1
|
Hirabayashi S, Uyeda A, Manabe I, Yonezu Y, Saito T, Saido TC, Misawa H, Ogasawara Y, Kinoshita K, Muramatsu R. CCN1 derived from vascular endothelial cells impairs cognitive function in Alzheimer's disease model mice. J Pharmacol Sci 2025; 157:146-155. [PMID: 39929589 DOI: 10.1016/j.jphs.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 05/08/2025] Open
Abstract
Vascular endothelial cell-expressing molecules regulate neuronal function. Although cerebrovascular dysregulation is a hallmark of Alzheimer's disease (AD), the effect of changes in molecular expression on neuronal function in vascular endothelial cells during disease progression is not clear. In this study, we demonstrated that the cellular communication network factor 1 (CCN1), which is highly expressed in vascular endothelial cells during the chronic stage of AD in mice, is involved in the impairment of cognitive function. Vascular endothelial cells isolated from the brains of AppNL-G-F mice show differential expression of genes, including CCN1. CCN1 treatment decreased the synaptic number in cultured hippocampal cells, with changes in the expression of genes associated with morphological changes. In vivo, AppNL-G-F mice with CCN1 silencing in vascular endothelial cells demonstrated high spine density and improved spatial learning. No significant change was observed in the number of microglia/macrophages, astrocytes, and amyloid-beta (Aβ) accumulation in the hippocampus of the mice. These results suggest that CCN1 is a key factor modulating neurological dysfunction through neurovascular interactions.
Collapse
Affiliation(s)
- Shuntaro Hirabayashi
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Analytical Biochemistry, Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan; Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshino Yonezu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Hidemi Misawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| | - Kaoru Kinoshita
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
2
|
Jabłońska J, Wiera G, Mozrzymas JW. Extracellular matrix integrity regulates GABAergic plasticity in the hippocampus. Matrix Biol 2024; 134:184-196. [PMID: 39491759 DOI: 10.1016/j.matbio.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The brain's extracellular matrix (ECM) is crucial for neural circuit functionality, synaptic plasticity, and learning. While the role of the ECM in excitatory synapses has been extensively studied, its influence on inhibitory synapses, particularly on GABAergic long-term plasticity, remains poorly understood. This study aims to elucidate the effects of ECM components on inhibitory synaptic transmission and plasticity in the hippocampal CA1 region. We focus on the roles of chondroitin sulfate proteoglycans (CSPGs) and hyaluronic acid in modulating inhibitory postsynaptic currents (IPSCs) at two distinct inhibitory synapses formed by somatostatin (SST)-positive and parvalbumin (PV)-positive interneurons onto pyramidal cells (PCs). Using optogenetic stimulation in brain slices, we observed that acute degradation of ECM constituents by hyaluronidase or chondroitinase-ABC did not affect basal inhibitory synaptic transmission. However, short-term plasticity, particularly burst-induced depression, was enhanced at PV→PC synapses following enzymatic treatments. Long-term plasticity experiments demonstrated that CSPGs are essential for NMDA-induced iLTP at SST→PC synapses, whereas the digestion of hyaluronic acid by hyaluronidase impaired iLTP at PV→PC synapses. This indicates a synapse-specific role of CSPGs and hyaluronic acid in regulating GABAergic plasticity. Additionally, we report the presence of cryptic GABAergic plasticity at PV→PC synapses induced by prolonged NMDA application, which became evident after CSPG digestion and was absent under control conditions. Our results underscore the differential impact of ECM degradation on inhibitory synaptic plasticity, highlighting the synapse-specific interplay between ECM components and specific GABAergic synapses. This offers new perspectives in studies on learning and critical period timing.
Collapse
Affiliation(s)
- Jadwiga Jabłońska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland
| | - Grzegorz Wiera
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland.
| | - Jerzy W Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland.
| |
Collapse
|
3
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
4
|
Brzdąk P, Lebida K, Wyroślak M, Mozrzymas JW. GABAergic synapses onto SST and PV interneurons in the CA1 hippocampal region show cell-specific and integrin-dependent plasticity. Sci Rep 2023; 13:5079. [PMID: 36977728 PMCID: PMC10050003 DOI: 10.1038/s41598-023-31882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
It is known that GABAergic transmission onto pyramidal neurons shows different forms of plasticity. However, GABAergic cells innervate also other inhibitory interneurons and plasticity phenomena at these projections remain largely unknown. Several mechanisms underlying plastic changes, both at inhibitory and excitatory synapses, show dependence on integrins, key proteins mediating interaction between intra- and extracellular environment. We thus used hippocampal slices to address the impact of integrins on long-term plasticity of GABAergic synapses on specific inhibitory interneurons (containing parvalbumin, PV + or somatostatin, SST +) known to innervate distinct parts of principal cells. Administration of RGD sequence-containing peptide induced inhibitory long-term potentiation (iLTP) at fast-spiking (FS) PV + as well as on SST + interneurons. Interestingly, treatment with a more specific peptide GA(C)RRETAWA(C)GA (RRETAWA), affecting α5β1 integrins, resulted in iLTP in SST + and iLTD in FS PV + interneurons. Brief exposure to NMDA is known to induce iLTP at GABAergic synapses on pyramidal cells. Intriguingly, application of this protocol for considered interneurons evoked iLTP in SST + and iLTD in PV + interneurons. Moreover, we showed that in SST + cells, NMDA-evoked iLTP depends on the incorporation of GABAA receptors containing α5 subunit to the synapses, and this iLTP is occluded by RRETAWA peptide, indicating a key role of α5β1 integrins. Altogether, our results revealed that plasticity of inhibitory synapses at GABAergic cells shows interneuron-specificity and show differences in the underlying integrin-dependent mechanisms. This is the first evidence that neuronal disinhibition may be a highly plastic process depending on interneuron type and integrins' activity.
Collapse
Affiliation(s)
- Patrycja Brzdąk
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland.
| | - Katarzyna Lebida
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland.
| | - Marcin Wyroślak
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland
| |
Collapse
|
5
|
Khayenko V, Schulte C, Reis SL, Avraham O, Schietroma C, Worschech R, Nordblom NF, Kachler S, Villmann C, Heinze KG, Schlosser A, Schueler‐Furman O, Tovote P, Specht CG, Maric HM. A Versatile Synthetic Affinity Probe Reveals Inhibitory Synapse Ultrastructure and Brain Connectivity**. Angew Chem Int Ed Engl 2022; 61:e202202078. [PMID: 35421279 PMCID: PMC9400903 DOI: 10.1002/anie.202202078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/10/2022]
Abstract
Visualization of inhibitory synapses requires protocol tailoring for different sample types and imaging techniques, and usually relies on genetic manipulation or the use of antibodies that underperform in tissue immunofluorescence. Starting from an endogenous ligand of gephyrin, a universal marker of the inhibitory synapse, we developed a short peptidic binder and dimerized it, significantly increasing affinity and selectivity. We further tailored fluorophores to the binder, yielding “Sylite”—a probe with outstanding signal‐to‐background ratio that outperforms antibodies in tissue staining with rapid and efficient penetration, mitigation of staining artifacts, and simplified handling. In super‐resolution microscopy Sylite precisely localizes the inhibitory synapse and enables nanoscale measurements. Sylite profiles inhibitory inputs and synapse sizes of excitatory and inhibitory neurons in the midbrain and combined with complimentary tracing techniques reveals the synaptic connectivity.
