1
|
Adermark L, Cadeddu D, Lucente E, Danielsson K, Söderpalm B, Ericson M. Morphine self-administration decreases intrinsic excitability of accumbal medium spiny neurons and suppresses the innate immune system in male Wistar rats. Neurochem Int 2025; 186:105965. [PMID: 40127781 DOI: 10.1016/j.neuint.2025.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
INTRODUCTION Morphine alleviates severe pain but is addictive and associated with weakened immune system. Interestingly, the immunosuppressive effects have been linked to central circuits including the nucleus accumbens shell (NAc), suggesting that there might be a direct link between reward processing in the NAc and weakened immune system. The overall aim with this study was to assess the impact displayed by morphine self-administration on neuroplasticity in the NAc shell and circulating white blood cells. METHODS Wistar rats received morphine injections over ten days, and locomotor activity was monitored. Next, morphine self-administration, and relapse drinking after forced abstinence, were assessed. Lastly, electrophysiological recordings were conducted in the NAc ex vivo to define neurophysiological adaptations, and hematological analysis were conducted in parallel. RESULTS While ten days of morphine injections were not sufficient to affect morphine self-administration, behavioral sensitization to the locomotor stimulatory properties of morphine was observed and further correlated with the amount of morphine consumed following forced abstinence. Electrophysiological slice recordings demonstrated no effect on excitatory neurotransmission, but the intrinsic excitability of NAc neurons was significantly depressed compared to water drinking controls. In addition, hematological analysis demonstrated a significant decline in the number of white blood cells, especially monocytes and neutrophils, while erythrocytes were not affected. The amount of circulating white blood cells further correlated with morphine intake, but not with neurophysiological parameters. CONCLUSION The data presented here demonstrates that morphine self-administration produces accumbal neuroplasticity and biological transformations that could contribute to the addictive and immunosuppressive properties of morphine.
Collapse
Affiliation(s)
- Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Davide Cadeddu
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erika Lucente
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Sutton Hickey AK, Matikainen-Ankney BA. Endogenous opioid receptors and the feast or famine of maladaptive feeding. Nat Commun 2025; 16:2270. [PMID: 40050623 PMCID: PMC11885478 DOI: 10.1038/s41467-025-57515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Maladaptive feeding comprises unhealthy eating patterns that jeopardize survival, including over- and underconsumption. These behaviors are often coordinated by endogenous opioid receptors (EORs). Here, we explore the involvement of EORs in obesity and anorexia nervosa (AN), two disorders associated with dysregulated feeding behavior and relevant animal models. While seemingly opposing metabo-psychiatric states, our goal is to highlight common circuit and synaptic mechanisms underlying obesity and AN with a focus on EOR functionality. We examine the neural substrates underlying maladaptive feeding and comorbid conditions including pain, suggesting a role for EOR-driven plasticity in the pathogenesis of both obesity and AN.
Collapse
Affiliation(s)
- Ames K Sutton Hickey
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA.
| | | |
Collapse
|
3
|
Hanak F, Swanson JL, Felczak K, Bernstein KE, More SS, Rothwell PE. Inhibition of the angiotensin-converting enzyme N-terminal catalytic domain prevents endogenous opioid degradation in brain tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634163. [PMID: 39896517 PMCID: PMC11785082 DOI: 10.1101/2025.01.21.634163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Angiotensin-converting enzyme (ACE) regulates blood pressure by cleaving angiotensin peptides in the periphery, and can also regulate endogenous opioid signaling by degrading enkephalin peptides in the brain. ACE has two catalytic domains, located in the N-terminal or C-terminal region of the protein, but little is known about the roles that these two catalytic domains play in regulating endogenous opioid degradation in brain tissue. Using acute brain slice preparations from mice of both sexes, we developed methods to study degradation of Met-enkephalin-Arg-Phe (MERF) by ACE, and investigated the role of each ACE catalytic domain in MERF degradation. Using mutant mouse lines with functional inactivation of either the N-terminal domain or the C-terminal domain, we incubated acute brain slices with exogenous MERF at a saturating concentration. The degradation MERF to produce Met-enkephalin was only reduced by N-terminal domain inactivation. Additionally, application of a selective N-terminal domain inhibitor (RXP 407) reduced degradation of both exogenously applied and endogenously released MERF, without affecting degradation of endogenously released Met-enkephalin or Leu-enkephalin. Taken together, our results suggest that the ACE N-terminal domain is the primary site of MERF degradation in brain tissue, and that N-terminal domain inhibition is sufficient to reduce degradation of this specific endogenous opioid peptide. Our results have exciting implications for the development of novel pharmacotherapies that target the endogenous opioid system to treat psychiatric and neurological disorders.
Collapse
|
4
|
Littlepage-Saunders M, Hochstein MJ, Chang DS, Johnson KA. G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol 2024; 181:4399-4413. [PMID: 37258878 PMCID: PMC10687321 DOI: 10.1111/bph.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Dopamine transmission in the striatum is a critical mediator of the rewarding and reinforcing effects of commonly misused psychoactive drugs. G protein-coupled receptors (GPCRs) that bind a variety of neuromodulators including dopamine, endocannabinoids, acetylcholine and endogenous opioid peptides regulate dopamine release by acting on several components of dopaminergic circuitry. Striatal dopamine release can be driven by both somatic action potential firing and local mechanisms that depend on acetylcholine released from striatal cholinergic interneurons. GPCRs that primarily regulate somatic firing of dopamine neurons via direct effects or modulation of synaptic inputs are likely to affect distinct aspects of behaviour and psychoactive drug actions compared with those GPCRs that primarily regulate local acetylcholine-dependent dopamine release in striatal regions. This review will highlight mechanisms by which GPCRs modulate dopaminergic transmission and the relevance of these findings to psychoactive drug effects on physiology and behaviour.
Collapse
Affiliation(s)
- Mydirah Littlepage-Saunders
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Hochstein
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Doris S Chang
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Toddes C, Lefevre EM, Retzlaff CL, Zugschwert L, Khan S, Myhre E, Gauthier EA, Fernandez de Velasco EM, Kieffer BL, Rothwell PE. Mu opioid receptor expression by nucleus accumbens inhibitory interneurons promotes affiliative social behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620729. [PMID: 39553981 PMCID: PMC11565767 DOI: 10.1101/2024.10.28.620729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mu opioid receptors in the nucleus accumbens regulate motivated behavior, including pursuit of natural rewards like social interaction as well as exogenous opioids. We used a suite of genetic and viral strategies to conditionally delete mu opioid receptor expression from all major neuron types in the nucleus accumbens. We pinpoint inhibitory interneurons as an essential site of mu opioid receptor expression for typical social behavior, independent from exogenous opioid sensitivity.
Collapse
|
6
|
Cole RH, Joffe ME. Mu and Delta Opioid Receptors Modulate Inhibition within the Prefrontal Cortex Through Dissociable Cellular and Molecular Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618870. [PMID: 39484533 PMCID: PMC11526863 DOI: 10.1101/2024.10.17.618870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aberrant signaling within cortical inhibitory microcircuits has been identified as a common signature of neuropsychiatric disorders. Interneuron (IN) activity is precisely regulated by neuromodulatory systems that evoke widespread changes in synaptic transmission and principal cell output. Cortical interneurons express high levels of Mu and Delta opioid receptors (MOR and DOR), positioning opioid signaling as a critical regulator of inhibitory transmission. However, we lack a complete understanding of how MOR and DOR regulate prefrontal cortex (PFC) microcircuitry. Here, we combine whole-cell patch-clamp electrophysiology, optogenetics, and viral tools to provide an extensive characterization MOR and DOR regulation of inhibitory transmission. We show that DOR activation is more effective at suppressing spontaneous inhibitory transmission in the prelimbic PFC, while MOR causes a greater acute suppression of electrically-evoked GABA release. Cell type-specific optogenetics revealed that MOR and DOR differentially regulate inhibitory transmission from parvalbumin, somatostatin, cholecystokinin, and vasoactive intestinal peptide-expressing INs. Finally, we demonstrate that DOR regulates inhibitory transmission through pre- and postsynaptic modifications to IN physiology, whereas MOR function is predominantly observed in somato-dendritic or presynaptic compartments depending on cell type.
Collapse
Affiliation(s)
- Rebecca H. Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Max E. Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
7
|
Honeycutt SC, Lichte DD, Gilles-Thomas EA, Mukherjee A, Loney GC. Acute nicotine administration reduces the efficacy of punishment in curbing remifentanil consumption in a seeking-taking chain schedule of reinforcement. Psychopharmacology (Berl) 2024; 241:2003-2014. [PMID: 38775944 DOI: 10.1007/s00213-024-06613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/12/2024] [Indexed: 10/01/2024]
Abstract
RATIONALE Nicotine dependence is highly comorbid with opioid use disorders (OUDs). The use of nicotine-containing products increases the propensity to misuse prescription opioids and addressing both nicotine and opioid use simultaneously is more efficacious for treatment of OUDs than treating opioid use alone. OBJECTIVES Given this extreme comorbidity, further elucidation of the effects of nicotine as a factor in promoting vulnerability to development of OUDs is needed. Here, we sought to further explore the effects of nicotine administration on operant self-administration of remifentanil (RMF), a fast-acting synthetic µ-opioid receptor agonist, using a heterogenous seeking-taking chain schedule of reinforcement in unpunished and punished conditions. METHODS Male and female rats received nicotine (0.4 mg/kg) or saline prior to operant self-administration sessions. These sessions consisted of pressing a 'seeking' lever to gain access to a 'taking' lever that could be pressed for delivery of 3.2 µg/kg RMF. After acquisition, continued drug seeking/taking was punished through contingent delivery of foot-shock. RESULTS Nicotine, relative to saline, increased RMF consumption. Furthermore, nicotine treatment resulted in significantly higher seeking responses and cycles completed, and this effect became more pronounced during punished sessions as nicotine-treated rats suppressed RMF seeking significantly less than controls. Nicotine treatment functionally reduced the efficacy of foot-shock punishment as a deterrent of opioid-seeking. CONCLUSIONS Nicotine administration enhanced both appetitive and consummatory responding for RMF and engendered a punishment-insensitive phenotype for RMF that was less impacted by contingent administration of foot-shock punishment. These findings provide further support for the hypothesis that nicotine augments vulnerability for addiction-like behaviors for opioids.
