1
|
Liran M, Fischer I, Elboim M, Rahamim N, Gordon T, Urshansky N, Assaf Y, Barak B, Barak S. Long-Term Excessive Alcohol Consumption Enhances Myelination in the Mouse Nucleus Accumbens. J Neurosci 2025; 45:e0280242025. [PMID: 39909566 PMCID: PMC11968546 DOI: 10.1523/jneurosci.0280-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Chronic excessive alcohol (ethanol) consumption induces neuroadaptations in the brain's reward system, including biochemical and structural abnormalities in white matter that are implicated in addiction phenotypes. Here, we demonstrate that long-term (12 week) voluntary ethanol consumption enhances myelination in the nucleus accumbens (NAc) of female and male adult mice, as evidenced by molecular, ultrastructural, and cellular alterations. Specifically, transmission electron microscopy analysis showed increased myelin thickness in the NAc following long-term ethanol consumption, while axon diameter remained unaffected. These changes were paralleled by increased mRNA transcript levels of key transcription factors essential for oligodendrocyte (OL) differentiation, along with elevated expression of critical myelination-related genes. In addition, diffusion tensor imaging revealed increased connectivity between the NAc and the prefrontal cortex, reflected by a higher number of tracts connecting these regions. We also observed ethanol-induced effects on OL lineage cells, with a reduction in the number of mature OLs after 3 weeks of ethanol consumption, followed by an increase after 6 weeks. These findings suggest that ethanol alters OL development prior to increasing myelination in the NAc. Finally, chronic administration of the promyelination drug clemastine to mice with a history of heavy ethanol consumption further elevated ethanol intake and preference, suggesting that increased myelination may contribute to escalated drinking behavior. Together, these findings suggest that heavy ethanol consumption disrupts OL development, induces enhanced myelination in the NAc, and may drive further ethanol intake, reinforcing addictive behaviors.
Collapse
Affiliation(s)
- Mirit Liran
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbar Fischer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - May Elboim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Gordon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nataly Urshansky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaniv Assaf
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Barak
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Segev Barak
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Egervari G, Donahue G, Cardé NAQ, Alexander DC, Hogan C, Shaw JK, Periandri EM, Fleites V, De Biasi M, Berger SL. Decreased voluntary alcohol intake and ventral striatal epigenetic and transcriptional remodeling in male Acss2 KO mice. Neuropharmacology 2025; 265:110258. [PMID: 39653249 PMCID: PMC11771284 DOI: 10.1016/j.neuropharm.2024.110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Metabolic-epigenetic interactions are emerging as key pathways in regulating alcohol-related transcriptional changes in the brain. Recently, we have shown that this is mediated by the metabolic enzyme Acetyl-CoA synthetase 2 (Acss2), which is nuclear and chromatin-bound in neurons. Mice lacking ACSS2 fail to deposit alcohol-derived acetate onto histones in the brain and show no conditioned place preference for ethanol reward. Here, we further explored the role of this pathway during voluntary alcohol intake. We found that Acss2 KO mice consume significantly less alcohol in a model of binge drinking, an effect primarily driven by males. Genome-wide transcriptional profiling of 7 key brain regions implicated in alcohol and drug use revealed that, following drinking, Acss2 KO mice exhibit blunted gene expression in the ventral striatum. Similarly to the behavioral differences, transcriptional dysregulation was more pronounced in male mice. Further, we found that the gene expression changes were associated with depletion of ventral striatal histone acetylation (H3K27ac) in Acss2 KO mice compared to WT. Taken together, our data suggest that ACSS2 plays an important role in orchestrating ventral striatal epigenetic and transcriptional changes during voluntary alcohol drinking, especially in males. Consequently, targeting this pathway could be a promising new therapeutic avenue.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Biochemistry and Molecular Biophysics, Washington University, School of Medicine, St. Louis, MO, USA.
| | - Greg Donahue
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Natalia A Quijano Cardé
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Desi C Alexander
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Connor Hogan
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica K Shaw
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica M Periandri
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Biochemistry and Molecular Biophysics, Washington University, School of Medicine, St. Louis, MO, USA
| | - Vanessa Fleites
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Shelley L Berger
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Ehinger Y, Laguesse S, Phamluong K, Salvi A, Sei YJ, Hoisington ZW, Soneja D, Gunasekaran S, Nakamura K, Ron D. Paradoxical mTORC1-Dependent microRNA-mediated Translation Repression in the Nucleus Accumbens of Mice Consuming Alcohol Attenuates Glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.29.569312. [PMID: 38076984 PMCID: PMC10705386 DOI: 10.1101/2023.11.29.569312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
mTORC1 promotes protein translation, learning and memory, and neuroadaptations that underlie alcohol use and abuse. We report that activation of mTORC1 in the nucleus accumbens (NAc) of mice consuming alcohol promotes the translation of microRNA (miR) machinery components and the upregulation of microRNAs (miRs) expression including miR-34a-5p. In parallel, we detected a paradoxical mTORC1-dependent repression of translation of transcripts including Aldolase A, an essential glycolytic enzyme. We found that miR-34a-5p in the NAc targets Aldolase A for translation repression and promotes alcohol intake. Our data further suggest that glycolysis is inhibited in the NAc manifesting in an mTORC1-dependent attenuation of L-lactate, the end product of glycolysis. Finally, we show that systemic administration of L-lactate attenuates mouse excessive alcohol intake. Our data suggest that alcohol promotes paradoxical actions of mTORC1 on translation and glycolysis which in turn drive excessive alcohol use.
Collapse
|
4
|
Rahamim N, Liran M, Aronovici C, Flumin H, Gordon T, Urshansky N, Barak S. Inhibition of ERK1/2 or CRMP2 Disrupts Alcohol Memory Reconsolidation and Prevents Relapse in Rats. Int J Mol Sci 2024; 25:5478. [PMID: 38791516 PMCID: PMC11122309 DOI: 10.3390/ijms25105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Relapse to alcohol abuse, often caused by cue-induced alcohol craving, is a major challenge in alcohol addiction treatment. Therefore, disrupting the cue-alcohol memories can suppress relapse. Upon retrieval, memories transiently destabilize before they reconsolidate in a process that requires protein synthesis. Evidence suggests that the mammalian target of rapamycin complex 1 (mTORC1), governing the translation of a subset of dendritic proteins, is crucial for memory reconsolidation. Here, we explored the involvement of two regulatory pathways of mTORC1, phosphoinositide 3-kinase (PI3K)-AKT and extracellular regulated kinase 1/2 (ERK1/2), in the reconsolidation process in a rat (Wistar) model of alcohol self-administration. We found that retrieval of alcohol memories using an odor-taste cue increased ERK1/2 activation in the amygdala, while the PI3K-AKT pathway remained unaffected. Importantly, ERK1/2 inhibition after alcohol memory retrieval impaired alcohol-memory reconsolidation and led to long-lasting relapse suppression. Attenuation of relapse was also induced by post-retrieval administration of lacosamide, an inhibitor of collapsin response mediator protein-2 (CRMP2)-a translational product of mTORC1. Together, our findings indicate the crucial role of ERK1/2 and CRMP2 in the reconsolidation of alcohol memories, with their inhibition as potential treatment targets for relapse prevention.
Collapse
Affiliation(s)
- Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; (N.R.)
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
| | - Mirit Liran
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
- Faculty of Life Sciences, Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Coral Aronovici
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; (N.R.)
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
| | - Hila Flumin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; (N.R.)
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
| | - Tamar Gordon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; (N.R.)
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
| | - Nataly Urshansky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
| | - Segev Barak
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; (N.R.)
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
- Faculty of Life Sciences, Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Fraser KM, Kim TH, Castro M, Drieu C, Padovan-Hernandez Y, Chen B, Pat F, Ottenheimer DJ, Janak PH. Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala. iScience 2024; 27:109652. [PMID: 38650988 PMCID: PMC11033178 DOI: 10.1016/j.isci.2024.109652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/28/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
Dysregulation of the central amygdala is thought to underlie aberrant choice in alcohol use disorder, but the role of central amygdala neural activity during reward choice and consumption is unclear. We recorded central amygdala neurons in male rats as they consumed alcohol or sucrose. We observed activity changes at the time of reward approach, as well as lick-entrained activity during ongoing consumption of both rewards. In choice scenarios where rats could drink sucrose, alcohol, or quinine-adulterated alcohol with or without central amygdala optogenetic stimulation, rats drank more of stimulation-paired options when the two bottles contained identical options. Given a choice among different options, central amygdala stimulation usually enhanced consumption of stimulation-paired rewards. However, optogenetic stimulation during consumption of the less-preferred option, alcohol, was unable to enhance alcohol intake while sucrose was available. These findings indicate that the central amygdala contributes to refining motivated pursuit toward the preferred available option.
Collapse
Affiliation(s)
- Kurt M. Fraser
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Tabitha H. Kim
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Matilde Castro
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Céline Drieu
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Yasmin Padovan-Hernandez
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Bridget Chen
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Fiona Pat
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - David J. Ottenheimer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Patricia H. Janak
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
- Johns Hopkins University Kavli Neuroscience Discovery Institute, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| |
Collapse
|
6
|
Ehinger Y, Phamluong K, Ron D. Sex Differences In The Interaction Between Alcohol And mTORC1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560781. [PMID: 38712221 PMCID: PMC11071286 DOI: 10.1101/2023.10.04.560781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The kinase mechanistic target of rapamycin complex 1 (mTORC1) plays an essential role in learning and memory by promoting mRNA to protein translation of a subset of synaptic proteins at dendrites. We generated a large body of data in male rodents indicating that mTORC1 is critically involved in mechanisms that promote numerous adverse behaviors associated with alcohol use disorder (AUD) including heavy alcohol use. For example, we found that mTORC1 is activated in the nucleus accumbens (NAc) and orbitofrontal cortex (OFC) of male mice and rats that were subjected to 7 weeks of intermittent access to 20% alcohol two-bottle choice (IA20%2BC). We further showed that systemic or intra-NAc administration of the selective mTORC1 inhibitor, rapamycin, decreases alcohol seeking and drinking, whereas intra-OFC administration of rapamycin reduces alcohol seeking and habit in male rats. This study aimed to assess mTORC1 activation in these corticostriatal regions of female mice and to determine whether the selective mTORC1 inhibitor, rapamycin, can be used to reduce heavy alcohol use in female mice. We found that mTORC1 is not activated by 7 weeks of intermittent 20% alcohol binge drinking and withdrawal in the NAc and OFC. Like in males, mTORC1 signaling was not activated by chronic alcohol intake and withdrawal in the medial prefrontal cortex (mPFC) of female mice. Interestingly, Pearson correlation comparisons revealed that the basal level of mTORC1 activation between the two prefrontal regions, OFC and mPFC were correlated and that the drinking profile predicts the level of mTORC1 activation in the mPFC after 4-hour binge drinking. Finally, we report that administration of rapamycin does not attenuate heavy alcohol drinking in female animals. Together, our results suggest a sex-dependent contribution of mTORC1 to the neuroadaptation that drives alcohol use and abuse.