Collapse
Affiliation(s)
- Vladimir Khayenko
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Clemens Schulte
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Sara L. Reis
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
| | - Orly Avraham
- Department of Microbiology and Molecular Genetics Institute for Medical Research Israel-Canada the Hebrew University Hadassah Medical School Jerusalem 91120 Israel
| | | | - Rafael Worschech
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Noah F. Nordblom
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Sonja Kachler
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
| | - Katrin G. Heinze
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Andreas Schlosser
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Ora Schueler‐Furman
- Department of Microbiology and Molecular Genetics Institute for Medical Research Israel-Canada the Hebrew University Hadassah Medical School Jerusalem 91120 Israel
| | - Philip Tovote
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
- Center of Mental Health University of Wuerzburg Margarete-Höppel-Platz 1 97080 Wuerzburg Germany
| | - Christian G. Specht
- Diseases and Hormones of the Nervous System (DHNS) Inserm U1195 Université Paris-Saclay 80 rue du Général Leclerc 94276 Le Kremlin-Bicêtre France
| | - Hans M. Maric
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| |
Collapse
|
6
|
González-Calvo I, Cizeron M, Bessereau JL, Selimi F. Synapse Formation and Function Across Species: Ancient Roles for CCP, CUB, and TSP-1 Structural Domains. Front Neurosci 2022; 16:866444. [PMID: 35546877 PMCID: PMC9083331 DOI: 10.3389/fnins.2022.866444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
The appearance of synapses was a crucial step in the creation of the variety of nervous systems that are found in the animal kingdom. With increased complexity of the organisms came a greater number of synaptic proteins. In this review we describe synaptic proteins that contain the structural domains CUB, CCP, or TSP-1. These domains are found in invertebrates and vertebrates, and CUB and CCP domains were initially described in proteins belonging to the complement system of innate immunity. Interestingly, they are found in synapses of the nematode C. elegans, which does not have a complement system, suggesting an ancient function. Comparison of the roles of CUB-, CCP-, and TSP-1 containing synaptic proteins in various species shows that in more complex nervous systems, these structural domains are combined with other domains and that there is partial conservation of their function. These three domains are thus basic building blocks of the synaptic architecture. Further studies of structural domains characteristic of synaptic proteins in invertebrates such as C. elegans and comparison of their role in mammals will help identify other conserved synaptic molecular building blocks. Furthermore, this type of functional comparison across species will also identify structural domains added during evolution in correlation with increased complexity, shedding light on mechanisms underlying cognition and brain diseases.
Collapse
Affiliation(s)
- Inés González-Calvo
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélissa Cizeron
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5284, INSERM U-1314, MeLiS, Institut NeuroMyoGène, Lyon, France
| | - Jean-Louis Bessereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5284, INSERM U-1314, MeLiS, Institut NeuroMyoGène, Lyon, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
7
|
Bai G, Zhang M. Inhibitory postsynaptic density from the lens of phase separation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac003. [PMID: 38596704 PMCID: PMC10913824 DOI: 10.1093/oons/kvac003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 04/11/2024]
Abstract
To faithfully transmit and decode signals released from presynaptic termini, postsynaptic compartments of neuronal synapses deploy hundreds of various proteins. In addition to distinct sets of proteins, excitatory and inhibitory postsynaptic apparatuses display very different organization features and regulatory properties. Decades of extensive studies have generated a wealth of knowledge on the molecular composition, assembly architecture and activity-dependent regulatory mechanisms of excitatory postsynaptic compartments. In comparison, our understanding of the inhibitory postsynaptic apparatus trails behind. Recent studies have demonstrated that phase separation is a new paradigm underlying the formation and plasticity of both excitatory and inhibitory postsynaptic molecular assemblies. In this review, we discuss molecular composition, organizational and regulatory features of inhibitory postsynaptic densities through the lens of the phase separation concept and in comparison with the excitatory postsynaptic densities.
Collapse
Affiliation(s)
- Guanhua Bai
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China
| |
Collapse
|
8
|
Khayenko V, Schulte C, Reis SL, Avraham O, Schietroma C, Worschech R, Nordblom NF, Kachler S, Villmann C, Heinze KG, Schlosser A, Schueler-Furman O, Tovote P, Specht CG, Maric HM. A Versatile Synthetic Affinity Probe Reveals Inhibitory Synapse Ultrastructure and Brain Connectivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vladimir Khayenko
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Josef-Schneider-Strasse. 2 97080 Würzburg GERMANY
| | - Clemens Schulte
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Josef-Schneider-Strasse. 2 97080 Würzburg GERMANY
| | - Sara L. Reis
- University Hospital Wurzburg: Universitatsklinikum Wurzburg Clinical Neurobiology Versbacherstr.5 97078 Würzburg GERMANY
| | - Orly Avraham
- The Hebrew University of Jerusalem Microbiology and Molecular Genetics ISRAEL
| | | | - Rafael Worschech
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Noah F. Nordblom
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Sonja Kachler
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Carmen Villmann
- University Hospital Wurzburg: Universitatsklinikum Wurzburg Clinical Neurobiology GERMANY
| | - Katrin G. Heinze
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Andreas Schlosser
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Rudolf Virchow Zentrum Gebäude D15Josef-Schneider-Strasse 2 97080 Würzburg GERMANY
| | - Ora Schueler-Furman
- The Hebrew University of Jerusalem Microbiology and Molecular Genetics ISRAEL
| | - Philip Tovote
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Clinical Neurobiology GERMANY
| | - Christian G. Specht
- INSERM U1195: Maladies et hormones du systeme nerveux NSERM U1195: Maladies et hormones du systeme nerveux FRANCE
| | - Hans Michael Maric
- University of Würzburg Biotechnology and Biophysics Rudolf Virchow Zentrum Gebäude D15Josef-Schneider-Strasse 2 97080 Würzburg GERMANY
| |
Collapse
|
9
|
Lopuch AJ, Swinehart BD, Widener EL, Holley ZL, Bland KM, Handwerk CJ, Brett CA, Cook HN, Kalinowski AR, Rodriguez HV, Song MI, Vidal GS. Integrin β3 in forebrain Emx1-expressing cells regulates repetitive self-grooming and sociability in mice. BMC Neurosci 2022; 23:12. [PMID: 35247972 PMCID: PMC8897866 DOI: 10.1186/s12868-022-00691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is characterized by repetitive behaviors, deficits in communication, and overall impaired social interaction. Of all the integrin subunit mutations, mutations in integrin β3 (Itgb3) may be the most closely associated with ASD. Integrin β3 is required for normal structural plasticity of dendrites and synapses specifically in excitatory cortical and hippocampal circuitry. However, the behavioral consequences of Itgb3 function in the forebrain have not been assessed. We tested the hypothesis that behaviors that are typically abnormal in ASD-such as self-grooming and sociability behaviors-are disrupted with conditional Itgb3 loss of function in forebrain circuitry in male and female mice. METHODS We generated male and female conditional knockouts (cKO) and conditional heterozygotes (cHET) of Itgb3 in excitatory neurons and glia that were derived from Emx1-expressing forebrain cells during development. We used several different assays to determine whether male and female cKO and cHET mice have repetitive self-grooming behaviors, anxiety-like behaviors, abnormal locomotion, compulsive-like behaviors, or abnormal social behaviors, when compared to male and female wildtype (WT) mice. RESULTS Our findings indicate that only self-grooming and sociability are altered in cKO, but not cHET or WT mice, suggesting that Itgb3 is specifically required in forebrain Emx1-expressing cells for normal repetitive self-grooming and social behaviors. Furthermore, in cKO (but not cHET or WT), we observed an interaction effect for sex and self-grooming environment and an interaction effect for sex and sociability test chamber. LIMITATIONS While this study demonstrated a role for forebrain Itgb3 in specific repetitive and social behaviors, it was unable to determine whether forebrain Itgb3 is required for a preference for social novelty, whether cHET are haploinsufficient with respect to repetitive self-grooming and social behaviors, or the nature of the interaction effect for sex and environment/chamber in affected behaviors of cKO. CONCLUSIONS Together, these findings strengthen the idea that Itgb3 has a specific role in shaping forebrain circuitry that is relevant to endophenotypes of autism spectrum disorder.
Collapse
Affiliation(s)
- Andrew J Lopuch
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Brian D Swinehart
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Eden L Widener
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Z Logan Holley
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Katherine M Bland
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Christopher J Handwerk
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Cooper A Brett
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Hollyn N Cook
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Anna R Kalinowski
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Hilda V Rodriguez
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - M Irene Song
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - George S Vidal
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA.
| |
Collapse
|
10
|
Pelucchi S, Gardoni F, Di Luca M, Marcello E. Synaptic dysfunction in early phases of Alzheimer's Disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:417-438. [PMID: 35034752 DOI: 10.1016/b978-0-12-819410-2.00022-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synapse is the locus of plasticity where short-term alterations in synaptic strength are converted to long-lasting memories. In addition to the presynaptic terminal and the postsynaptic compartment, a more holistic view of the synapse includes the astrocytes and the extracellular matrix to form a tetrapartite synapse. All these four elements contribute to synapse health and are crucial for synaptic plasticity events and, thereby, for learning and memory processes. Synaptic dysfunction is a common pathogenic trait of several brain disorders. In Alzheimer's Disease, the degeneration of synapses can be detected at the early stages of pathology progression before neuronal degeneration, supporting the hypothesis that synaptic failure is a major determinant of the disease. The synapse is the place where amyloid-β peptides are generated and is the target of the toxic amyloid-β oligomers. All the elements constituting the tetrapartite synapse are altered in Alzheimer's Disease and can synergistically contribute to synaptic dysfunction. Moreover, the two main hallmarks of Alzheimer's Disease, i.e., amyloid-β and tau, act in concert to cause synaptic deficits. Deciphering the mechanisms underlying synaptic dysfunction is relevant for the development of the next-generation therapeutic strategies aimed at modifying the disease progression.
