteoRed-ISCIII, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Núria Colomé-Calls
- ProteoRed-ISCIII, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Joaquín Abian
- ProteoRed-ISCIII, Instituto de Investigaciones Biomédicas de Barcelona, IIBB-CSIC/IDIBAPS, Barcelona 08036, Spain
| | - Kerman Aloria
- Department of Biochemistry and Molecular Biology, University of the Basque Country-UPV/EHU, Leioa 48940, Spain
| | | | - Oreto Antúnez
- ProteoRed-ISCIII, SCSIE Universitat de Valencia, Burjassot 46100, Spain
| | - Jesus M Arizmendi
- ProteoRed-ISCIII, University of the Basque Country-UPV/EHU, Leioa 48940, Spain
| | - Mikel Azkargorta
- ProteoRed-ISCIII, CIC bioGUNE, Science and Technology Park of Bizkaia, Derio, Spain
| | | | - María G Barderas
- ProteoRed-ISCIII, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | | | - J Ignacio Casal
- ProteoRed-ISCIII, Centro de Investigaciones Biológicas-CSIC, Madrid 28040, Spain
| | - Vanessa Casas
- ProteoRed-ISCIII, Instituto de Investigaciones Biomédicas de Barcelona, IIBB-CSIC/IDIBAPS, Barcelona 08036, Spain
| | - Carolina de la Torre
- ProteoRed-ISCIII, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eduardo Chicano-Gálvez
- ProteoRed-ISCIII, Maimonides Institute for Biomedical Research and Universidad de Córdoba, Córdoba 14004, Spain
| | - Felix Elortza
- ProteoRed-ISCIII, CIC bioGUNE, Science and Technology Park of Bizkaia, Derio, Spain
| | - Guadalupe Espadas
- ProteoRed-ISCIII, Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Josep M Estanyol
- ProteoRed-ISCIII, Scientific and Technological Centers (CCiTUB), University of Barcelona, Barcelona 08036, Spain
| | | | | | - María José Fidalgo
- ProteoRed-ISCIII, Scientific and Technological Centers (CCiTUB), University of Barcelona, Barcelona 08036, Spain
| | - Manuel Fuentes
- ProteoRed-ISCIII, Cancer Research Center, University of Salamanca-CSIC, IBSAL, Salamanca 37007, Spain
| | - Marina Gay
- ProteoRed-ISCIII, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| | - Concha Gil
- ProteoRed-ISCIII, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Alexandre Hainard
- Proteomics Core Facility CMU, University of Geneva, Geneva, Switzerland
| | | | - Nieves Ibarrola
- ProteoRed-ISCIII, Cancer Research Center, University of Salamanca-CSIC, IBSAL, Salamanca 37007, Spain
| | - Arthur T Kopylov
- Orekhovich Institute of Biomedical Chemistry RAMS, Moscow 119121, Russian Federation
| | - Antonio Lario
- ProteoRed-ISCIII, IPBLN (CSIC), Armilla, Granada, Spain
| | - Juan Antonio Lopez
- ProteoRed-ISCIII, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - María López-Lucendo
- ProteoRed-ISCIII, Centro de Investigaciones Biológicas-CSIC, Madrid 28040, Spain
| | - Miguel Marcilla
- ProteoRed-ISCIII, Centro Nacional de Biotecnologia (CSIC), Madrid 28049, Spain
| | | | - Gyorgy Marko-Varga
- Centre of Excellence in Biological and Medical Mass spectrometry, Lund University, Lund, Sweden
| | - Luna Martín
- ProteoRed-ISCIII, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Maria I Mora
- ProteoRed-ISCIII, CIMA, University of Navarra, Pamplona 31008, Spain
| | | | - Javier Muñoz
- ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | | | | | - Irene Orera
- ProteoRed-ISCIII, Instituto Aragonés de Ciencias de la Salud, Zaragoza 50009, Spain
| | - Ignacio Ortea
- ProteoRed-ISCIII, Maimonides Institute for Biomedical Research and Universidad de Córdoba, Córdoba 14004, Spain
| | - Carla Pasquarello
- Proteomics Core Facility CMU, University of Geneva, Geneva, Switzerland
| | | | - Melinda Rezeli
- Centre of Excellence in Biological and Medical Mass spectrometry, Lund University, Lund, Sweden
| | - Isabel Ruppen
- ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Eduard Sabidó
- ProteoRed-ISCIII, Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | - Jaime Sancho
- ProteoRed-ISCIII, IPBLN (CSIC), Armilla, Granada, Spain
| | - Enrique Santamaría
- ProteoRed-ISCIII, Navarrabiomed Biomedical Research Center-IdiSNa, Pamplona, Spain
| | - Jesus Vazquez
- ProteoRed-ISCIII, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Marta Vilaseca
- ProteoRed-ISCIII, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| | | | | | - Victor G Zgoda
- Orekhovich Institute of Biomedical Chemistry RAMS, Moscow 119121, Russian Federation
| | | | - Francesc Canals
- ProteoRed-ISCIII, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain.
| | - Alberto Paradela
- ProteoRed-ISCIII, Centro Nacional de Biotecnologia (CSIC), Madrid 28049, Spain.
| |
Collapse
|
17
|
Multiplexed Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry Quantification of Cancer Signaling Proteins. Methods Mol Biol 2017; 1647:19-45. [PMID: 28808993 DOI: 10.1007/978-1-4939-7201-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Quantitative evaluation of protein expression across multiple cancer-related signaling pathways (e.g., Wnt/β-catenin, TGF-β, receptor tyrosine kinases (RTK), MAP kinases, NF-κB, and apoptosis) in tumor tissues may enable the development of a molecular profile for each individual tumor that can aid in the selection of appropriate targeted cancer therapies. Here, we describe the development of a broadly applicable protocol to develop and implement quantitative mass spectrometry assays using cell line models and frozen tissue specimens from colon cancer patients. Cell lines are used to develop peptide-based assays for protein quantification, which are incorporated into a method based on SDS-PAGE protein fractionation, in-gel digestion, and liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM/MS). This analytical platform is then applied to frozen tumor tissues. This protocol can be broadly applied to the study of human disease using multiplexed LC-MRM assays.