Collapse
|
7
|
Lai S, Zhang L, Tu X, Ma X, Song Y, Cao K, Li M, Meng J, Shi Y, Wu Q, Yang C, Lan Z, Lau CG, Shi J, Ma W, Li S, Xue YX, Huang Z. Termination of convulsion seizures by destabilizing and perturbing seizure memory engrams. SCIENCE ADVANCES 2024; 10:eadk9484. [PMID: 38507477 PMCID: PMC10954199 DOI: 10.1126/sciadv.adk9484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Epileptogenesis, arising from alterations in synaptic strength, shares mechanistic and phenotypic parallels with memory formation. However, direct evidence supporting the existence of seizure memory remains scarce. Leveraging a conditioned seizure memory (CSM) paradigm, we found that CSM enabled the environmental cue to trigger seizure repetitively, and activating cue-responding engram cells could generate CSM artificially. Moreover, cue exposure initiated an analogous process of memory reconsolidation driven by mammalian target of rapamycin-brain-derived neurotrophic factor signaling. Pharmacological targeting of the mammalian target of rapamycin pathway within a limited time window reduced seizures in animals and interictal epileptiform discharges in patients with refractory seizures. Our findings reveal a causal link between seizure memory engrams and seizures, which leads us to a deeper understanding of epileptogenesis and points to a promising direction for epilepsy treatment.
Collapse
Affiliation(s)
- Shirong Lai
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
- School of Health Management, Xihua University, Chengdu 610039, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yujing Song
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kexin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Miaomiao Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jihong Meng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yiqiang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qing Wu
- School of Health Management, Xihua University, Chengdu 610039, China
| | - Chen Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zifan Lan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | | | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Weining Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Shaoyi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Shen G, Wu Y, Wang K, Niculescu M, Liu Y, Kang Y, Luo X, Wang W, Chen YH, Liu Y, Wang F, Chen L. Impulsivity and aggression in alcohol withdrawal syndrome is modulated by the interaction of ZNF804A and mTOR polymorphism. Pharmacol Biochem Behav 2024; 236:173708. [PMID: 38216065 DOI: 10.1016/j.pbb.2024.173708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Alcohol withdrawal syndrome (AWS) is a poorly studied phenotype of alcohol use disorder. Understanding the relationship between allelic interactions and AWS-related impulsivity and aggression could have significant implications. This study aimed to investigate the main and interacting effects of ZNF804A and mTOR on impulsivity and aggression during alcohol withdrawal. 446 Chinese Han adult males with alcohol dependence were included in the study. Impulsivity and aggression were assessed, and genomic DNA was genotyped. Single gene analysis showed that ZNF804A rs1344706 (A allele/CC homozygote) and mTOR rs1057079 (C allele/TT homozygote) were strongly associated with AWS-related impulsivity and aggression. In the allelic group, MANOVA revealed a significant gene x gene interaction, suggesting that risk varied systematically depending on both ZNF804A and mTOR alleles. Additionally, a significant interactive effect of ZNF804A rs1344706 and mTOR rs7525957 was found on motor impulsivity and physical aggression, and the ZNF804A rs1344706 gene variant had significant effects on motor impulsivity and physical aggression only in mTOR rs7525957 TT homozygous carriers. The study showed that specific allelic combinations of ZNF804A and mTOR may have protective or risk-enhancing effects on AWS-related impulsivity and aggression.
Collapse
Affiliation(s)
- Guanghui Shen
- Wenzhou Seventh People's Hospital, Wenzhou 325006, China; School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuyu Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Kexin Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | | | - Yuqing Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Hohhot, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu-Hsin Chen
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China.
| | - Li Chen
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
9
|
Hanim A, Mohamed IN, Mohamed RMP, Mokhtar MH, Makpol S, Naomi R, Bahari H, Kamal H, Kumar J. Alcohol Dependence Modulates Amygdalar mTORC2 and PKCε Expression in a Rodent Model. Nutrients 2023; 15:3036. [PMID: 37447362 PMCID: PMC10346598 DOI: 10.3390/nu15133036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple alcohol use disorder (AUD)-related behavioral alterations are governed by protein kinase C epsilon (PKCε), particularly in the amygdala. Protein kinase C (PKC) is readily phosphorylated at Ser729 before activation by the mTORC2 protein complex. In keeping with this, the current study was conducted to assess the variations in mTORC2 and PKCε during different ethanol exposure stages. The following groups of rats were employed: control, acute, chronic, ethanol withdrawal (EW), and EW + ethanol (EtOH). Ethanol-containing and non-ethanol-containing modified liquid diets (MLDs) were administered for 27 days. On day 28, either saline or ethanol (2.5 g/kg, 20% v/v) was intraperitoneally administered, followed by bilateral amygdala extraction. PKCε mRNA levels were noticeably increased in the amygdala of the EW + EtOH and EW groups. Following chronic ethanol consumption, the stress-activated map kinase-interacting protein 1 (Sin1) gene expression was markedly decreased. In the EW, EW + EtOH, and chronic ethanol groups, there was a profound increase in the protein expression of mTOR, Sin1, PKCε, and phosphorylated PKCε (Ser729). The PKCε gene and protein expressions showed a statistically significant moderate association, according to a correlation analysis. Our results suggest that an elevated PKCε protein expression in the amygdala during EW and EW + EtOH occurred at the transcriptional level. However, an elevation in the PKCε protein expression, but not its mRNA, after chronic ethanol intake warrants further investigation to fully understand the signaling pathways during different episodes of AUD.
Collapse
Affiliation(s)
- Athirah Hanim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| | - Isa N. Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Rashidi M. P. Mohamed
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| |
Collapse
|
10
|
Fraser KM, Kim TH, Castro M, Drieu C, Padovan-Hernandez Y, Chen B, Pat F, Ottenheimer DJ, Janak PH. Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546936. [PMID: 37425773 PMCID: PMC10327036 DOI: 10.1101/2023.06.28.546936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The ability to evaluate and select a preferred option among a variety of available offers is an essential aspect of goal-directed behavior. Dysregulation of this valuation process is characteristic of alcohol use disorder, with the central amygdala being implicated in persistent alcohol pursuit. However, the mechanism by which the central amygdala encodes and promotes the motivation to seek and consume alcohol remains unclear. We recorded single-unit activity in male Long-Evans rats as they consumed 10% ethanol or 14.2% sucrose. We observed significant activity at the time of approach to alcohol or sucrose, as well as lick-entrained activity during the ongoing consumption of both alcohol and sucrose. We then evaluated the ability of central amygdala optogenetic manipulation time-locked to consumption to alter ongoing intake of alcohol or sucrose, a preferred non-drug reward. In closed two-choice scenarios where rats could drink only sucrose, alcohol, or quinine-adulterated alcohol with or without central amygdala stimulation, rats drank more of stimulation-paired options. Microstructural analysis of licking patterns suggests these effects were mediated by changes in motivation, not palatability. Given a choice among different options, central amygdala stimulation enhanced consumption if the stimulation was associated with the preferred reward while closed-loop inhibition only decreased consumption if the options were equally valued. However, optogenetic stimulation during consumption of the less-preferred option, alcohol, was unable to enhance overall alcohol intake while sucrose was available. Collectively, these findings indicate that the central amygdala processes the motivational value of available offers to promote pursuit of the most preferred available option.
Collapse
Affiliation(s)
- Kurt M Fraser
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tabitha H Kim
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matilde Castro
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Céline Drieu
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yasmin Padovan-Hernandez
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bridget Chen
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Fiona Pat
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David J Ottenheimer
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patricia H Janak
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Grinchii D, Levin-Greenwald M, Lezmy N, Gordon T, Paliokha R, Khoury T, Racicky M, Herburg L, Grothe C, Dremencov E, Barak S. FGF2 activity regulates operant alcohol self-administration and mesolimbic dopamine transmission. Drug Alcohol Depend 2023; 248:109920. [PMID: 37224676 DOI: 10.1016/j.drugalcdep.2023.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is involved in the development and maintenance of the brain dopamine system. We previously showed that alcohol exposure alters the expression of FGF2 and its receptor, FGF receptor 1 (FGFR1) in mesolimbic and nigrostriatal brain regions, and that FGF2 is a positive regulator of alcohol drinking. Here, we determined the effects of FGF2 and of FGFR1 inhibition on alcohol consumption, seeking and relapse, using a rat operant self-administration paradigm. In addition, we characterized the effects of FGF2-FGFR1 activation and inhibition on mesolimbic and nigrostriatal dopamine neuron activation using in vivo electrophysiology. We found that recombinant FGF2 (rFGF2) increased the firing rate and burst firing activity of dopaminergic neurons in the mesolimbic and nigrostriatal systems and led to increased operant alcohol self-administration. In contrast, the FGFR1 inhibitor PD173074 suppressed the firing rate of these dopaminergic neurons, and reduced operant alcohol self-administration. Alcohol seeking behavior was not affected by PD173074, but this FGFR1 inhibitor reduced post-abstinence relapse to alcohol consumption, albeit only in male rats. The latter was paralleled by the increased potency and efficacy of PD173074 in inhibiting dopamine neuron firing. Together, our findings suggest that targeting the FGF2-FGFR1 pathway can reduce alcohol consumption, possibly via altering mesolimbic and nigrostriatal neuronal activity.
