1
|
König J, Blusch A, Fatoba O, Gold R, Saft C, Ellrichmann-Wilms G. Examination of Anti-Inflammatory Effects After Propionate Supplementation in the R6/2 Mouse Model of Huntington's Disease. Int J Mol Sci 2025; 26:3318. [PMID: 40244185 PMCID: PMC11989372 DOI: 10.3390/ijms26073318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Huntington's disease is a progressive, untreatable neurodegenerative disorder caused by a mutation in the Huntingtin gene. Next to neurodegeneration, altered immune activation is involved in disease progression. Since central nervous system inflammation and dysfunction of immune cells are recognized as driving characteristics, immunomodulation might represent an additional therapeutic strategy. Short-chain fatty acids were known to have immunomodulatory effects in neuroinflammatory diseases, such as multiple sclerosis. In this study, R6/2 mice were treated daily with 150 mM propionate. Survival range, body weight, and motor abilities were monitored. In striatal and cortical samples, neuronal survival was analyzed by immunofluorescence staining of NeuN-positive cells and expression levels of BDNF mRNA by real-time polymerase chain reaction. As inflammatory marker TNFα mRNA and IL-6 mRNA were quantified by rtPCR, iNOS-expressing cells were counted in immunologically stained brain slides. Microglial activation was evaluated by immunofluorescent staining of IBA1-positive cells and total IBA1 protein by Western Blot, in addition, SPI1 mRNA expression was quantified by rtPCR. Except for clasping behavior, propionate treatment did neither improve the clinical course nor mediated neuronal protection in R6/2 mice. Yet there was a mild anti-inflammatory effect in the CNS, with (i) reduction in SPI1-mRNA levels, (ii) reduced iNOS positive cells in the motor cortex, and (iii) normalized TNFα-mRNA in the motor cortex of propionate-treated R6/2 mice. Thus, Short-chain fatty acids, as an environmental factor in the diet, may slightly alleviate symptoms by down-regulating inflammatory factors in the central nervous system. However, they cannot prevent clinical disease progression or neuronal loss.
Collapse
Affiliation(s)
- Jennifer König
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health, School of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Alina Blusch
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Oluwaseun Fatoba
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Carsten Saft
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Gisa Ellrichmann-Wilms
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Faculty of Health, School of Medicine, Chair of Neurology II, Witten/Herdecke University, 58448 Witten, Germany
| |
Collapse
|
2
|
Fung JN, Lee JD, Adam R, O'Sullivan JD, Woodruff TM. Peripheral and central elevation of IL-8 in patients with Huntington's disease. Mol Immunol 2025; 179:84-93. [PMID: 39923663 DOI: 10.1016/j.molimm.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVES Huntington's Disease (HD) is a debilitating neurodegenerative condition characterized by motor, cognitive and psychiatric abnormalities. Immune hyperactivity and dysregulation are common in HD. In addition to the central nervous system, HD patients exhibit systemic innate immune activation and inflammation, which has been shown to contribute to the pathogenic effects of the Huntingtin gene mutation. Upregulation of inflammatory mediators including interferon gamma (IFN-γ) and interleukin (IL)-8 has been observed in animal Huntington's disease models. However, studies on HD patients remain limited. METHODS In this study, serum samples from 58 HD patients and 59 age- and gender-matched healthy control individuals were analysed using a bead-based assay, that enabled simultaneous measurement of 13 cytokines and chemokines. Additionally, publicly available transcriptomic data from brain tissues of HD patients and controls were examined. RESULTS Our results confirm that IL-8 protein levels are significantly higher in HD patients compared to non-HD controls, with the highest levels observed in the moderate HD group. In the control group, we found significant positive correlations between IL-8 levels and both IL-17A and IL-10. However, these correlations were not observed in HD patients, where IL-8 levels were notably positively correlated with pro-inflammatory markers including IFNγ and IL-23. Interestingly, IL-17A levels demonstrated a negative correlation with disease parameters, including CAG trinucleotide repeat expansion and disease burden score. Furthermore, cytokines and chemokines such as IFNγ and monocyte chemoattractant protein 1 (MCP-1; CCL2) demonstrated positive correlations with the same disease parameters. In-depth analysis of publicly available bulk RNAseq, and single-nucleus RNA-sequencing (snRNAseq) data from two key HD-affected brain regions- the prefrontal cortex and striatum revealed that IL-8 expression is significantly increased in cortex samples from individuals with HD compared to non-HD controls. Moreover, snRNAseq data in the striatum showed higher IL-8 expression in HD patients than in non-HD controls, with a predominant expression in microglia. CONCLUSION Overall, our findings support an upregulation of IL-8 in patients with HD, evident in both central degenerating brain regions, and peripheral blood samples. We identified unique immunological signatures associated with the severity of HD and provide potential biomarkers that may reflect immune-pathological mechanisms in HD patients.
Collapse
Affiliation(s)
- Jenny N Fung
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Robert Adam
- Neurology Department, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD 4029, Australia; Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, QLD 4029, Australia
| | - John D O'Sullivan
- Neurology Department, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD 4029, Australia; Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, QLD 4029, Australia.
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Prowse ENP, Turkalj BA, Gursu L, Hendricks AG. The Huntingtin Transport Complex. Biochemistry 2025; 64:760-769. [PMID: 39909923 DOI: 10.1021/acs.biochem.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
A dynamic network of scaffolding molecules, adaptor proteins, and motor proteins work together to orchestrate the movement of proteins, mRNA, and vesicular cargoes. Defects in intracellular transport can often lead to neurodegeneration. Huntingtin (HTT) is a ubiquitously expressed scaffolding protein with a multitude of cellular roles, including regulating the transport of various organelles. HTT is remarkable in its ability to regulate the transport of a wide range of cargoes, including BDNF vesicles, APP vesicles, early endosomes, autophagosomes, lysosomes, and mitochondria. This interaction network allows huntingtin to control microtubule-based transport by kinesin and dynein, as well as actin-based transport by myosin VI. By forming complexes with multiple motor adaptors, huntingtin regulates a variety of cargoes and guides cargoes through the different stages of biosynthesis, signaling, and degradation. Accordingly, pathogenic polyglutamine expansions seen in Huntington's Disease (HD) dysregulate huntingtin transport complexes, resulting in defects in transport and neurodegeneration.