Collapse
|
18
|
Liu Y, Beyer A, Aebersold R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell 2016; 165:535-50. [PMID: 27104977 DOI: 10.1016/j.cell.2016.03.014] [Citation(s) in RCA: 2037] [Impact Index Per Article: 226.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Indexed: 12/30/2022]
Abstract
The question of how genomic information is expressed to determine phenotypes is of central importance for basic and translational life science research and has been studied by transcriptomic and proteomic profiling. Here, we review the relationship between protein and mRNA levels under various scenarios, such as steady state, long-term state changes, and short-term adaptation, demonstrating the complexity of gene expression regulation, especially during dynamic transitions. The spatial and temporal variations of mRNAs, as well as the local availability of resources for protein biosynthesis, strongly influence the relationship between protein levels and their coding transcripts. We further discuss the buffering of mRNA fluctuations at the level of protein concentrations. We conclude that transcript levels by themselves are not sufficient to predict protein levels in many scenarios and to thus explain genotype-phenotype relationships and that high-quality data quantifying different levels of gene expression are indispensable for the complete understanding of biological processes.
Collapse
Affiliation(s)
- Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Andreas Beyer
- Cellular Networks and Systems Biology, University of Cologne, CECAD, Joseph-Stelzmann-Strasse 26, Cologne 50931, Germany.
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
19
|
Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol Cell 2016; 64:320-333. [PMID: 27720646 DOI: 10.1016/j.molcel.2016.09.004] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/01/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022]
Abstract
To identify endogenous miRNA-target sites, we isolated AGO-bound RNAs from Caenorhabditis elegans by individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP), which fortuitously also produced miRNA-target chimeric reads. Through the analysis of thousands of reproducible chimeras, pairing to the miRNA seed emerged as the predominant motif associated with functional interactions. Unexpectedly, we discovered that additional pairing to 3' sequences is prevalent in the majority of target sites and leads to specific targeting by members of miRNA families. By editing an endogenous target site, we demonstrate that 3' pairing determines targeting by specific miRNA family members and that seed pairing is not always sufficient for functional target interactions. Finally, we present a simplified method, chimera PCR (ChimP), for the detection of specific miRNA-target interactions. Overall, our analysis revealed that sequences in the 5' as well as the 3' regions of a miRNA provide the information necessary for stable and specific miRNA-target interactions in vivo.
Collapse
Affiliation(s)
- James P Broughton
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Michael T Lovci
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Jessica L Huang
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA.
| |
Collapse
|
20
|
Steinkraus BR, Toegel M, Fulga TA. Tiny giants of gene regulation: experimental strategies for microRNA functional studies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:311-62. [PMID: 26950183 PMCID: PMC4949569 DOI: 10.1002/wdev.223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/19/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022]
Abstract
The discovery over two decades ago of short regulatory microRNAs (miRNAs) has led to the inception of a vast biomedical research field dedicated to understanding these powerful orchestrators of gene expression. Here we aim to provide a comprehensive overview of the methods and techniques underpinning the experimental pipeline employed for exploratory miRNA studies in animals. Some of the greatest challenges in this field have been uncovering the identity of miRNA-target interactions and deciphering their significance with regard to particular physiological or pathological processes. These endeavors relied almost exclusively on the development of powerful research tools encompassing novel bioinformatics pipelines, high-throughput target identification platforms, and functional target validation methodologies. Thus, in an unparalleled manner, the biomedical technology revolution unceasingly enhanced and refined our ability to dissect miRNA regulatory networks and understand their roles in vivo in the context of cells and organisms. Recurring motifs of target recognition have led to the creation of a large number of multifactorial bioinformatics analysis platforms, which have proved instrumental in guiding experimental miRNA studies. Subsequently, the need for discovery of miRNA-target binding events in vivo drove the emergence of a slew of high-throughput multiplex strategies, which now provide a viable prospect for elucidating genome-wide miRNA-target binding maps in a variety of cell types and tissues. Finally, deciphering the functional relevance of miRNA post-transcriptional gene silencing under physiological conditions, prompted the evolution of a host of technologies enabling systemic manipulation of miRNA homeostasis as well as high-precision interference with their direct, endogenous targets. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bruno R Steinkraus
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Toegel
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Ademowo OS, Hernandez B, Collins E, Rooney C, Fearon U, van Kuijk AW, Tak PP, Gerlag DM, FitzGerald O, Pennington SR. Discovery and confirmation of a protein biomarker panel with potential to predict response to biological therapy in psoriatic arthritis. Ann Rheum Dis 2016; 75:234-41. [PMID: 25187158 DOI: 10.1136/annrheumdis-2014-205417] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 08/14/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Biological therapies, which include antitumour necrosis factor-α and T-cell inhibitors, are potentially effective treatments for psoriatic arthritis (PsA) but are costly and may induce a number of side effects. Response to treatment in PsA is variable and difficult to predict. Here, we sought to identify a panel of protein biomarkers that could be used to predict which patients diagnosed with PsA will respond to biologic treatment. METHODS An integrated discovery to targeted proteomics approach was used to investigate the protein profiles of good and non-responders to biological treatments in patients with PsA. Reverse-phase liquid chromatography coupled to tandem mass spectrometry was used to generate protein profiles of synovial tissue obtained at baseline from 10 patients with PsA. Targeted proteomics using multiple reaction monitoring (MRM) was used to confirm and prevalidate a potential protein biomarker panel in 18 and 7 PsA patient samples, respectively. RESULTS A panel of 107 proteins was selected, and targeted mass spectrometry MRM assays were successfully developed for 57 of the proteins. The 57 proteins include S100-A8, S100-A10, Ig kappa chain C fibrinogen-α and γ, haptoglobin, annexin A1 and A2, collagen alpha-2, vitronectin, and alpha-1 acid glycoprotein. The proteins were measured simultaneously and confirmed to be predictive of response to treatment with an area under the curve of 0.76. In a blinded study using a separate cohort of patients, the panel was able to predict response to treatment. CONCLUSIONS The approach reported here and the initial data provide evidence that a multiplexed protein assay of a panel of biomarkers that predict response to treatment could be developed. TRIAL REGISTRATION NUMBER ISRCTN23328456.