Collapse
Affiliation(s)
- Sarah C Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - David D Lichte
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - Elizabeth A Gilles-Thomas
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - Ashmita Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - Gregory C Loney
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA.
| |
Collapse
|
8
|
Jaeckel ER, Arias-Hervert ER, Perez-Medina AL, Schulz S, Birdsong WT. Chronic morphine treatment induces sex- and synapse-specific cellular tolerance on thalamo-cortical mu opioid receptor signaling. J Neurophysiol 2024; 132:968-978. [PMID: 39110512 PMCID: PMC11427077 DOI: 10.1152/jn.00265.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
How cellular adaptations give rise to opioid analgesic tolerance to opioids like morphine is not well understood. For one, pain is a complex phenomenon comprising both sensory and affective components, largely mediated through separate circuits. Glutamatergic projections from the medial thalamus (MThal) to the anterior cingulate cortex (ACC) are implicated in processing of affective pain, a relatively understudied component of the pain experience. The goal of this study was to determine the effects of chronic morphine exposure on mu-opioid receptor (MOR) signaling on MThal-ACC synaptic transmission within the excitatory and feedforward inhibitory pathways. Using whole cell patch-clamp electrophysiology and optogenetics to selectively target these projections, we measured morphine-mediated inhibition of optically evoked postsynaptic currents in ACC layer V pyramidal neurons in drug-naïve and chronically morphine-treated mice. We found that morphine perfusion inhibited the excitatory and feedforward inhibitory pathways similarly in females but caused greater inhibition of the inhibitory pathway in males. Chronic morphine treatment robustly attenuated morphine presynaptic inhibition within the inhibitory pathway in males, but not females, and mildly attenuated presynaptic inhibition within the excitatory pathway in both sexes. These effects were not observed in MOR phosphorylation-deficient mice. This study indicates that chronic morphine treatment induces cellular tolerance to morphine within a thalamo-cortical circuit relevant to pain and opioid analgesia. Furthermore, it suggests this tolerance may be driven by MOR phosphorylation. Overall, these findings improve our understanding of how chronic opioid exposure alters cellular signaling in ways that may contribute to opioid analgesic tolerance.NEW & NOTEWORTHY Opioid signaling within the anterior cingulate cortex (ACC) is important for opioid modulation of affective pain. Glutamatergic medial thalamus (MThal) neurons synapse in the ACC and opioids, acting through mu opioid receptors (MORs), acutely inhibit synaptic transmission from MThal synapses. However, the effect of chronic opioid exposure on MThal-ACC synaptic transmission is not known. Here, we demonstrate that chronic morphine treatment induces cellular tolerance at these synapses in a sex-specific and phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Elizabeth R Jaeckel
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States
| | - Erwin R Arias-Hervert
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States
| | | | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
9
|
Dong C, Gowrishankar R, Jin Y, He XJ, Gupta A, Wang H, Sayar-Atasoy N, Flores RJ, Mahe K, Tjahjono N, Liang R, Marley A, Or Mizuno G, Lo DK, Sun Q, Whistler JL, Li B, Gomes I, Von Zastrow M, Tejeda HA, Atasoy D, Devi LA, Bruchas MR, Banghart MR, Tian L. Unlocking opioid neuropeptide dynamics with genetically encoded biosensors. Nat Neurosci 2024; 27:1844-1857. [PMID: 39009835 PMCID: PMC11374718 DOI: 10.1038/s41593-024-01697-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
Neuropeptides are ubiquitous in the nervous system. Research into neuropeptides has been limited by a lack of experimental tools that allow for the precise dissection of their complex and diverse dynamics in a circuit-specific manner. Opioid peptides modulate pain, reward and aversion and as such have high clinical relevance. To illuminate the spatiotemporal dynamics of endogenous opioid signaling in the brain, we developed a class of genetically encoded fluorescence sensors based on kappa, delta and mu opioid receptors: κLight, δLight and µLight, respectively. We characterized the pharmacological profiles of these sensors in mammalian cells and in dissociated neurons. We used κLight to identify electrical stimulation parameters that trigger endogenous opioid release and the spatiotemporal scale of dynorphin volume transmission in brain slices. Using in vivo fiber photometry in mice, we demonstrated the utility of these sensors in detecting optogenetically driven opioid release and observed differential opioid release dynamics in response to fearful and rewarding conditions.
Collapse
Affiliation(s)
- Chunyang Dong
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Raajaram Gowrishankar
- Center for the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, WA, USA
| | - Yihan Jin
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Xinyi Jenny He
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Nilüfer Sayar-Atasoy
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rodolfo J Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Karan Mahe
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Nikki Tjahjono
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Aaron Marley
- Department of Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Grace Or Mizuno
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Darren K Lo
- College of Biological Sciences, University of California Davis, Davis, CA, USA
| | - Qingtao Sun
- Cold Spring Harbor Laboratory, New York, NY, USA
| | | | - Bo Li
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Mark Von Zastrow
- Department of Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, WA, USA.
| | - Matthew R Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA.
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
10
|
Muñoz B, Atwood BK. Alcohol consumption does not impact delta and kappa opioid receptor-mediated synaptic depression in dorsolateral striatum of adult male mice. Alcohol 2024; 119:89-95. [PMID: 38857678 PMCID: PMC11296933 DOI: 10.1016/j.alcohol.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Many drugs of abuse, including alcohol, disrupt long-term synaptic depression (LTD) at dorsal striatal glutamate synapses. This disruption is common to many forms of LTD that are mediated by G protein coupled receptors (GPCRs) that signal through the inhibitory Gi/o class of G proteins. A loss of LTD is thought to mediate behavioral changes associated with the development of substance use disorders. We have previously shown in multiple studies that LTD mediated by the Gi/o-coupled mu opioid receptor is disrupted by in vivo opioid and alcohol exposure in adolescent and adult mice. One of our previous studies suggested that LTD mediated by delta and kappa opioid receptors was resistant to the LTD-disrupting properties of in vivo opioid exposure. We hypothesized that delta and kappa opioid receptor-mediated LTD would be exceptions to the generalizable observation that forms of dorsal striatal Gi/o-coupled receptor LTD are disrupted by drugs of abuse. Specifically, we predicted that these forms of LTD would be resistant to the deleterious effects of alcohol consumption, just as they were resistant to opioid exposure. Indeed, in adult male mice that drank alcohol for 3 weeks, delta and kappa opioid receptor-mediated LTD at glutamatergic inputs to direct pathway and indirect pathway medium spiny neurons in the dorsolateral striatum was unaffected by alcohol. These data demonstrate that alcohol effects on GPCR-mediated LTD are not generalizable across all types of Gi/o-coupled GPCRs.
Collapse
Affiliation(s)
- Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Jaeckel ER, Herrera YN, Schulz S, Birdsong WT. Chronic Morphine Induces Adaptations in Opioid Receptor Signaling in a Thalamostriatal Circuit That Are Location Dependent, Sex Specific, and Regulated by μ-Opioid Receptor Phosphorylation. J Neurosci 2024; 44:e0293232023. [PMID: 37985179 PMCID: PMC10860620 DOI: 10.1523/jneurosci.0293-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Chronic opioid exposure induces tolerance to the pain-relieving effects of opioids but sensitization to some other effects. While the occurrence of these adaptations is well understood, the underlying cellular mechanisms are less clear. This study aimed to determine how chronic treatment with morphine, a prototypical opioid agonist, induced adaptations to subsequent morphine signaling in different subcellular contexts. Opioids acutely inhibit glutamatergic transmission from medial thalamic (MThal) inputs to the dorsomedial striatum (DMS) via activity at μ-opioid receptors (MORs). MORs are present in somatic and presynaptic compartments of MThal neurons terminating in the DMS. We investigated the effects of chronic morphine treatment on subsequent morphine signaling at MThal-DMS synapses and MThal cell bodies in male and female mice. Surprisingly, chronic morphine treatment increased subsequent morphine inhibition of MThal-DMS synaptic transmission (morphine facilitation) in male, but not female, mice. At MThal cell bodies, chronic morphine treatment decreased subsequent morphine activation of potassium conductance (morphine tolerance) in both male and female mice. In knock-in mice expressing phosphorylation-deficient MORs, chronic morphine treatment resulted in tolerance to, rather than facilitation of, subsequent morphine signaling at MThal-DMS terminals, suggesting phosphorylation deficiency unmasks adaptations that counter the facilitation observed at presynaptic terminals in wild-type mice. The results of this study suggest that the effects of chronic morphine exposure are not ubiquitous; rather adaptations in MOR function may be determined by multiple factors such as subcellular receptor distribution, influence of local circuitry, and sex.
Collapse
Affiliation(s)
- Elizabeth R Jaeckel
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yoani N Herrera
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller University, D-07747 Jena, Germany
| | - William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
12
|
Munoz B, Atwood BK. A novel inhibitory corticostriatal circuit that expresses mu opioid receptor-mediated synaptic plasticity. Neuropharmacology 2023; 240:109696. [PMID: 37659438 PMCID: PMC10591984 DOI: 10.1016/j.neuropharm.2023.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Corticostriatal circuits are generally characterized by the release of glutamate neurotransmitter from cortical terminals within the striatum. It is well known that cortical excitatory input to the dorsal striatum regulates addictive drug-related behaviors. We previously reported that anterior insular cortex (AIC) synaptic inputs to the dorsolateral striatum (DLS) control binge alcohol drinking in mice. These AIC-DLS glutamate synapses are also the sole sites of corticostriatal mu opioid receptor-mediated excitatory long-term depression (MOR-LTD) in the DLS. Recent work demonstrates that some regions of cortex send long-range, direct inhibitory inputs into the dorsal striatum. Nothing is known about the existence and regulation of AIC-DLS inhibitory synaptic transmission. Here, using a combination of patch clamp electrophysiology and optogenetics, we characterized a novel AIC-DLS corticostriatal inhibitory circuit and its regulation by MOR-mediated inhibitory LTD (MOR-iLTD). First, we found that the activation of presynaptic MORs produces MOR-iLTD in the DLS and dorsomedial striatum. Then, we showed that medium spiny neurons within the DLS receive direct inhibitory synaptic input from the cortex, specifically from the motor cortex and AIC. Using transgenic mice that express cre-recombinase within parvalbumin-expressing inhibitory neurons, we determined that this specific cortical neuron subtype sends direct GABAergic projections to the DLS. Moreover, these AIC-DLS inhibitory synaptic input subtypes express MOR-iLTD. These data suggest a novel GABAergic corticostriatal circuit that could be involved in the regulation of drug and alcohol consumption-related behaviors.
Collapse
Affiliation(s)
- Braulio Munoz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
13
|
Mussetto V, Teuchmann HL, Heinke B, Trofimova L, Sandkühler J, Drdla-Schutting R, Hogri R. Opioids Induce Bidirectional Synaptic Plasticity in a Brainstem Pain Center in the Rat. THE JOURNAL OF PAIN 2023; 24:1664-1680. [PMID: 37150382 DOI: 10.1016/j.jpain.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Opioids are powerful analgesics commonly used in pain management. However, opioids can induce complex neuroadaptations, including synaptic plasticity, that ultimately drive severe side effects, such as pain hypersensitivity and strong aversion during prolonged administration or upon drug withdrawal, even following a single, brief administration. The lateral parabrachial nucleus (LPBN) in the brainstem plays a key role in pain and emotional processing; yet, the effects of opioids on synaptic plasticity in this area remain unexplored. Using patch-clamp recordings in acute brainstem slices from male and female Sprague Dawley rats, we demonstrate a concentration-dependent, bimodal effect of opioids on excitatory synaptic transmission in the LPBN. While a lower concentration of DAMGO (0.5 µM) induced a long-term depression of synaptic strength (low-DAMGO LTD), abrupt termination of a higher concentration (10 µM) induced a long-term potentiation (high-DAMGO LTP) in a subpopulation of cells. LTD involved a metabotropic glutamate receptor (mGluR)-dependent mechanism; in contrast, LTP required astrocytes and N-methyl-D-aspartate receptor (NMDAR) activation. Selective optogenetic activation of spinal and periaqueductal gray matter (PAG) inputs to the LPBN revealed that, while LTD was expressed at all parabrachial synapses tested, LTP was restricted to spino-parabrachial synapses. Thus, we uncovered previously unknown forms of opioid-induced long-term plasticity in the parabrachial nucleus that potentially modulate some adverse effects of opioids. PERSPECTIVE: We found a previously unrecognized site of opioid-induced plasticity in the lateral parabrachial nucleus, a key region for pain and emotional processing. Unraveling opioid-induced adaptations in parabrachial function might facilitate the identification of new therapeutic measures for addressing adverse effects of opioid discontinuation such as hyperalgesia and aversion.