Collapse
Affiliation(s)
- Emily N P Prowse
- Department of Bioengineering, McGill University, 353 McConnell Engineering Bldg., 3480 University Street, Montreal, QC H3A 0E9 Canada
| | - Brooke A Turkalj
- Department of Bioengineering, McGill University, 353 McConnell Engineering Bldg., 3480 University Street, Montreal, QC H3A 0E9 Canada
| | - Lale Gursu
- Department of Bioengineering, McGill University, 353 McConnell Engineering Bldg., 3480 University Street, Montreal, QC H3A 0E9 Canada
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, 353 McConnell Engineering Bldg., 3480 University Street, Montreal, QC H3A 0E9 Canada
| |
Collapse
|
4
|
Denaro S, D’Aprile S, Vicario N, Parenti R. Mechanistic insights into connexin-mediated neuroglia crosstalk in neurodegenerative diseases. Front Cell Neurosci 2025; 19:1532960. [PMID: 40007760 PMCID: PMC11850338 DOI: 10.3389/fncel.2025.1532960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Multiple Sclerosis (MS), and Huntington's disease (HD), although distinct in their clinical manifestations, share a common hallmark: a disrupted neuroinflammatory environment orchestrated by dysregulation of neuroglial intercellular communication. Neuroglial crosstalk is physiologically ensured by extracellular mediators and by the activity of connexins (Cxs), the forming proteins of gap junctions (Gjs) and hemichannels (HCs), which maintain intracellular and extracellular homeostasis. However, accumulating evidence suggests that Cxs can also act as pathological pore in neuroinflammatory conditions, thereby contributing to neurodegenerative phenomena such as synaptic dysfunction, oxidative stress, and ultimately cell death. This review explores mechanistic insights of Cxs-mediated intercellular communication in the progression of neurodegenerative diseases and discusses the therapeutic potential of targeting Cxs to restore cellular homeostasis.
Collapse
Affiliation(s)
| | | | | | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Mukherjee A, Biswas S, Roy I. Exploring immunotherapeutic strategies for neurodegenerative diseases: a focus on Huntington's disease and Prion diseases. Acta Pharmacol Sin 2025:10.1038/s41401-024-01455-w. [PMID: 39890942 DOI: 10.1038/s41401-024-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 02/03/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for the treatment of neurodegenerative disorders, which are characterized by the progressive loss of neurons and impaired cognitive functions. In this review, active and passive immunotherapeutic strategies that help address the underlying pathophysiology of Huntington's disease (HD) and prion diseases by modulating the immune system are discussed. The current landscape of immunotherapeutic strategies, including monoclonal antibodies and vaccine-based approaches, to treat these diseases is highlighted, along with their potential benefits and mechanisms of action. Immunotherapy generally works by targeting disease-specific proteins, which serve as the pathological hallmarks of these diseases. Additionally, the review addresses the challenges and limitations associated with immunotherapy. For HD, immunotherapeutic approaches focus on neutralizing the toxic effects of mutant huntingtin and tau proteins, thereby reducing neurotoxicity. Immunotherapeutic approaches targeting flanking sequences, rather than the polyglutamine tract in the mutant huntingtin protein, have yielded promising outcomes for patients with HD. In prion diseases, therapies attempt to prevent or eliminate misfolded proteins that cause neurodegeneration. The major challenge in prion diseases is immune tolerance. Approaches to overcome the highly tolerogenic nature of the prion protein have been discussed. A common hurdle in delivering antibodies is the blood‒brain barrier, and strategies that can breach this barrier are being investigated. As protein aggregation and neurotoxicity are related, immunotherapeutic strategies being developed for other neurodegenerative diseases could be repurposed to target protein aggregation in HD and prion diseases. While significant advances in this field have been achieved, continued research and development are necessary to overcome the existing limitations, which will help in shaping the future of immunotherapy as a strategy for managing neurological disorders.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
6
|
Aqel S, Ahmad J, Saleh I, Fathima A, Al Thani AA, Mohamed WMY, Shaito AA. Advances in Huntington's Disease Biomarkers: A 10-Year Bibliometric Analysis and a Comprehensive Review. BIOLOGY 2025; 14:129. [PMID: 40001897 PMCID: PMC11852324 DOI: 10.3390/biology14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Neurodegenerative disorders (NDs) cause progressive neuronal loss and are a significant public health concern, with NDs projected to become the second leading global cause of death within two decades. Huntington's disease (HD) is a rare, progressive ND caused by an autosomal-dominant mutation in the huntingtin (HTT) gene, leading to severe neuronal loss in the brain and resulting in debilitating motor, cognitive, and psychiatric symptoms. Given the complex pathology of HD, biomarkers are essential for performing early diagnosis, monitoring disease progression, and evaluating treatment efficacy. However, the identification of consistent HD biomarkers is challenging due to the prolonged premanifest HD stage, HD's heterogeneous presentation, and its multiple underlying biological pathways. This study involves a 10-year bibliometric analysis of HD biomarker research, revealing key research trends and gaps. The study also features a comprehensive literature review of emerging HD biomarkers, concluding the need for better stratification of HD patients and well-designed longitudinal studies to validate HD biomarkers. Promising candidate wet HD biomarkers- including neurofilament light chain protein (NfL), microRNAs, the mutant HTT protein, and specific metabolic and inflammatory markers- are discussed, with emphasis on their potential utility in the premanifest HD stage. Additionally, biomarkers reflecting brain structural deficits and motor or behavioral impairments, such as neurophysiological (e.g., motor tapping, speech, EEG, and event-related potentials) and imaging (e.g., MRI, PET, and diffusion tensor imaging) biomarkers, are evaluated. The findings underscore that the discovery and validation of reliable HD biomarkers urgently require improved patient stratification and well-designed longitudinal studies. Reliable biomarkers, particularly in the premanifest HD stage, are crucial for optimizing HD clinical management strategies, enabling personalized treatment approaches, and advancing clinical trials of HD-modifying therapies.
Collapse
Affiliation(s)
- Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Jamil Ahmad
- Medical Education, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Aseela Fathima
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmaa A. Al Thani
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 50728, Malaysia;
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Abdullah A. Shaito
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
- College of Medicine, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
7
|
Li X, Tong H, Xu S, Zhou G, Yang T, Yin S, Yang S, Li X, Li S. Neuroinflammatory Proteins in Huntington's Disease: Insights into Mechanisms, Diagnosis, and Therapeutic Implications. Int J Mol Sci 2024; 25:11787. [PMID: 39519337 PMCID: PMC11546928 DOI: 10.3390/ijms252111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a CAG tract expansion in the huntingtin gene (HTT). HD is characterized by involuntary movements, cognitive decline, and behavioral changes. Pathologically, patients with HD show selective striatal neuronal vulnerability at the early disease stage, although the mutant protein is ubiquitously expressed. Activation of the immune system and glial cell-mediated neuroinflammatory responses are early pathological features and have been found in all neurodegenerative diseases (NDDs), including HD. However, the role of inflammation in HD, as well as its therapeutic significance, has been less extensively studied compared to other NDDs. This review highlights the significantly elevated levels of inflammatory proteins and cellular markers observed in various HD animal models and HD patient tissues, emphasizing the critical roles of microglia, astrocytes, and oligodendrocytes in mediating neuroinflammation in HD. Moreover, it expands on recent discoveries related to the peripheral immune system's involvement in HD. Although current immunomodulatory treatments and inflammatory biomarkers for adjunctive diagnosis in HD are limited, targeting inflammation in combination with other therapies, along with comprehensive personalized treatment approaches, shows promising therapeutic potential.