Collapse
Affiliation(s)
- Opeyemi S Ademowo
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Belinda Hernandez
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland UCD School of Mathematical Sciences, University College Dublin, Dublin, Ireland
| | - Emily Collins
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland Department of Rheumatology, St. Vincent's University Hospital Dublin, Dublin, Ireland
| | - Cathy Rooney
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland Department of Rheumatology, St. Vincent's University Hospital Dublin, Dublin, Ireland
| | - Arno W van Kuijk
- Department of Clinical Immunology/Rheumatology, Academic Medical Centre/University of Amsterdam, Amsterdam, Netherlands
| | - Paul-P Tak
- Department of Clinical Immunology/Rheumatology, Academic Medical Centre/University of Amsterdam, Amsterdam, Netherlands
| | - Danielle M Gerlag
- Department of Clinical Immunology/Rheumatology, Academic Medical Centre/University of Amsterdam, Amsterdam, Netherlands
| | - Oliver FitzGerald
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland Department of Rheumatology, St. Vincent's University Hospital Dublin, Dublin, Ireland
| | - Stephen R Pennington
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Chen Y, Wang F, Xu F, Yang T. Mass Spectrometry-Based Protein Quantification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:255-279. [PMID: 27975224 DOI: 10.1007/978-3-319-41448-5_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantification of individual proteins and even entire proteomes is an important theme in proteomics research. Quantitative proteomics is an approach to obtain quantitative information about proteins in a sample. Compared to qualitative or semi-quantitative proteomics, this approach can provide more insight into the effects of a specific stimulus, such as a change in the expression level of a protein and its posttranslational modifications, or to a panel of proposed biomarkers in a given disease state. Proteomics methodologies, along with a variety of bioinformatics approaches, are a major tool in quantitative proteomics. As the theory and technological aspects underlying the proteomics methodologies will be extensively described in Chap. 20 , and protein identification as a prerequisite of quantification has been discussed in Chap. 17 , we will focus on the quantitative proteomics bioinformatics algorithms and software tools in this chapter. Our goal is to provide researchers and newcomers a rational framework to select suitable bioinformatics tools for data analysis, interpretation, and integration in protein quantification. Before doing so, a brief overview of quantitative proteomics is provided.
Collapse
Affiliation(s)
- Yun Chen
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166, China.
| | - Fuqiang Wang
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166, China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166, China
| | - Ting Yang
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166, China
| |
Collapse
|
23
|
Rauniyar N. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry. Int J Mol Sci 2015; 16:28566-81. [PMID: 26633379 PMCID: PMC4691067 DOI: 10.3390/ijms161226120] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022] Open
Abstract
The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach.
Collapse
Affiliation(s)
- Navin Rauniyar
- W.M. Keck Foundation Biotechnology Resource Laboratory, School of Medicine, Yale University, 300 George Street, New Haven, CT 06511, USA.
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
24
|
Garcia-Segura L, Abreu-Goodger C, Hernandez-Mendoza A, Dimitrova Dinkova TD, Padilla-Noriega L, Perez-Andrade ME, Miranda-Rios J. High-Throughput Profiling of Caenorhabditis elegans Starvation-Responsive microRNAs. PLoS One 2015; 10:e0142262. [PMID: 26554708 PMCID: PMC4640506 DOI: 10.1371/journal.pone.0142262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6–20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans.
Collapse
Affiliation(s)
- Laura Garcia-Segura
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), México, D.F., México
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, D.F., México
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato, Guanajuato, México
| | - Armando Hernandez-Mendoza
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Edo. de Morelos, Cuernavaca, Morelos, México
| | | | - Luis Padilla-Noriega
- Departamento de Virología, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
| | - Martha Elva Perez-Andrade
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, D.F., México
| | - Juan Miranda-Rios
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, D.F., México
- * E-mail:
| |
Collapse
|
25
|
Collins ES, Butt AQ, Gibson DS, Dunn MJ, Fearon U, van Kuijk AW, Gerlag DM, Pontifex E, Veale DJ, Tak PP, FitzGerald O, Pennington SR. A clinically based protein discovery strategy to identify potential biomarkers of response to anti-TNF-α treatment of psoriatic arthritis. Proteomics Clin Appl 2015; 10:645-62. [PMID: 26108918 DOI: 10.1002/prca.201500051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/05/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Psoriatic arthritis (PsA) can be treated using biologic therapies targeting biomolecules such as tumor necrosis factor alpha, interleukins (IL)-17 and IL-23. Although 70% PsA patients respond well to therapy, 30% patients show no or limited clinical improvement. Biomarkers that predict response to therapy would help to avoid unnecessary use of expensive biologics in nonresponding patients and enable alternative treatments to be explored. EXPERIMENTAL DESIGN Patient synovial tissue samples from two clinical studies were analysed using difference in-gel electrophoresis-based proteomics to identify protein expression differences in response to anti-TNF-α treatment. Subsequent multiplexed MRM measurements were used to verify potential biomarkers. RESULTS A total of 119 proteins were differentially expressed (p<0.05) in response to anti-TNF-α treatment and 25 proteins were differentially expressed (p<0.05) between "good responders" and "poor responders". From these differentially expressed proteins, MRM assays were developed for four proteins to explore their potential as treatment predictive biomarkers. CONCLUSION AND CLINICAL RELEVANCE Gel-based proteomics strategy has demonstrated differential protein expression in synovial tissue of PsA patients, in response to anti-TNF-α treatment. Development of multiplex MRM assays to these differentially expressed proteins has the potential to predict response to therapy and allow alternative, more effective treatments to be explored sooner.
Collapse
Affiliation(s)
- Emily S Collins
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland.,Department of Rheumatology, St Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Aisha Q Butt
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - David S Gibson
- Northern Ireland Centre for Stratified Medicine, University of Ulster, C-TRIC, Londonderry, UK
| | - Michael J Dunn
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Ursula Fearon
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland.,Department of Rheumatology, St Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Arno W van Kuijk
- Department of Clinical Immunology and Rheumatology, F4-105, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
| | - Danielle M Gerlag
- Department of Clinical Immunology and Rheumatology, F4-105, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
| | - Eliza Pontifex
- Department of Rheumatology, St Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Douglas J Veale
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland.,Department of Rheumatology, St Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Paul P Tak
- Department of Clinical Immunology and Rheumatology, F4-105, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
| | - Oliver FitzGerald
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland.,Department of Rheumatology, St Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Stephen R Pennington
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
26
|
Subasic D, Brümmer A, Wu Y, Pinto SM, Imig J, Keller M, Jovanovic M, Lightfoot HL, Nasso S, Goetze S, Brunner E, Hall J, Aebersold R, Zavolan M, Hengartner MO. Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans. Genome Res 2015; 25:1680-91. [PMID: 26232411 PMCID: PMC4617964 DOI: 10.1101/gr.183160.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
Abstract
In animals, microRNAs frequently form families with related sequences. The functional relevance of miRNA families and the relative contribution of family members to target repression have remained, however, largely unexplored. Here, we used the Caenorhabditis elegans miR-58 miRNA family, composed primarily of the four highly abundant members miR-58.1, miR-80, miR-81, and miR-82, as a model to investigate the redundancy of miRNA family members and their impact on target expression in an in vivo setting. We found that miR-58 family members repress largely overlapping sets of targets in a predominantly additive fashion. Progressive deletions of miR-58 family members lead to cumulative up-regulation of target protein and RNA levels. Phenotypic defects could only be observed in the family quadruple mutant, which also showed the strongest change in target protein levels. Interestingly, although the seed sequences of miR-80 and miR-58.1 differ in a single nucleotide, predicted canonical miR-80 targets were efficiently up-regulated in the mir-58.1 single mutant, indicating functional redundancy of distinct members of this miRNA family. At the aggregate level, target binding leads mainly to mRNA degradation, although we also observed some degree of translational inhibition, particularly in the single miR-58 family mutants. These results provide a framework for understanding how miRNA family members interact to regulate target mRNAs.