Collapse
Affiliation(s)
- Valeria Mussetto
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannah Luise Teuchmann
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernhard Heinke
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Lidia Trofimova
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Ruth Drdla-Schutting
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Roni Hogri
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
14
|
Olusakin J, Lobo MK. An endogenous opioid alters neuronal plasticity to constrain cognitive flexibility. Mol Psychiatry 2023; 28:3146-3148. [PMID: 37532796 PMCID: PMC10859914 DOI: 10.1038/s41380-023-02204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Affiliation(s)
- Jimmy Olusakin
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Lark ARS, Silva LK, Nass SR, Marone MG, Ohene-Nyako M, Ihrig TM, Marks WD, Yarotskyy V, Rory McQuiston A, Knapp PE, Hauser KF. Progressive Degeneration and Adaptive Excitability in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons Exposed to HIV-1 Tat and Morphine. Cell Mol Neurobiol 2023; 43:1105-1127. [PMID: 35695980 PMCID: PMC9976699 DOI: 10.1007/s10571-022-01232-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
The striatum is especially vulnerable to HIV-1 infection, with medium spiny neurons (MSNs) exhibiting marked synaptodendritic damage that can be exacerbated by opioid use disorder. Despite known structural defects in MSNs co-exposed to HIV-1 Tat and opioids, the pathophysiological sequelae of sustained HIV-1 exposure and acute comorbid effects of opioids on dopamine D1 and D2 receptor-expressing (D1 and D2) MSNs are unknown. To address this question, Drd1-tdTomato- or Drd2-eGFP-expressing reporter and conditional HIV-1 Tat transgenic mice were interbred. MSNs in ex vivo slices from male mice were assessed by whole-cell patch-clamp electrophysiology and filled with biocytin to explore the functional and structural effects of progressive Tat and acute morphine exposure. Although the excitability of both D1 and D2 MSNs increased following 48 h of Tat exposure, D1 MSN firing rates decreased below control (Tat-) levels following 2 weeks and 1 month of Tat exposure but returned to control levels after 2 months. D2 neurons continued to display Tat-dependent increases in excitability at 2 weeks, but also returned to control levels following 1 and 2 months of Tat induction. Acute morphine exposure increased D1 MSN excitability irrespective of the duration of Tat exposure, while D2 MSNs were variably affected. That D1 and D2 MSN excitability would return to control levels was unexpected since both subpopulations displayed significant synaptodendritic degeneration and pathologic phospho-tau-Thr205 accumulation following 2 months of Tat induction. Thus, despite frank morphologic damage, D1 and D2 MSNs uniquely adapt to sustained Tat and acute morphine insults.
Collapse
Affiliation(s)
- Arianna R S Lark
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Lindsay K Silva
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- PPD®, Part of Thermo Fisher Scientific, Richmond, VA, 23230-3323, USA
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael G Marone
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - William D Marks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, TX, 75235, USA
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
16
|
Jaeckel ER, Arias-Hervert ER, Perez-Medina AL, Herrera YN, Schulz S, Birdsong WT. Chronic morphine induces adaptations in opioid receptor signaling in a thalamo-cortico-striatal circuit that are projection-dependent, sex-specific and regulated by mu opioid receptor phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528057. [PMID: 36824766 PMCID: PMC9949156 DOI: 10.1101/2023.02.13.528057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Chronic opioid exposure induces tolerance to the pain-relieving effects of opioids but sensitization to some other effects. While the occurrence of these adaptations is well-understood, the underlying cellular mechanisms are less clear. This study aimed to determine how chronic treatment with morphine, a prototypical opioid agonist, induced adaptations to subsequent morphine signaling in different subcellular contexts. Opioids acutely inhibit glutamatergic transmission from medial thalamic (MThal) inputs to the dorsomedial striatum (DMS) and anterior cingulate cortex (ACC) via activity at μ-opioid receptors (MORs). MORs are present in somatic and presynaptic compartments of MThal neurons terminating in both the DMS and ACC. We investigated the effects of chronic morphine treatment on subsequent morphine signaling at MThal-DMS synapses, MThal-ACC synapses, and MThal cell bodies in male and female mice. Surprisingly, chronic morphine treatment increased subsequent morphine inhibition of MThal-DMS synaptic transmission (morphine facilitation), but decreased subsequent morphine inhibition of transmission at MThal-ACC synapses (morphine tolerance) in a sex-specific manner; these adaptations were present in male but not female mice. Additionally, these adaptations were not observed in knockin mice expressing phosphorylation-deficient MORs, suggesting a role of MOR phosphorylation in mediating both facilitation and tolerance to morphine within this circuit. The results of this study suggest that the effects of chronic morphine exposure are not ubiquitous; rather adaptations in MOR function may be determined by multiple factors such as subcellular receptor distribution, influence of local circuitry and sex.
Collapse
Affiliation(s)
| | | | | | - Yoani N. Herrera
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | | |
Collapse
|
17
|
Yang R, Tuan RRL, Hwang FJ, Bloodgood DW, Kong D, Ding JB. Dichotomous regulation of striatal plasticity by dynorphin. Mol Psychiatry 2023; 28:434-447. [PMID: 36460726 PMCID: PMC10188294 DOI: 10.1038/s41380-022-01885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
Modulation of corticostriatal plasticity alters the information flow throughout basal ganglia circuits and represents a fundamental mechanism for motor learning, action selection, and reward. Synaptic plasticity in the striatal direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs) is regulated by two distinct networks of GPCR signaling cascades. While it is well-known that dopamine D2 and adenosine A2a receptors bi-directionally regulate iSPN plasticity, it remains unclear how D1 signaling modulation of synaptic plasticity is counteracted by dSPN-specific Gi signaling. Here, we show that striatal dynorphin selectively suppresses long-term potentiation (LTP) through Kappa Opioid Receptor (KOR) signaling in dSPNs. Both KOR antagonism and conditional deletion of dynorphin in dSPNs enhance LTP counterbalancing with different levels of D1 receptor activation. Behaviorally, mice lacking dynorphin in D1 neurons show comparable motor behavior and reward-based learning, but enhanced flexibility during reversal learning. These findings support a model in which D1R and KOR signaling bi-directionally modulate synaptic plasticity and behavior in the direct pathway.
Collapse
Affiliation(s)
- Renzhi Yang
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Rupa R Lalchandani Tuan
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Dong Kong
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Stanford Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Murphy MD, Heller EA. Convergent actions of stress and stimulants via epigenetic regulation of neural circuitry. Trends Neurosci 2022; 45:955-967. [PMID: 36280459 PMCID: PMC9671852 DOI: 10.1016/j.tins.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022]
Abstract
The dorsal striatum integrates prior and current information to guide appropriate decision-making. Chronic stress and stimulant exposure interferes with decision-making, and can confer similar cognitive and behavioral inflexibilities. This review examines the literature on acute and chronic regulation of the epigenome by stress and stimulants. Recent evidence suggests that exposures to stress and stimulants share similarities in the manners in which they regulate the dorsal striatum epigenome through DNA methylation, transposable element activity, and histone post-translational modifications. These findings suggest that chronic stress and stimulant exposure leads to the accumulation of epigenetic modifications that impair immediate and future neuron function and activity. Such epigenetic mechanisms represent potential therapeutic targets for ameliorating convergent symptoms of stress and addiction.
Collapse
Affiliation(s)
- Michael D Murphy
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth A Heller
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Munoz B, Fritz BM, Yin F, Atwood BK. HCN1 channels mediate mu opioid receptor long-term depression at insular cortex inputs to the dorsal striatum. J Physiol 2022; 600:4917-4938. [PMID: 36181477 PMCID: PMC11457701 DOI: 10.1113/jp283513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Mu opioid receptors (MORs) are expressed in the dorsal striatum, a brain region that mediates goal-directed (via the dorsomedial striatum) and habitual (via the dorsolateral striatum, DLS) behaviours. Our previous work indicates that glutamate transmission is depressed when MORs are activated in the dorsal striatum, inducing MOR-mediated long-term synaptic depression (MOR-LTD) or short-term depression (MOR-STD), depending on the input. In the DLS, MOR-LTD is produced by MORs on anterior insular cortex (AIC) inputs and MOR-STD occurs at thalamic inputs, suggesting input-specific MOR plasticity mechanisms. Here, we evaluated the mechanisms of induction of MOR-LTD and MOR-STD in the DLS using pharmacology and optogenetics combined with patch-clamp electrophysiology. We found that cAMP/PKA signalling and protein synthesis are necessary for MOR-LTD expression, similar to previous studies of cannabinoid-mediated LTD in DLS. MOR-STD does not utilize these same mechanisms. We also demonstrated that cannabinoid-LTD occurs at AIC inputs to DLS. However, while cannabinoid-LTD requires mTOR signalling in DLS, MOR-LTD does not. We characterized the role of presynaptic HCN1 channels in MOR-LTD induction as HCN1 channels expressed in AIC are necessary for MOR-LTD expression in the DLS. These results suggest a mechanism in which MOR activation requires HCN1 to induce MOR-LTD, suggesting a new target for pharmacological modulation of synaptic plasticity, providing new opportunities to develop novel drugs to treat alcohol and opioid use disorders. KEY POINTS: Mu opioid receptor-mediated long-term depression at anterior insular cortex inputs to dorsolateral striatum involves presynaptic cAMP/PKA signalling and protein translation, similar to known mechanisms of cannabinoid long-term depression. Dorsal striatal cannabinoid long-term depression also occurs at anterior insular cortex inputs to the dorsolateral striatum. Dorsal striatal cannabinoid long-term depression requires mTOR signalling, similar to hippocampal cannabinoid long-term depression, but dorsal striatal mu opioid long-term depression does not require mTOR signalling. Mu opioid long-term depression requires presynaptic HCN1 channels at anterior insular cortex inputs to dorsolateral striatum.