Collapse
Affiliation(s)
- Xinhui Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Huichun Tong
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuying Xu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Gongke Zhou
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Tianqi Yang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Shurui Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Sitong Yang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Xiaojiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| |
Collapse
|
8
|
Sypek EI, Tassou A, Collins HY, Huang K, McCallum WM, Bourdillon AT, Barres BA, Bohlen CJ, Scherrer G. Diversity of microglial transcriptional responses during opioid exposure and neuropathic pain. Pain 2024; 165:2615-2628. [PMID: 39073407 PMCID: PMC11474913 DOI: 10.1097/j.pain.0000000000003275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 07/30/2024]
Abstract
ABSTRACT Microglia take on an altered morphology during chronic opioid treatment. This morphological change is broadly used to identify the activated microglial state associated with opioid side effects, including tolerance and opioid-induced hyperalgesia (OIH). Microglia display similar morphological responses in the spinal cord after peripheral nerve injury (PNI). Consistent with this observation, functional studies have suggested that microglia activated by opioids or PNI engage common molecular mechanisms to induce hypersensitivity. In this article, we conducted deep RNA sequencing (RNA-seq) and morphological analysis of spinal cord microglia in male mice to comprehensively interrogate transcriptional states and mechanistic commonality between multiple models of OIH and PNI. After PNI, we identify an early proliferative transcriptional event across models that precedes the upregulation of histological markers of microglial activation. However, we found no proliferative transcriptional response associated with opioid-induced microglial activation, consistent with histological data, indicating that the number of microglia remains stable during morphine treatment, whereas their morphological response differs from PNI models. Collectively, these results establish the diversity of pain-associated microglial transcriptomic responses and point towards the targeting of distinct insult-specific microglial responses to treat OIH, PNI, or other central nervous system pathologies.
Collapse
Affiliation(s)
- Elizabeth I. Sypek
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
- Stanford Neurosciences Institute, Stanford, CA, United States
- Stanford University Neurosciences Graduate Program, Stanford, CA, United States
| | - Adrien Tassou
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hannah Y. Collins
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Karen Huang
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William M. McCallum
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Ben A. Barres
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Christopher J. Bohlen
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- New York Stem Cell Foundation—Robertson Investigator Chapel Hill, NC, United States
| |
Collapse
|
9
|
Young AP, Denovan-Wright EM. Microglia-mediated neuron death requires TNF and is exacerbated by mutant Huntingtin. Pharmacol Res 2024; 209:107443. [PMID: 39362509 DOI: 10.1016/j.phrs.2024.107443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Microglia, the resident immune cells of the brain, regulate the balance of inflammation in the central nervous system under healthy and pathogenic conditions. Huntington's disease (HD) is a chronic neurodegenerative disease characterized by activated microglia and elevated concentrations of pro-inflammatory cytokines within the brain. Chronic hyperactivation of microglia is associated with brain pathology and eventual neuron death. However, it is unclear which specific cytokines are required for neuron death and whether HD neurons may be hypersensitive to neuroinflammation. We assessed the profile of microglia-secreted proteins in response to LPS and IFNγ, and a conditioned media paradigm was used to examine the effects of these secreted proteins on cultured neuronal cells. STHdhQ7/Q7 and STHdhQ111/Q111 neuronal cells were used to model wild-type and HD neurons, respectively. We determined that STHdhQ111/Q111 cells were hypersensitive to pro-inflammatory factors secreted by microglia, and that TNF was required to induce neuronal death. Microglia-mediated neuronal death could be effectively halted through the use of JAK-STAT or TNF inhibitors which supported the requirement for TNF as well as IFNγ in the process of secondary neurotoxicity. Further data derived from human HD patients as well as HD mice were suggestive of enhanced receptor density for TNF (TNFR1) and IFNγ (IFNGR) which could sensitize the HD brain to these cytokines. This highlights several potential mechanisms by which microglia may induce neuronal death and suggests that these mechanisms may be upregulated in the brain of HD patients.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | | |
Collapse
|
10
|
D'Egidio F, Castelli V, d'Angelo M, Ammannito F, Quintiliani M, Cimini A. Brain incoming call from glia during neuroinflammation: Roles of extracellular vesicles. Neurobiol Dis 2024; 201:106663. [PMID: 39251030 DOI: 10.1016/j.nbd.2024.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
The functionality of the central nervous system (CNS) relies on the connection, integration, and the exchange of information among neural cells. The crosstalk among glial cells and neurons is pivotal for a series of neural functions, such as development of the nervous system, electric conduction, synaptic transmission, neural circuit establishment, and brain homeostasis. Glial cells are crucial players in the maintenance of brain functionality in physiological and disease conditions. Neuroinflammation is a common pathological process in various brain disorders, such as neurodegenerative diseases, and infections. Glial cells, including astrocytes, microglia, and oligodendrocytes, are the main mediators of neuroinflammation, as they can sense and respond to brain insults by releasing pro-inflammatory or anti-inflammatory factors. Recent evidence indicates that extracellular vesicles (EVs) are pivotal players in the intercellular communication that underlies physiological and pathological processes. In particular, glia-derived EVs play relevant roles in modulating neuroinflammation, either by promoting or inhibiting the activation of glial cells and neurons, or by facilitating the clearance or propagation of pathogenic proteins. The involvement of EVs in neurodegenerative diseases such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Multiple Sclerosis (MS)- which share hallmarks such as neuroinflammation and oxidative stress to DNA damage, alterations in neurotrophin levels, mitochondrial impairment, and altered protein dynamics- will be dissected, showing how EVs act as pivotal cell-cell mediators of toxic stimuli, thereby propagating degeneration and cell death signaling. Thus, this review focuses on the EVs secreted by microglia, astrocytes, oligodendrocytes and in neuroinflammatory conditions, emphasizing on their effects on neurons and on central nervous system functions, considering both their beneficial and detrimental effects.