Collapse
Affiliation(s)
- Deni Subasic
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, 8057 Zurich, Switzerland
| | - Anneke Brümmer
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
| | - Yibo Wu
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Sérgio Morgado Pinto
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4099-002 Porto, Portugal
| | - Jochen Imig
- Institute of Pharmaceutical Chemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Martin Keller
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, 8057 Zurich, Switzerland
| | - Marko Jovanovic
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Helen Louise Lightfoot
- Institute of Pharmaceutical Chemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Sara Nasso
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Sandra Goetze
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Erich Brunner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Chemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| | | | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
27
|
Integrating -Omics: Systems Biology as Explored Through C. elegans Research. J Mol Biol 2015; 427:3441-51. [PMID: 25839106 DOI: 10.1016/j.jmb.2015.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
-Omics data have become indispensable to systems biology, which aims to describe the full complexity of functional cells, tissues, organs and organisms. Generating vast amounts of data via such methods, researchers have invested in ways of handling and interpreting these. From the large volumes of -omics data that have been gathered over the years, it is clear that the information derived from one -ome is usually far from complete. Now, individual techniques and methods for integration are maturing to the point that researchers can focus on network-based integration rather than simply interpreting single -ome studies. This review evaluates the application of integrated -omics approaches with a focus on Caenorhabditis elegans studies, intending to direct researchers in this field to useful databases and inspiring examples.
Collapse
|
28
|
Pandit KV, Milosevic J. MicroRNA regulatory networks in idiopathic pulmonary fibrosis. Biochem Cell Biol 2015; 93:129-37. [PMID: 25557625 DOI: 10.1139/bcb-2014-0101] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal scarring lung disease of unknown etiology, characterized by changes in microRNA expression. Activation of transforming growth factor (TGF-β) is a key event in the development of IPF. Recent reports have also identified epigenetic modification as an important player in the pathogenesis of IPF. In this review, we summarize the main results of studies that address the role of microRNAs in IPF and highlight the synergistic actions of these microRNAs in regulating TGF-β, the primary fibrogenic mediator. We outline epigenetic regulation of microRNAs by methylation. Functional studies identify microRNAs that alter proliferative and migratory properties of fibroblasts, and induce phenotypic changes in epithelial cells consistent with epithelial-mesenchymal transition. Though these studies were performed in isolation, we identify multiple co-operative actions after assembling the results into a network. Construction of such networks will help identify disease-propelling hubs that can be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Kusum V Pandit
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
29
|
Lima SA, Pasquinelli AE. Identification of miRNAs and their targets in C. elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:431-50. [PMID: 25201113 DOI: 10.1007/978-1-4939-1221-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that direct posttranscriptional regulation of specific target genes. Since their discovery in Caenorhabditis elegans, they have been associated with the control of virtually all biological processes and are known to play major roles in development and cellular homeostasis. Yet the biological roles of most miRNAs remain to be fully known. Furthermore, the precise rules by which miRNAs recognize their targets and mediate gene silencing are still unclear. Systematic identification of miRNAs and of the RNAs they regulate is essential to close these knowledge gaps. Studies in C. elegans have been instrumental not only in the discovery phase of miRNA biology but also in the elucidation of mechanisms regulating miRNA expression, target recognition and regulation. This chapter highlights some of the main challenges still present in the field, while introducing the major studies and methods used to find miRNAs and their targets in the worm.
Collapse
Affiliation(s)
- Sarah Azoubel Lima
- Division of Biology, University of California, San Diego, La Jolla, CA, 92093-0349, USA
| | | |
Collapse
|
30
|
Derecho I, McCoy KB, Vaishampayan P, Venkateswaran K, Mogul R. Characterization of hydrogen peroxide-resistant Acinetobacter species isolated during the Mars Phoenix spacecraft assembly. ASTROBIOLOGY 2014; 14:837-847. [PMID: 25243569 DOI: 10.1089/ast.2014.1193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The microbiological inventory of spacecraft and the associated assembly facility surfaces represent the primary pool of forward contaminants that may impact the integrity of life-detection missions. Herein, we report on the characterization of several strains of hydrogen peroxide-resistant Acinetobacter, which were isolated during the Mars Phoenix lander assembly. All Phoenix-associated Acinetobacter strains possessed very high catalase specific activities, and the specific strain, A. gyllenbergii 2P01AA, displayed a survival against hydrogen peroxide (no loss in 100 mM H2O2 for 1 h) that is perhaps the highest known among Gram-negative and non-spore-forming bacteria. Proteomic characterizations reveal a survival mechanism inclusive of proteins coupled to peroxide degradation (catalase and alkyl hydroperoxide reductase), energy/redox management (dihydrolipoamide dehydrogenase), protein synthesis/folding (EF-G, EF-Ts, peptidyl-tRNA hydrolase, DnaK), membrane functions (OmpA-like protein and ABC transporter-related protein), and nucleotide metabolism (HIT family hydrolase). Together, these survivability and biochemical parameters support the hypothesis that oxidative tolerance and the related biochemical features are the measurable phenotypes or outcomes for microbial survival in the spacecraft assembly facilities, where the low-humidity (desiccation) and clean (low-nutrient) conditions may serve as selective pressures. Hence, the spacecraft-associated Acinetobacter, due to the conferred oxidative tolerances, may ultimately hinder efforts to reduce spacecraft bioburden when using chemical sterilants, thus suggesting that non-spore-forming bacteria may need to be included in the bioburden accounting for future life-detection missions.