Collapse
Affiliation(s)
- Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
11
|
Cadherin-13 is a critical regulator of GABAergic modulation in human stem-cell-derived neuronal networks. Mol Psychiatry 2022; 27:1-18. [PMID: 33972691 PMCID: PMC8960401 DOI: 10.1038/s41380-021-01117-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Activity in the healthy brain relies on a concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders; however, obtaining mechanistic insight into these disruptions, with translational value for the patient, has typically been hampered by methodological limitations. Cadherin-13 (CDH13) has been associated with autism and attention-deficit/hyperactivity disorder. CDH13 localizes at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human-induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and MEF2C (PV-precursor marker protein) expressing GABAergic neurons (iGABA) in vitro, and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13 deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-β1 and Integrin-β3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type-specific contribution of disease genes to the E/I balance.
Collapse
|
12
|
Ste20-like Kinase Is Critical for Inhibitory Synapse Maintenance and Its Deficiency Confers a Developmental Dendritopathy. J Neurosci 2021; 41:8111-8125. [PMID: 34400520 DOI: 10.1523/jneurosci.0352-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. However, its function in neurons is unknown. We show that, during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ third-order dendrites both in male and in female mice. Moreover, we demonstrate that SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown caused a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, whereas excitatory neurotransmission was unaffected. Finally, we show that this mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations revealed significant loss of SLK expression. Overall, the present data identify SLK as a key regulator of both dendritic complexity during development and inhibitory synapse maintenance.SIGNIFICANCE STATEMENT We show that dysmorphic neurons of human epileptogenic brain lesions have decreased levels of the Ste20-like kinase (SLK). Decreasing SLK expression in mouse neurons revealed that SLK has essential functions in forming the neuronal dendritic tree and in maintaining inhibitory connections with neighboring neurons.
Collapse
|
13
|
Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses. Cells 2021; 10:cells10082055. [PMID: 34440823 PMCID: PMC8391609 DOI: 10.3390/cells10082055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Long-term synaptic plasticity is shaped by the controlled reorganization of the synaptic proteome. A key component of this process is local proteolysis performed by the family of extracellular matrix metalloproteinases (MMPs). In recent years, considerable progress was achieved in identifying extracellular proteases involved in neuroplasticity phenomena and their protein substrates. Perisynaptic metalloproteinases regulate plastic changes at synapses through the processing of extracellular and membrane proteins. MMP9 was found to play a crucial role in excitatory synapses by controlling the NMDA-dependent LTP component. In addition, MMP3 regulates the L-type calcium channel-dependent form of LTP as well as the plasticity of neuronal excitability. Both MMP9 and MMP3 were implicated in memory and learning. Moreover, altered expression or mutations of different MMPs are associated with learning deficits and psychiatric disorders, including schizophrenia, addiction, or stress response. Contrary to excitatory drive, the investigation into the role of extracellular proteolysis in inhibitory synapses is only just beginning. Herein, we review the principal mechanisms of MMP involvement in the plasticity of excitatory transmission and the recently discovered role of proteolysis in inhibitory synapses. We discuss how different matrix metalloproteinases shape dynamics and turnover of synaptic adhesome and signal transduction pathways in neurons. Finally, we discuss future challenges in exploring synapse- and plasticity-specific functions of different metalloproteinases.
Collapse
|
14
|
Jaudon F, Thalhammer A, Cingolani LA. Integrin adhesion in brain assembly: From molecular structure to neuropsychiatric disorders. Eur J Neurosci 2020; 53:3831-3850. [PMID: 32531845 DOI: 10.1111/ejn.14859] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Integrins are extracellular matrix receptors that mediate biochemical and mechanical bi-directional signals between the extracellular and intracellular environment of a cell thanks to allosteric conformational changes. In the brain, they are found in both neurons and glial cells, where they play essential roles in several aspects of brain development and function, such as cell migration, axon guidance, synaptogenesis, synaptic plasticity and neuro-inflammation. Although there are many successful examples of how regulating integrin adhesion and signaling can be used for therapeutic purposes, for example for halting tumor progression, this is not the case for the brain, where the growing evidence of the importance of integrins for brain pathophysiology has not translated yet into medical applications. Here, we review recent literature showing how alterations in integrin structure, expression and signaling may be involved in the etiology of autism spectrum disorder, epilepsy, schizophrenia, addiction, depression and Alzheimer's disease. We focus on common mechanisms and recurrent signaling pathways, trying to bridge studies on the genetics and molecular structure of integrins with those on synaptic physiology and brain pathology. Further, we discuss integrin-targeting strategies and their potential benefits for therapeutic purposes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
15
|
Maynard SA, Triller A. Inhibitory Receptor Diffusion Dynamics. Front Mol Neurosci 2019; 12:313. [PMID: 31920541 PMCID: PMC6930922 DOI: 10.3389/fnmol.2019.00313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
The dynamic modulation of receptor diffusion-trapping at inhibitory synapses is crucial to synaptic transmission, stability, and plasticity. In this review article, we will outline the progression of understanding of receptor diffusion dynamics at the plasma membrane. We will discuss how regulation of reversible trapping of receptor-scaffold interactions in combination with theoretical modeling approaches can be used to quantify these chemical interactions at the postsynapse of living cells.
Collapse
Affiliation(s)
- Stephanie A Maynard
- Institute of Biology of Ecole Normale Supérieure (IBENS), PSL Research University, CNRS, Inserm, Paris, France
| | - Antoine Triller
- Institute of Biology of Ecole Normale Supérieure (IBENS), PSL Research University, CNRS, Inserm, Paris, France
| |
Collapse
|
16
|
Phosphorylation of Gephyrin in Zebrafish Mauthner Cells Governs Glycine Receptor Clustering and Behavioral Desensitization to Sound. J Neurosci 2019; 39:8988-8997. [PMID: 31558619 DOI: 10.1523/jneurosci.1315-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/01/2023] Open
Abstract
The process by which future behavioral responses are shaped by past experiences is one of the central questions in neuroscience. To gain insight into this process at the molecular and cellular levels, we have applied zebrafish larvae to explore behavioral desensitization to sound. A sudden loud noise often evokes a defensive response known as the acoustic startle response (ASR), which is triggered by firing Mauthner cells in teleosts and amphibians. The probability of evoking ASR by suprathreshold sound is reduced after exposure to repetitive auditory stimuli insufficient in amplitude to evoke the ASR (subthreshold). Although it has been suggested that the potentiation of inhibitory glycinergic inputs into Mauthner cell is involved in this desensitization of the ASR, the molecular basis for the potentiation of glycinergic transmission has been unclear. Through the in vivo monitoring of fluorescently-tagged glycine receptors (GlyRs), we here showed that behavioral desensitization to sound in zebrafish is governed by GlyR clustering in Mauthner cells. We further revealed that CaMKII-dependent phosphorylation of the scaffolding protein gephyrin at serine 325 promoted the synaptic accumulation of GlyR on Mauthner neurons through the enhancement of the gephyrin-GlyR binding, which was indispensable for and could induce desensitization of the ASR. Our study demonstrates an essential molecular and cellular basis of sound-induced receptor dynamics and thus of behavioral desensitization to sound.SIGNIFICANCE STATEMENT Behavioral desensitization in the acoustic startle response of fish is known to involve the potentiation of inhibitory glycinergic input to the Mauthner cell, which is a command neuron for the acoustic startle response. However, the molecular and cellular basis for this potentiation has been unknown. Here we show that an increase in glycine receptor (GlyR) clustering at synaptic sites on zebrafish Mauthner cells is indispensable for and could induce desensitization. Furthermore, we demonstrate that CaMKII-mediated phosphorylation of the scaffolding protein gephyrin promotes GlyR clustering by increasing the binding between the β-loop of GlyRs and gephyrin. Thus, the phosphorylation of gephyrin is a key event which accounts for the potentiation of inhibitory glycinergic inputs observed during sound-evoked behavioral desensitization.