Collapse
Affiliation(s)
- Francesco D'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo".
| | - Fabrizio Ammannito
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Massimiliano Quintiliani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| |
Collapse
|
11
|
Chang CP, Wu CW, Chern Y. Metabolic dysregulation in Huntington's disease: Neuronal and glial perspectives. Neurobiol Dis 2024; 201:106672. [PMID: 39306013 DOI: 10.1016/j.nbd.2024.106672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutant huntingtin protein with an abnormal CAG/polyQ expansion in the N-terminus of HTT exon 1. HD is characterized by progressive neurodegeneration and metabolic abnormalities, particularly in the brain, which accounts for approximately 20 % of the body's resting metabolic rate. Dysregulation of energy homeostasis in HD includes impaired glucose transporters, abnormal functions of glycolytic enzymes, changes in tricarboxylic acid (TCA) cycle activity and enzyme expression in the basal ganglia and cortical regions of both HD mouse models and HD patients. However, current understanding of brain cell behavior during energy dysregulation and its impact on neuron-glia crosstalk in HD remains limited. This review provides a comprehensive summary of the current understanding of the differences in glucose metabolism between neurons and glial cells in HD and how these differences contribute to disease development compared with normal conditions. We also discuss the potential impact of metabolic shifts on neuron-glia communication in HD. A deeper understanding of these metabolic alterations may reveal potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Wen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Zhou L, Wang Y, Xu Y, Zhang Y, Zhu C. A comprehensive review of AAV-mediated strategies targeting microglia for therapeutic intervention of neurodegenerative diseases. J Neuroinflammation 2024; 21:232. [PMID: 39300451 DOI: 10.1186/s12974-024-03232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Neurodegenerative diseases pose a significant health burden globally, with limited treatment options available. Among the various cell types involved in the pathogenesis of these disorders, microglia, the resident immune cells of the central nervous system, play a pivotal role. Dysregulated microglial activation contributes to neuroinflammation and neuronal damage, making them an attractive target for therapeutic intervention. Adeno-associated virus (AAV) vectors have emerged as powerful tools for delivering therapeutic genes to specific cell types in the central nervous system with remarkable precision and safety. In the current review, we discuss the strategies employed to achieve selective transduction of microglia, including the use of cell-specific promoters, engineered capsids, and microRNA (miRNA) strategies. Additionally, we address the challenges and future directions in the development of AAV-based therapies targeting microglia. Overall, AAV-mediated targeting of microglia holds promise as a novel therapeutic approach for neurodegenerative diseases, offering the potential to modify disease progression and improve patient outcomes.
Collapse
Affiliation(s)
- Livia Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Perales-Salinas V, Purushotham SS, Buskila Y. Curcumin as a potential therapeutic agent for treating neurodegenerative diseases. Neurochem Int 2024; 178:105790. [PMID: 38852825 DOI: 10.1016/j.neuint.2024.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function, posing a tremendous burden on health systems worldwide. Although the underlying pathological mechanisms for various neurodegenerative diseases are still unclear, a common pathological hallmark is the abundance of neuroinflammatory processes, which affect both disease onset and progression. In this review, we explore the pathways and role of neuroinflammation in various neurodegenerative diseases and further assess the potential use of curcumin, a natural spice with antioxidant and anti-inflammatory properties that has been extensively used worldwide as a traditional medicine and potential therapeutic agent. Following the examination of preclinical and clinical studies that assessed curcumin as a potential therapeutic agent, we highlight the bioavailability of curcumin in the body and discuss both the challenges and benefits of using curcumin as a therapeutic compound for treating neurodegeneration. Although elucidating the involvement of curcumin in aging and neurodegeneration has great potential for developing future CNS-related therapeutic targets, further research is required to elucidate the mechanisms by which Curcumin affects brain physiology, especially BBB integrity, under both physiological and disease conditions.
Collapse
Affiliation(s)
| | | | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia; The MARCS Institute, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
14
|
Iizuka Y, Katano-Toki A, Hayashi F, Fujioka J, Takahashi H, Nakamura K. Exogenous polyserine fibrils change membrane properties of phosphatidylcholine-liposome and red blood cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184331. [PMID: 38718958 DOI: 10.1016/j.bbamem.2024.184331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
The causative genes for neurodegenerative polyglutamine (polyQ) diseases produce homopolymeric polyglutamine (polyQ), polyserine (polyS), polyalanine (polyA), polycysteine (polyC), and polyleucine (polyL) sequences by repeat-associated non-AUG (RAN) translation. The cytotoxicity of the intracellular polyQ and RAN products has been extensively investigated. However, little is known about the toxicity of the extracellular polyQ and RAN products on the membranes of viable cells. Because polyQ aggregates induce a deflated morphology of a model membrane, we hypothesized that extracellular polyQ and RAN products might affect the membrane properties of viable cells. In this study, we demonstrated that exogenous polyS fibrils but not polyS or polyQ non-fibril aggregates altered the thermal phase transition behavior of a model membrane composed of a phosphatidylcholine bilayer using differential scanning calorimetry. PolyS fibrils induced morphological changes in viable red blood cells (RBCs). However, both polyS and polyQ non-fibril aggregates had no effects on RBCs. These results highlight the possibility that extracellular fibrils generated from RAN products may alter the properties of neuronal cell membranes, which may contribute to changes in the brain pathology.
Collapse
Affiliation(s)
- Yutaro Iizuka
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akiko Katano-Toki
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Fumio Hayashi
- Center for Instrumental Analysis, Organization for Promotion of Research and University Industry Collaboration, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Jun Fujioka
- Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hiroshi Takahashi
- Biophysics Laboratory, Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2, Aramaki, Maebashi, Gunma 371-8510, Japan.
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
15
|
Field SE, Curle AJ, Barker RA. Inflammation and Huntington's disease - a neglected therapeutic target? Expert Opin Investig Drugs 2024; 33:451-467. [PMID: 38758356 DOI: 10.1080/13543784.2024.2348738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Huntington's Disease (HD) is a genetic neurodegenerative disease for which there is currently no disease-modifying treatment. One of several underlying mechanisms proposed to be involved in HD pathogenesis is inflammation; there is now accumulating evidence that the immune system may play an integral role in disease pathology and progression. As such, modulation of the immune system could be a potential therapeutic target for HD. AREAS COVERED To date, the number of trials targeting immune aspects of HD has been limited. However, targeting it, may have great advantages over other therapeutic areas, given that many drugs already exist that have actions in this system coupled to the fact that inflammation can be measured both peripherally and, to some extent, centrally using CSF and PET imaging. In this review, we look at evidence that the immune system and the newly emerging area of the microbiome are altered in HD patients, and then present and discuss clinical trials that have targeted different parts of the immune system. EXPERT OPINION We then conclude by discussing how this field might develop going forward, focusing on the role of imaging and other biomarkers to monitor central immune activation and response to novel treatments in HD.