Collapse
Affiliation(s)
- Daniil Grinchii
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Noa Lezmy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Tamar Gordon
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Ruslan Paliokha
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Talah Khoury
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matej Racicky
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Leonie Herburg
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, Hanover30625, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, Hanover30625, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv69978, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel.
| |
Collapse
|
12
|
Milton AL, Das RK, Merlo E. The challenge of memory destabilisation: From prediction error to prior expectations and biomarkers. Brain Res Bull 2023; 194:100-104. [PMID: 36708846 DOI: 10.1016/j.brainresbull.2023.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
The re-ignition of memory reconsolidation research sparked by Karim Nader in the early 2000s led to great excitement that 'reconsolidation-based' interventions might be developed for mental health disorders such as post-traumatic stress disorder and substance use disorder. Two decades on, it is clear that reconsolidation-based interventions have been more challenging to translate to the clinic than initially thought. We argue that this challenge could be addressed with a better understanding of how prior expectations interact with information presented in a putative memory reactivation / cue reminder session, and through the identification of non-invasive biomarkers for memory destabilisation that would allow reminder sessions to be 'tuned' to enhance memory lability in an ad hoc manner.
Collapse
Affiliation(s)
- Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, UK.
| | - Ravi K Das
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Emiliano Merlo
- School of Psychology, University of Sussex, Brighton, UK
| |
Collapse
|
13
|
Goltseker K, Garay P, Bonefas K, Iwase S, Barak S. Alcohol-specific transcriptional dynamics of memory reconsolidation and relapse. Transl Psychiatry 2023; 13:55. [PMID: 36792579 PMCID: PMC9932068 DOI: 10.1038/s41398-023-02352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Relapse, a critical issue in alcohol addiction, can be attenuated by disruption of alcohol-associated memories. Memories are thought to temporarily destabilize upon retrieval during the reconsolidation process. Here, we provide evidence for unique transcriptional dynamics underpinning alcohol memory reconsolidation. Using a mouse place-conditioning procedure, we show that alcohol-memory retrieval increases the mRNA expression of immediate-early genes in the dorsal hippocampus and medial prefrontal cortex, and that alcohol seeking is abolished by post-retrieval non-specific inhibition of gene transcription, or by downregulating ARC expression using antisense-oligodeoxynucleotides. However, since retrieval of memories for a natural reward (sucrose) also increased the same immediate-early gene expression, we explored for alcohol-specific transcriptional changes using RNA-sequencing. We revealed a unique transcriptional fingerprint activated by alcohol memories, as the expression of this set of plasticity-related genes was not altered by sucrose-memory retrieval. Our results suggest that alcohol memories may activate two parallel transcription programs: one is involved in memory reconsolidation in general, and another is specifically activated during alcohol-memory processing.
Collapse
Affiliation(s)
- Koral Goltseker
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Patricia Garay
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Katherine Bonefas
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Shigeki Iwase
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
- Human Genetics Department, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
14
|
Barak S, Goltseker K. New Approaches for Alcohol Use Disorder Treatment via Memory Retrieval and Reconsolidation Manipulations. Curr Top Behav Neurosci 2023. [PMID: 36627475 DOI: 10.1007/7854_2022_411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Relapse to alcohol seeking and drinking is a major clinical challenge in alcohol use disorder and is frequently brought about by cue-induced craving, caused by exposure to cues that evoke alcohol-related memories. It has been postulated that memories become labile for manipulation shortly after their retrieval and then restabilize in a "memory reconsolidation" process. Disruption or interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we review literature demonstrating the capacity of behavioral or pharmacological manipulations to reduce relapse in animal models and humans when applied after a short retrieval of memories associated with alcohol, suggestively disrupting the reconsolidation of such memories. We suggest that while there is a clear potential of using post-retrieval manipulations to target specific relapse-evoking memories, future research should be more systematic, standardized, and translational. Specifically, we discuss several critical limitations and boundary conditions, which should be addressed to improve consistency and replicability in the field and lead to the development of an efficient reconsolidation-based relapse prevention therapy.
Collapse
Affiliation(s)
- Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Koral Goltseker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
de Guglielmo G, Simpson S, Kimbrough A, Conlisk D, Baker R, Cantor M, Kallupi M, George O. Voluntary and forced exposure to ethanol vapor produces similar escalation of alcohol drinking but differential recruitment of brain regions related to stress, habit, and reward in male rats. Neuropharmacology 2023; 222:109309. [PMID: 36334765 PMCID: PMC10022477 DOI: 10.1016/j.neuropharm.2022.109309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
A major limitation of the most widely used current animal models of alcohol dependence is that they use forced exposure to ethanol including ethanol-containing liquid diet and chronic intermittent ethanol (CIE) vapor to produce clinically relevant blood alcohol levels (BAL) and addiction-like behaviors. We recently developed a novel animal model of voluntary induction of alcohol dependence using ethanol vapor self-administration (EVSA). However, it is unknown whether EVSA leads to an escalation of alcohol drinking per se, and whether such escalation is associated with neuroadaptations in brain regions related to stress, reward, and habit. To address these issues, we compared the levels of alcohol drinking during withdrawal between rats passively exposed to alcohol (CIE) or voluntarily exposed to EVSA and measured the number of Fos+ neurons during acute withdrawal (16 h) in key brain regions important for stress, reward, and habit-related processes. CIE and EVSA rats exhibited similar BAL and similar escalation of alcohol drinking and motivation for alcohol during withdrawal. Acute withdrawal from EVSA and CIE recruited a similar number of Fos+ neurons in the Central Amygdala (CeA), however, acute withdrawal from EVSA recruited a higher number of Fos+ neurons in every other brain region analyzed compared to acute withdrawal from CIE. In summary, while the behavioral measures of alcohol dependence between the voluntary (EVSA) and passive (CIE) model were similar, the recruitment of neuronal ensembles during acute withdrawal was very different. The EVSA model may be particularly useful to unveil the neuronal networks and pharmacology responsible for the voluntary induction and maintenance of alcohol dependence and may improve translational studies by providing preclinical researchers with an animal model that highlights the volitional aspects of alcohol use disorder.
Collapse
Affiliation(s)
| | - Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47906, USA
| | - Dana Conlisk
- Univ. Bordeaux, INSERM, Neurocenter Magendie, Psychobiology of Drug Addiction Group, U1215, F-33000, Bordeaux, France
| | - Robert Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Maxwell Cantor
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
17
|
Shi X, von Weltin E, Fitzsimmons E, Do C, Caban Rivera C, Chen C, Liu-Chen LY, Unterwald EM. Reactivation of cocaine contextual memory engages mechanistic target of rapamycin/S6 kinase 1 signaling. Front Pharmacol 2022; 13:976932. [PMID: 36238569 PMCID: PMC9552424 DOI: 10.3389/fphar.2022.976932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) C1 and its downstream effectors have been implicated in synaptic plasticity and memory. Our prior work demonstrated that reactivation of cocaine memory engages a signaling pathway consisting of Akt, glycogen synthase kinase-3β (GSK3β), and mTORC1. The present study sought to identify other components of mTORC1 signaling involved in the reconsolidation of cocaine contextual memory, including eukaryotic translation initiation factor 4E (eIF4E)-eIF4G interactions, p70 S6 kinase polypeptide 1 (p70S6K, S6K1) activity, and activity-regulated cytoskeleton (Arc) expression. Cocaine contextual memory was established in adult CD-1 mice using conditioned place preference. After cocaine place preference was established, mice were briefly re-exposed to the cocaine-paired context to reactivate the cocaine memory and brains examined. Western blot analysis showed that phosphorylation of the mTORC1 target, p70S6K, in nucleus accumbens and hippocampus was enhanced 60 min following reactivation of cocaine memories. Inhibition of mTORC1 with systemic administration of rapamycin or inhibition of p70S6K with systemic PF-4708671 after reactivation of cocaine contextual memory abolished the established cocaine place preference. Immunoprecipitation assays showed that reactivation of cocaine memory did not affect eIF4E-eIF4G interactions in nucleus accumbens or hippocampus. Levels of Arc mRNA were significantly elevated 60 and 120 min after cocaine memory reactivation and returned to baseline 24 h later. These findings demonstrate that mTORC1 and p70S6K are required for reconsolidation of cocaine contextual memory.
Collapse
Affiliation(s)
- Xiangdang Shi
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eva von Weltin
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Emma Fitzsimmons
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Chau Do
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Carolina Caban Rivera
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Chongguang Chen
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ellen M Unterwald
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
18
|
Zhang Z, Fan Q, Luo X, Lou K, Weiss WA, Shokat KM. Brain-restricted mTOR inhibition with binary pharmacology. Nature 2022; 609:822-828. [PMID: 36104566 PMCID: PMC9492542 DOI: 10.1038/s41586-022-05213-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
On-target-off-tissue drug engagement is an important source of adverse effects that constrains the therapeutic window of drug candidates1,2. In diseases of the central nervous system, drugs with brain-restricted pharmacology are highly desirable. Here we report a strategy to achieve inhibition of mammalian target of rapamycin (mTOR) while sparing mTOR activity elsewhere through the use of the brain-permeable mTOR inhibitor RapaLink-1 and the brain-impermeable FKBP12 ligand RapaBlock. We show that this drug combination mitigates the systemic effects of mTOR inhibitors but retains the efficacy of RapaLink-1 in glioblastoma xenografts. We further present a general method to design cell-permeable, FKBP12-dependent kinase inhibitors from known drug scaffolds. These inhibitors are sensitive to deactivation by RapaBlock, enabling the brain-restricted inhibition of their respective kinase targets.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Qiwen Fan
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Xujun Luo
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin Lou
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - William A Weiss
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
19
|
Pintori N, Piva A, Guardiani V, Decimo I, Chiamulera C. Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behav Brain Res 2022; 416:113556. [PMID: 34474039 DOI: 10.1016/j.bbr.2021.113556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic Environmental Enrichment (EE) has been shown to prevent the relapse to addictive behaviours, such as drug-taking and -seeking. Recently, acute EE was shown to reduce cue-induced sucrose-seeking, but its effects on contextual (Cx)-induced sucrose-seeking is still unknown. Here we report the effects of brief EE exposure on Cx-induced sucrose-seeking with and without prior Cx-memory reactivation. Adult male Sprague-Dawley rats were trained to sucrose self-administration associated to a specific conditioning Cx (CxA), followed by a 7-day extinction in a different Cx (CxB). Afterwards, rats were exposed for 22 h to EE, and 1 h later to either i) Cx-induced sucrose-seeking (1 h, renewal without Cx-memory reactivation), ii) or two different Cx-memory reactivations: short (2-min) and long (15-min) CxA-retrieval session (Cx-Ret). In Cx-Ret experiments, CxA-induced sucrose-seeking test (1 h) was done after a subsequent 3-day extinction phase. The assessment of molecular markers of memory reactivation/reconsolidation, Zif-268 and rpS6P, was performed 2 h after Cx-Ret. Brief EE exposure enhanced Cx-induced sucrose-seeking without and with short but not long Cx-retrieval. Moreover, EE impaired discriminative responding at test prior to long, whereas improved it with or without short Cx-retrieval. Different changes in Zif-268 and rpS6P expression induced by short vs. long Cx-Ret were correlated to behavioural data, suggesting the occurrence of different memory processes affected by EE. Our data show that brief EE exposure may differently affect subsequent appetitive relapse depending on the modality of re-exposure to conditioned context. This finding suggests caution and further studies to understand the proper conditions for the use of EE against appetitive and addiction disorders.