Collapse
Affiliation(s)
- Braulio Munoz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brandon M. Fritz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fuqin Yin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brady K. Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
20
|
Barry J, Oikonomou KD, Peng A, Yu D, Yang C, Golshani P, Evans CJ, Levine MS, Cepeda C. Dissociable effects of oxycodone on behavior, calcium transient activity, and excitability of dorsolateral striatal neurons. Front Neural Circuits 2022; 16:983323. [PMID: 36389179 PMCID: PMC9643681 DOI: 10.3389/fncir.2022.983323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
Opioids are the most common medications for moderate to severe pain. Unfortunately, they also have addictive properties that have precipitated opioid misuse and the opioid epidemic. In the present study, we examined the effects of acute administration of oxycodone, a μ-opioid receptor (MOR) agonist, on Ca2+ transient activity of medium-sized spiny neurons (MSNs) in freely moving animals. Ca2+ imaging of MSNs in dopamine D1-Cre mice (expressing Cre predominantly in the direct pathway) or adenosine A2A-Cre mice (expressing Cre predominantly in the indirect pathway) was obtained with the aid of miniaturized microscopes (Miniscopes) and a genetically encoded Cre-dependent Ca2+ indicator (GCaMP6f). Systemic injections of oxycodone (3 mg/kg) increased locomotor activity yet, paradoxically, reduced concomitantly the number of active MSNs. The frequency of Ca2+ transients was significantly reduced in MSNs from A2A-Cre mice but not in those from D1-Cre mice. For comparative purposes, a separate group of mice was injected with a non-Cre dependent Ca2+ indicator in the cerebral cortex and the effects of the opioid also were tested. In contrast to MSNs, the frequency of Ca2+ transients in cortical pyramidal neurons was significantly increased by oxycodone administration. Additional electrophysiological studies in brain slices confirmed generalized inhibitory effects of oxycodone on MSNs, including membrane hyperpolarization, reduced excitability, and decreased frequency of spontaneous excitatory and inhibitory postsynaptic currents. These results demonstrate a dissociation between locomotion and striatal MSN activity after acute administration of oxycodone.
Collapse
Affiliation(s)
- Joshua Barry
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katerina D. Oikonomou
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Allison Peng
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Yu
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chenyi Yang
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Peyman Golshani
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- West Los Angeles VA Medical Center, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher J. Evans
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael S. Levine
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Dai KZ, Choi IB, Levitt R, Blegen MB, Kaplan AR, Matsui A, Shin JH, Bocarsly ME, Simpson EH, Kellendonk C, Alvarez VA, Dobbs LK. Dopamine D2 receptors bidirectionally regulate striatal enkephalin expression: Implications for cocaine reward. Cell Rep 2022; 40:111440. [PMID: 36170833 PMCID: PMC9620395 DOI: 10.1016/j.celrep.2022.111440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Low dopamine D2 receptor (D2R) availability in the striatum can predispose for cocaine abuse; though how low striatal D2Rs facilitate cocaine reward is unclear. Overexpression of D2Rs in striatal neurons or activation of D2Rs by acute cocaine suppresses striatal Penk mRNA. Conversely, low D2Rs in D2-striatal neurons increases striatal Penk mRNA and enkephalin peptide tone, an endogenous mu-opioid agonist. In brain slices, met-enkephalin and inhibition of enkephalin catabolism suppresses intra-striatal GABA transmission. Pairing cocaine with intra-accumbens met-enkephalin during place conditioning facilitates acquisition of preference, while mu-opioid receptor antagonist blocks preference in wild-type mice. We propose that heightened striatal enkephalin potentiates cocaine reward by suppressing intra-striatal GABA to enhance striatal output. Surprisingly, a mu-opioid receptor antagonist does not block cocaine preference in mice with low striatal D2Rs, implicating other opioid receptors. The bidirectional regulation of enkephalin by D2R activity and cocaine offers insights into mechanisms underlying the vulnerability for cocaine abuse. Low striatal D2 receptor levels are associated with cocaine abuse. Dai et al. bidirectionally alter striatal D2 receptor levels to probe the downstream mechanisms underlying this abuse liability. They provide evidence that enhanced enkephalin tone resulting from low D2 receptors is associated with suppressed intra-striatal GABA and potentiated cocaine reward.
Collapse
Affiliation(s)
- Kathy Z Dai
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - In Bae Choi
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Ryan Levitt
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mariah B Blegen
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Alanna R Kaplan
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - J Hoon Shin
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Miriam E Bocarsly
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Rutgers Brain Health Institute, Newark, NJ, USA
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA; Center on Compulsive Behaviors, IRP, NIH, Bethesda, MD, USA
| | - Lauren K Dobbs
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
22
|
Zhang J, Song C, Dai J, Li L, Yang X, Chen Z. Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu-opioid receptor. MedComm (Beijing) 2022; 3:e148. [PMID: 35774845 PMCID: PMC9218544 DOI: 10.1002/mco2.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022] Open
Abstract
Opioid abuse and addiction have become a global pandemic, posing tremendous health and social burdens. The rewarding effects and the occurrence of withdrawal symptoms are the two mainstays of opioid addiction. Mu-opioid receptors (MORs), a member of opioid receptors, play important roles in opioid addiction, mediating both the rewarding effects of opioids and opioid withdrawal syndrome (OWS). The underlying mechanism of MOR-mediated opioid rewarding effects and withdrawal syndrome is of vital importance to understand the nature of opioid addiction and also provides theoretical basis for targeting MORs to treat drug addiction. In this review, we first briefly introduce the basic concepts of MORs, including their structure, distribution in the nervous system, endogenous ligands, and functional characteristics. We focused on the brain circuitry and molecular mechanism of MORs-mediated opioid reward and withdrawal. The neuroanatomical and functional elements of the neural circuitry of the reward system underlying opioid addiction were thoroughly discussed, and the roles of MOR within the reward circuitry were also elaborated. Furthermore, we interrogated the roles of MORs in OWS, along with the structural basis and molecular adaptions of MORs-mediated withdrawal syndrome. Finally, current treatment strategies for opioid addiction targeting MORs were also presented.
Collapse
Affiliation(s)
- Jia‐Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Chang‐Geng Song
- Department of NeurologyXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ji‐Min Dai
- Department of Hepatobiliary SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Xiang‐Min Yang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
23
|
Adermark L, Lagström O, Loftén A, Licheri V, Havenäng A, Loi EA, Stomberg R, Söderpalm B, Domi A, Ericson M. Astrocytes modulate extracellular neurotransmitter levels and excitatory neurotransmission in dorsolateral striatum via dopamine D2 receptor signaling. Neuropsychopharmacology 2022; 47:1493-1502. [PMID: 34811469 PMCID: PMC9206030 DOI: 10.1038/s41386-021-01232-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022]
Abstract
Astrocytes provide structural and metabolic support of neuronal tissue, but may also be involved in shaping synaptic output. To further define the role of striatal astrocytes in modulating neurotransmission we performed in vivo microdialysis and ex vivo slice electrophysiology combined with metabolic, chemogenetic, and pharmacological approaches. Microdialysis recordings revealed that intrastriatal perfusion of the metabolic uncoupler fluorocitrate (FC) produced a robust increase in extracellular glutamate levels, with a parallel and progressive decline in glutamine. In addition, FC significantly increased the microdialysate concentrations of dopamine and taurine, but did not modulate the extracellular levels of glycine or serine. Despite the increase in glutamate levels, ex vivo electrophysiology demonstrated a reduced excitability of striatal neurons in response to FC. The decrease in evoked potentials was accompanied by an increased paired pulse ratio, and a reduced frequency of spontaneous excitatory postsynaptic currents, suggesting that FC depresses striatal output by reducing the probability of transmitter release. The effect by FC was mimicked by chemogenetic inhibition of astrocytes using Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) targeting GFAP, and by the glial glutamate transporter inhibitor TFB-TBOA. Both FC- and TFB-TBOA-mediated synaptic depression were inhibited in brain slices pre-treated with the dopamine D2 receptor antagonist sulpiride, but insensitive to agents acting on presynaptic glutamatergic autoreceptors, NMDA receptors, gap junction coupling, cannabinoid 1 receptors, µ-opioid receptors, P2 receptors or GABAA receptors. In conclusion, our data collectively support a role for astrocytes in modulating striatal neurotransmission and suggest that reduced transmission after astrocytic inhibition involves dopamine.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Oona Lagström
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Loftén
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XBeroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Valentina Licheri
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amy Havenäng
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eleonora Anna Loi
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rosita Stomberg
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XBeroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ana Domi
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022; 15:919773. [PMID: 35782382 PMCID: PMC9242007 DOI: 10.3389/fnmol.2022.919773] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Nikhil Shah
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
25
|
Trieu BH, Remmers BC, Toddes C, Brandner DD, Lefevre EM, Kocharian A, Retzlaff CL, Dick RM, Mashal MA, Gauthier EA, Xie W, Zhang Y, More SS, Rothwell PE. Angiotensin-converting enzyme gates brain circuit-specific plasticity via an endogenous opioid. Science 2022; 375:1177-1182. [PMID: 35201898 PMCID: PMC9233526 DOI: 10.1126/science.abl5130] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiotensin-converting enzyme (ACE) regulates blood pressure by cleaving angiotensin I to produce angiotensin II. In the brain, ACE is especially abundant in striatal tissue, but the function of ACE in striatal circuits remains poorly understood. We found that ACE degrades an unconventional enkephalin heptapeptide, Met-enkephalin-Arg-Phe, in the nucleus accumbens of mice. ACE inhibition enhanced µ-opioid receptor activation by Met-enkephalin-Arg-Phe, causing a cell type-specific long-term depression of glutamate release onto medium spiny projection neurons expressing the Drd1 dopamine receptor. Systemic ACE inhibition was not intrinsically rewarding, but it led to a decrease in conditioned place preference caused by fentanyl administration and an enhancement of reciprocal social interaction. Our results raise the enticing prospect that central ACE inhibition can boost endogenous opioid signaling for clinical benefit while mitigating the risk of addiction.