Collapse
Affiliation(s)
- Sophie E Field
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Annabel J Curle
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Kim W, Kim M, Kim B. Unraveling the enigma: housekeeping gene Ugt1a7c as a universal biomarker for microglia. Front Psychiatry 2024; 15:1364201. [PMID: 38666091 PMCID: PMC11043603 DOI: 10.3389/fpsyt.2024.1364201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Background Microglia, brain resident macrophages, play multiple roles in maintaining homeostasis, including immunity, surveillance, and protecting the central nervous system through their distinct activation processes. Identifying all types of microglia-driven populations is crucial due to the presence of various phenotypes that differ based on developmental stages or activation states. During embryonic development, the E8.5 yolk sac contains erythromyeloid progenitors that go through different growth phases, eventually resulting in the formation of microglia. In addition, microglia are present in neurological diseases as a diverse population. So far, no individual biomarker for microglia has been discovered that can accurately identify and monitor their development and attributes. Summary Here, we highlight the newly defined biomarker of mouse microglia, UGT1A7C, which exhibits superior stability in expression during microglia development and activation compared to other known microglia biomarkers. The UGT1A7C sensing chemical probe labels all microglia in the 3xTG AD mouse model. The expression of Ugt1a7c is stable during development, with only a 4-fold variation, while other microglia biomarkers, such as Csf1r and Cx3cr1, exhibit at least a 10-fold difference. The UGT1A7C expression remains constant throughout its lifespan. In addition, the expression and activity of UGT1A7C are the same in response to different types of inflammatory activators' treatment in vitro. Conclusion We propose employing UGT1A7C as the representative biomarker for microglia, irrespective of their developmental state, age, or activation status. Using UGT1A7C can reduce the requirement for using multiple biomarkers, enhance the precision of microglia analysis, and even be utilized as a standard for gene/protein expression.
Collapse
Affiliation(s)
| | | | - Beomsue Kim
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
17
|
Niso-Santano M, Fuentes JM, Galluzzi L. Immunological aspects of central neurodegeneration. Cell Discov 2024; 10:41. [PMID: 38594240 PMCID: PMC11004155 DOI: 10.1038/s41421-024-00666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 04/11/2024] Open
Abstract
The etiology of various neurodegenerative disorders that mainly affect the central nervous system including (but not limited to) Alzheimer's disease, Parkinson's disease and Huntington's disease has classically been attributed to neuronal defects that culminate with the loss of specific neuronal populations. However, accumulating evidence suggests that numerous immune effector cells and the products thereof (including cytokines and other soluble mediators) have a major impact on the pathogenesis and/or severity of these and other neurodegenerative syndromes. These observations not only add to our understanding of neurodegenerative conditions but also imply that (at least in some cases) therapeutic strategies targeting immune cells or their products may mediate clinically relevant neuroprotective effects. Here, we critically discuss immunological mechanisms of central neurodegeneration and propose potential strategies to correct neurodegeneration-associated immunological dysfunction with therapeutic purposes.
Collapse
Affiliation(s)
- Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain.
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.
| | - José M Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Creus-Muncunill J, Haure-Mirande JV, Mattei D, Bons J, Ramirez AV, Hamilton BW, Corwin C, Chowdhury S, Schilling B, Ellerby LM, Ehrlich ME. TYROBP/DAP12 knockout in Huntington's disease Q175 mice cell-autonomously decreases microglial expression of disease-associated genes and non-cell-autonomously mitigates astrogliosis and motor deterioration. J Neuroinflammation 2024; 21:66. [PMID: 38459557 PMCID: PMC10924371 DOI: 10.1186/s12974-024-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the Huntingtin gene (HTT). Immune activation is abundant in the striatum of HD patients. Detection of active microglia at presymptomatic stages suggests that microgliosis is a key early driver of neuronal dysfunction and degeneration. Recent studies showed that deletion of Tyrobp, a microglial protein, ameliorates neuronal dysfunction in Alzheimer's disease amyloidopathy and tauopathy mouse models while decreasing components of the complement subnetwork. OBJECTIVE While TYROBP/DAP12-mediated microglial activation is detrimental for some diseases such as peripheral nerve injury, it is beneficial for other diseases. We sought to determine whether the TYROBP network is implicated in HD and whether Tyrobp deletion impacts HD striatal function and transcriptomics. METHODS To test the hypothesis that Tyrobp deficiency would be beneficial in an HD model, we placed the Q175 HD mouse model on a Tyrobp-null background. We characterized these mice with a combination of behavioral testing, immunohistochemistry, transcriptomic and proteomic profiling. Further, we evaluated the gene signature in isolated Q175 striatal microglia, with and without Tyrobp. RESULTS Comprehensive analysis of publicly available human HD transcriptomic data revealed that the TYROBP network is overactivated in the HD putamen. The Q175 mice showed morphologic microglial activation, reduced levels of post-synaptic density-95 protein and motor deficits at 6 and 9 months of age, all of which were ameliorated on the Tyrobp-null background. Gene expression analysis revealed that lack of Tyrobp in the Q175 model does not prevent the decrease in the expression of striatal neuronal genes but reduces pro-inflammatory pathways that are specifically active in HD human brain, including genes identified as detrimental in neurodegenerative diseases, e.g. C1q and members of the Ccr5 signaling pathway. Integration of transcriptomic and proteomic data revealed that astrogliosis and complement system pathway were reduced after Tyrobp deletion, which was further validated by immunofluorescence analysis. CONCLUSIONS Our data provide molecular and functional support demonstrating that Tyrobp deletion prevents many of the abnormalities in the HD Q175 mouse model, suggesting that the Tyrobp pathway is a potential therapeutic candidate for Huntington's disease.
Collapse
Affiliation(s)
| | | | - Daniele Mattei
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Angie V Ramirez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - B Wade Hamilton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Chuhyon Corwin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sarah Chowdhury
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
19
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
20
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Khoshnan A. Gut Microbiota as a Modifier of Huntington's Disease Pathogenesis. J Huntingtons Dis 2024; 13:133-147. [PMID: 38728199 PMCID: PMC11307070 DOI: 10.3233/jhd-240012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
Huntingtin (HTT) protein is expressed in most cell lineages, and the toxicity of mutant HTT in multiple organs may contribute to the neurological and psychiatric symptoms observed in Huntington's disease (HD). The proteostasis and neurotoxicity of mutant HTT are influenced by the intracellular milieu and responses to environmental signals. Recent research has highlighted a prominent role of gut microbiota in brain and immune system development, aging, and the progression of neurological disorders. Several studies suggest that mutant HTT might disrupt the homeostasis of gut microbiota (known as dysbiosis) and impact the pathogenesis of HD. Dysbiosis has been observed in HD patients, and in animal models of the disease it coincides with mutant HTT aggregation, abnormal behaviors, and reduced lifespan. This review article aims to highlight the potential toxicity of mutant HTT in organs and pathways within the microbiota-gut-immune-central nervous system (CNS) axis. Understanding the functions of Wild-Type (WT) HTT and the toxicity of mutant HTT in these organs and the associated networks may elucidate novel pathogenic pathways, identify biomarkers and peripheral therapeutic targets for HD.