Collapse
Affiliation(s)
- N Pintori
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - A Piva
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - V Guardiani
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - I Decimo
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - C Chiamulera
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Contractor AA, Banducci AN, Jin L. The Relationship between Positive Memory Phenomenology and Alcohol Use among Trauma-Exposed Individuals. Subst Use Misuse 2022; 57:929-939. [PMID: 35345976 DOI: 10.1080/10826084.2022.2052099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Evidence links positive memory characteristics and hazardous alcohol use (HAU). Relevant to the current study, evidence also indicates that trauma-exposed individuals, especially those with posttraumatic stress disorder (PTSD) symptoms, report difficulties retrieving/accessing positive memories and report HAU. OBJECTIVE Considering this literature, we uniquely examined if and which positive memory characteristics were associated with HAU, and the potential mediating role of PTSD symptom severity in the examined relations. METHODS A sample of 126 trauma-exposed community participants seeking mental health treatment (Mage=34.97 years) completed measures of HAU (Alcohol Use Disorders Identification Test), positive memory characteristics (Memory Experiences Questionnaire-Short Form [MEQ-SF]), and PTSD severity (PTSD Checklist for DSM-5). We conducted 8 hierarchical multiple regressions; Step 1 examined effects of gender and Step 2 added a single MEQ-SF dimension (specificity, valence, emotional intensity, sensory details, vividness, accessibility, coherence, sharing). RESULTS In Steps 1 (β=.27) and 2 (βs from .27-.28), gender was associated with HAU. In Step 2, positive memory characteristics of specificity (β=.17), sensory details (β=.17), sharing (β=.23), and valence (β=-.19) were associated with greater HAU. PTSD severity mediated relations between sensory details (β=.09, p=.048), emotional intensity (β=.12, p=.011), and sharing (β=.09, p=.036), and the extent of HAU. CONCLUSIONS AND IMPLICATIONS Results that specificity, greater sharing, more sensory details, and higher negative valence of positive memories were associated with greater HAU offer potential points of intervention.
Collapse
Affiliation(s)
| | - Anne N Banducci
- The National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA.,School of Medicine, Boston University, Boston, MA, USA
| | - Ling Jin
- Werklund School of Education, University of Calgary, Calgary, Canada
| |
Collapse
|
21
|
Effects of heroin self-administration and forced withdrawal on the expression of genes related to the mTOR network in the basolateral complex of the amygdala of male Lewis rats. Psychopharmacology (Berl) 2022; 239:2559-2571. [PMID: 35467104 PMCID: PMC9293846 DOI: 10.1007/s00213-022-06144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/11/2022] [Indexed: 10/26/2022]
Abstract
RATIONALE The development of substance use disorders involves long-lasting adaptations in specific brain areas that result in an elevated risk of relapse. Some of these adaptations are regulated by the mTOR network, a signalling system that integrates extracellular and intracellular stimuli and modulates several processes related to plasticity. While the role of the mTOR network in cocaine- and alcohol-related disorders is well established, little is known about its participation in opiate use disorders. OBJECTIVES To use a heroin self-administration and a withdrawal protocol that induce incubation of heroin-seeking in male rats and study the associated effects on the expression of several genes related to the mTOR system and, in the specific case of Rictor, its respective translated protein and phosphorylation. RESULTS We found that heroin self-administration elicited an increase in the expression of the genes Igf1r, Igf2r, Akt2 and Gsk3a in the basolateral complex of the amygdala, which was not as evident at 30 days of withdrawal. We also found an increase in the expression of Rictor (a protein of the mTOR complex 2) after heroin self-administration compared to the saline group, which was occluded at the 30-day withdrawal period. The activation levels of Rictor, measured by the phosphorylation rate, were also reduced after heroin self-administration, an effect that seemed more apparent in the protracted withdrawal group. CONCLUSIONS These results suggest that heroin self-administration under extended access conditions modifies the expression profile of activators and components of the mTOR complexes and show a putative irresponsive mTOR complex 2 after withdrawal from heroin use.
Collapse
|
22
|
Rutherford LG, Milton AL. Deconstructing and reconstructing behaviour relevant to mental health disorders: The benefits of a psychological approach, with a focus on addiction. Neurosci Biobehav Rev 2021; 133:104514. [PMID: 34958822 DOI: 10.1016/j.neubiorev.2021.104514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
RUTHERFORD, L.G. and Milton, A.L. Deconstructing and reconstructing behaviour relevant to mental health disorders: what can psychology offer? NEUROSCI BIOBEHAV REV XX(X)XXX-XXX, 2021. - Current treatments for mental health disorders are successful only for some patients, and there is an unmet clinical need for new treatment development. One challenge for treatment development has been how best to model complex human conditions in animals, where mechanism can be more readily studied with a range of neuroscientific techniques. We suggest that an approach to modelling based on associative animal learning theory provides a good framework for deconstructing complex mental health disorders such that they can be studied in animals. These individual simple models can subsequently be used in combination to 'reconstruct' a more complex model of the mental health disorder of interest. Using examples primarily from the field of drug addiction, we explore the 'psychological approach' and suggest that in addition to facilitating translation and backtranslation of tasks between animal models and patients, it is also highly concordant with the concept of triangulation.
Collapse
Affiliation(s)
| | - Amy L Milton
- Department of Psychology, University of Cambridge, United Kingdom.
| |
Collapse
|
23
|
Egervari G, Siciliano CA, Whiteley EL, Ron D. Alcohol and the brain: from genes to circuits. Trends Neurosci 2021; 44:1004-1015. [PMID: 34702580 PMCID: PMC8616825 DOI: 10.1016/j.tins.2021.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 01/27/2023]
Abstract
Alcohol use produces wide-ranging and diverse effects on the central nervous system. It influences intracellular signaling mechanisms, leading to changes in gene expression, chromatin remodeling, and translation. As a result of these molecular alterations, alcohol affects the activity of neuronal circuits. Together, these mechanisms produce long-lasting cellular adaptations in the brain that in turn can drive the development and maintenance of alcohol use disorder (AUD). We provide an update on alcohol research, focusing on multiple levels of alcohol-induced adaptations, from intracellular changes to changes in neural circuits. A better understanding of how alcohol affects these diverse and interlinked mechanisms may lead to the identification of novel therapeutic targets and to the development of much-needed novel and efficacious treatment options.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37203, USA.
| | - Ellanor L Whiteley
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Chen L, Yan H, Wang Y, He Z, Leng Q, Huang S, Wu F, Feng X, Yan J. The Mechanisms and Boundary Conditions of Drug Memory Reconsolidation. Front Neurosci 2021; 15:717956. [PMID: 34421529 PMCID: PMC8377231 DOI: 10.3389/fnins.2021.717956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Drug addiction can be seen as a disorder of maladaptive learning characterized by relapse. Therefore, disrupting drug-related memories could be an approach to improving therapies for addiction. Pioneering studies over the last two decades have revealed that consolidated memories are not static, but can be reconsolidated after retrieval, thereby providing candidate pathways for the treatment of addiction. The limbic-corticostriatal system is known to play a vital role in encoding the drug memory engram. Specific structures within this system contribute differently to the process of memory reconsolidation, making it a potential target for preventing relapse. In addition, as molecular processes are also active during memory reconsolidation, amnestic agents can be used to attenuate drug memory. In this review, we focus primarily on the brain structures involved in storing the drug memory engram, as well as the molecular processes involved in drug memory reconsolidation. Notably, we describe reports regarding boundary conditions constraining the therapeutic potential of memory reconsolidation. Furthermore, we discuss the principles that could be employed to modify stored memories. Finally, we emphasize the challenge of reconsolidation-based strategies, but end with an optimistic view on the development of reconsolidation theory for drug relapse prevention.