Collapse
|
17
|
Kloc ML, Pradier B, Chirila AM, Kauer JA. NMDA receptor activation induces long-term potentiation of glycine synapses. PLoS One 2019; 14:e0222066. [PMID: 31498817 PMCID: PMC6733442 DOI: 10.1371/journal.pone.0222066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 01/12/2023] Open
Abstract
Of the fast ionotropic synapses, glycinergic synapses are the least well understood, but are vital for the maintenance of inhibitory signaling in the brain and spinal cord. Glycinergic signaling comprises half of the inhibitory signaling in the spinal cord, and glycinergic synapses are likely to regulate local nociceptive processing as well as the transmission to the brain of peripheral nociceptive information. Here we have investigated the rapid and prolonged potentiation of glycinergic synapses in the superficial dorsal horn of young male and female mice after brief activation of NMDA receptors (NMDARs). Glycinergic inhibitory postsynaptic currents (IPSCs) evoked with lamina II-III stimulation in identified GABAergic neurons in lamina II were potentiated by bath-applied Zn2+ and were depressed by the prostaglandin PGE2, consistent with the presence of both GlyRα1- and GlyRα3-containing receptors. NMDA application rapidly potentiated synaptic glycinergic currents. Whole-cell currents evoked by exogenous glycine were also readily potentiated by NMDA, indicating that the potentiation results from altered numbers or conductance of postsynaptic glycine receptors. Repetitive depolarization alone of the postsynaptic GABAergic neuron also potentiated glycinergic synapses, and intracellular EGTA prevented both NMDA-induced and depolarization-induced potentiation of glycinergic IPSCs. Optogenetic activation of trpv1 lineage afferents also triggered NMDAR-dependent potentiation of glycinergic synapses. Our results suggest that during peripheral injury or inflammation, nociceptor firing during injury is likely to potentiate glycinergic synapses on GABAergic neurons. This disinhibition mechanism may be engaged rapidly, altering dorsal horn circuitry to promote the transmission of nociceptive information to the brain.
Collapse
Affiliation(s)
- Michelle L. Kloc
- Dept. of Pharmacology, Physiology and Biotechnology, Brown Institute for Brain Science, Brown University, Providence, RI, United States of America
| | - Bruno Pradier
- Dept. of Pharmacology, Physiology and Biotechnology, Brown Institute for Brain Science, Brown University, Providence, RI, United States of America
| | - Anda M. Chirila
- Dept. of Pharmacology, Physiology and Biotechnology, Brown Institute for Brain Science, Brown University, Providence, RI, United States of America
| | - Julie A. Kauer
- Dept. of Pharmacology, Physiology and Biotechnology, Brown Institute for Brain Science, Brown University, Providence, RI, United States of America
- * E-mail: ,
| |
Collapse
|
18
|
Abstract
In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
19
|
Calvez M, Hseeh G, Benzer S, Brown AM. Osteopontin counters human immunodeficiency virus type 1-induced impairment of neurite growth through mammalian target of rapamycin and beta-integrin signaling pathways. J Neurovirol 2019; 25:384-396. [PMID: 30758811 PMCID: PMC6647884 DOI: 10.1007/s13365-019-00729-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
Despite the fact that human immunodeficiency virus type 1 (HIV-1) does not enter or replicate in neurons, its infection of a subset of resident brain glia cells (microglia and astrocytes) induces via disparate mechanisms, dysregulation of glutamate metabolism, neurotoxicity, and inflammation. Antiretroviral therapies suppress viral load, but cellular activation and release of proinflammatory factors, some of which is likely related to viral reservoirs, continue to promote a microenvironment that is injurious to neurons. However, the molecular mechanisms remain to be identified. Osteopontin (OPN) is a proinflammatory cytokine-like, extracellular matrix protein that is elevated within the brain and CSF in several neurodegenerative disorders, including HIV-associated cognitive disorder. However, the impact of elevated OPN on neuronal integrity and function in HIV-infected individuals who exhibit cognitive dysfunction remains unknown. In this study, using a neuronal cell line and primary cultures of cortical rat neurons, we identify the mammalian target of rapamycin pathway involvement in a signaling interaction between OPN-β1-integrins and the HIV-1 envelope glycoprotein, which stimulates neurite growth. These findings link for the first time HIV X4-envelope receptor engagement and osteopontin-mediated signaling through β1-integrin receptors to the mTOR pathway and alterations in the cytoskeleton of cortical neurons.
Collapse
Affiliation(s)
- Mathilde Calvez
- Department of Biology, Ecole Normale Superieure de Lyon, Lyon, France
| | - George Hseeh
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA
| | - Simon Benzer
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA
| | - Amanda M Brown
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA.
| |
Collapse
|
20
|
Abstract
The formation of correct synaptic structures and neuronal connections is paramount for normal brain development and a functioning adult brain. The integrin family of cell adhesion receptors and their ligands play essential roles in the control of several processes regulating neuronal connectivity - including neurite outgrowth, the formation and maintenance of synapses, and synaptic plasticity - that are affected in neurodevelopmental disorders, such as autism spectrum disorders (ASDs) and schizophrenia. Many ASD- and schizophrenia-associated genes are linked to alterations in the genetic code of integrins and associated signalling pathways. In non-neuronal cells, crosstalk between integrin-mediated adhesions and the actin cytoskeleton, and the regulation of integrin activity (affinity for extracellular ligands) are widely studied in healthy and pathological settings. In contrast, the roles of integrin-linked pathways in the central nervous system remains less well defined. In this Review, we will provide an overview of the known pathways that are regulated by integrin-ECM interaction in developing neurons and in adult brain. We will also describe recent advances in the identification of mechanisms that regulate integrin activity in neurons, and highlight the interesting emerging links between integrins and neurodevelopment.
Collapse
Affiliation(s)
- Johanna Lilja
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland .,Department of Biochemistry, University of Turku, FIN-20500 Turku, Finland
| |
Collapse
|
21
|
Ferrer-Ferrer M, Dityatev A. Shaping Synapses by the Neural Extracellular Matrix. Front Neuroanat 2018; 12:40. [PMID: 29867379 PMCID: PMC5962695 DOI: 10.3389/fnana.2018.00040] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM) for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i) synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs), neuronal pentraxins (NPs) and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii) maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii) regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.
Collapse
Affiliation(s)
- Maura Ferrer-Ferrer
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
22
|
Winters BD, Golding NL. Glycinergic Inhibitory Plasticity in Binaural Neurons Is Cumulative and Gated by Developmental Changes in Action Potential Backpropagation. Neuron 2018; 98:166-178.e2. [PMID: 29576388 PMCID: PMC5886803 DOI: 10.1016/j.neuron.2018.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/09/2018] [Accepted: 02/28/2018] [Indexed: 11/20/2022]
Abstract
Utilization of timing-based sound localization cues by neurons in the medial superior olive (MSO) depends critically on glycinergic inhibitory inputs. After hearing onset, the strength and subcellular location of these inhibitory inputs are dramatically altered, but the cellular processes underlying this experience-dependent refinement are unknown. Here we reveal a form of inhibitory long-term potentiation (iLTP) in MSO neurons that is dependent on spiking and synaptic activation but is not affected by their fine-scale relative timing at higher frequencies prevalent in auditory circuits. We find that iLTP reinforces inhibitory inputs coactive with binaural excitation in a cumulative manner, likely well suited for networks featuring persistent high-frequency activity. We also show that a steep drop in action potential size and backpropagation limits induction of iLTP to the first 2 weeks of hearing. These intrinsic changes would deprive more distal inhibitory synapses of reinforcement, conceivably establishing the mature, soma-biased pattern of inhibition.
Collapse
Affiliation(s)
- Bradley D Winters
- The University of Texas at Austin, Department of Neuroscience and Center for Learning and Memory, 1 University Station C7000, Austin TX 78712-0248, USA
| | - Nace L Golding
- The University of Texas at Austin, Department of Neuroscience and Center for Learning and Memory, 1 University Station C7000, Austin TX 78712-0248, USA.
| |
Collapse
|
23
|
Chelini G, Pantazopoulos H, Durning P, Berretta S. The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia. Eur Psychiatry 2018; 50:60-69. [PMID: 29503098 PMCID: PMC5963512 DOI: 10.1016/j.eurpsy.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Growing evidence points to synaptic pathology as a core component of the pathophysiology of schizophrenia (SZ). Significant reductions of dendritic spine density and altered expression of their structural and molecular components have been reported in several brain regions, suggesting a deficit of synaptic plasticity. Regulation of synaptic plasticity is a complex process, one that requires not only interactions between pre- and post-synaptic terminals, but also glial cells and the extracellular matrix (ECM). Together, these elements are referred to as the ‘tetrapartite synapse’, an emerging concept supported by accumulating evidence for a role of glial cells and the extracellular matrix in regulating structural and functional aspects of synaptic plasticity. In particular, chondroitin sulfate proteoglycans (CSPGs), one of the main components of the ECM, have been shown to be synthesized predominantly by glial cells, to form organized perisynaptic aggregates known as perineuronal nets (PNNs), and to modulate synaptic signaling and plasticity during postnatal development and adulthood. Notably, recent findings from our group and others have shown marked CSPG abnormalities in several brain regions of people with SZ. These abnormalities were found to affect specialized ECM structures, including PNNs, as well as glial cells expressing the corresponding CSPGs. The purpose of this review is to bring forth the hypothesis that synaptic pathology in SZ arises from a disruption of the interactions between elements of the tetrapartite synapse.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA.