Collapse
Affiliation(s)
- Brian H. Trieu
- Graduate Program in Neuroscience, University of Minnesota Medical School; Minneapolis, USA
- Medical Scientist Training Program, University of Minnesota Medical School; Minneapolis, USA
| | - Bailey C. Remmers
- Department of Neuroscience, University of Minnesota Medical School; Minneapolis, USA
| | - Carlee Toddes
- Graduate Program in Neuroscience, University of Minnesota Medical School; Minneapolis, USA
| | - Dieter D. Brandner
- Graduate Program in Neuroscience, University of Minnesota Medical School; Minneapolis, USA
- Medical Scientist Training Program, University of Minnesota Medical School; Minneapolis, USA
| | - Emilia M. Lefevre
- Department of Neuroscience, University of Minnesota Medical School; Minneapolis, USA
| | - Adrina Kocharian
- Graduate Program in Neuroscience, University of Minnesota Medical School; Minneapolis, USA
- Medical Scientist Training Program, University of Minnesota Medical School; Minneapolis, USA
| | - Cassandra L. Retzlaff
- Department of Neuroscience, University of Minnesota Medical School; Minneapolis, USA
| | - Rachel M. Dick
- Graduate Program in Neuroscience, University of Minnesota Medical School; Minneapolis, USA
| | - Mohammed A. Mashal
- Department of Neuroscience, University of Minnesota Medical School; Minneapolis, USA
| | - Elysia A. Gauthier
- Department of Neuroscience, University of Minnesota Medical School; Minneapolis, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota; Minneapolis, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota; Minneapolis, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota; Minneapolis, USA
| | - Patrick E. Rothwell
- Department of Neuroscience, University of Minnesota Medical School; Minneapolis, USA
| |
Collapse
|
26
|
Prenatal Opioid Exposure Impairs Endocannabinoid and Glutamate Transmission in the Dorsal Striatum. eNeuro 2022; 9:ENEURO.0119-22.2022. [PMID: 35396255 PMCID: PMC9034757 DOI: 10.1523/eneuro.0119-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
The opioid crisis has contributed to a growing population of children exposed to opioids during fetal development; however, many of the long-term effects of opioid exposure on development are unknown. We previously demonstrated that opioids have deleterious effects on endocannabinoid plasticity at glutamate synapses in the dorsal striatum of adolescent rodents, but it is unclear whether prenatal opioid exposure produces similar neuroadaptations. Using a mouse model of prenatal methadone exposure (PME), we performed proteomics, phosphoproteomics, and patch-clamp electrophysiology in the dorsolateral striatum (DLS) and dorsomedial striatum (DMS) to examine synaptic functioning in adolescent PME offspring. PME impacted the proteome and phosphoproteome in a region- and sex-dependent manner. Many proteins and phosphorylated proteins associated with glutamate transmission were differentially abundant in PME offspring, which was associated with reduced glutamate release in the DLS and altered the rise time of excitatory events in the DMS. Similarly, the intrinsic excitability properties of DMS neurons were significantly affected by PME. Last, pathway analyses revealed an enrichment in retrograde endocannabinoid signaling in the DLS, but not in the DMS, of males. Electrophysiology studies confirmed that endocannabinoid-mediated synaptic depression was impaired in the DLS, but not DMS, of PME-males. These results indicate that PME induces persistent neuroadaptations in the dorsal striatum and could contribute to the aberrant behavioral development described in offspring with prenatal opioid exposure.
Collapse
|
27
|
Loss of Corticostriatal Mu-Opioid Receptors in α-Synuclein Transgenic Mouse Brains. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010063. [PMID: 35054456 PMCID: PMC8781165 DOI: 10.3390/life12010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Ultrastructural, neurochemical, and molecular alterations within the striatum are associated with the onset and progression of Parkinson’s disease (PD). In PD, the dopamine-containing neurons in the substantia nigra pars compacta (SNc) degenerate and reduce dopamine-containing innervations to the striatum. The loss of striatal dopamine is associated with enhanced corticostriatal glutamatergic plasticity at the early stages of PD. However, with disease progression, the glutamatergic corticostriatal white matter tracts (WMTs) also degenerate. We analyzed the levels of Mu opioid receptors (MORs) in the corticostriatal WMTs, as a function of α-Synuclein (α-Syn) toxicity in transgenic mouse brains. Our data show an age-dependent loss of MOR expression levels in the striatum and specifically, within the caudal striatal WMTs in α-Syn tg mouse brains. The loss of MOR expression is associated with degeneration of the myelinated axons that are localized within the corticostriatal WMTs. In brains affected with late stages of PD, we detect evidence confirming the degeneration of myelinated axons within the corticostriatal WMTs. We conclude that loss of corticostriatal MOR expression is associated with degeneration of corticostriatal WMT in α-Syn tg mice, modeling PD.
Collapse
|
28
|
Rivera A, Suárez-Boomgaard D, Miguelez C, Valderrama-Carvajal A, Baufreton J, Shumilov K, Taupignon A, Gago B, Real MÁ. Dopamine D 4 Receptor Is a Regulator of Morphine-Induced Plasticity in the Rat Dorsal Striatum. Cells 2021; 11:31. [PMID: 35011592 PMCID: PMC8750869 DOI: 10.3390/cells11010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Long-term exposition to morphine elicits structural and synaptic plasticity in reward-related regions of the brain, playing a critical role in addiction. However, morphine-induced neuroadaptations in the dorsal striatum have been poorly studied despite its key function in drug-related habit learning. Here, we show that prolonged treatment with morphine triggered the retraction of the dendritic arbor and the loss of dendritic spines in the dorsal striatal projection neurons (MSNs). In an attempt to extend previous findings, we also explored whether the dopamine D4 receptor (D4R) could modulate striatal morphine-induced plasticity. The combined treatment of morphine with the D4R agonist PD168,077 produced an expansion of the MSNs dendritic arbors and restored dendritic spine density. At the electrophysiological level, PD168,077 in combination with morphine altered the electrical properties of the MSNs and decreased their excitability. Finally, results from the sustantia nigra showed that PD168,077 counteracted morphine-induced upregulation of μ opioid receptors (MOR) in striatonigral projections and downregulation of G protein-gated inward rectifier K+ channels (GIRK1 and GIRK2) in dopaminergic cells. The present results highlight the key function of D4R modulating morphine-induced plasticity in the dorsal striatum. Thus, D4R could represent a valuable pharmacological target for the safety use of morphine in pain management.
Collapse
Affiliation(s)
- Alicia Rivera
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Diana Suárez-Boomgaard
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Alejandra Valderrama-Carvajal
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Jérôme Baufreton
- Institut des Maladies Neurodegeneratives, Université de Bordeaux, UMR 5293, 33000 Bordeaux, France; (J.B.); (A.T.)
- Institut des Maladies Neurodegeneratives, CNRS, UMR 5293, 33000 Bordeaux, France
| | - Kirill Shumilov
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
- School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Anne Taupignon
- Institut des Maladies Neurodegeneratives, Université de Bordeaux, UMR 5293, 33000 Bordeaux, France; (J.B.); (A.T.)
- Institut des Maladies Neurodegeneratives, CNRS, UMR 5293, 33000 Bordeaux, France
| | - Belén Gago
- Facultad de Medicina, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain;
| | - M. Ángeles Real
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| |
Collapse
|
29
|
Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology 2021; 198:108765. [PMID: 34461066 DOI: 10.1016/j.neuropharm.2021.108765] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Insula function is considered critical for many motivated behaviors, with proposed functions ranging from attention, behavioral control, emotional regulation, goal-directed and aversion-resistant responding. Further, the insula is implicated in many neuropsychiatric conditions including substance abuse. More recently, multiple insula subregions have been distinguished based on anatomy, connectivity, and functional contributions. Generally, posterior insula is thought to encode more somatosensory inputs, which integrate with limbic/emotional information in middle insula, that in turn integrate with cognitive processes in anterior insula. Together, these regions provide rapid interoceptive information about the current or predicted situation, facilitating autonomic recruitment and quick, flexible action. Here, we seek to create a robust foundation from which to understand potential subregion differences, and provide direction for future studies. We address subregion differences across humans and rodents, so that the latter's mechanistic interventions can best mesh with clinical relevance of human conditions. We first consider the insula's suggested roles in humans, then compare subregional studies, and finally describe rodent work. One primary goal is to encourage precision in describing insula subregions, since imprecision (e.g. including both posterior and anterior studies when describing insula work) does a disservice to a larger understanding of insula contributions. Additionally, we note that specific task details can greatly impact recruitment of various subregions, requiring care and nuance in design and interpretation of studies. Nonetheless, the central ethological importance of the insula makes continued research to uncover mechanistic, mood, and behavioral contributions of paramount importance and interest. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
30
|
Tadjalli A, Seven YB, Sharma A, McCurdy CR, Bolser DC, Levitt ES, Mitchell GS. Acute morphine blocks spinal respiratory motor plasticity via long-latency mechanisms that require toll-like receptor 4 signalling. J Physiol 2021; 599:3771-3797. [PMID: 34142718 DOI: 10.1113/jp281362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS While respiratory complications following opioid use are mainly mediated via activation of mu opioid receptors, long-latency off-target signalling via innate immune toll-like receptor 4 (TLR4) may impair other essential elements of breathing control such as respiratory motor plasticity. In adult rats, pre-treatment with a single dose of morphine blocked long-term facilitation (LTF) of phrenic motor output via a long-latency TLR4-dependent mechanism. In the phrenic motor nucleus, morphine triggered TLR4-dependent activation of microglial p38 MAPK - a key enzyme that orchestrates inflammatory signalling and is known to undermine phrenic LTF. Morphine-induced LTF loss may destabilize breathing, potentially contributing to respiratory side effects. Therefore, we suggest minimizing TLR-4 signalling may improve breathing stability during opioid therapy. ABSTRACT Opioid-induced respiratory dysfunction is a significant public health burden. While respiratory effects are mediated via mu opioid receptors, long-latency off-target opioid signalling through innate immune toll-like receptor 4 (TLR4) may modulate essential elements of breathing control, particularly respiratory motor plasticity. Plasticity in respiratory motor circuits contributes to the preservation of breathing in the face of destabilizing influences. For example, respiratory long-term facilitation (LTF), a well-studied model of respiratory motor plasticity triggered by acute intermittent hypoxia, promotes breathing stability by increasing respiratory motor drive to breathing muscles. Some forms of respiratory LTF are exquisitely sensitive to inflammation and are abolished by even a mild inflammation triggered by TLR4 activation (e.g. via systemic lipopolysaccharides). Since opioids induce inflammation and TLR4 activation, we hypothesized that opioids would abolish LTF through a TLR4-dependent mechanism. In adult Sprague Dawley rats, pre-treatment with a single systemic injection of the prototypical opioid agonist morphine blocks LTF expression several hours later in the phrenic motor system - the motor pool driving diaphragm muscle contractions. Morphine blocked phrenic LTF via TLR4-dependent mechanisms because pre-treatment with (+)-naloxone - the opioid inactive stereoisomer and novel small molecule TLR4 inhibitor - prevented impairment of phrenic LTF in morphine-treated rats. Morphine triggered TLR4-dependent activation of microglial p38 MAPK within the phrenic motor system - a key enzyme that orchestrates inflammatory signalling and undermines phrenic LTF. Morphine-induced LTF loss may destabilize breathing, potentially contributing to respiratory side effects. We suggest minimizing TLR-4 signalling may improve breathing stability during opioid therapy by restoring endogenous mechanisms of plasticity within respiratory motor circuits.