Collapse
Affiliation(s)
- Liangpei Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Yufang Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Ziping He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qihao Leng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Feilong Wu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiangyang Feng
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China.,Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
25
|
Ehinger Y, Zhang Z, Phamluong K, Soneja D, Shokat KM, Ron D. Brain-specific inhibition of mTORC1 eliminates side effects resulting from mTORC1 blockade in the periphery and reduces alcohol intake in mice. Nat Commun 2021; 12:4407. [PMID: 34315870 PMCID: PMC8316332 DOI: 10.1038/s41467-021-24567-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Alcohol Use Disorder (AUD) affects a large portion of the population. Unfortunately, efficacious medications to treat the disease are limited. Studies in rodents suggest that mTORC1 plays a crucial role in mechanisms underlying phenotypes such as heavy alcohol intake, habit, and relapse. Thus, mTORC1 inhibitors, which are used in the clinic, are promising therapeutic agents to treat AUD. However, chronic inhibition of mTORC1 in the periphery produces undesirable side effects, which limit their potential use for the treatment of AUD. To overcome these limitations, we designed a binary drug strategy in which male mice were treated with the mTORC1 inhibitor RapaLink-1 together with a small molecule (RapaBlock) to protect mTORC1 activity in the periphery. We show that whereas RapaLink-1 administration blocked mTORC1 activation in the liver, RapaBlock abolished the inhibitory action of Rapalink-1. RapaBlock also prevented the adverse side effects produced by chronic inhibition of mTORC1. Importantly, co-administration of RapaLink-1 and RapaBlock inhibited alcohol-dependent mTORC1 activation in the nucleus accumbens and attenuated alcohol seeking and drinking.
Collapse
Affiliation(s)
- Yann Ehinger
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ziyang Zhang
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Khanhky Phamluong
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Drishti Soneja
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Reconsolidation of a post-ingestive nutrient memory requires mTOR in the central amygdala. Mol Psychiatry 2021; 26:2820-2836. [PMID: 32873898 DOI: 10.1038/s41380-020-00874-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 01/22/2023]
Abstract
The central control of feeding behavior and metabolic homeostasis has been proposed to involve a form of post-ingestive nutrient learning independent of the gustatory value of food. However, after such learning, it is unknown which brain regions or circuits are activated to retrieve the stored memory and whether this memory undergoes reconsolidation that depends on protein synthesis after its reactivation through retrieval. In the present study, using a conditioned-flavor-preference paradigm by associating flavors with intra-gastric infusion of glucose to minimize the evaluation of the taste of food, we show that retrieval of the post-ingestive nutrient-conditioned flavor memory stimulates multiple brain regions in mice, including the central nucleus of the amygdala (CeA). Moreover, memory retrieval activated the mammalian target of rapamycin complex 1 (mTORC1) in the CeA, while site-specific or systemic inhibition of mTORC1 immediately after retrieval prevented the subsequent expression of the post-ingestive nutrient-associated flavor memory, leading to a long-lasting suppression of reinstatement. Taken together, our findings suggest that the reconsolidation process of a post-ingestive nutrient memory modulates food preferences.
Collapse
|
27
|
Limanaqi F, Busceti CL, Celli R, Biagioni F, Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog Neurobiol 2021; 204:102112. [PMID: 34171442 DOI: 10.1016/j.pneurobio.2021.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
As a major eukaryotic cell clearing machinery, autophagy grants cell proteostasis, which is key for neurotransmitter release, synaptic plasticity, and neuronal survival. In line with this, besides neuropathological events, autophagy dysfunctions are bound to synaptic alterations that occur in mental disorders, and early on, in neurodegenerative diseases. This is also the case of methamphetamine (METH) abuse, which leads to psychiatric disturbances and neurotoxicity. While consistently altering the autophagy machinery, METH produces behavioral and neurotoxic effects through molecular and biochemical events that can be recapitulated by autophagy blockade. These consist of altered physiological dopamine (DA) release, abnormal stimulation of DA and glutamate receptors, as well as oxidative, excitotoxic, and neuroinflammatory events. Recent molecular insights suggest that METH early impairs the autophagy machinery, though its functional significance remains to be investigated. Here we discuss evidence suggesting that alterations of DA transmission and autophagy are intermingled within a chain of events underlying behavioral alterations and neurodegenerative phenomena produced by METH. Understanding how METH alters the autophagy machinery is expected to provide novel insights into the neurobiology of METH addiction sharing some features with psychiatric disorders and parkinsonism.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy
| | | | - Roberta Celli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
28
|
Chivero ET, Dagur RS, Peeples ES, Sil S, Liao K, Ma R, Chen L, Gurumurthy CB, Buch S, Hu G. Biogenesis, physiological functions and potential applications of extracellular vesicles in substance use disorders. Cell Mol Life Sci 2021; 78:4849-4865. [PMID: 33821293 PMCID: PMC10563196 DOI: 10.1007/s00018-021-03824-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/02/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles (EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic targets in SUD.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Raghubendra Singh Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
- Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong, China
| | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
29
|
Goltseker K, Handrus H, Barak S. Disruption of relapse to alcohol seeking by aversive counterconditioning following memory retrieval. Addict Biol 2021; 26:e12935. [PMID: 32657509 DOI: 10.1111/adb.12935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Relapse to alcohol abuse is often caused by exposure to potent alcohol-associated cues. Therefore, disruption of the cue-alcohol memory can prevent relapse. It is believed that memories destabilize and become prone for updating upon their reactivation through retrieval and then restabilize within 6 h during a "reconsolidation" process. We recently showed that relapse to cocaine seeking in a place-conditioning paradigm could be prevented by counterconditioning the cocaine cues with aversive outcomes following cocaine-memory retrieval. However, to better model addiction-related behaviors, self-administration models are necessary. Here, we demonstrate that relapse to alcohol seeking can be prevented by aversive counterconditioning conducted during alcohol-memory reconsolidation, in the place conditioning and operant self-administration paradigms, in mice and rats, respectively. We found that the reinstatement of alcohol-conditioned place preference was abolished only when aversive counterconditioning with water flooding was given shortly after alcohol-memory retrieval. Furthermore, rats trained to lever press for alcohol showed decreased context-induced renewal of alcohol-seeking responding when the lever pressing was punished with foot-shocks, shortly, but not 6 h, after memory retrieval. These results suggest that aversive counterconditioning can prevent relapse to alcohol seeking only when performed during alcohol-memory reconsolidation, presumably by updating, or replacing, the alcohol memory with aversive information. Finally, we found that aversive counterconditioning preceded by alcohol-memory retrieval was characterized by the upregulation of brain-derived neurotrophic factor (Bdnf) mRNA expression in the medial prefrontal cortex, suggesting that BDNF may play a role in the memory updating process.
Collapse
Affiliation(s)
- Koral Goltseker
- School of Psychological Sciences Tel Aviv University Tel Aviv Israel
| | - Hen Handrus
- School of Psychological Sciences Tel Aviv University Tel Aviv Israel
| | - Segev Barak
- School of Psychological Sciences Tel Aviv University Tel Aviv Israel
- School of Psychological Sciences, Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| |
Collapse
|
30
|
Cheng Y, Xie X, Lu J, Gangal H, Wang W, Melo S, Wang X, Jerger J, Woodson K, Garr E, Huang Y, Janak P, Wang J. Optogenetic induction of orbitostriatal long-term potentiation in the dorsomedial striatum elicits a persistent reduction of alcohol-seeking behavior in rats. Neuropharmacology 2021; 191:108560. [PMID: 33894220 DOI: 10.1016/j.neuropharm.2021.108560] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022]
Abstract
Uncontrolled drug-seeking and -taking behaviors are generally driven by maladaptive corticostriatal synaptic plasticity. The orbital frontal cortex (OFC) and its projections to the dorsomedial striatum (DMS) have been extensively implicated in drug-seeking and relapse behaviors. The influence of the synaptic plasticity of OFC projections to the DMS (OFC→DMS) on drug-seeking and -taking behaviors has not been fully characterized. To investigate this, we trained rats to self-administer 20% alcohol and then delivered an in vivo optogenetic protocol designed to induce long-term potentiation (LTP) selectively at OFC→DMS synapses. We selected LTP induction because we found that voluntary alcohol self-administration suppressed OFC→DMS transmission and LTP may normalize this transmission, consequently reducing alcohol-seeking behavior. Importantly, ex vivo slice electrophysiology studies confirmed that this in vivo optical stimulation protocol resulted in a significant increase in excitatory OFC→DMS transmission strength on day two after stimulation, suggesting that LTP was induced in vivo. Rat alcohol-seeking and -taking behaviors were significantly reduced on days 1-3, but not on days 7-11, after LTP induction. Striatal synaptic plasticity is modulated by several critical neurotransmitter receptors, including dopamine D1 receptors (D1Rs) and adenosine A2A receptors (A2ARs). We found that delivery of in vivo optical stimulation in the presence of a D1R antagonist abolished the LTP-associated decrease in alcohol-seeking behavior, whereas delivery in the presence of an A2AR antagonist may facilitate this LTP-induced behavioral change. These results demonstrate that alcohol-seeking behavior was negatively regulated by the potentiation of excitatory OFC→DMS neurotransmission. Our findings provide direct evidence that the OFC exerts "top-down" control of alcohol-seeking behavior via the DMS.
Collapse
Affiliation(s)
- Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA; Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Wei Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Sebastian Melo
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jared Jerger
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Kayla Woodson
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Eric Garr
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Patricia Janak
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| |
Collapse
|
31
|
Targeting the Reconsolidation of Licit Drug Memories to Prevent Relapse: Focus on Alcohol and Nicotine. Int J Mol Sci 2021; 22:ijms22084090. [PMID: 33920982 PMCID: PMC8071281 DOI: 10.3390/ijms22084090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol and nicotine are widely abused legal substances worldwide. Relapse to alcohol or tobacco seeking and consumption after abstinence is a major clinical challenge, and is often evoked by cue-induced craving. Therefore, disruption of the memory for the cue–drug association is expected to suppress relapse. Memories have been postulated to become labile shortly after their retrieval, during a “memory reconsolidation” process. Interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we surveyed the growing body of studies in animal models and in humans assessing the effectiveness of pharmacological or behavioral manipulations in reducing relapse by interfering with the reconsolidation of alcohol and nicotine/tobacco memories. Our review points to the potential of targeting the reconsolidation of these memories as a strategy to suppress relapse to alcohol drinking and tobacco smoking. However, we discuss several critical limitations and boundary conditions, which should be considered to improve the consistency and replicability in the field, and for development of an efficient reconsolidation-based relapse-prevention therapy.