Collapse
Affiliation(s)
- Ali Khoshnan
- Keck School of Medicine, Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Soltani Khaboushan A, Moeinafshar A, Ersi MH, Teixeira AL, Majidi Zolbin M, Kajbafzadeh AM. Circulating levels of inflammatory biomarkers in Huntington's disease: A systematic review and meta-analysis. J Neuroimmunol 2023; 385:578243. [PMID: 37984118 DOI: 10.1016/j.jneuroim.2023.578243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant disease caused by an abnormally high number of CAG repeats at the huntingtin-encoding gene, HTT. This genetic alteration results in the expression of a mutant form of the protein (mHTT) and the formation of intracellular aggregates, inducing an inflammatory state within the affected areas. This dysfunction of inflammatory response leads to elevated levels of related inflammatory markers in both CNS tissue samples and body fluids. This study aims to investigate peripheral/blood concentrations of inflammatory molecules in HD. METHODS A search was conducted in MEDLINE, Scopus, Web of Science, and Embase databases until March 30th, 2023. Random-effect meta-analysis was used for exploring concentrations of inflammatory molecules in HD. Subgroup and sensitivity analyses were used to assess heterogeneity among the included studies. The study protocol has been registered in PROSPERO with the ID number CRD42022296078. RESULTS Ten studies were included in the meta-analysis. Plasma levels of Interleukin 6 (IL-6) and IL-10 were higher in HD compared to controls. Other biomarkers, namely, complement component C-reactive protein (CRP), C3, interferon-γ (IFN-γ), IL-1, IL-2, IL-8, and tumor necrosis factor-α (TNF-α), did not show any significant differences between the two groups. In addition, the subgroup analysis results established no significant differences in levels of these biomarkers in body fluids among premanifest and manifest HD patients. CONCLUSION The results of this study provide evidence for the presence of higher plasma levels of IL-6 and IL-10 in HD patients in comparison with healthy controls.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Hamed Ersi
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Evidence Based Medicine Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Antonio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
23
|
Barwell T, Seroude L. Polyglutamine disease in peripheral tissues. Hum Mol Genet 2023; 32:3303-3311. [PMID: 37642359 DOI: 10.1093/hmg/ddad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
This year is a milestone anniversary of the discovery that Huntington's disease is caused by the presence of expanded polyglutamine repeats in the huntingtin gene leading to the formation of huntingtin aggregates. 30 years have elapsed and there is still no cure and the only FDA-approved treatment to alleviate the debilitating locomotor impairments presents several adverse effects. It has long been neglected that the huntingtin gene is almost ubiquitously expressed in many tissues outside of the nervous system. Growing evidence indicates that these peripheral tissues can contribute to the symptoms of the disease. New findings in Drosophila have shown that the selective expression of mutant huntingtin in muscle or fat is sufficient to cause detrimental effects in the absence of any neurodegeneration. In addition, it was discovered that a completely different tissue distribution of Htt aggregates in Drosophila muscles is responsible for a drastic aggravation of the detrimental effects. This review examines the peripheral tissues that express huntingtin with an added focus on the nature and distribution of the aggregates, if any.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| | - Laurent Seroude
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
24
|
Steinberg N, Galleguillos D, Zaidi A, Horkey M, Sipione S. Naïve Huntington's disease microglia mount a normal response to inflammatory stimuli but display a partially impaired development of innate immune tolerance that can be counteracted by ganglioside GM1. J Neuroinflammation 2023; 20:276. [PMID: 37996924 PMCID: PMC10668379 DOI: 10.1186/s12974-023-02963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Chronic activation and dysfunction of microglia have been implicated in the pathogenesis and progression of many neurodegenerative disorders, including Huntington's disease (HD). HD is a genetic condition caused by a mutation that affects the folding and function of huntingtin (HTT). Signs of microglia activation have been observed in HD patients even before the onset of symptoms. It is unclear, however, whether pro-inflammatory microglia activation in HD results from cell-autonomous expression of mutant HTT, is the response of microglia to a diseased brain environment, or both. In this study, we used primary microglia isolated from HD knock-in (Q140) and wild-type (Q7) mice to investigate their response to inflammatory conditions in vitro in the absence of confounding effects arising from brain pathology. We show that naïve Q140 microglia do not undergo spontaneous pro-inflammatory activation and respond to inflammatory triggers, including stimulation of TLR4 and TLR2 and exposure to necrotic cells, with similar kinetics of pro-inflammatory gene expression as wild-type microglia. Upon termination of the inflammatory insult, the transcription of pro-inflammatory cytokines is tapered off in Q140 and wild-type microglia with similar kinetics. However, the ability of Q140 microglia to develop tolerance in response to repeated inflammatory stimulations is partially impaired in vitro and in vivo, potentially contributing to the establishment of chronic neuroinflammation in HD. We further show that ganglioside GM1, a glycosphingolipid with anti-inflammatory effects on wild-type microglia, not only decreases the production of pro-inflammatory cytokines and nitric oxide in activated Q140 microglia, but also dramatically dampen microglia response to re-stimulation with LPS in an experimental model of tolerance. These effects are independent from the expression of interleukin 1 receptor associated kinase 3 (Irak-3), a strong modulator of LPS signaling involved in the development of innate immune tolerance and previously shown to be upregulated by immune cell treatment with gangliosides. Altogether, our data suggest that external triggers are required for HD microglia activation, but a cell-autonomous dysfunction that affects the ability of HD microglia to acquire tolerance might contribute to the establishment of neuroinflammation in HD. Administration of GM1 might be beneficial to attenuate chronic microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Noam Steinberg
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
| | - Danny Galleguillos
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asifa Zaidi
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
| | | | - Simonetta Sipione
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
25
|
Stöberl N, Donaldson J, Binda CS, McAllister B, Hall-Roberts H, Jones L, Massey TH, Allen ND. Mutant huntingtin confers cell-autonomous phenotypes on Huntington's disease iPSC-derived microglia. Sci Rep 2023; 13:20477. [PMID: 37993517 PMCID: PMC10665390 DOI: 10.1038/s41598-023-46852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a dominantly inherited CAG repeat expansion in the huntingtin gene (HTT). Neuroinflammation and microglia have been implicated in HD pathology, however it has been unclear if mutant HTT (mHTT) expression has an adverse cell-autonomous effect on microglial function, or if they are only activated in response to the neurodegenerative brain environment in HD. To establish a human cell model of HD microglia function, we generated isogenic controls for HD patient-derived induced pluripotent stem cells (iPSC) with 109 CAG repeats (Q109). Q109 and isogenic Q22 iPSC, as well as non-isogenic Q60 and Q33 iPSC lines, were differentiated to iPSC-microglia. Our study supports a model of basal microglia dysfunction in HD leading to elevated pro-inflammatory cytokine production together with impaired phagocytosis and endocytosis capacity, in the absence of immune stimulation. These findings are consistent with early microglia activation observed in pre-manifest patients and indicate that mHTT gene expression affects microglia function in a cell-autonomous way.