Collapse
Affiliation(s)
- I Derecho
- 1 California State Polytechnic University , Pomona, California
| | | | | | | | | |
Collapse
|
31
|
Marimuthu A, Huang TC, Selvan LDN, Renuse S, Nirujogi RS, Kumar P, Pinto SM, Rajagopalan S, Pandey A, Harsha H, Chatterjee A. Identification of targets of miR-200b by a SILAC-based quantitative proteomic approach. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Luan Y, Wang W, Liu P. Identification and functional analysis of novel and conserved microRNAs in tomato. Mol Biol Rep 2014; 41:5385-94. [PMID: 24844213 DOI: 10.1007/s11033-014-3410-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 05/11/2014] [Indexed: 12/29/2022]
Abstract
MicroRNAs are ~22 nt non-coding endogenous RNAs which play important regulation roles in various species. By using homology-based computational research, 14 novel and conserved tomato miRNAs belonging to ten families were identified from EST, GSS, and nucleotide sequences. Real-time PCR analysis of these miRNAs demonstrated their expression in tomato afterwards. Meanwhile, a total of 36 potential targets were predicted for the ten miRNAs using psRNATarget. The target genes were mainly involved in metabolism, transmembrane transport, stress response, and transcription regulation. According to our experiment, miR398 was down-regulated on different levels under biotic and abiotic stresses, suggesting that miR398 might be involved in tomato stress regulatory network. Our results supplement the findings of tomato miRNAs and also suggest crucial regulatory functions of miRNAs in stress responses.
Collapse
Affiliation(s)
- Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China,
| | | | | |
Collapse
|
33
|
van Gool AJ, Hendrickson RC. The proteomic toolbox for studying cerebrospinal fluid. Expert Rev Proteomics 2014; 9:165-79. [DOI: 10.1586/epr.12.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Akay A, Craig A, Lehrbach N, Larance M, Pourkarimi E, Wright JE, Lamond A, Miska E, Gartner A. RNA-binding protein GLD-1/quaking genetically interacts with the mir-35 and the let-7 miRNA pathways in Caenorhabditis elegans. Open Biol 2013; 3:130151. [PMID: 24258276 PMCID: PMC3843822 DOI: 10.1098/rsob.130151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/25/2013] [Indexed: 12/30/2022] Open
Abstract
Messenger RNA translation is regulated by RNA-binding proteins and small non-coding RNAs called microRNAs. Even though we know the majority of RNA-binding proteins and microRNAs that regulate messenger RNA expression, evidence of interactions between the two remain elusive. The role of the RNA-binding protein GLD-1 as a translational repressor is well studied during Caenorhabditis elegans germline development and maintenance. Possible functions of GLD-1 during somatic development and the mechanism of how GLD-1 acts as a translational repressor are not known. Its human homologue, quaking (QKI), is essential for embryonic development. Here, we report that the RNA-binding protein GLD-1 in C. elegans affects multiple microRNA pathways and interacts with proteins required for microRNA function. Using genome-wide RNAi screening, we found that nhl-2 and vig-1, two known modulators of miRNA function, genetically interact with GLD-1. gld-1 mutations enhance multiple phenotypes conferred by mir-35 and let-7 family mutants during somatic development. We used stable isotope labelling with amino acids in cell culture to globally analyse the changes in the proteome conferred by let-7 and gld-1 during animal development. We identified the histone mRNA-binding protein CDL-1 to be, in part, responsible for the phenotypes observed in let-7 and gld-1 mutants. The link between GLD-1 and miRNA-mediated gene regulation is further supported by its biochemical interaction with ALG-1, CGH-1 and PAB-1, proteins implicated in miRNA regulation. Overall, we have uncovered genetic and biochemical interactions between GLD-1 and miRNA pathways.
Collapse
Affiliation(s)
- Alper Akay
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Ashley Craig
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | - Nicolas Lehrbach
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Mark Larance
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | - Ehsan Pourkarimi
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | - Jane E. Wright
- Friedrich Miescher Institute for Biomedical Research, Basel 4002, Switzerland
| | - Angus Lamond
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | - Eric Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
35
|
Jeker LT, Bluestone JA. MicroRNA regulation of T-cell differentiation and function. Immunol Rev 2013; 253:65-81. [PMID: 23550639 DOI: 10.1111/imr.12061] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are emerging as key controllers of T-cell differentiation and function. Their expression is dynamically regulated by extracellular signals such as costimulation and cytokine signals. miRNAs set thresholds for gene expression and optimize protein concentrations of genetic networks. Absence of individual miRNAs can lead to severe immune dysfunction. In this study, we review emerging principles and provide examples of important functions exerted by miRNAs. Although our understanding of miRNA function in T-cell differentiation is still rudimentary, the available evidence leaves no doubt that these small post-transcriptional regulators are indispensable for proper functioning of the immune system.
Collapse
Affiliation(s)
- Lukas T Jeker
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
36
|
Kopylov AT, Zgoda VG, Lisitsa AV, Archakov AI. Combined use of irreversible binding and MRM technology for low- and ultralow copy-number protein detection and quantitation. Proteomics 2013; 13:727-42. [PMID: 23281252 DOI: 10.1002/pmic.201100460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/18/2012] [Accepted: 11/20/2012] [Indexed: 11/08/2022]
Abstract
In this paper, we present a method for the determination of low- and ultralow copy-number proteins in biomaterials based on a combination of concentrating the protein from the sample onto cyanogen bromide-activated Sepharose 4B (via nonspecific binding of free amino groups) and MRM. The detection limit and the dependence of the MRM peak areas on the concentration of protein in the sample were determined using the proteins CYP102 and BSA, as a model system, both in solution and after their addition to human plasma. Nonspecific protein enrichment of proteins from diluted sample volumes of 10-50 mL was found to increase the range of linear dependence of the chromatographic peak area on concentration by more than three orders of magnitude, allowing a lower LOD limit (LLOD) of as low as 10(-18) M. At this LLOD, at least two tryptic peptides of CYP102 and BSA could be detected with S/N of ≥7.0. The results were equally good for samples containing pure protein mixtures and proteins spiked into diluted depleted human blood plasma.