Collapse
|
32
|
Zhang F, Huang S, Bu H, Zhou Y, Chen L, Kang Z, Chen L, Yan H, Yang C, Yan J, Jian X, Luo Y. Disrupting Reconsolidation by Systemic Inhibition of mTOR Kinase via Rapamycin Reduces Cocaine-Seeking Behavior. Front Pharmacol 2021; 12:652865. [PMID: 33897438 PMCID: PMC8064688 DOI: 10.3389/fphar.2021.652865] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Drug addiction is considered maladaptive learning, and drug-related memories aroused by the presence of drug related stimuli (drug context or drug-associated cues) promote recurring craving and reinstatement of drug seeking. The mammalian target of rapamycin signaling pathway is involved in reconsolidation of drug memories in conditioned place preference and alcohol self-administration (SA) paradigms. Here, we explored the effect of mTOR inhibition on reconsolidation of addiction memory using cocaine self-administration paradigm. Rats received intravenous cocaine self-administration training for 10 consecutive days, during which a light/tone conditioned stimulus was paired with each cocaine infusion. After acquisition of the stable cocaine self-administration behaviors, rats were subjected to nosepoke extinction (11 days) to extinguish their behaviors, and then received a 15 min retrieval trial with or without the cocaine-paired tone/light cue delivery or without. Immediately or 6 h after the retrieval trial, rapamycin (10 mg/kg) was administered intraperitoneally. Finally, cue-induced reinstatement, cocaine-priming-induced reinstatement and spontaneous recovery of cocaine-seeking behaviors were assessed in rapamycin previously treated animals, respectively. We found that rapamycin treatment immediately after a retrieval trial decreased subsequent reinstatement of cocaine seeking induced by cues or cocaine itself, and these effects lasted at least for 28 days. In contrast, delayed intraperitoneal injection of rapamycin 6 h after retrieval or rapamycin injection without retrieval had no effects on cocaine-seeking behaviors. These findings indicated that mTOR inhibition within the reconsolidation time-window impairs the reconsolidation of cocaine associated memory, reduces cocaine-seeking behavior and prevents relapse, and these effects are retrieval-dependent and temporal-specific.
Collapse
Affiliation(s)
- Fushen Zhang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Haiyan Bu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yu Zhou
- Yiyang Medical College, Yiyang, China
| | - Lixiang Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Ziliu Kang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | | | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Chang Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiaohong Jian
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
33
|
López‐Gambero AJ, Rodríguez de Fonseca F, Suárez J. Energy sensors in drug addiction: A potential therapeutic target. Addict Biol 2021; 26:e12936. [PMID: 32638485 DOI: 10.1111/adb.12936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
Addiction is defined as the repeated exposure and compulsive seek of psychotropic drugs that, despite the harmful effects, generate relapse after the abstinence period. The psychophysiological processes associated with drug addiction (acquisition/expression, withdrawal, and relapse) imply important alterations in neurotransmission and changes in presynaptic and postsynaptic plasticity and cellular structure (neuroadaptations) in neurons of the reward circuits (dopaminergic neuronal activity) and other corticolimbic regions. These neuroadaptation mechanisms imply important changes in neuronal energy balance and protein synthesis machinery. Scientific literature links drug-induced stimulation of dopaminergic and glutamatergic pathways along with presence of neurotrophic factors with alterations in synaptic plasticity and membrane excitability driven by metabolic sensors. Here, we provide current knowledge of the role of molecular targets that constitute true metabolic/energy sensors such as AMPK, mTOR, ERK, or KATP in the development of the different phases of addiction standing out the main brain regions (ventral tegmental area, nucleus accumbens, hippocampus, and amygdala) constituting the hubs in the development of addiction. Because the available treatments show very limited effectiveness, evaluating the drug efficacy of AMPK and mTOR specific modulators opens up the possibility of testing novel pharmacotherapies for an individualized approach in drug abuse.
Collapse
Affiliation(s)
- Antonio Jesús López‐Gambero
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
34
|
Luyten L, Schnell AE, Schroyens N, Beckers T. Lack of drug-induced post-retrieval amnesia for auditory fear memories in rats. BMC Biol 2021; 19:17. [PMID: 33499865 PMCID: PMC7836479 DOI: 10.1186/s12915-021-00957-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long-term memory formation is generally assumed to involve the permanent storage of recently acquired memories, making them relatively insensitive to disruption, a process referred to as memory consolidation. However, when retrieved under specific circumstances, consolidated fear memories are thought to return to a labile state, thereby opening a window for modification (e.g., attenuation) of the memory. Several interventions during a critical time frame after this destabilization seem to be able to alter the retrieved memory, for example by pharmacologically interfering with the restabilization process, either by direct protein synthesis inhibition or indirectly, using drugs that can be safely administered in patients (e.g., propranolol). Here, we find that, contrary to expectations, systemic pharmacological manipulations in auditory fear-conditioned rats do not lead to drug-induced post-retrieval amnesia. RESULTS In a series of well-powered auditory fear conditioning experiments (four with propranolol, 10 mg/kg, two with rapamycin, 20-40 mg/kg, one with anisomycin, 150 mg/kg and cycloheximide, 1.5 mg/kg), we found no evidence for reduced cued fear memory expression during a drug-free test in adult male Sprague-Dawley rats that had previously received a systemic drug injection upon retrieval of the tone fear memory. All experiments used standard fear conditioning and reactivation procedures with freezing as the behavioral read-out (conceptual or exact replications of published reports) and common pharmacological agents. Additional tests confirmed that the applied drug doses and administration routes were effective in inducing their conventional effects on expression of fear (propranolol, acutely), body weight (rapamycin, anisomycin, cycloheximide), and consolidation of extinction memories (cycloheximide). CONCLUSIONS In contrast with previously published studies, we did not find evidence for drug-induced post-retrieval amnesia, underlining that this effect, as well as its clinical applicability, may be considerably more constrained and less readily reproduced than what the current literature would suggest.
Collapse
Affiliation(s)
- Laura Luyten
- KU Leuven, Faculty of Psychology and Educational Sciences, Psychology of Learning and Experimental Psychopathology, Tiensestraat 102 PB 3712, 3000 Leuven, Belgium
- Leuven Brain Institute, Herestraat 49 PB 1021, 3000 Leuven, Belgium
| | - Anna Elisabeth Schnell
- KU Leuven, Faculty of Psychology and Educational Sciences, Psychology of Learning and Experimental Psychopathology, Tiensestraat 102 PB 3712, 3000 Leuven, Belgium
- Leuven Brain Institute, Herestraat 49 PB 1021, 3000 Leuven, Belgium
| | - Natalie Schroyens
- KU Leuven, Faculty of Psychology and Educational Sciences, Psychology of Learning and Experimental Psychopathology, Tiensestraat 102 PB 3712, 3000 Leuven, Belgium
- Leuven Brain Institute, Herestraat 49 PB 1021, 3000 Leuven, Belgium
| | - Tom Beckers
- KU Leuven, Faculty of Psychology and Educational Sciences, Psychology of Learning and Experimental Psychopathology, Tiensestraat 102 PB 3712, 3000 Leuven, Belgium
- Leuven Brain Institute, Herestraat 49 PB 1021, 3000 Leuven, Belgium
| |
Collapse
|
35
|
Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neurosci Biobehav Rev 2021; 123:238-256. [PMID: 33497785 DOI: 10.1016/j.neubiorev.2021.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
The catecholamine-containing brainstem nuclei locus coeruleus (LC) and ventral tegmental area (VTA) are critically involved in stress responses. Alterations of catecholamine systems during chronic stress may contribute to neurodegeneration, including cognitive decline. Stress-related catecholamine alterations, while contributing to anxiety and depression, might accelerate neuronal degeneration by increasing the formation of toxic dopamine and norepinephrine by-products. These, in turn, may impair proteostasis within a variety of cortical and subcortical areas. In particular, the molecular events governing neurotransmission, neuroplasticity, and proteostasis within LC and VTA affect a variety of brain areas. Therefore, we focus on alterations of autophagy machinery in these nuclei as a relevant trigger in this chain of events. In fact, these catecholamine-containing areas are mostly prone to autophagy-dependent neurodegeneration. Thus, we propose a dynamic hypothesis according to which stress-induced autophagy alterations within the LC-VTA network foster a cascade towards early neurodegeneration within these nuclei.
Collapse
|
36
|
Walsh K, Iskandar G, Kamboj SK, Das RK. An assessment of rapamycin for weakening binge-eating memories via reconsolidation: a pre-registered, double-blind randomised placebo-controlled experimental study. Psychol Med 2021; 51:158-167. [PMID: 31736460 DOI: 10.1017/s003329171900312x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Maladaptive learning linking environmental food cues to high-palatability food reward plays a central role in overconsumption in obesity and binge eating disorders. The process of memory reconsolidation offers a mechanism to weaken such learning, potentially ameliorating over-eating behaviour. Here we investigated whether putatively interfering with synaptic plasticity using the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, could weaken retrieved chocolate reward memories through blockade of reconsolidation. METHODS Seventy five healthy volunteers with a tendency to binge eat chocolate were randomised to retrieve chocolate reward memory under 10 mg rapamycin (RET + RAP, active condition), or placebo (RET + PBO), or they received 10 mg rapamycin without subsequent retrieval (NO RET + RAP). Indices of chocolate reward memory strength were assessed one week pre and post manipulation and at one month follow-up. RESULTS Contrary to hypotheses, the RET + RAP group did not show any greater reduction than control groups on indices of motivational salience of chocolate cues, motivation to consume chocolate or liking of chocolate. Mild evidence of improvement in the RET + RAP group was found, but this was limited to reduced chocolate binge episodes and improved healthy food choices. CONCLUSIONS We did not find convincing evidence of comprehensive naturalistic chocolate reward memory reconsolidation blockade by rapamycin. The effects on chocolate bingeing and food choices may warrant further investigation. These limited positive findings may be attributable to insufficient interference with mTOR signalling with 10 mg rapamycin, or failure to destabilise chocolate memories during retrieval.