Collapse
Affiliation(s)
- Arash Tadjalli
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | | | - Donald C Bolser
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Erica S Levitt
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
31
|
Insulin Bidirectionally Alters NAc Glutamatergic Transmission: Interactions between Insulin Receptor Activation, Endogenous Opioids, and Glutamate Release. J Neurosci 2021; 41:2360-2372. [PMID: 33514676 PMCID: PMC7984597 DOI: 10.1523/jneurosci.3216-18.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/27/2020] [Accepted: 01/21/2021] [Indexed: 01/11/2023] Open
Abstract
Human fMRI studies show that insulin influences brain activity in regions that mediate reward and motivation, including the nucleus accumbens (NAc). Insulin receptors are expressed by NAc medium spiny neurons (MSNs), and studies of cultured cortical and hippocampal neurons suggest that insulin influences excitatory transmission via presynaptic and postsynaptic mechanisms. However, nothing is known about how insulin influences excitatory transmission in the NAc. Human fMRI studies show that insulin influences brain activity in regions that mediate reward and motivation, including the nucleus accumbens (NAc). Insulin receptors are expressed by NAc medium spiny neurons (MSNs), and studies of cultured cortical and hippocampal neurons suggest that insulin influences excitatory transmission via presynaptic and postsynaptic mechanisms. However, nothing is known about how insulin influences excitatory transmission in the NAc. Furthermore, insulin dysregulation accompanying obesity is linked to cognitive decline, depression, anxiety, and altered motivation that rely on NAc excitatory transmission. Using whole-cell patch-clamp and biochemical approaches, we determined how insulin affects NAc glutamatergic transmission in nonobese and obese male rats and the underlying mechanisms. We find that there are concentration-dependent, bidirectional effects of insulin on excitatory transmission, with insulin receptor activation increasing and IGF receptor activation decreasing NAc excitatory transmission. Increases in excitatory transmission were mediated by activation of postsynaptic insulin receptors located on MSNs. However, this effect was due to an increase in presynaptic glutamate release. This suggested feedback from MSNs to presynaptic terminals. In additional experiments, we found that insulin-induced increases in presynaptic glutamate release are mediated by opioid receptor-dependent disinhibition. Furthermore, obesity resulted in a loss of insulin receptor-mediated increases in excitatory transmission and a reduction in NAc insulin receptor surface expression, while preserving reductions in transmission mediated by IGF receptors. These results provide the first insights into how insulin influences excitatory transmission in the adult brain, and evidence for a previously unidentified form of opioid receptor-dependent disinhibition of NAc glutamatergic transmission. SIGNIFICANCE STATEMENT Data here provide the first insights into how insulin influences excitatory transmission in the adult brain, and identify previously unknown interactions between insulin receptor activation, opioids, and glutamatergic transmission. These data contribute to our fundamental understanding of insulin's influence on brain motivational systems and have implications for the use of insulin as a cognitive enhancer and for targeting of insulin receptors and IGF receptors to alter motivation.
Collapse
|
32
|
Morigaki R, Lee JH, Yoshida T, Wüthrich C, Hu D, Crittenden JR, Friedman A, Kubota Y, Graybiel AM. Spatiotemporal Up-Regulation of Mu Opioid Receptor 1 in Striatum of Mouse Model of Huntington's Disease Differentially Affecting Caudal and Striosomal Regions. Front Neuroanat 2020; 14:608060. [PMID: 33362481 PMCID: PMC7758501 DOI: 10.3389/fnana.2020.608060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/02/2022] Open
Abstract
The striatum of humans and other mammals is divided into macroscopic compartments made up of a labyrinthine striosome compartment embedded in a much larger surrounding matrix compartment. Anatomical and snRNA-Seq studies of the Huntington’s disease (HD) postmortem striatum suggest a preferential decline of some striosomal markers, and mRNAs studies of HD model mice concur. Here, by immunohistochemical methods, we examined the distribution of the canonical striosomal marker, mu-opioid receptor 1 (MOR1), in the striatum of the Q175 knock-in mouse model of HD in a postnatal time series extending from 3 to 19 months. We demonstrate that, contrary to the loss of many markers for striosomes, there is a pronounced up-regulation of MOR1 in these Q175 knock-in mice. We show that in heterozygous Q175 knock-in model mice [~192 cytosine-adenine-guanine (CAG) repeats], this MOR1 up-regulation progressed with advancing age and disease progression, and was particularly remarkable at caudal levels of the striatum. Given the known importance of MOR1 in basal ganglia signaling, our findings, though in mice, should offer clues to the pathogenesis of psychiatric features, especially depression, reinforcement sensitivity, and involuntary movements in HD.
Collapse
Affiliation(s)
- Ryoma Morigaki
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan.,Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Jannifer H Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Tomoko Yoshida
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Christian Wüthrich
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Dan Hu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jill R Crittenden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alexander Friedman
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yasuo Kubota
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
33
|
Antonazzo M, Gomez-Urquijo SM, Ugedo L, Morera-Herreras T. Dopaminergic denervation impairs cortical motor and associative/limbic information processing through the basal ganglia and its modulation by the CB1 receptor. Neurobiol Dis 2020; 148:105214. [PMID: 33278598 DOI: 10.1016/j.nbd.2020.105214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Abstract
The basal ganglia (BG) are involved in cognitive/motivational functions in addition to movement control. Thus, BG segregated circuits, the sensorimotor (SM) and medial prefrontal (mPF) circuits, process different functional domains, such as motor and cognitive/motivational behaviours, respectively. With a high presence in the BG, the CB1 cannabinoid receptor modulates BG circuits. Furthermore, dopamine (DA), one of the principal neurotransmitters in the BG, also plays a key role in circuit functionality. Taking into account the interaction between DA and the endocannabinoid system at the BG level, we investigated the functioning of BG circuits and their modulation by the CB1 receptor under DA-depleted conditions. We performed single-unit extracellular recordings of substantia nigra pars reticulata (SNr) neurons with simultaneous cortical stimulation in sham and 6-hydroxydopamine (6-OHDA)-lesioned rats, together with immunohistochemical assays. We showed that DA loss alters cortico-nigral information processing in both circuits, with a predominant transmission through the hyperdirect pathway in the SM circuit and an increased transmission through the direct pathway in the mPF circuit. Moreover, although DA denervation does not change CB1 receptor density, it impairs its functionality, leading to a lack of modulation. These data highlight an abnormal transfer of information through the associative/limbic domains after DA denervation that may be related to the non-motor symptoms manifested by Parkinson's disease patients.
Collapse
Affiliation(s)
- Mario Antonazzo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Sonia María Gomez-Urquijo
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
34
|
Prenatal Opioid Exposure Enhances Responsiveness to Future Drug Reward and Alters Sensitivity to Pain: A Review of Preclinical Models and Contributing Mechanisms. eNeuro 2020; 7:ENEURO.0393-20.2020. [PMID: 33060181 PMCID: PMC7768284 DOI: 10.1523/eneuro.0393-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
The opioid crisis has resulted in an unprecedented number of neonates born with prenatal opioid exposure (POE); however, the long-term effects of POE on offspring behavior and neurodevelopment remain relatively unknown. The advantages and disadvantages of the various preclinical POE models developed over the last several decades are discussed in the context of clinical and translational relevance. Although considerable and important variability exists among preclinical models of POE, the examination of these preclinical models has revealed that opioid exposure during the prenatal period contributes to maladaptive behavioral development as offspring mature including an altered responsiveness to rewarding drugs and increased pain response. The present review summarizes key findings demonstrating the impact of POE on offspring drug self-administration (SA), drug consumption, the reinforcing properties of drugs, drug tolerance, and other reward-related behaviors such as hypersensitivity to pain. Potential underlying molecular mechanisms which may contribute to this enhanced addictive phenotype in POE offspring are further discussed with special attention given to key brain regions associated with reward including the striatum, prefrontal cortex (PFC), ventral tegmental area (VTA), hippocampus, and amygdala. Improvements in preclinical models and further areas of study are also identified which may advance the translational value of findings and help address the growing problem of POE in clinical populations.
Collapse
|
35
|
Birdsong WT, Williams JT. Recent Progress in Opioid Research from an Electrophysiological Perspective. Mol Pharmacol 2020; 98:401-409. [PMID: 32198208 PMCID: PMC7562972 DOI: 10.1124/mol.119.119040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Electrophysiological approaches provide powerful tools to further our understanding of how different opioids affect signaling through opioid receptors; how opioid receptors modulate circuitry involved in processes such as pain, respiration, addiction, and feeding; and how receptor signaling and circuits are altered by physiologic challenges, such as injury, stress, and chronic opioid treatment. The use of genetic manipulations to alter or remove μ-opioid receptors (MORs) with anatomic and cell type specificity and the ability to activate or inhibit specific circuits through opto- or chemogenetic approaches are being used in combination with electrophysiological, pharmacological, and systems-level physiology experiments to expand our understanding of the beneficial and maladaptive roles of opioids and opioid receptor signaling. New approaches for studying endogenous opioid peptide signaling and release and the dynamics of these systems in response to chronic opioid use, pain, and stress will add another layer to our understanding of the intricacies of opioid modulation of brain circuits. This understanding may lead to new targets or approaches for drug development or treatment regimens that may affect both acute and long-term effects of manipulating the activity of circuits involved in opioid-mediated physiology and behaviors. This review will discuss recent advancements in our understanding of the role of phosphorylation in regulating MOR signaling, as well as our understanding of circuits and signaling pathways mediating physiologic behaviors such as respiratory control, and discuss how electrophysiological tools combined with new technologies have and will continue to advance the field of opioid research. SIGNIFICANCE STATEMENT: This review discusses recent advancements in our understanding of μ-opioid receptor (MOR) function and regulation and the role of electrophysiological approaches combined with new technologies in pushing the field of opioid research forward. This covers regulation of MOR at the receptor level, adaptations induced by chronic opioid treatment, sites of action of MOR modulation of specific brain circuits, and the role of the endogenous opioid system in driving physiology and behavior through modulation of these brain circuits.
Collapse
Affiliation(s)
- William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.) and Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.)
| | - John T Williams
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.) and Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.)
| |
Collapse
|
36
|
Kesner AJ, Lovinger DM. Cannabinoids, Endocannabinoids and Sleep. Front Mol Neurosci 2020; 13:125. [PMID: 32774241 PMCID: PMC7388834 DOI: 10.3389/fnmol.2020.00125] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Sleep is a vital function of the nervous system that contributes to brain and bodily homeostasis, energy levels, cognitive ability, and other key functions of a variety of organisms. Dysfunctional sleep induces neural problems and is a key part of almost all human psychiatric disorders including substance abuse disorders. The hypnotic effects of cannabis have long been known and there is increasing use of phytocannabinoids and other formulations as sleep aids. Thus, it is crucial to gain a better understanding of the neurobiological basis of cannabis drug effects on sleep, as well as the role of the endogenous cannabinoid system in sleep physiology. In this review article, we summarize the current state of knowledge concerning sleep-related endogenous cannabinoid function derived from research on humans and rodent models. We also review information on acute and chronic cannabinoid drug effects on sleep in these organisms, and molecular mechanisms that may contribute to these effects. We point out the potential benefits of acute cannabinoids for sleep improvement, but also the potential sleep-disruptive effects of withdrawal following chronic cannabinoid drug use. Prescriptions for future research in this burgeoning field are also provided.