Collapse
Affiliation(s)
- Arthur T Kopylov
- Orekhovich Institute of Biomedical Chemistry, RAMS, Moscow, Russian Federation
| | | | | | | |
Collapse
|
37
|
Abstract
MicroRNAs (miRNAs) are a class of ~22 nucleotide-long small noncoding RNAs that target mRNAs for translational repression or degradation. miRNAs target mRNAs by base-pairing with the 3'-untranslated regions (3'-UTRs) of mRNAs. miRNAs are present in various species, from animals to plants. In this review, we summarize the identification, expression, and function of miRNAs in four important farm animal species: cattle, chicken, pig and sheep. In each of these species, hundreds of miRNAs have been identified through homology search, small RNA cloning and next generation sequencing. Real-time RT-PCR and microarray experiments reveal that many miRNAs are expressed in a tissue-specific or spatiotemporal-specific manner in farm animals. Limited functional studies suggest that miRNAs have important roles in muscle development and hypertrophy, adipose tissue growth, oocyte maturation and early embryonic development in farm animals. Increasing evidence suggests that single-nucleotide polymorphisms in miRNA target sites or miRNA gene promoters may contribute to variation in production or health traits in farm animals.
Collapse
|
38
|
Zhao X, Song H, Zuo Z, Zhu Y, Dong X, Lu X. Identification of miRNA–miRNA synergistic relationships in colorectal cancer. Int J Biol Macromol 2013; 55:98-103. [DOI: 10.1016/j.ijbiomac.2012.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 01/05/2023]
|
39
|
Hunter SE, Finnegan EF, Zisoulis DG, Lovci MT, Melnik-Martinez KV, Yeo GW, Pasquinelli AE. Functional genomic analysis of the let-7 regulatory network in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003353. [PMID: 23516374 PMCID: PMC3597506 DOI: 10.1371/journal.pgen.1003353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/16/2013] [Indexed: 12/21/2022] Open
Abstract
The let-7 microRNA (miRNA) regulates cellular differentiation across many animal species. Loss of let-7 activity causes abnormal development in Caenorhabditis elegans and unchecked cellular proliferation in human cells, which contributes to tumorigenesis. These defects are due to improper expression of protein-coding genes normally under let-7 regulation. While some direct targets of let-7 have been identified, the genome-wide effect of let-7 insufficiency in a developing animal has not been fully investigated. Here we report the results of molecular and genetic assays aimed at determining the global network of genes regulated by let-7 in C. elegans. By screening for mis-regulated genes that also contribute to let-7 mutant phenotypes, we derived a list of physiologically relevant potential targets of let-7 regulation. Twenty new suppressors of the rupturing vulva or extra seam cell division phenotypes characteristic of let-7 mutants emerged. Three of these genes, opt-2, prmt-1, and T27D12.1, were found to associate with Argonaute in a let-7–dependent manner and are likely novel direct targets of this miRNA. Overall, a complex network of genes with various activities is subject to let-7 regulation to coordinate developmental timing across tissues during worm development. In the past decade, microRNAs (miRNAs) have become recognized as key regulators of gene expression in many biological pathways. These small, non-coding RNAs target specific protein-coding genes for repression. The specificity is mediated by partial base-pairing interactions between the 22 nucleotide miRNA and sequences in the target messenger RNA (mRNA). The use of imperfect base-pairing means that a single miRNA can regulate many different mRNAs, but it also means that identifying these targets is not straightforward. One of the first discovered miRNAs, let-7, generally promotes cellular differentiation pathways through a repertoire of targets that is yet to be fully described. Here we utilized molecular and genetic approaches to identify biologically relevant targets of the let-7 miRNA in Caenorhabditis elegans. Our analyses indicate that let-7 regulates a large cast of genes, both directly and indirectly. Loss of let-7 activity in C. elegans results in multiple developmental abnormalities and, ultimately, death. We uncovered new targets of let-7 that contribute to these phenotypes when they fail to be properly regulated. Given the highly conserved nature of let-7 from worms to humans, our studies highlight new genes and pathways potentially under let-7 regulation across species.
Collapse
Affiliation(s)
- Shaun E. Hunter
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Emily F. Finnegan
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Dimitrios G. Zisoulis
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Michael T. Lovci
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Stem Cell Program, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Katya V. Melnik-Martinez
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Stem Cell Program, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Amy E. Pasquinelli
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Yang G, Chu W, Zhang H, Sun X, Cai T, Dang L, Wang Q, Yu H, Zhong Y, Chen Z, Yang F, Li Z. Isolation and identification of mannose-binding proteins and estimation of their abundance in sera from hepatocellular carcinoma patients. Proteomics 2013; 13:878-92. [PMID: 23300094 DOI: 10.1002/pmic.201200018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 09/19/2012] [Accepted: 12/11/2012] [Indexed: 12/19/2022]
Abstract
The interaction of glycan-binding proteins (GBPs) and glycans plays a significant biological role that ranges from cell-cell recognition to cell trafficking, and glycoprotein targeting. The anomalies of GBPs related to the types and/or quantities were not clearly known in cancer incidence. It is imperative to identify and annotate the GBPs related with the canceration. Here the mannose-binding proteins (MBPs) from the clinical sera were isolated and identified by the mannose-magnetic particle conjugates and the high-accuracy MS analysis. Seventy-five MBPs from normal donors' sera and 79 MBPs from hepatocellular carcinoma patients' sera were identified and annotated. By using the stringent criteria of exponentially modified protein abundance index (emPAI) quantification, 12 MBPs were estimated to be significantly upregulated (emPAI ratio > 4) and nine MBPs were estimated to be significantly downregulated (emPAI ratio < 0.25) in the hepatocellular carcinoma sera. Real-time quantitative PCR, Western blotting, and protein microarrays were also used to confirm the altered MBPs expression level and the specific binding between the isolated MBPs and mannose. The sequence recognition motifs and structure preference of the isolated MBPs were characterized. The functional enrichment analysis revealed that over 57% of the isolated MBPs were binding protein and the upregulated MBPs were involved in cell death, tumor progression, and macromolecular complex remodeling.
Collapse
Affiliation(s)
- Ganglong Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
MicroRNA target prediction and validation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:39-53. [PMID: 23377967 DOI: 10.1007/978-94-007-5590-1_3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The accurate prediction and validation of microRNA targets is essential to understanding the function of microRNAs. Computational predictions indicate that all human genes may be regulated by microRNAs, with each microRNA possibly targeting thousands of genes. Here we discuss computational and experimental methods for identifying mammalian microRNA targets. We describe microRNA target prediction resources and procedures that are suitable for experiments where more accurate prediction of microRNA targets is more important than detecting all putative targets. We then discuss experimental methods for identifying and validating microRNA target genes, with an emphasis on the target reporter assay as the method of choice for specifically testing functional microRNA target sites.