Collapse
Affiliation(s)
- Katie Walsh
- Clinical, Educational and Health Psychology, University College London, Gower Street, London, WC1E 6BT
| | - Georges Iskandar
- University College Hospital and University College Hospital at Westmoreland Street, London, UK
| | - Sunjeev K Kamboj
- Clinical, Educational and Health Psychology, University College London, Gower Street, London, WC1E 6BT
| | - Ravi K Das
- Clinical, Educational and Health Psychology, University College London, Gower Street, London, WC1E 6BT
| |
Collapse
|
37
|
Pascual M, López‐Hidalgo R, Montagud‐Romero S, Ureña‐Peralta JR, Rodríguez‐Arias M, Guerri C. Role of mTOR-regulated autophagy in spine pruning defects and memory impairments induced by binge-like ethanol treatment in adolescent mice. Brain Pathol 2021; 31:174-188. [PMID: 32876364 PMCID: PMC8018167 DOI: 10.1111/bpa.12896] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adolescence is a brain maturation developmental period during which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. Different mechanism participates in adolescent brain maturation, including autophagy that plays a role in synaptic development and plasticity. Alcohol is a neurotoxic compound and its abuse in adolescence induces neuroinflammation, synaptic and myelin alterations, neural damage and behavioral impairments. Changes in synaptic plasticity and its regulation by mTOR have also been suggested to play a role in the behavioral dysfunction of binge ethanol drinking in adolescence. Therefore, by considering the critical role of mTOR in both autophagy and synaptic plasticity in the developing brain, the present study aims to evaluate whether binge ethanol treatment in adolescence would induce dysfunctions in synaptic plasticity and cognitive functions and if mTOR inhibition with rapamycin is capable of restoring both effects. Using C57BL/6 adolescent female and male mice (PND30) treated with ethanol (3 g/kg) on two consecutive days at 48-hour intervals over 2 weeks, we show that binge ethanol treatment alters the density and morphology of dendritic spines, effects that are associated with learning and memory impairments and changes in the levels of both transcription factor CREB phosphorylation and miRNAs. Rapamycin administration (3 mg/kg) prior to ethanol administration restores ethanol-induced changes in both plasticity and behavior dysfunctions in adolescent mice. These results support the critical role of mTOR/autophagy dysfunctions in the dendritic spines alterations and cognitive alterations induced by binge alcohol in adolescence.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
- Department of PhysiologySchool of Medicine and DentistryUniversity of ValenciaValenciaSpain
| | - Rosa López‐Hidalgo
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Juan R. Ureña‐Peralta
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| |
Collapse
|
38
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Ucha M, Roura-Martínez D, Ambrosio E, Higuera-Matas A. The role of the mTOR pathway in models of drug-induced reward and the behavioural constituents of addiction. J Psychopharmacol 2020; 34:1176-1199. [PMID: 32854585 DOI: 10.1177/0269881120944159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to drugs of abuse induces neuroadaptations in critical nodes of the so-called reward systems that are thought to mediate the transition from controlled drug use to the compulsive drug-seeking that characterizes addictive disorders. These neural adaptations are likely to require protein synthesis, which is regulated, among others, by the mechanistic target of the rapamycin kinase (mTOR) signalling cascade. METHODS We have performed a narrative review of the literature available in PubMed about the involvement of the mTOR pathway in drug-reward and addiction-related phenomena. AIMS The aim of this study was to review the underlying architecture of this complex intracellular network and to discuss the alterations of its components that are evident after exposure to drugs of abuse. The aim was also to delineate the effects that manipulations of the mTOR network have on models of drug reward and on paradigms that recapitulate some of the psychological components of addiction. RESULTS There is evidence for the involvement of the mTOR pathway in the acute and rewarding effects of drugs of abuse, especially psychostimulants. However, the data regarding opiates are scarce. There is a need to use sophisticated animal models of addiction to ascertain the real role of the mTOR pathway in this pathology and not just in drug-mediated reward. The involvement of this pathway in behavioural addictions and impulsivity should also be studied in detail in the future. CONCLUSIONS Although there is a plethora of data about the modulation of mTOR by drugs of abuse, the involvement of this signalling pathway in addictive disorders requires further research.
Collapse
Affiliation(s)
- Marcos Ucha
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| |
Collapse
|
40
|
Taujanskaitė U, Cahill EN, Milton AL. Targeting drug memory reconsolidation: a neural analysis. Curr Opin Pharmacol 2020; 56:7-12. [PMID: 32961367 DOI: 10.1016/j.coph.2020.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Addiction can be conceptualised as a disorder of maladaptive learning and memory. Therefore, maladaptive drug memories supporting drug-seeking and relapse behaviours may present novel treatment targets for therapeutic approaches based upon reconsolidation-blockade. It is known that different structures within the limbic corticostriatal system contribute differentially to different types of maladaptive drug memories, including pavlovian associations between environmental cues and contexts with the drug high, and instrumental memories underlying drug-seeking. Here, we review the mechanisms underlying drug memory reconsolidation in the amygdala, striatum, and hippocampus, noting similarities and differences, and opportunities for future research.
Collapse
Affiliation(s)
- Uršulė Taujanskaitė
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
Hernandez JS, Binette AN, Rahman T, Tarantino JD, Moorman DE. Chemogenetic Inactivation of Orbitofrontal Cortex Decreases Cue-induced Reinstatement of Ethanol and Sucrose Seeking in Male and Female Wistar Rats. Alcohol Clin Exp Res 2020; 44:1769-1782. [PMID: 32628778 DOI: 10.1111/acer.14407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The orbitofrontal cortex (OFC) encodes internal representations of outcomes and subjective value to facilitate flexible reward seeking. OFC activation is associated with drug seeking in both human subjects and animal models. OFC plays a role in alcohol use, but studies in animal models have produced conflicting results with some showing decreased seeking after OFC inactivation but others showing increased seeking or no changes. In part, this may be due to the different measures of alcohol seeking used (e.g., homecage drinking vs. operant seeking). METHODS We characterized the impact of transient inactivation of OFC (primarily lateral and, to a lesser extent, ventral subregions) using inhibitory hM4Di designer receptors exclusively activated by designer drugs (DREADDs). OFC neurons were transiently inhibited during 10% and 20% alcohol (ethanol, EtOH) and sucrose homecage consumption, fixed ratio (FR1) operant self-administration, and cue-induced reinstatement of either 10% EtOH or sucrose in male and female rats. RESULTS OFC inactivation did not affect sucrose or EtOH consumption in the homecage, nor did it influence seeking or consumption under FR1 operant conditions. In contrast, OFC inactivation suppressed cued-induced reinstatement for both EtOH and sucrose in both male and female rats. CONCLUSIONS Our results are aligned with previous work indicating a selective suppressive effect of OFC inactivation on reinstatement for alcohol and other drugs of abuse. They extend these findings to demonstrate no effect on homecage consumption or FR1 seeking as well as showing an impact of sucrose reinstatement. These data indicate that OFC plays a uniquely important role when reward seeking is driven by associations between external stimuli and internal representations of reward value, both for natural and drug rewards. They further implicate the OFC as a key structure driving relapse-associated seeking and potentially contributing to alcohol use disorder and other diseases of compulsive reward seeking.
Collapse
Affiliation(s)
- John S Hernandez
- From the, Neuroscience and Behavior Graduate Program (JSH, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Annalise N Binette
- Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Taryn Rahman
- Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jeffrey D Tarantino
- Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - David E Moorman
- From the, Neuroscience and Behavior Graduate Program (JSH, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA.,Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
42
|
Protocols for instrumental memory reconsolidation in rodents: A methodological review. J Neurosci Methods 2020; 342:108766. [PMID: 32413376 DOI: 10.1016/j.jneumeth.2020.108766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Memory reconsolidation enables the update of a previously consolidated memory trace after its reactivation. Although Pavlovian memory reconsolidation has been widely demonstrated, instrumental memory reconsolidation is still debated. Early studies suggested that instrumental memories did not undergo reconsolidation and therefore could not be disrupted, whereas other authors suggested that these memories are just more resistant to destabilization and reconsolidation in comparison to Pavlovian memories. AIM AND RESULTS The present paper reviews the behavioral protocols used to investigate appetitive instrumental memory reconsolidation in rodents and describes in detail the specific methods used for memory retrieval, with a critical analysis of the different experimental parameters. CONCLUSIONS The modalities under which the reconsolidation of appetitive (sucrose or drugs of abuse) instrumental memories occurs have been explored and partially elucidated. Further investigations are recommended on the boundary conditions that constrain instrumental memory reactivation.
Collapse
|
43
|
Arinze I, Moorman DE. Selective impact of lateral orbitofrontal cortex inactivation on reinstatement of alcohol seeking in male Long-Evans rats. Neuropharmacology 2020; 168:108007. [PMID: 32092436 PMCID: PMC10373069 DOI: 10.1016/j.neuropharm.2020.108007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
The orbitofrontal cortex (OFC) plays a fundamental role in motivated behavior and decision-making. In humans, OFC structure and function is significantly disrupted in drug using and dependent individuals, including those exhibiting chronic alcohol use and alcoholism. In animal models, the OFC has been shown to significantly influence the seeking of non-alcohol drugs of abuse. However direct investigations of the OFC during alcohol seeking and use have been more limited. In the studies reported here, we inactivated lateral (lOFC) or medial OFC (mOFC) subregions in rats during multiple stages of alcohol seeking. After one month of intermittent access to homecage 20% ethanol (EtOH), rats were trained to self-administer EtOH under an FR3 schedule and implanted with cannulae directed to lOFC or mOFC. We inactivated OFC subregions with baclofen/muscimol during EtOH self-administration, extinction, cue-induced reinstatement, and progressive ratio testing to broadly characterize the influence of these subregions on alcohol seeking. There were no significant effects of mOFC or lOFC inactivation during FR3 self-administration, extinction, or progressive ratio self-administration. However, lOFC, and not mOFC, inactivation significantly decreased cue-induced reinstatement of EtOH seeking. These findings contribute new information to the specific impact of OFC manipulation on operant alcohol seeking, support previous studies investigating the role of OFC in seeking and consumption of alcohol and other drugs of abuse, and indicate a specific role for lOFC vs. mOFC in reinstatement.