Collapse
Affiliation(s)
- Nina Stöberl
- School of Biosciences, Cardiff University, Cardiff, UK.
| | - Jasmine Donaldson
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Caroline S Binda
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Branduff McAllister
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Hazel Hall-Roberts
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| | - Lesley Jones
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Thomas H Massey
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
26
|
Ralvenius WT, Mungenast AE, Woolf H, Huston MM, Gillingham TZ, Godin SK, Penney J, Cam HP, Gao F, Fernandez CG, Czako B, Lightfoot Y, Ray WJ, Beckmann A, Goate AM, Marcora E, Romero-Molina C, Ayata P, Schaefer A, Gjoneska E, Tsai LH. A novel molecular class that recruits HDAC/MECP2 complexes to PU.1 motifs reduces neuroinflammation. J Exp Med 2023; 220:e20222105. [PMID: 37642942 PMCID: PMC10465325 DOI: 10.1084/jem.20222105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/26/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Pervasive neuroinflammation occurs in many neurodegenerative diseases, including Alzheimer's disease (AD). SPI1/PU.1 is a transcription factor located at a genome-wide significant AD-risk locus and its reduced expression is associated with delayed onset of AD. We analyzed single-cell transcriptomic datasets from microglia of human AD patients and found an enrichment of PU.1-binding motifs in the differentially expressed genes. In hippocampal tissues from transgenic mice with neurodegeneration, we found vastly increased genomic PU.1 binding. We then screened for PU.1 inhibitors using a PU.1 reporter cell line and discovered A11, a molecule with anti-inflammatory efficacy and nanomolar potency. A11 regulated genes putatively by recruiting a repressive complex containing MECP2, HDAC1, SIN3A, and DNMT3A to PU.1 motifs, thus representing a novel mechanism and class of molecules. In mouse models of AD, A11 ameliorated neuroinflammation, loss of neuronal integrity, AD pathology, and improved cognitive performance. This study uncovers a novel class of anti-inflammatory molecules with therapeutic potential for neurodegenerative disorders.
Collapse
Affiliation(s)
- William T. Ralvenius
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison E. Mungenast
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Woolf
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret M. Huston
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler Z. Gillingham
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephen K. Godin
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jay Penney
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugh P. Cam
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fan Gao
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Celia G. Fernandez
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Czako
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yaima Lightfoot
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adrian Beckmann
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alison M. Goate
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Romero-Molina
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pinar Ayata
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, USA
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Elizabeta Gjoneska
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
27
|
Litwiniuk A, Juszczak GR, Stankiewicz AM, Urbańska K. The role of glial autophagy in Alzheimer's disease. Mol Psychiatry 2023; 28:4528-4539. [PMID: 37679471 DOI: 10.1038/s41380-023-02242-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Although Alzheimer's disease is the most pervasive neurodegenerative disorder, the mechanism underlying its development is still not precisely understood. Available data indicate that pathophysiology of this disease may involve impaired autophagy in glial cells. The dysfunction is manifested as reduced ability of astrocytes and microglia to clear abnormal protein aggregates. Consequently, excessive accumulation of amyloid beta plaques and neurofibrillary tangles activates microglia and astrocytes leading to decreased number of mature myelinated oligodendrocytes and death of neurons. These pathologic effects of autophagy dysfunction can be rescued by pharmacological activation of autophagy. Therefore, a deeper understanding of the molecular mechanisms involved in autophagy dysfunction in glial cells in Alzheimer's disease may lead to the development of new therapeutic strategies. However, such strategies need to take into consideration differences in regulation of autophagy in different types of neuroglia.
Collapse
Affiliation(s)
- Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Mazovia, Poland
| | - Grzegorz Roman Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Mazovia, Poland
| | - Adrian Mateusz Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Mazovia, Poland.
| | - Kaja Urbańska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Mazovia, Poland.
| |
Collapse
|
28
|
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, Faull RLM, Jayadev S, Yednock T, Yang XW, Stevens B. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nat Med 2023; 29:2866-2884. [PMID: 37814059 PMCID: PMC10667107 DOI: 10.1038/s41591-023-02566-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Huntington's disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from patients with HD that is associated with the increased activation and localization of complement proteins, innate immune molecules, to these synaptic elements. We also found that levels of these secreted innate immune molecules are elevated in the cerebrospinal fluid of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD, we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis, marking them for removal by microglia, the brain's resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons. Inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function-blocking antibody or genetic ablation of a complement receptor on microglia prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD; they also provide new preclinical data to support complement as a therapeutic target for early intervention.
Collapse
Affiliation(s)
- Daniel K Wilton
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
| | - Kevin Mastro
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Molly D Heller
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Frederick W Gergits
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Carly Rose Willing
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Jaclyn B Fahey
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Arnaud Frouin
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Anthony Daggett
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Yejin A Kim
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Richard L M Faull
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Beth Stevens
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
- Stanley Center, Broad Institute, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Palpagama T, Mills AR, Ferguson MW, Vikas Ankeal P, Turner C, Tippett L, van der Werf B, Waldvogel HJ, Faull RLM, Kwakowsky A. Microglial and Astrocytic Responses in the Human Midcingulate Cortex in Huntington's Disease. Ann Neurol 2023; 94:895-910. [PMID: 37528539 DOI: 10.1002/ana.26753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Patients with Huntington's disease can present with variable difficulties of motor functioning, mood, and cognition. Neurodegeneration occurs in the anterior cingulate cortex of some patients with Huntington's disease and is linked to the presentation of mood symptomatology. Neuroinflammation, perpetrated by activated microglia and astrocytes, has been reported in Huntington's disease and may contribute to disease progression and presentation. This study sought to quantify the density of mutant huntingtin protein and neuroinflammatory glial changes in the midcingulate cortex of postmortem patients with Huntington's disease and determine if either correlates with the presentation of mood, motor, or mixed symptomatology. METHODS Free-floating immunohistochemistry quantified 1C2 immunolabeling density as an indicative marker of mutant huntingtin protein, and protein and morphological markers of astrocyte (EAAT2, Cx43, and GFAP), and microglial (Iba1 and HLA-DP/DQ/DR) activation. Relationships among the level of microglial activation, mutant huntingtin burden, and case characteristics were explored using correlative analysis. RESULTS We report alterations in activated microglia number and morphology in the midcingulate cortex of Huntington's disease cases with predominant mood symptomatology. An increased proportion of activated microglia was observed in the midcingulate of all Huntington's disease cases and positively correlated with 1C2 burden. Alterations in the astrocytic glutamate transporter EAAT2 were observed in the midcingulate cortex of patients associated with mood symptoms. INTERPRETATION This study presents pathological changes in microglia and astrocytes in the midcingulate cortex in Huntington's disease, which coincide with mood symptom presentation. These findings further the understanding of neuroinflammation in Huntington's disease, a necessary step for developing inflammation-targeted therapeutics. ANN NEUROL 2023;94:895-910.