Collapse
Affiliation(s)
- Andrew J Kesner
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute of Health (NIH), Bethesda, MD, United States
- Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health (NIH), Bethesda, MD, United States
| | - David M Lovinger
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
37
|
Thoeni S, Loureiro M, O'Connor EC, Lüscher C. Depression of Accumbal to Lateral Hypothalamic Synapses Gates Overeating. Neuron 2020; 107:158-172.e4. [PMID: 32333845 PMCID: PMC7616964 DOI: 10.1016/j.neuron.2020.03.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 02/21/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Overeating typically follows periods of energy deficit, but it is also sustained by highly palatable foods, even without metabolic demand. Dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) of the nucleus accumbens shell (NAcSh) project to the lateral hypothalamus (LH) to authorize feeding when inhibited. Whether plasticity at these synapses can affect food intake is unknown. Here, ex vivo electrophysiology recordings reveal that D1-MSN-to-LH inhibitory transmission is depressed in circumstances in which overeating is promoted. Endocannabinoid signaling is identified as the induction mechanism, since inhibitory plasticity and concomitant overeating were blocked or induced by CB1R antagonism or agonism, respectively. D1-MSN-to-LH projectors were largely non-overlapping with D1-MSNs targeting ventral pallidum or ventral midbrain, providing an anatomical basis for distinct circuit plasticity mechanisms. Our study reveals a critical role for plasticity at D1-MSN-to-LH synapses in adaptive feeding control, which may underlie persistent overeating of unhealthy foods, a major risk factor for developing obesity.
Collapse
Affiliation(s)
- Sarah Thoeni
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michaël Loureiro
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eoin C O'Connor
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
38
|
Mu-Opioids Suppress GABAergic Synaptic Transmission onto Orbitofrontal Cortex Pyramidal Neurons with Subregional Selectivity. J Neurosci 2020; 40:5894-5907. [PMID: 32601247 DOI: 10.1523/jneurosci.2049-19.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
The orbitofrontal cortex (OFC) plays a critical role in evaluating outcomes in a changing environment. Administering opioids to the OFC can alter the hedonic reaction to food rewards and increase their consumption in a subregion-specific manner. However, it is unknown how mu-opioid signaling influences synaptic transmission in the OFC. Thus, we investigated the cellular actions of mu-opioids within distinct subregions of the OFC. Using in vitro patch-clamp electrophysiology in brain slices containing the OFC, we found that the mu-opioid agonist DAMGO produced a concentration-dependent inhibition of GABAergic synaptic transmission onto medial OFC (mOFC), but not lateral OFC (lOFC) neurons. This effect was mediated by presynaptic mu-opioid receptor activation of local parvalbumin (PV+)-expressing interneurons. The DAMGO-induced suppression of inhibition was long lasting and not reversed on washout of DAMGO or by application of the mu-opioid receptor antagonist CTAP, suggesting an inhibitory long-term depression (LTD) induced by an exogenous mu-opioid. We show that LTD at inhibitory synapses is dependent on downstream cAMP/protein kinase A (PKA) signaling, which differs between the mOFC and lOFC. Finally, we demonstrate that endogenous opioid release triggered via moderate physiological stimulation can induce LTD. Together, these results suggest that presynaptic mu-opioid stimulation of local PV+ interneurons induces a long-lasting suppression of GABAergic synaptic transmission, which depends on subregional differences in mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascade. These findings provide mechanistic insight into the opposing functional effects produced by mu-opioids within the OFC.SIGNIFICANCE STATEMENT Considering that both the orbitofrontal cortex (OFC) and the opioid system regulate reward, motivation, and food intake, understanding the role of opioid signaling within the OFC is fundamental for a mechanistic understanding of the sequelae for several psychiatric disorders. This study makes several novel observations. First, mu-opioids induce a long-lasting suppression of inhibitory synaptic transmission onto OFC pyramidal neurons in a regionally selective manner. Second, mu-opioids recruit parvalbumin inputs to suppress inhibitory synaptic transmission in the mOFC. Third, the regional selectivity of mu-opioid action of endogenous opioids is due to the efficacy of mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascades. These experiments are the first to reveal a cellular mechanism of opioid action within the OFC.
Collapse
|
39
|
Licheri V, Eckernäs D, Bergquist F, Ericson M, Adermark L. Nicotine-induced neuroplasticity in striatum is subregion-specific and reversed by motor training on the rotarod. Addict Biol 2020; 25:e12757. [PMID: 30969011 PMCID: PMC7187335 DOI: 10.1111/adb.12757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022]
Abstract
Nicotine is recognized as one of the most addictive drugs, which in part could be attributed to progressive neuroadaptations and rewiring of dorsal striatal circuits. Since motor‐skill learning produces neuroplasticity in the same circuits, we postulate that rotarod training could be sufficient to block nicotine‐induced rewiring and thereby prevent long‐lasting impairments of neuronal functioning. To test this hypothesis, Wistar rats were subjected to 15 days of treatment with either nicotine (0.36 mg/kg) or vehicle. After treatment, a subset of animals was trained on the rotarod. Ex vivo electrophysiology was performed 1 week after the nicotine treatment period and after up to 3 months of withdrawal to define neurophysiological transformations in circuits of the striatum and amygdala. Our data demonstrate that nicotine alters striatal neurotransmission in a distinct temporal and spatial sequence, where acute transformations are initiated in dorsomedial striatum (DMS) and nucleus accumbens (nAc) core. Following 3 months of withdrawal, synaptic plasticity in the form of endocannabinoid‐mediated long‐term depression (eCB‐LTD) is impaired in the dorsolateral striatum (DLS), and neurotransmission is altered in DLS, nAc shell, and the central nucleus of the amygdala (CeA). Training on the rotarod, performed after nicotine treatment, blocks neurophysiological transformations in striatal subregions, and prevents nicotine‐induced impairment of eCB‐LTD. These datasets suggest that nicotine‐induced rewiring of striatal circuits can be extinguished by other behaviors that induce neuroplasticity. It remains to be determined if motor‐skill training could be used to prevent escalating patterns of drug use in experienced users or facilitate the recovery from addiction.
Collapse
Affiliation(s)
- Valentina Licheri
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of Gothenburg Gothenburg Sweden
| | - Daniel Eckernäs
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of Gothenburg Gothenburg Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of Gothenburg Gothenburg Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of Gothenburg Gothenburg Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of Gothenburg Gothenburg Sweden
| |
Collapse
|
40
|
Synapse-specific expression of mu opioid receptor long-term depression in the dorsomedial striatum. Sci Rep 2020; 10:7234. [PMID: 32350330 PMCID: PMC7190836 DOI: 10.1038/s41598-020-64203-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/13/2020] [Indexed: 11/08/2022] Open
Abstract
The dorsal striatum is a brain region involved in action control, with dorsomedial striatum (DMS) mediating goal-directed actions and dorsolateral striatum (DLS) mediating habitual actions. Presynaptic long-term synaptic depression (LTD) plasticity at glutamatergic inputs to dorsal striatum mediates many dorsal striatum-dependent behaviors and disruption of LTD influences action control. Our previous work identified mu opioid receptors (MORs) as mediators of synapse-specific forms of synaptic depression at a number of different DLS synapses. We demonstrated that anterior insular cortex inputs are the sole inputs that express alcohol-sensitive MOR-mediated LTD (mOP-LTD) in DLS. Here, we explore mOP-LTD in DMS using mouse brain slice electrophysiology. We found that contrary to DLS, DMS mOP-LTD is induced by activation of MORs at inputs from both anterior cingulate and medial prefrontal cortices as well as at basolateral amygdala inputs and striatal cholinergic interneuron synapses on to DMS medium spiny neurons, suggesting that MOR synaptic plasticity in DMS is less synapse-specific than in DLS. Furthermore, only mOP-LTD at cortical inputs was sensitive to alcohol's deleterious effects. These results suggest that alcohol-induced neuroadaptations are differentially expressed in a synapse-specific manner and could be playing a role in alterations of goal-directed and habitual behaviors.
Collapse
|
41
|
Georgoussi ZI, Karoussiotis C, Sotiriou A, Papavranoussi-Daponte D, Polissidis AV, Nikoletopoulou V. The Role of κ‐Opioid Receptor‐Induced Autophagy in Synaptic Alterations. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.02897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Bartlett MJ, So LY, Szabò L, Skinner DP, Parent KL, Heien ML, Vanderah TW, Polt R, Sherman SJ, Falk T. Highly-selective µ-opioid receptor antagonism does not block L-DOPA-induced dyskinesia in a rodent model. BMC Res Notes 2020; 13:149. [PMID: 32164786 PMCID: PMC7066739 DOI: 10.1186/s13104-020-04994-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Dopamine-replacement utilizing L-DOPA is still the mainstay treatment for Parkinson's disease (PD), but often leads to development of L-DOPA-induced dyskinesia (LID), which can be as debilitating as the motor deficits. There is currently no satisfactory pharmacological adjunct therapy. The endogenous opioid peptides enkephalin and dynorphin are important co-transmitters in the direct and indirect striatofugal pathways and have been implicated in genesis and expression of LID. Opioid receptor antagonists and agonists with different selectivity profiles have been investigated for anti-dyskinetic potential in preclinical models. In this study we investigated effects of the highly-selective μ-opioid receptor antagonist CTAP (> 1200-fold selectivity for μ- over δ-opioid receptors) and a novel glycopeptide congener (gCTAP5) that was glycosylated to increase stability, in the standard rat LID model. RESULTS Intraperitoneal administration (i.p.) of either 0.5 mg/kg or 1 mg/kg CTAP and gCTAP5 completely blocked morphine's antinociceptive effect (10 mg/kg; i.p.) in the warm water tail-flick test, showing in vivo activity in rats after systemic injection. Neither treatment with CTAP (10 mg/kg; i.p.), nor gCTAP5 (5 mg/kg; i.p.) had any effect on L-DOPA-induced limb, axial, orolingual, or locomotor abnormal involuntary movements. The data indicate that highly-selective μ-opioid receptor antagonism alone might not be sufficient to be anti-dyskinetic.