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Ave., Boston, MA, 02115 USA.
| |
Collapse
|
24
|
Activity-Dependent Inhibitory Synapse Scaling Is Determined by Gephyrin Phosphorylation and Subsequent Regulation of GABA A Receptor Diffusion. eNeuro 2018; 5:eN-NWR-0203-17. [PMID: 29379879 PMCID: PMC5780843 DOI: 10.1523/eneuro.0203-17.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Synaptic plasticity relies on the rapid changes in neurotransmitter receptor number at postsynaptic sites. Using superresolution photoactivatable localization microscopy imaging and quantum dot-based single-particle tracking in rat hippocampal cultured neurons, we investigated whether the phosphorylation status of the main scaffolding protein gephyrin influenced the organization of the gephyrin scaffold and GABAA receptor (GABAAR) membrane dynamics. We found that gephyrin phosphorylation regulates gephyrin microdomain compaction. Extracellular signal-regulated kinase 1/2 and glycogen synthase kinase 3β (GSK3β) signaling alter the gephyrin scaffold mesh differentially. Differences in scaffold organization similarly affected the diffusion of synaptic GABAARs, suggesting reduced gephyrin receptor-binding properties. In the context of synaptic scaling, our results identify a novel role of the GSK3β signaling pathway in the activity-dependent regulation of extrasynaptic receptor surface trafficking and GSK3β, protein kinase A, and calcium/calmodulin-dependent protein kinase IIα pathways in facilitating adaptations of synaptic receptors.
Collapse
|
25
|
Shear Stress Regulates TRPV4 Channel Clustering and Translocation from Adherens Junctions to the Basal Membrane. Sci Rep 2017; 7:15942. [PMID: 29162902 PMCID: PMC5698423 DOI: 10.1038/s41598-017-16276-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022] Open
Abstract
Localized Ca2+ influx via TRPV4 on the surface of endothelial cells greatly influences endothelial adaptation to blood flow, but how mechanical stress from blood flow controls TRPV4 integration into this physiological function is not fully understood. Here, we studied the spatial organization of TRPV4 and its relationship to the adherens junction component β-catenin using single- and dual-color direct stochastic optical reconstruction microscopy (dSTORM). In non-stimulated endothelial cells, TRPV4 is clustered in small protein islands, as is β-catenin. Using dual-color imaging, we found that TRPV4 and β-catenin reside in similar islands and can be found at both the basolateral and basal membranes. Following shear stress stimulation, TRPV4 molecules formed smaller clusters, with the majority residing outside of clusters. Further shear stress stimulation changed the molecular distribution of TRPV4 molecules, limiting them to the basal membrane. This redistribution and the smaller clusters resulted in the segregation of TRPV4 from β-catenin. Furthermore, TRPV4 trafficking was controlled by focal adhesion kinase and activation of the α5ß1 integrin. These highly differentiated spatial redistributions suggest that mechanotransduction of blood flow is controlled via a more complex hierarchy than previously thought.
Collapse
|
26
|
Emerging Mechanisms Underlying Dynamics of GABAergic Synapses. J Neurosci 2017; 37:10792-10799. [PMID: 29118207 DOI: 10.1523/jneurosci.1824-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/25/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Inhibitory circuits are diverse, yet with a poorly understood cell biology. Functional characterization of distinct inhibitory neuron subtypes has not been sufficient to explain how GABAergic neurotransmission sculpts principal cell activity in a relevant fashion. Our Mini-Symposium brings together several emerging mechanisms that modulate GABAergic neurotransmission dynamically from either the presynaptic or the postsynaptic site. The first two talks discuss novel developmental and neuronal subtype-specific contributions to the excitatory/inhibitory balance and circuit maturation. The next three talks examine how interactions between cellular pathways, lateral diffusion of proteins between synapses, and chloride transporter function at excitatory and inhibitory synapses and facilitate inhibitory synapse adaptations. Finally, we address functional differences within GABAergic interneurons to highlight the importance of diverse, flexible, and versatile inputs that shape network function. Together, the selection of topics demonstrates how developmental and activity-dependent mechanisms coordinate inhibition in relation to the excitatory inputs and vice versa.
Collapse
|
27
|
Alpha subunit-dependent glycine receptor clustering and regulation of synaptic receptor numbers. Sci Rep 2017; 7:10899. [PMID: 28883437 PMCID: PMC5589798 DOI: 10.1038/s41598-017-11264-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023] Open
Abstract
Accumulation of glycine receptors at synapses requires the interaction between the beta subunit of the receptor and the scaffold protein gephyrin. Here, we questioned whether different alpha subunits could modulate the receptors' diffusion and propensity to cluster at spinal cord synapses. Using quantitative photoactivated localisation microscopy we found that alpha-1 and alpha-3 containing glycine receptors display the same α3:β2 stoichiometry and gephyrin binding. Despite these similarities, alpha-3 containing receptors are less mobile and cluster at higher density compared to alpha-1, with 1500 versus 1100 complexes µm-2, respectively. Furthermore, we identified a subunit-specific regulation of glycine receptor copy numbers at synapses: when challenged with interleukin 1β, the synaptic occupancy of alpha-1 but not alpha-3 receptors was reduced. This mechanism may play a role in the cell-type dependent regulation of glycinergic currents in response to interleukin 1β and highlights the capacity of the alpha subunits to affect receptor-gephyrin binding at synapses.
Collapse
|
28
|
Cantaut-Belarif Y, Antri M, Pizzarelli R, Colasse S, Vaccari I, Soares S, Renner M, Dallel R, Triller A, Bessis A. Microglia control the glycinergic but not the GABAergic synapses via prostaglandin E2 in the spinal cord. J Cell Biol 2017; 216:2979-2989. [PMID: 28716844 PMCID: PMC5584146 DOI: 10.1083/jcb.201607048] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/10/2017] [Accepted: 06/07/2017] [Indexed: 01/08/2023] Open
Abstract
Microglia can influence the excitatory responses of neurons, but less is known about how these immune cells in the brain may influence inhibitory neurotransmitters. Cantaut-Belarif et al. report that prostaglandin production by Toll-like receptor–stimulated microglia can influence the glycinergic but not GABAergic responses of neurons by altering the lateral diffusion of glycine receptors specifically within the synaptic membrane. Microglia control excitatory synapses, but their role in inhibitory neurotransmission has been less well characterized. Herein, we show that microglia control the strength of glycinergic but not GABAergic synapses via modulation of the diffusion dynamics and synaptic trapping of glycine (GlyR) but not GABAA receptors. We further demonstrate that microglia regulate the activity-dependent plasticity of glycinergic synapses by tuning the GlyR diffusion trap. This microglia–synapse cross talk requires production of prostaglandin E2 by microglia, leading to the activation of neuronal EP2 receptors and cyclic adenosine monophosphate–dependent protein kinase. Thus, we now provide a link between microglial activation and synaptic dysfunctions, which are common early features of many brain diseases.