Collapse
|
44
|
Choe HK, Cho J. Comprehensive Genome-Wide Approaches to Activity-Dependent Translational Control in Neurons. Int J Mol Sci 2020; 21:ijms21051592. [PMID: 32111062 PMCID: PMC7084349 DOI: 10.3390/ijms21051592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Activity-dependent regulation of gene expression is critical in experience-mediated changes in the brain. Although less appreciated than transcriptional control, translational control is a crucial regulatory step of activity-mediated gene expression in physiological and pathological conditions. In the first part of this review, we overview evidence demonstrating the importance of translational controls under the context of synaptic plasticity as well as learning and memory. Then, molecular mechanisms underlying the translational control, including post-translational modifications of translation factors, mTOR signaling pathway, and local translation, are explored. We also summarize how activity-dependent translational regulation is associated with neurodevelopmental and psychiatric disorders, such as autism spectrum disorder and depression. In the second part, we highlight how recent application of high-throughput sequencing techniques has added insight into genome-wide studies on translational regulation of neuronal genes. Sequencing-based strategies to identify molecular signatures of the active neuronal population responding to a specific stimulus are discussed. Overall, this review aims to highlight the implication of translational control for neuronal gene regulation and functions of the brain and to suggest prospects provided by the leading-edge techniques to study yet-unappreciated translational regulation in the nervous system.
Collapse
Affiliation(s)
- Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (H.K.C.); (J.C.)
| | - Jun Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Correspondence: (H.K.C.); (J.C.)
| |
Collapse
|
45
|
Haubrich J, Bernabo M, Baker AG, Nader K. Impairments to Consolidation, Reconsolidation, and Long-Term Memory Maintenance Lead to Memory Erasure. Annu Rev Neurosci 2020; 43:297-314. [PMID: 32097575 DOI: 10.1146/annurev-neuro-091319-024636] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An enduring problem in neuroscience is determining whether cases of amnesia result from eradication of the memory trace (storage impairment) or if the trace is present but inaccessible (retrieval impairment). The most direct approach to resolving this question is to quantify changes in the brain mechanisms of long-term memory (BM-LTM). This approach argues that if the amnesia is due to a retrieval failure, BM-LTM should remain at levels comparable to trained, unimpaired animals. Conversely, if memories are erased, BM-LTM should be reduced to resemble untrained levels. Here we review the use of BM-LTM in a number of studies that induced amnesia by targeting memory maintenance or reconsolidation. The literature strongly suggests that such amnesia is due to storage rather than retrieval impairments. We also describe the shortcomings of the purely behavioral protocol that purports to show recovery from amnesia as a method of understanding the nature of amnesia.
Collapse
Affiliation(s)
- Josué Haubrich
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| | - Matteo Bernabo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Andrew G Baker
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| |
Collapse
|
46
|
Choi S, Kim K, Cha M, Kim M, Lee BH. mTOR signaling intervention by Torin1 and XL388 in the insular cortex alleviates neuropathic pain. Neurosci Lett 2020; 718:134742. [PMID: 31917234 DOI: 10.1016/j.neulet.2020.134742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
Signaling by mammalian target of rapamycin (mTOR), a kinase regulator of protein synthesis, has been implicated in the development of chronic pain. The mTOR comprises two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Although effective inhibitors of mTORC1 and C2 have been developed, studies on the effect of these inhibitors related to pain modulation are still lacking. This study was conducted to determine the inhibitory effects of Torin1 and XL388 in an animal model of neuropathic pain. Seven days after neuropathic surgery, Torin1 or XL388 were microinjected into the insular cortex (IC) of nerve-injured animals and behavioral changes were assessed. Administration of Torin1 or XL388 into the IC significantly increased mechanical thresholds and reduced mechanical allodynia. At the immunoblotting results, Torin1 and XL388 significantly reduced phosphorylation of mTOR, 4E-BP1, p70S6K, and PKCα, without affecting Akt. These results strongly suggest that Torin1 and XL388 may attenuate neuropathic pain via inhibition of mTORC1 and mTORC2 in the IC.
Collapse
Affiliation(s)
- Songyeon Choi
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minjee Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Limanaqi F, Busceti CL, Biagioni F, Fornai F, Puglisi-Allegra S. Autophagy-Based Hypothesis on the Role of Brain Catecholamine Response During Stress. Front Psychiatry 2020; 11:569248. [PMID: 33093837 PMCID: PMC7527533 DOI: 10.3389/fpsyt.2020.569248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Stressful events, similar to abused drugs, significantly affect the homeostatic balance of the catecholamine brain systems while activating compensation mechanisms to restore balance. In detail, norepinephrine (NE)- and dopamine (DA)-containing neurons within the locus coeruleus (LC) and ventral tegmental area (VTA), are readily and similarly activated by psychostimulants and stressful events involving neural processes related to perception, reward, cognitive evaluation, appraisal, and stress-dependent hormonal factors. Brain catecholamine response to stress results in time-dependent regulatory processes involving mesocorticolimbic circuits and networks, where LC-NE neurons respond more readily than VTA-DA neurons. LC-NE projections are dominant in controlling the forebrain DA-targeted areas, such as the nucleus accumbens (NAc) and medial pre-frontal cortex (mPFC). Heavy and persistent coping demand could lead to sustained LC-NE and VTA-DA neuronal activity, that, when persisting chronically, is supposed to alter LC-VTA synaptic connections. Increasing evidence has been provided indicating a role of autophagy in modulating DA neurotransmission and synaptic plasticity. This alters behavior, and emotional/cognitive experience in response to drug abuse and occasionally, to psychological stress. Thus, relevant information to address the role of stress and autophagy can be drawn from psychostimulants research. In the present mini-review we discuss the role of autophagy in brain catecholamine response to stress and its dysregulation. The findings here discussed suggest a crucial role of regulated autophagy in the response and adaptation of LC-NE and VTA-DA systems to stress.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
48
|
Morisot N, Phamluong K, Ehinger Y, Berger AL, Moffat JJ, Ron D. mTORC1 in the orbitofrontal cortex promotes habitual alcohol seeking. eLife 2019; 8:51333. [PMID: 31820733 PMCID: PMC6959998 DOI: 10.7554/elife.51333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in dendritic translation and in learning and memory. We previously showed that heavy alcohol use activates mTORC1 in the orbitofrontal cortex (OFC) of rodents (Laguesse et al., 2017a). Here, we set out to determine the consequences of alcohol-dependent mTORC1 activation in the OFC. We found that inhibition of mTORC1 activity in the OFC attenuates alcohol seeking and restores sensitivity to outcome devaluation in rats that habitually seek alcohol. In contrast, habitual responding for sucrose was unaltered by mTORC1 inhibition, suggesting that mTORC1’s role in habitual behavior is specific to alcohol. We further show that inhibition of GluN2B in the OFC attenuates alcohol-dependent mTORC1 activation, alcohol seeking and habitual responding for alcohol. Together, these data suggest that the GluN2B/mTORC1 axis in the OFC drives alcohol seeking and habit.
Collapse
Affiliation(s)
- Nadege Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Khanhky Phamluong
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Yann Ehinger
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Anthony L Berger
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Jeffrey J Moffat
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
49
|
Cofresí RU, Bartholow BD, Piasecki TM. Evidence for incentive salience sensitization as a pathway to alcohol use disorder. Neurosci Biobehav Rev 2019; 107:897-926. [PMID: 31672617 PMCID: PMC6878895 DOI: 10.1016/j.neubiorev.2019.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
The incentive salience sensitization (ISS) theory of addiction holds that addictive behavior stems from the ability of drugs to progressively sensitize the brain circuitry that mediates attribution of incentive salience (IS) to reward-predictive cues and its behavioral manifestations. In this article, we establish the plausibility of ISS as an etiological pathway to alcohol use disorder (AUD). We provide a comprehensive and critical review of evidence for: (1) the ability of alcohol to sensitize the brain circuitry of IS attribution and expression; and (2) attribution of IS to alcohol-predictive cues and its sensitization in humans and non-human animals. We point out gaps in the literature and how these might be addressed. We also highlight how individuals with different alcohol subjective response phenotypes may differ in susceptibility to ISS as a pathway to AUD. Finally, we discuss important implications of this neuropsychological mechanism in AUD for psychological and pharmacological interventions attempting to attenuate alcohol craving and cue reactivity.
Collapse
Affiliation(s)
- Roberto U Cofresí
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States.
| | - Bruce D Bartholow
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| | - Thomas M Piasecki
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| |
Collapse
|
50
|
Liu Y, Zhang Y, Peng J, Wang H, Li X, Li X, Rong X, Pan J, Peng Y. Autophagy alleviates ethanol-induced memory impairment in association with anti-apoptotic and anti-inflammatory pathways. Brain Behav Immun 2019; 82:63-75. [PMID: 31376498 DOI: 10.1016/j.bbi.2019.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic excessive drinking leads to a wide spectrum of neurological disorders, including cognitive deficits, such as learning and memory impairment. However, the neurobiological mechanisms underlying these deleterious changes are still poorly understood. We conducted a comprehensive study to investigate the role and mechanism of autophagy in alcohol-induced memory impairment. To establish an ethanol-induced memory impairment mouse model, we allowed C57BL/6J mice intermittent access to 20% ethanol (four-bottle choice) to escalate ethanol drinking levels. Memory impairment was confirmed by a Morris water maze test. We found that mice exposed to EtOH (ethanol) and EtOH combined with the autophagy inhibitor 3-methyladenine (3-MA) showed high alcohol intake and blood alcohol concentration. We confirmed that the EtOH group exhibited notable memory impairment. Inhibition of autophagy by 3-MA worsened ethanol-induced memory impairment. Ethanol induced autophagy in the hippocampus of mice as indicated by western blotting, electron microscopy, RT-qPCR, and fluorescence confocal microscopy. We determined that the mTOR/BECN1 (S14) pathway is involved in ethanol-induced autophagy in vivo. Further, ethanol-induced autophagy suppressed the NLRP3 inflammatory and apoptosis pathways in the hippocampus in mice and in vitro. These findings suggest that autophagy activation in hippocampal cells alleviates ethanol-induced memory impairment in association with anti-apoptotic and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuanpei Zhang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jialing Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangpen Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoyu Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingrui Pan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|