Collapse
|
42
|
Schmitz U, Wolkenhauer O. Web resources for microRNA research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:225-50. [PMID: 23377976 DOI: 10.1007/978-94-007-5590-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last decade thousands of microRNAs (miRNAs) have been discovered in all kinds of taxa. The ever growing number of identified miRNA genes required ordered cataloging and annotation. This has led to the development of miRNA web resources.MiRNA web resources can be referred to either as web accessible databases (repositories) or web applications that provide a defined computational task upon user request. Today, more than three dozen web accessible resources exist that gather, organize and annotate all kinds of miRNA related data. According to the type of data or data processing method, these miRNA web resources can be classified as miRNA sequence and annotation databases, resources and tools for predicted as well as experimentally validated targets, databases of miRNA regulation and expression, functional annotation and mapping databases and a number of other tools and resources that are species-specific or focus on particular phenotypes.This chapter provides an overview of the different types of miRNA web resources and their purpose and gives some examples for each category. Furthermore, some valuable miRNA web applications will be introduced. Finally, strategies for miRNA data retrieval and associated risks and pitfalls will be discussed.
Collapse
Affiliation(s)
- Ulf Schmitz
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| | | |
Collapse
|
43
|
Huang TC, Pinto SM, Pandey A. Proteomics for understanding miRNA biology. Proteomics 2012; 13:558-67. [PMID: 23125164 DOI: 10.1002/pmic.201200339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional regulation of gene expression. Mature miRNAs associate with the RNA interference silencing complex to repress mRNA translation and/or degrade mRNA transcripts. Mass spectrometry-based proteomics has enabled identification of several core components of the canonical miRNA processing pathway and their posttranslational modifications which are pivotal in miRNA regulatory mechanisms. The use of quantitative proteomic strategies has also emerged as a key technique for experimental identification of miRNA targets by allowing direct determination of proteins whose levels are altered because of translational suppression. This review focuses on the role of proteomics and labeling strategies to understand miRNA biology.
Collapse
Affiliation(s)
- Tai-Chung Huang
- Department of Biological Chemistry, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
44
|
Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc Natl Acad Sci U S A 2012; 109:15395-400. [PMID: 22949669 DOI: 10.1073/pnas.1204366109] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensitive detection of low-abundance proteins in complex biological samples has typically been achieved by immunoassays that use antibodies specific to target proteins; however, de novo development of antibodies is associated with high costs, long development lead times, and high failure rates. To address these challenges, we developed an antibody-free strategy that involves PRISM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing) for sensitive selected reaction monitoring (SRM)-based targeted protein quantification. The strategy capitalizes on high-resolution reversed-phase liquid chromatographic separations for analyte enrichment, intelligent selection of target fractions via on-line SRM monitoring of internal standards, and fraction multiplexing before nano-liquid chromatography-SRM quantification. Application of this strategy to human plasma/serum demonstrated accurate and reproducible quantification of proteins at concentrations in the 50-100 pg/mL range, which represents a major advance in the sensitivity of targeted protein quantification without the need for specific-affinity reagents. Application to a set of clinical serum samples illustrated an excellent correlation between the results obtained from the PRISM-SRM assay and those from clinical immunoassay for the prostate-specific antigen level.
Collapse
|
45
|
McCoy KB, Derecho I, Wong T, Tran HM, Huynh TD, La Duc MT, Venkateswaran K, Mogul R. Insights into the extremotolerance of Acinetobacter radioresistens 50v1, a gram-negative bacterium isolated from the Mars Odyssey spacecraft. ASTROBIOLOGY 2012; 12:854-862. [PMID: 22917036 DOI: 10.1089/ast.2012.0835] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The microbiology of the spacecraft assembly process is of paramount importance to planetary exploration, as the biological contamination that can result from remote-enabled spacecraft carries the potential to impact both life-detection experiments and extraterrestrial evolution. Accordingly, insights into the mechanisms and range of extremotolerance of Acinetobacter radioresistens 50v1, a Gram-negative bacterium isolated from the surface of the preflight Mars Odyssey orbiter, were gained by using a combination of microbiological, enzymatic, and proteomic methods. In summary, A. radioresistens 50v1 displayed a remarkable range of survival against hydrogen peroxide and the sequential exposures of desiccation, vapor and plasma phase hydrogen peroxide, and ultraviolet irradiation. The survival is among the highest reported for non-spore-forming and Gram-negative bacteria and is based upon contributions from the enzyme-based degradation of H(2)O(2) (catalase and alkyl hydroperoxide reductase), energy management (ATP synthase and alcohol dehydrogenase), and modulation of the membrane composition. Together, the biochemical and survival features of A. radioresistens 50v1 support a potential persistence on Mars (given an unintended or planned surface landing of the Mars Odyssey orbiter), which in turn may compromise the scientific integrity of future life-detection missions.
Collapse
Affiliation(s)
- K B McCoy
- California State Polytechnic University, Pomona, California 91768, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bargaje R, Gupta S, Sarkeshik A, Park R, Xu T, Sarkar M, Halimani M, Roy SS, Yates J, Pillai B. Identification of novel targets for miR-29a using miRNA proteomics. PLoS One 2012; 7:e43243. [PMID: 22952654 PMCID: PMC3428309 DOI: 10.1371/journal.pone.0043243] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/18/2012] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are short regulatory RNA molecules that interfere with the expression of target mRNA by binding to complementary sequences. Currently, the most common method for identification of targets of miRNAs is computational prediction based on free energy change calculations, target site accessibility and conservation. Such algorithms predict hundreds of targets for each miRNA, necessitating tedious experimentation to identify the few functional targets. Here we explore the utility of miRNA-proteomics as an approach to identifying functional miRNA targets. We used Stable Isotope Labeling by amino acids in cell culture (SILAC) based proteomics to detect differences in protein expression induced by the over-expression of miR-34a and miR-29a. Over-expression of miR-29a, a miRNA expressed in the brain and in cells of the blood lineage, resulted in the differential expression of a set of proteins. Gene Ontology based classification showed that a significant sub-set of these targets, including Voltage Dependent Anion Channel 1 and 2 (VDAC1 and VDAC2) and ATP synthetase, were mitochondrial proteins involved in apoptosis. Using reporter assays, we established that miR-29a targets the 3′ Untranslated Regions (3′ UTR) of VDAC1 and VDAC2. However, due to the limited number of proteins identified using this approach and the inability to differentiate between primary and secondary effects we conclude that miRNA-proteomics is of limited utility as a high-throughput alternative for sensitive and unbiased miRNA target identification. However, this approach was valuable for rapid assessment of the impact of the miRNAs on the cellular proteome and its biological role in apoptosis.