Collapse
Affiliation(s)
- Yasmine Cantaut-Belarif
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Myriam Antri
- Faculté de Chirurgie Dentaire, Neuro-Dol, Centre Hospitalier Universitaire de Clermont-Ferrand, Université Clermont Auvergne, Institut National de la Santé et de la Recherche Médicale, Clermont-Ferrand, France
| | - Rocco Pizzarelli
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Sabrina Colasse
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Ilaria Vaccari
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Sylvia Soares
- Sorbonne Universités, UPMC, CNRS 8246, INSERM 1130, Institut de Biologie Paris-Seine, Neuroscience Paris Seine, Paris, France
| | - Marianne Renner
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Radhouane Dallel
- Faculté de Chirurgie Dentaire, Neuro-Dol, Centre Hospitalier Universitaire de Clermont-Ferrand, Université Clermont Auvergne, Institut National de la Santé et de la Recherche Médicale, Clermont-Ferrand, France
| | - Antoine Triller
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Alain Bessis
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| |
Collapse
|
29
|
Chow DM, Zuchowski KA, Fetcho JR. In Vivo Measurement of Glycine Receptor Turnover and Synaptic Size Reveals Differences between Functional Classes of Motoneurons in Zebrafish. Curr Biol 2017; 27:1173-1183. [PMID: 28416115 DOI: 10.1016/j.cub.2017.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/12/2017] [Accepted: 03/15/2017] [Indexed: 01/18/2023]
Abstract
The interplay between binding and unbinding of synaptic receptor proteins at synapses plays an important role in determining receptor concentration and synaptic strength, with known links between changes in binding kinetics and synaptic plasticity. The regulation of such kinetics may subserve the specific functional requirements of neurons in intact circuits. However, the majority of studies of synaptic turnover kinetics have been performed in cultured neurons outside the context of normal circuits, and synaptic receptor turnover has not been measured at individual synaptic sites in vivo. We quantified the distribution of glycinergic receptor dynamics using fluorescence recovery after photoconversion of synapses in intact zebrafish and correlated recovery kinetics to synaptic volume in two functionally distinct classes of cells: primary and secondary motoneurons. The rate of fluorescence recovery after photoconversion decreased with synaptic volume in both types of motoneurons, with larger synapses having slower recovery. Primary motoneurons had both larger synapses and associated slower recovery times than secondary motoneurons. Our results suggest that synaptic kinetics are regulated in concert with synaptic sizes and reflect the functional role played by neurons within their circuit.
Collapse
Affiliation(s)
- Dawnis M Chow
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA.
| | - Kathryn A Zuchowski
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | - Joseph R Fetcho
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
30
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
31
|
Nakahata Y, Eto K, Murakoshi H, Watanabe M, Kuriu T, Hirata H, Moorhouse AJ, Ishibashi H, Nabekura J. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons. eNeuro 2017; 4:ENEURO.0194-16.2017. [PMID: 28197549 PMCID: PMC5292596 DOI: 10.1523/eneuro.0194-16.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 12/02/2022] Open
Abstract
Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system.
Collapse
Affiliation(s)
- Yoshihisa Nakahata
- Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Kei Eto
- Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki 444-8585, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Toshihiko Kuriu
- Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Japan
| | - Hiromi Hirata
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Department of Chemistry and Biological Science, Graduate School of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Andrew J. Moorhouse
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Hitoshi Ishibashi
- Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Department of Physiology, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- CREST, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| |
Collapse
|
32
|
Abstract
Integrins are a large family of extracellular matrix (ECM) receptors. In the developing and adult brain, many integrins are present at high levels at synapses. The tetrapartite structure of synapses - which comprises presynaptic and postsynaptic neurons, the ECM and glial processes - places synaptic integrins in an excellent position to sense dynamic changes in the synaptic environment and use this information to coordinate further changes in synapse structure and function that will shape neural circuit properties. Recent developments in our understanding of the cellular and physiological roles of integrins, which range from control of neural process outgrowth and synapse formation to regulation of synaptic plasticity and memory, enable us to attempt a synthesis of synaptic integrin function.
Collapse
|
33
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
34
|
Abstract
Electroencephalography (EEG) studies in patients with bipolar disorder have revealed lower amplitudes in brain oscillations. The aim of this review is to describe lithium-induced EEG changes in bipolar disorder and to discuss potential underlying factors. A literature survey about lithium-induced EEG changes in bipolar disorder was performed. Lithium consistently enhances magnitudes of brain oscillations in slow frequencies (delta and theta) in both resting-state EEG studies as well as event-related oscillations studies. Enhancement of magnitudes of beta oscillations is specific to event-related oscillations. Correlation between serum lithium levels and brain oscillations has been reported. Lithium-induced changes in brain oscillations might correspond to lithium-induced alterations in neurotransmitters, signaling cascades, plasticity, brain structure, or biophysical properties of lithium. Therefore, lithium-induced changes in brain oscillations could be promising biomarkers to assess the molecular mechanisms leading to variability in efficacy. Since the variability of lithium response in bipolar disorder is due to the genetic differences in the mechanisms involving lithium, it would be highly promising to assess the lithium-induced EEG changes as biomarkers in genetic studies.
Collapse
Affiliation(s)
- Murat İlhan Atagün
- Department of Psychiatry, Yıldırım Beyazıt University Medical School, Cankaya, Ankara, Turkey
| |
Collapse
|
35
|
In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders. Neural Plast 2015; 2016:9847696. [PMID: 26839720 PMCID: PMC4709762 DOI: 10.1155/2016/9847696] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/27/2015] [Indexed: 12/25/2022] Open
Abstract
Rapidly emerging evidence implicates perineuronal nets (PNNs) and extracellular matrix (ECM) molecules that compose or interact with PNNs, in the pathophysiology of several psychiatric disorders. Studies on schizophrenia, autism spectrum disorders, mood disorders, Alzheimer's disease, and epilepsy point to the involvement of ECM molecules such as chondroitin sulfate proteoglycans, Reelin, and matrix metalloproteases, as well as their cell surface receptors. In many of these disorders, PNN abnormalities have also been reported. In the context of the “quadripartite” synapse concept, that is, the functional unit composed of the pre- and postsynaptic terminals, glial processes, and ECM, and of the role that PNNs and ECM molecules play in regulating synaptic functions and plasticity, these findings resonate with one of the most well-replicated aspects of the pathology of psychiatric disorders, that is, synaptic abnormalities. Here we review the evidence for PNN/ECM-related pathology in these disorders, with particular emphasis on schizophrenia, and discuss the hypothesis that such pathology may significantly contribute to synaptic dysfunction.
Collapse
|
36
|
Shinoe T, Goda Y. Tuning synapses by proteolytic remodeling of the adhesive surface. Curr Opin Neurobiol 2015; 35:148-55. [DOI: 10.1016/j.conb.2015.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/17/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
37
|
Rabiej VK, Pflanzner T, Wagner T, Goetze K, Storck SE, Eble JA, Weggen S, Mueller-Klieser W, Pietrzik CU. Low density lipoprotein receptor-related protein 1 mediated endocytosis of β1-integrin influences cell adhesion and cell migration. Exp Cell Res 2015; 340:102-15. [PMID: 26610862 DOI: 10.1016/j.yexcr.2015.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/29/2022]
Abstract
The low density lipoprotein receptor-related protein 1 (LRP1) has been shown to interact with β1-integrin and regulate its surface expression. LRP1 knock-out cells exhibit altered cytoskeleton organization and decreased cell migration. Here we demonstrate coupled endocytosis of LRP1 and β1-integrin and the involvement of the intracellular NPxY2 motif of LRP1 in this process. Mouse embryonic fibroblasts harboring a knock in replacement of the NPxY2 motif of LRP1 by a multiple alanine cassette (AAxA) showed elevated surface expression of β1-integrin and decreased β1-integrin internalization rates. As a consequence, cell spreading was altered and adhesion rates were increased in our cell model. Cells formed more focal adhesion complexes, whereby in vitro cell migration rates were decreased. Similar results could be observed in a corresponding mouse model, the C57Bl6 LRP1 NPxYxxL knock in mice, therefore, the biochemistry of cellular adhesion was altered in primary cortical neurons. In vivo cell migration experiments demonstrated a disturbance of neuroblast cell migration along the rostral migratory stream. In summary, our results indicate that LRP1 interacts with β1-integrin mediating integrin internalization and thus correlates with downstream signaling of β1-integrin such as focal adhesion dynamics. Consequently, the disturbance of this interaction resulted in a dysfunction in in vivo and in vitro cell adhesion and cell migration.