Collapse
Affiliation(s)
- Mitchell J Bartlett
- Department of Neurology, The University of Arizona, Tucson, AZ, 85724, USA.,Department of Pharmacology, The University of Arizona, Tucson, AZ, 85724, USA
| | - Lisa Y So
- Graduate Interdisciplinary Program in Neuroscience, The University of Arizona, Tucson, AZ, 85724, USA
| | - Lajos Szabò
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - David P Skinner
- Department of Pharmacology, The University of Arizona, Tucson, AZ, 85724, USA
| | - Kate L Parent
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Michael L Heien
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Todd W Vanderah
- Department of Pharmacology, The University of Arizona, Tucson, AZ, 85724, USA
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Scott J Sherman
- Department of Neurology, The University of Arizona, Tucson, AZ, 85724, USA
| | - Torsten Falk
- Department of Neurology, The University of Arizona, Tucson, AZ, 85724, USA. .,Department of Pharmacology, The University of Arizona, Tucson, AZ, 85724, USA. .,Graduate Interdisciplinary Program in Neuroscience, The University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
43
|
Age-dependent impairment of metabotropic glutamate receptor 2-dependent long-term depression in the mouse striatum by chronic ethanol exposure. Alcohol 2020; 82:11-21. [PMID: 31233806 PMCID: PMC6925350 DOI: 10.1016/j.alcohol.2019.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
Abstract
Chronic alcohol exposure is associated with increased reliance on behavioral strategies involving the dorsolateral striatum (DLS), including habitual or stimulus-response behaviors. Presynaptic G protein-coupled receptors (GPCRs) on cortical and thalamic inputs to the DLS inhibit glutamate release, and alcohol-induced disruption of presynaptic GPCR function represents a mechanism by which alcohol could disinhibit DLS neurons and thus bias toward use of DLS-dependent behaviors. Metabotropic glutamate receptor 2 (mGlu2) is a Gi/o-coupled GPCR that robustly modulates glutamate transmission in the DLS, inducing long-term depression (LTD) at both cortical and thalamic synapses. Loss of mGlu2 function has recently been associated with increased ethanol seeking and consumption, but the ability of alcohol to produce adaptations in mGlu2 function in the DLS has not been investigated. We exposed male C57Bl/6J mice to a 2-week chronic intermittent ethanol (CIE) paradigm followed by a brief withdrawal period, then used whole-cell patch clamp recordings of glutamatergic transmission in the striatum to assess CIE effects on mGlu2-mediated synaptic plasticity. We report that CIE differentially disrupts mGlu2-mediated long-term depression in the DLS vs. dorsomedial striatum (DMS). Interestingly, CIE-induced impairment of mGlu2-LTD in the dorsolateral striatum is only observed when alcohol exposure occurs during adolescence. Incubation of striatal slices from CIE-exposed adolescent mice with a positive allosteric modulator of mGlu2 fully rescues mGlu2-LTD. In contrast to the 2-week CIE paradigm, acute exposure of striatal slices to ethanol concentrations that mimic ethanol levels during CIE exposure fails to disrupt mGlu2-LTD. We did not observe a reduction of mGlu2 mRNA or protein levels following CIE exposure, suggesting that alcohol effects on mGlu2 occur at the functional level. Our findings contribute to growing evidence that adolescents are uniquely vulnerable to certain alcohol-induced neuroadaptations, and identify enhancement of mGlu2 activity as a strategy to reverse the effects of adolescent alcohol exposure on DLS physiology.
Collapse
|
44
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
45
|
Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res 2019; 98:2130-2147. [PMID: 31758607 DOI: 10.1002/jnr.24560] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique features in their cortical origins and striatal targets. In this review, we first describe axonal growth and synaptogenesis in the corticostriatal pathway during development, and then summarize the current understanding of the molecular bases of synaptic transmission and plasticity at mature corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper corticostriatal function.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
46
|
Prager EM, Plotkin JL. Compartmental function and modulation of the striatum. J Neurosci Res 2019; 97:1503-1514. [PMID: 31489687 DOI: 10.1002/jnr.24522] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
Abstract
The striatum plays a central role in guiding numerous complex behaviors, ranging from motor control to action selection and reward learning. The diverse responsibilities of the striatum are reflected by the complexity of its organization. In this review, we will summarize what is currently known about the compartmental layout of the striatum, an organizational principle that is crucial for allowing the striatum to guide such a diverse array of behaviors. We will focus on the anatomical and functional properties of striosome (patch) and matrix compartments of the striatum, and how the engagement of these compartments is uniquely controlled by their afferents, intrinsic properties, and neuromodulation. We will give examples of how advances in technology have opened the door to functionally dissecting the striatum's compartmental design, and close by offering thoughts on the future and relevance for human disease.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Neurobiology and Behavior, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Joshua L Plotkin
- Department of Neurobiology and Behavior, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
47
|
Lyu S, DeAndrade MP, Mueller S, Oksche A, Walters AS, Li Y. Hyperactivity, dopaminergic abnormalities, iron deficiency and anemia in an in vivo opioid receptors knockout mouse: Implications for the restless legs syndrome. Behav Brain Res 2019; 374:112123. [PMID: 31376441 DOI: 10.1016/j.bbr.2019.112123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Previous studies have uncovered a potential role of the opioid system in iron hemostasis and dopamine metabolism. Abnormalities in both of these systems have been noted in human RLS. Autopsy studies of human RLS have shown an endogenous opioid deficiency in the thalamus. Opioids, particularly prolonged-release oxycodone/naloxone, have been approved in Europe to be a second-line therapy for severe restless legs syndrome (RLS). To study the role of opioid receptors in the pathogenesis of RLS, we used a triple knockout (KO) mouse strain that lack mu, delta, and kappa opioid receptors and explored the behavioral and biochemical parameters relevant to RLS. The triple KO mice showed hyperactivity and a trend of increased probability of waking during the rest period (day) akin to that in human RLS (night). Surprisingly, triple KO mice also exhibit decreased serum iron concentration, evidence of anemia, a significant dysfunction in dopamine metabolism akin to that noted in human RLS, as well as an increased latency in response to thermal stimuli. To our knowledge, this is the first study to demonstrate that the endogenous opioid system may play a role in iron metabolism and subsequently in the pathogenesis of anemia. It is also the first study showing that opioid receptors are involved in the production of motor restlessness with a circadian predominance. Our findings support the role of endogenous opioids in the pathogenesis of RLS, and the triple KO mice can be used to understand the relationship between iron deficiency, anemia, dopaminergic dysfunction, and RLS.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark P DeAndrade
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefan Mueller
- Mundipharma Research GmbH & Co. KG, Höhenstraße 10, Limburg, Germany
| | - Alexander Oksche
- Mundipharma Research Limited, Cambridge, UK; Rudolf-Buchheim-Institut für Pharmakologie, University of Giessen, Giessen, Germany
| | - Arthur S Walters
- Division of Sleep Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
48
|
Francis TC, Yano H, Demarest TG, Shen H, Bonci A. High-Frequency Activation of Nucleus Accumbens D1-MSNs Drives Excitatory Potentiation on D2-MSNs. Neuron 2019; 103:432-444.e3. [PMID: 31221559 DOI: 10.1016/j.neuron.2019.05.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/18/2019] [Accepted: 05/17/2019] [Indexed: 11/19/2022]
Abstract
Subtypes of nucleus accumbens medium spiny neurons (MSNs) promote dichotomous outcomes in motivated behaviors. However, recent reports indicate enhancing activity of either nucleus accumbens (NAc) core MSN subtype augments reward, suggesting coincident MSN activity may underlie this outcome. Here, we report a collateral excitation mechanism in which high-frequency, NAc core dopamine 1 (D1)-MSN activation causes long-lasting potentiation of excitatory transmission (LLP) on dopamine receptor 2 (D2)-MSNs. Our mechanistic investigation demonstrates that this form of plasticity requires release of the excitatory peptide substance P from D1-MSNs and robust cholinergic interneuron activation through neurokinin receptor stimulation. We also reveal that D2-MSN LLP requires muscarinic 1 receptor activation, intracellular calcium signaling, and GluR2-lacking AMPAR insertion. This study uncovers a mechanism for shaping NAc core activity through the transfer of excitatory information from D1-MSNs to D2-MSNs and may provide a means for altering goal-directed behavior through coordinated MSN activity.
Collapse
Affiliation(s)
- T Chase Francis
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Hideaki Yano
- Intramural Research Program, Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Hui Shen
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, School of Medicine, Georgetown University Medical Center, Washington, DC, USA; Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
49
|
Birdsong WT, Jongbloets BC, Engeln KA, Wang D, Scherrer G, Mao T. Synapse-specific opioid modulation of thalamo-cortico-striatal circuits. eLife 2019; 8:45146. [PMID: 31099753 PMCID: PMC6541437 DOI: 10.7554/elife.45146] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/15/2019] [Indexed: 11/19/2022] Open
Abstract
The medial thalamus (MThal), anterior cingulate cortex (ACC) and striatum play important roles in affective-motivational pain processing and reward learning. Opioids affect both pain and reward through uncharacterized modulation of this circuitry. This study examined opioid actions on glutamate transmission between these brain regions in mouse. Mu-opioid receptor (MOR) agonists potently inhibited MThal inputs without affecting ACC inputs to individual striatal medium spiny neurons (MSNs). MOR activation also inhibited MThal inputs to the pyramidal neurons in the ACC. In contrast, delta-opioid receptor (DOR) agonists disinhibited ACC pyramidal neuron responses to MThal inputs by suppressing local feed-forward GABA signaling from parvalbumin-positive interneurons. As a result, DOR activation in the ACC facilitated poly-synaptic (thalamo-cortico-striatal) excitation of MSNs by MThal inputs. These results suggest that opioid effects on pain and reward may be shaped by the relative selectivity of opioid drugs to the specific circuit components.
Collapse
Affiliation(s)
- William T Birdsong
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Bart C Jongbloets
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Kim A Engeln
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Dong Wang
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford Neurosciences Institute, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Stanford, United States.,Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, United States
| | - Grégory Scherrer
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford Neurosciences Institute, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Stanford, United States.,Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, United States.,New York Stem Cell Foundation - Robertson Investigator, Stanford University, Palo Alto, United States
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
50
|
Adermark L, Morud J, Lotfi A, Ericson M, Söderpalm B. Acute and chronic modulation of striatal endocannabinoid-mediated plasticity by nicotine. Addict Biol 2019; 24:355-363. [PMID: 29292565 PMCID: PMC6585825 DOI: 10.1111/adb.12598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/09/2017] [Accepted: 12/05/2017] [Indexed: 11/27/2022]
Abstract
The endocannabinoid (eCB) system modulates several phenomena related to addictive behaviors, and drug‐induced changes in eCB signaling have been postulated to be important mediators of physiological and pathological reward‐related synaptic plasticity. Here, we studied eCB‐mediated long‐term depression (eCB‐LTD) in the dorsolateral striatum, a brain region critical for acquisition of habitual and automatic behavior. We report that nicotine differentially affects ex vivo eCB signaling depending on previous exposure in vivo. In the nicotine‐naïve brain, nicotine facilitates eCB‐signaling and LTD, whereas tolerance develops to this facilitating effect after subchronic exposure in vivo. In the end, a progressive impairment of eCB‐induced LTD is established after protracted withdrawal from nicotine. Endocannabinoid‐LTD is reinstated 6 months after the last drug injection, but a brief period of nicotine re‐exposure is sufficient to yet again impair eCB‐signaling. LTD induced by the cannabinoid 1 receptor agonist WIN55,212‐2 is not affected, suggesting that nicotine modulates eCB production or release. Nicotine‐induced facilitation of eCB‐LTD is occluded by the dopamine D2 receptor agonist quinpirole, and by the muscarinic acetylcholine receptor antagonist scopolamine. In addition, the same compounds restore eCB‐LTD during protracted withdrawal. Nicotine may thus modulate eCB‐signaling by affecting dopaminergic and cholinergic neurotransmission in a long‐lasting manner. Overall, the data presented here suggest that nicotine facilitates eCB‐LTD in the initial phase, which putatively could promote neurophysiological and behavioral adaptations to the drug. Protracted withdrawal, however, impairs eCB‐LTD, which may influence or affect the ability to maintain cessation.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Sweden
| | - Julia Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Sweden
| | - Amir Lotfi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Sweden
- Beroendekliniken, Sahlgrenska University Hospital Sweden
| |
Collapse
|