Collapse
Affiliation(s)
- Rhishikesh Bargaje
- Functional Genomics Unit, Council of Scientific Industrial Research - Institute of Genomics and Integrative Biology, Delhi, India
| | - Shivani Gupta
- Functional Genomics Unit, Council of Scientific Industrial Research - Institute of Genomics and Integrative Biology, Delhi, India
| | - Ali Sarkeshik
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Robin Park
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tao Xu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Maharnob Sarkar
- Functional Genomics Unit, Council of Scientific Industrial Research - Institute of Genomics and Integrative Biology, Delhi, India
| | - Mahantappa Halimani
- Functional Genomics Unit, Council of Scientific Industrial Research - Institute of Genomics and Integrative Biology, Delhi, India
| | - Soumya Sinha Roy
- Functional Genomics Unit, Council of Scientific Industrial Research - Institute of Genomics and Integrative Biology, Delhi, India
| | - John Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (JY); (BP)
| | - Beena Pillai
- Functional Genomics Unit, Council of Scientific Industrial Research - Institute of Genomics and Integrative Biology, Delhi, India
- * E-mail: (JY); (BP)
| |
Collapse
|
47
|
Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W. Targeted proteomics for quantification of histone acetylation in Alzheimer's disease. Proteomics 2012; 12:1261-8. [PMID: 22577027 DOI: 10.1002/pmic.201200010] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The epigenetic remodeling of chromatin histone proteins by acetylation has been the subject of recent investigations searching for biomarkers indicative of late onset cognitive loss. Histone acetylations affect the regulation of gene transcription, and the loss of learning induced deacetylation at specific histone sites may represent biomarkers for memory loss and Alzheimer's disease (AD). Selected-reaction-monitoring (SRM) has recently been advanced to quantitate peptides and proteins in complex biological systems. In this paper, we provide evidence that SRM-based targeted proteomics can reliably quantify specific histone acetylations in both AD and control brain by identifying the patterns of H3 K18/K23 acetylations Results of targeted proteomics assays have been validated by Western blot (WB) analysis. As compared with LC-MS/MS-TMT (tandem-mass-tagging) and WB methods, the targeted proteomics method has shown higher throughput, and therefore promised to be more suitable for clinical applications. With this methodology, we find that histone acetylation is significantly lower in AD temporal lobe than found in aged controls. Targeted proteomics warrants increased application for studying epigenetics of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Zhu YP, Xue W, Wang JT, Wan YM, Wang SL, Xu P, Zhang Y, Li JT, Sun XW. Identification of common carp (Cyprinus carpio) microRNAs and microRNA-related SNPs. BMC Genomics 2012; 13:413. [PMID: 22908890 PMCID: PMC3478155 DOI: 10.1186/1471-2164-13-413] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 08/09/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) exist pervasively across viruses, plants and animals and play important roles in the post-transcriptional regulation of genes. In the common carp, miRNA targets have not been investigated. In model species, single-nucleotide polymorphisms (SNPs) have been reported to impair or enhance miRNA regulation as well as to alter miRNA biogenesis. SNPs are often associated with diseases or traits. To date, no studies into the effects of SNPs on miRNA biogenesis and regulation in the common carp have been reported. RESULTS Using homology-based prediction combined with small RNA sequencing, we have identified 113 common carp mature miRNAs, including 92 conserved miRNAs and 21 common carp specific miRNAs. The conserved miRNAs had significantly higher expression levels than the specific miRNAs. The miRNAs were clustered into three phylogenetic groups. Totally 394 potential miRNA binding sites in 206 target mRNAs were predicted for 83 miRNAs. We identified 13 SNPs in the miRNA precursors. Among them, nine SNPs had the potential to either increase or decrease the energy of the predicted secondary structures of the precursors. Further, two SNPs in the 3' untranslated regions of target genes were predicted to either disturb or create miRNA-target interactions. CONCLUSIONS The common carp miRNAs and their target genes reported here will help further our understanding of the role of miRNAs in gene regulation. The analysis of the miRNA-related SNPs and their effects provided insights into the effects of SNPs on miRNA biogenesis and function. The resource data generated in this study will help advance the study of miRNA function and phenotype-associated miRNA identification.
Collapse
Affiliation(s)
- Ya-Ping Zhu
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Xue
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jin-Tu Wang
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu-Mei Wan
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Shao-Lin Wang
- Department of Psychiatry and Neurobiology Science, University of Virginia, Charlottesville, VA, 22911, USA
| | - Peng Xu
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yan Zhang
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jiong-Tang Li
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Xiao-Wen Sun
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| |
Collapse
|
49
|
Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 2012; 9:555-66. [PMID: 22669653 DOI: 10.1038/nmeth.2015] [Citation(s) in RCA: 960] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that is emerging in the field of proteomics as a complement to untargeted shotgun methods. SRM is particularly useful when predetermined sets of proteins, such as those constituting cellular networks or sets of candidate biomarkers, need to be measured across multiple samples in a consistent, reproducible and quantitatively precise manner. Here we describe how SRM is applied in proteomics, review recent advances, present selected applications and provide a perspective on the future of this powerful technology.
Collapse
Affiliation(s)
- Paola Picotti
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland.
| | | |
Collapse
|
50
|
Maiolica A, Jünger MA, Ezkurdia I, Aebersold R. Targeted proteome investigation via selected reaction monitoring mass spectrometry. J Proteomics 2012; 75:3495-513. [PMID: 22579752 DOI: 10.1016/j.jprot.2012.04.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/27/2012] [Accepted: 04/29/2012] [Indexed: 12/20/2022]
Abstract
Due to the enormous complexity of proteomes which constitute the entirety of protein species expressed by a certain cell or tissue, proteome-wide studies performed in discovery mode are still limited in their ability to reproducibly identify and quantify all proteins present in complex biological samples. Therefore, the targeted analysis of informative subsets of the proteome has been beneficial to generate reproducible data sets across multiple samples. Here we review the repertoire of antibody- and mass spectrometry (MS) -based analytical tools which is currently available for the directed analysis of predefined sets of proteins. The topics of emphasis for this review are Selected Reaction Monitoring (SRM) mass spectrometry, emerging tools to control error rates in targeted proteomic experiments, and some representative examples of applications. The ability to cost- and time-efficiently generate specific and quantitative assays for large numbers of proteins and posttranslational modifications has the potential to greatly expand the range of targeted proteomic coverage in biological studies. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Alessio Maiolica
- Department of Biology, Institute of Molecular Systems Biology, Zurich, Switzerland
| | | | | | | |
Collapse
|