Collapse
Affiliation(s)
- Verena K Rabiej
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Thorsten Pflanzner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Timo Wagner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Kristina Goetze
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Steffen E Storck
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, Westfälische Wilhelms-University Muenster, Waldeyerstraße 15, 48149 Muenster, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine-University, Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Wolfgang Mueller-Klieser
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany.
| |
Collapse
|
38
|
Verkhratsky A, Nedergaard M. Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130595. [PMID: 25225089 DOI: 10.1098/rstb.2013.0595] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Astroglial perisynaptic sheath covers the majority of synapses in the central nervous system. This glial coverage evolved as a part of the synaptic structure in which elements directly responsible for neurotransmission (exocytotic machinery and appropriate receptors) concentrate in neuronal membranes, whereas multiple molecules imperative for homeostatic maintenance of the synapse (transporters for neurotransmitters, ions, amino acids, etc.) are shifted to glial membranes that have substantially larger surface area. The astrocytic perisynaptic processes act as an 'astroglial cradle' essential for synaptogenesis, maturation, isolation and maintenance of synapses, representing the fundamental mechanism contributing to synaptic connectivity, synaptic plasticity and information processing in the nervous system.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Maiken Nedergaard
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14580, USA
| |
Collapse
|
39
|
Fan A, Stebbings KA, Llano DA, Saif T. Stretch induced hyperexcitability of mice callosal pathway. Front Cell Neurosci 2015; 9:292. [PMID: 26300729 PMCID: PMC4525056 DOI: 10.3389/fncel.2015.00292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/15/2015] [Indexed: 01/09/2023] Open
Abstract
Memory and learning are thought to result from changes in synaptic strength. Previous studies on synaptic physiology in brain slices have traditionally been focused on biochemical processes. Here, we demonstrate with experiments on mouse brain slices that central nervous system plasticity is also sensitive to mechanical stretch. This is important, given the host of clinical conditions involving changes in mechanical tension on the brain, and the normal role that mechanical tension plays in brain development. A novel platform is developed to investigate neural responses to mechanical stretching. Flavoprotein autofluoresence (FA) imaging was employed for measuring neural activity. We observed that synaptic excitability substantially increases after a small (2.5%) stretch was held for 10 min and released. The increase is accumulative, i.e., multiple stretch cycles further increase the excitability. We also developed analytical tools to quantify the spatial spread and response strength. Results show that the spatial spread is less stable in slices undergoing the stretch-unstretch cycle. FA amplitude and activation rate decrease as excitability increases in stretch cases but not in electrically enhanced cases. These results collectively demonstrate that a small stretch in physiological range can modulate neural activities significantly, suggesting that mechanical events can be employed as a novel tool for the modulation of neural plasticity.
Collapse
Affiliation(s)
- Anthony Fan
- Department of Mechanical Science and Engineering, University of Illinois Urbana, IL, USA
| | | | - Daniel A Llano
- Neuroscience Program, University of Illinois Urbana, IL, USA ; Department of Molecular and Integrative Physiology, University of Illinois Urbana, IL, USA ; Beckman Institute, University of Illinois Urbana, IL, USA ; College of Medicine, University of Illinois Urbana, IL, USA
| | - Taher Saif
- Department of Mechanical Science and Engineering, University of Illinois Urbana, IL, USA
| |
Collapse
|
40
|
Gouzer G, Specht CG, Allain L, Shinoe T, Triller A. Benzodiazepine-dependent stabilization of GABA(A) receptors at synapses. Mol Cell Neurosci 2015; 63:101-13. [PMID: 25466558 DOI: 10.1016/j.mcn.2014.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022] Open
Abstract
GABA(A) receptors constitutively enter and exit synapses by lateral diffusion in the plane of the neuronal membrane. They are trapped at synapses through their interactions with gephyrin, the main scaffolding protein at inhibitory post-synaptic densities. Previous work has shown that the synaptic accumulation and diffusion dynamics of GABA(A)Rs are controlled via excitatory synaptic activity. However, it remains unknown whether GABA(A)R activity can itself impact the surface trafficking of the receptors. Here we report the effects of GABA(A)R agonists, antagonists and allosteric modulators on the receptor's surface dynamics. Using immunocytochemistry and single particle tracking experiments on mouse hippocampal neurons, we show that the agonist muscimol decreases GABA(A)R and gephyrin levels at synapses and accelerates the receptor's lateral diffusion within 30–120 min of treatment. In contrast, the GABA(A)R antagonist gabazine increased GABA(A)R amounts and slowed down GABA(A)R diffusion at synapses. The response to GABA(A)R activation or inhibition appears to be an adaptative regulation of GABAergic synapses. Surprisingly, the positive allosteric modulator diazepam abolished the regulation induced by muscimol, and this effect was observed on α1, α2, α5 and γ2 GABA(A)R subunits. Altogether these results indicate that diazepam stabilizes synaptic GABA(A)Rs and thus prevents the agonist-induced regulation of GABA(A)R levels at synapses. This occurred independently of neuronal activity and intracellular calcium and involved GABA(A)R–gephyrin interactions, suggesting that the changes in GABA(A)R diffusion depend on conformational changes of the receptor. Our study provides a new molecular mechanism involved in the adaptative response to changes in GABA(A)R activity and benzodiazepine treatments.
Collapse
|
41
|
Mazalouskas M, Jessen T, Varney S, Sutcliffe JS, Veenstra-VanderWeele J, Cook EH, Carneiro AMD. Integrin β3 Haploinsufficiency Modulates Serotonin Transport and Antidepressant-Sensitive Behavior in Mice. Neuropsychopharmacology 2015; 40:2015-24. [PMID: 25684064 PMCID: PMC4839525 DOI: 10.1038/npp.2015.51] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/06/2015] [Accepted: 02/08/2015] [Indexed: 12/13/2022]
Abstract
Converging lines of evidence have identified genetic interactions between the serotonin transporter (SERT) gene and ITGB3, which encodes the β3 subunit that forms the αIIbβ3 and αvβ3 integrin receptor complexes. Here we examine the consequences of haploinsufficiency in the mouse integrin β3 subunit gene (Itgb3) on SERT function and selective 5-hydroxytryptamine (5-HT) reuptake inhibitor (SSRI) effectiveness in vivo. Biochemical fractionation studies and immunofluorescent staining of murine brain slices reveal that αvβ3 receptors and SERTs are enriched in presynaptic membranes from several brain regions and that αvβ3 colocalizes with a subpopulation of SERT-containing synapses in raphe nuclei. Notably, we establish that loss of a single allele of Itgb3 in murine neurons is sufficient to decrease 5-HT uptake by SERT in midbrain synaptosomes. Pharmacological assays to elucidate the αvβ3-mediated mechanism of reduced SERT function indicate that decreased integrin β3 subunit expression scales down the population size of active SERT molecules and, as a consequence, lowers the effective dose of SSRIs. These data are consistent with the existence of a subpopulation of SERTs that are tightly modulated by integrin αvβ3 and significantly contribute to global SERT function at 5-HT synapses in the midbrain. Importantly, our screen of a normal human population for single nucleotide polymorphisms in human ITGB3 identified a variant associated with reductions in integrin β3 expression levels that parallel our mouse findings. Thus, polymorphisms in human ITGB3 may contribute to the differential responsiveness of select patients to SSRIs.
Collapse
Affiliation(s)
- Matthew Mazalouskas
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tammy Jessen
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Seth Varney
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James S Sutcliffe
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Edwin H Cook
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ana M D Carneiro
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University School of Medicine, 461 Preston Research Building, 23rd Avenue South at Pierce, Nashville, TN 37232, USA, Tel: +1 615 875 5635, Fax: 615-343-1084, E-mail:
| |
Collapse
|
42
|
Aberrant synaptic integration in adult lamina I projection neurons following neonatal tissue damage. J Neurosci 2015; 35:2438-51. [PMID: 25673839 DOI: 10.1523/jneurosci.3585-14.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence suggests that neonatal tissue damage evokes alterations in spinal pain reflexes which persist into adulthood. However, less is known about potential concomitant effects on the transmission of nociceptive information to the brain, as the degree to which early injury modulates synaptic integration and membrane excitability in mature spinal projection neurons remains unclear. Here we demonstrate that neonatal surgical injury leads to a significant shift in the balance between synaptic excitation and inhibition onto identified lamina I projection neurons of the adult mouse spinal cord. The strength of direct primary afferent input to mature spino-parabrachial neurons was enhanced following neonatal tissue damage, whereas the efficacy of both GABAergic and glycinergic inhibition onto the same population was compromised. This was accompanied by reorganization in the pattern of sensory input to adult projection neurons, which included a greater prevalence of monosynaptic input from low-threshold A-fibers when preceded by early tissue damage. In addition, neonatal incision resulted in greater primary afferent-evoked action potential discharge in mature projection neurons. Overall, these results demonstrate that tissue damage during early life causes a long-term increase in the gain of spinal nociceptive circuits, and suggest that the prolonged consequences of neonatal trauma may not be restricted to the spinal cord but rather include excessive ascending signaling to supraspinal pain centers.
Collapse
|
43
|
Heintz TG, Heller JP, Zhao R, Caceres A, Eva R, Fawcett JW. Kinesin KIF4A transports integrin β1 in developing axons of cortical neurons. Mol Cell Neurosci 2014; 63:60-71. [PMID: 25260485 DOI: 10.1016/j.mcn.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
CNS axons have poor regenerative ability compared to PNS axons, and mature axons regenerate less well than immature embryonic axons. The loss of regenerative ability with maturity is accompanied by the setting up of a selective transport filter in axons, restricting the types of molecule that are present. We confirm that integrins (represented by subunits β1 and α5) are present in early cortical axons in vitro but are excluded from mature axons. Ribosomal protein and L1 show selective axonal transport through association with kinesin kif4A; we have therefore examined the hypothesis that integrin transport might also be in association with kif4A. Kif4A is present in all processes of immature cortical neurons cultured at E18, then downregulated by 14days in vitro, coinciding with the exclusion of integrin from axons. Kif4a co-localises with β1 integrin in vesicles in neurons and non-neuronal cells, and the two molecules co-immunoprecipitate. Knockdown of KIF4A expression with shRNA reduced the level of integrin β1 in axons of developing neurons and reduced neurite elongation on laminin, an integrin-dependent substrate. Overexpression of kif4A triggered apoptosis in neuronal and non-neuronal cells. In mature neurons expression of kif4A-GFP at a modest level did not kill the cells, and the kif4A was detectable in their axons. However this was not accompanied by an increase in integrin β1 axonal transport, suggesting that kif4A is not the only integrin transporter, and that integrin exclusion from axons is controlled by factors other than the kif4A level.
Collapse
Affiliation(s)
- Tristan G Heintz
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Janosch P Heller
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Rongrong Zhao
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Alfredo Caceres
- Laboratorio de Neurobiología Celular y Molecular, Instituto Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Friuli 2434, 5016 Córdoba, Argentina
| | - Richard Eva
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK.
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK.
| |
Collapse
|
44
|
Petrini EM, Barberis A. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front Cell Neurosci 2014; 8:300. [PMID: 25294987 PMCID: PMC4171989 DOI: 10.3389/fncel.2014.00300] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| | - Andrea Barberis
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
45
|
Sun H, Lu L, Zuo Y, Wang Y, Jiao Y, Zeng WZ, Huang C, Zhu MX, Zamponi GW, Zhou T, Xu TL, Cheng J, Li Y. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation. Nat Commun 2014; 5:4980. [PMID: 25236484 PMCID: PMC4199113 DOI: 10.1038/ncomms5980] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/13/2014] [Indexed: 01/21/2023] Open
Abstract
Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. Maintenance of proper membrane excitability is vital to neuronal function and in several neuronal types this relies on a balance between receptor-mediated excitation and inhibition. Here the authors report a crosstalk between excitatory kainate receptors and inhibitory glycine receptors that relies on the SUMOylation status of PKC.
Collapse
Affiliation(s)
- Hao Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingfu Jiao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Zheng Zeng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao Huang
- Center for Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary T2N 4 N1, Alberta, Canada
| | - Tong Zhou
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Tian-Le Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
46
|
Kalbouneh H, Schlicksupp A, Kirsch J, Kuhse J. Cyclin-dependent kinase 5 is involved in the phosphorylation of gephyrin and clustering of GABAA receptors at inhibitory synapses of hippocampal neurons. PLoS One 2014; 9:e104256. [PMID: 25093719 PMCID: PMC4122414 DOI: 10.1371/journal.pone.0104256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
CDK5 has been implicated in neural functions including growth, neuronal migration, synaptic transmission and plasticity of excitatory chemical synapses. Here we report robust effects of CDK5 on phosphorylation of the postsynaptic scaffold protein gephyrin and clustering of inhibitory GABAA receptors in hippocampal neurons. shRNA-mediated knockdown of CDK5 and pharmacological inhibition of cyclin-dependent kinases reduced phosphorylated gephyrin clusters and postsynaptic γ2-containing GABAA receptors. Phosphorylation of S270 is antagonized by PP1/PP2a phosphatase and site-directed mutagenesis and in vitro phosphorylation experiments indicate that S270 is a putative CDK5 phosphorylation site of gephyrin. Our data suggest that CDK5 plays an essential role for the stability of gephyrin-dependent GABAA receptor clusters in hippocampal neurons.
Collapse
Affiliation(s)
- Heba Kalbouneh
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Schlicksupp
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Joachim Kirsch
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Kuhse
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
47
|
Lévi S, Le Roux N, Eugène E, Poncer JC. Benzodiazepine ligands rapidly influence GABAA receptor diffusion and clustering at hippocampal inhibitory synapses. Neuropharmacology 2014; 88:199-208. [PMID: 24930360 DOI: 10.1016/j.neuropharm.2014.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/23/2014] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Abstract
Benzodiazepines (BZDs) are widely used in the treatment of a variety of neurological and psychiatric conditions including anxiety, insomnia and epilepsy. BZDs are thought to act predominantly by affecting the gating of GABAA receptor channels, resulting in enhanced GABA-mediated currents in neurons. However, mutations mimicking the effect of BZDs on GABAAR channel gating have been shown to also impact the membrane dynamics and synaptic anchoring of the receptors. Here, using single molecule tracking combined with electrophysiological recordings, we show that BZD ligands rapidly influence the dynamic behavior of GABAARs in hippocampal neurons. Application of the inverse BZD agonist DMCM rapidly increased the diffusion and reduced the clustering of GABAARs at synapses, resulting in reduced postsynaptic currents. Conversely, the BZD full agonist diazepam had little effect at rest but reduced lateral diffusion and increased synaptic stabilization and clustering of GABAARs upon sustained neuronal activity, resulting in enhanced potency of inhibitory synapses. These effects occurred in the absence of detectable changes in gephyrin clusters, suggesting they did not reflect a rapid dispersion of the synaptic scaffold. Thus, alterations of the diffusion and synaptic anchoring of GABAARs represent a novel, unsuspected mechanism through which BZDs rapidly modulate GABA signaling in central neurons.
Collapse
Affiliation(s)
- Sabine Lévi
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France.
| | - Nicolas Le Roux
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France
| | - Emmanuel Eugène
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France.
| |
Collapse
|
48
|
Long-term potentiation of glycinergic synapses triggered by interleukin 1β. Proc Natl Acad Sci U S A 2014; 111:8263-8. [PMID: 24830427 DOI: 10.1073/pnas.1401013111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term potentiation (LTP) is a persistent increase in synaptic strength required for many behavioral adaptations, including learning and memory, visual and somatosensory system functional development, and drug addiction. Recent work has suggested a role for LTP-like phenomena in the processing of nociceptive information in the dorsal horn and in the generation of central sensitization during chronic pain states. Whereas LTP of glutamatergic and GABAergic synapses has been characterized throughout the central nervous system, to our knowledge there have been no reports of LTP at mammalian glycinergic synapses. Glycine receptors (GlyRs) are structurally related to GABAA receptors and have a similar inhibitory role. Here we report that in the superficial dorsal horn of the spinal cord, glycinergic synapses on inhibitory GABAergic neurons exhibit LTP, occurring rapidly after exposure to the inflammatory cytokine interleukin-1 beta. This form of LTP (GlyR LTP) results from an increase in the number and/or change in biophysical properties of postsynaptic glycine receptors. Notably, formalin-induced peripheral inflammation in vivo potentiates glycinergic synapses on dorsal horn neurons, suggesting that GlyR LTP is triggered during inflammatory peripheral injury. Our results define a previously unidentified mechanism that could disinhibit neurons transmitting nociceptive information and may represent a useful therapeutic target for the treatment of pain.
Collapse
|
49
|
Abstract
The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
Collapse
|
50
|
Abstract
The development of methods to follow the dynamics of synaptic molecules in living neurons has radically altered our view of the synapse, from that of a generally static structure to that of a dynamic molecular assembly at steady state. This view holds not only for relatively labile synaptic components, such as synaptic vesicles, cytoskeletal elements, and neurotransmitter receptors, but also for the numerous synaptic molecules known as scaffolding molecules, a generic name for a diverse class of molecules that organize synaptic function in time and space. Recent studies reveal that these molecules, which confer a degree of stability to synaptic assemblies over time scales of hours and days, are themselves subject to significant dynamics. Furthermore, these dynamics are probably not without effect; wherever studied, these seem to be associated with spontaneous changes in scaffold molecule content, synaptic size, and possibly synaptic function. This review describes the dynamics exhibited by synaptic scaffold molecules, their typical time scales, and the potential implications to our understanding of synaptic function.
Collapse
Affiliation(s)
- Noam E. Ziv
- Technion–Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|