Collapse
Affiliation(s)
- Thulani Palpagama
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Aimee Rose Mills
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mackenzie Wendy Ferguson
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Lynette Tippett
- Centre for Brain Research and School of Psychology, Faculty of Sciences, University of Auckland, Auckland, New Zealand
| | - Bert van der Werf
- Department of Epidemiology and Biostatistics, Faculty of Medical and Health Sciences, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Henry John Waldvogel
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
30
|
Sabogal-Guáqueta AM, Marmolejo-Garza A, Trombetta-Lima M, Oun A, Hunneman J, Chen T, Koistinaho J, Lehtonen S, Kortholt A, Wolters JC, Bakker BM, Eggen BJL, Boddeke E, Dolga A. Species-specific metabolic reprogramming in human and mouse microglia during inflammatory pathway induction. Nat Commun 2023; 14:6454. [PMID: 37833292 PMCID: PMC10575978 DOI: 10.1038/s41467-023-42096-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Metabolic reprogramming is a hallmark of the immune cells in response to inflammatory stimuli. This metabolic process involves a switch from oxidative phosphorylation (OXPHOS) to glycolysis or alterations in other metabolic pathways. However, most of the experimental findings have been acquired in murine immune cells, and little is known about the metabolic reprogramming of human microglia. In this study, we investigate the transcriptomic, proteomic, and metabolic profiles of mouse and iPSC-derived human microglia challenged with the TLR4 agonist LPS. We demonstrate that both species display a metabolic shift and an overall increased glycolytic gene signature in response to LPS treatment. The metabolic reprogramming is characterized by the upregulation of hexokinases in mouse microglia and phosphofructokinases in human microglia. This study provides a direct comparison of metabolism between mouse and human microglia, highlighting the species-specific pathways involved in immunometabolism and the importance of considering these differences in translational research.
Collapse
Affiliation(s)
- Angélica María Sabogal-Guáqueta
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Asmaa Oun
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Jasmijn Hunneman
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Tingting Chen
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Neuroscience Center, Helsinki Institute for Life Science, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Sarka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, The Netherlands
- YETEM-Innovative Technologies Application and Research Centre Suleyman Demirel University, Isparta, Turkey
| | - Justina C Wolters
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Amalia Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
31
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 322] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
32
|
Qiu L, Wang Y, Wang Y, Liu F, Deng S, Xue W, Wang Y. Ursolic Acid Ameliorated Neuronal Damage by Restoring Microglia-Activated MMP/TIMP Imbalance in vitro. Drug Des Devel Ther 2023; 17:2481-2493. [PMID: 37637267 PMCID: PMC10460164 DOI: 10.2147/dddt.s411408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose The oxygen and glucose deprivation-reoxygenation (OGDR) model is widely used to evaluate ischemic stroke and cerebral ischemia-reperfusion (I/R) injury in vitro. Excessively activated microglia produce pro-inflammatory mediators such as matrix metalloproteinases [MMPs] and their specific inhibitors, tissue inhibitors of metalloproteinases [TIMPs], causing neuronal damage. Ursolic acid (UA) acts as a neuroprotective agent in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model keeping the MMP/TIMP balance with underlying mechanisms unclear. Our study used OGDR model to determine whether and how UA reduces neuronal damage by reversing MMP/TIMP imbalance caused by microglia in I/R injury in vitro. Methods SH-SY5Y cells were first cultured with 95% N2 and 5% CO2 and then cultivated regularly for OGDR model. Cell viability was tested for a proper UA dose. We established a co-culture system with SH-SY5Y cells and microglia-conditioned medium (MCM) stimulated by lipopolysaccharide (LPS) and interferon-gamma (IFNγ). MMP9 and TIMP1 levels were measured with ELISA assay to confirm the UA effect. We added recombinant MMP9 (rMMP9) and TIMP1 neutralizing antibody (anti-TIMP1) for reconfirmation. Transmission electron microscopy was used to observe cell morphology, and flow cytometry and Annexin V-FITC and PI labeling for apoptotic conditions. We further measured the calcium fluorescence intensity in SH-SY5Y cells. Results The MCM significantly reduced cell viability of SH-SY5Y cells after OGDR (p<0.01), which was restored by UA (0.25 µM) (p<0.05), whereas lactate dehydrogenase activity, intraneuronal Ca2+ concentration, and apoptosis-related indexes were showed significant improvement after UA treatment (p<0.01). UA corrected the MMP/TIMP imbalance by decreasing MMP9 expression and increasing TIMP1 expression in the co-culture system (p<0.01) and the effects of UA on SH-SY5Y cells were mitigated by the administration of rMMP9 and anti-TIMP1 (p<0.01). Conclusion We demonstrated that UA inhibited microglia-induced neuronal cell death in an OGDR model of ischemic reperfusion injury by stabilizing the MMP9/TIMP1 imbalance.
Collapse
Affiliation(s)
- Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yaxuan Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yuye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
- Department of Neurology, China-Japan Friendship Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Fang Liu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Shumin Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Weishuang Xue
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
33
|
Li J, Wang Y, Yang R, Ma W, Yan J, Li Y, Chen G, Pan J. Pain in Huntington's disease and its potential mechanisms. Front Aging Neurosci 2023; 15:1190563. [PMID: 37484692 PMCID: PMC10357841 DOI: 10.3389/fnagi.2023.1190563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Pain is common and frequent in many neurodegenerative diseases, although it has not received much attention. In Huntington's disease (HD), pain is often ignored and under-researched because attention is more focused on motor and cognitive decline than psychiatric symptoms. In HD progression, pain symptoms are complex and involved in multiple etiologies, particularly mental issues such as apathy, anxiety and irritability. Because of psychiatric issues, HD patients rarely complain of pain, although their bodies show severe pain symptoms, ultimately resulting in insufficient awareness and lack of research. In HD, few studies have focused on pain and pain-related features. A detailed and systemic pain history is crucial to assess and explore pain pathophysiology in HD. This review provides an overview concentrating on pain-related factors in HD, including neuropathology, frequency, features, affecting factors and mechanisms. More attention and studies are still needed in this interesting field in the future.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yan Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Wenjun Ma
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - JunGuo Yan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yi Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
34
|
Eide S, Misztal M, Feng ZP. Interleukin-6 as a marker of Huntington's disease progression: Systematic review and meta-analysis. Brain Behav Immun Health 2023; 30:100635. [PMID: 37215308 PMCID: PMC10196779 DOI: 10.1016/j.bbih.2023.100635] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/20/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
Huntington's disease (HD) is a rare, inherited disorder with a broad spectrum of manifestations that vary with disease severity and progression. Although genetic testing can readily confirm the initial diagnosis of HD, markers sensitive to HD progression are needed to aid the development of individual treatment plans. The current analysis aims to identify plasma Interleukin-6 (IL-6) as a marker of disease progression in HD patients. A systematic search of PubMed and Medline from conception through October 2021 was conducted. Studies reporting plasma IL-6 levels of mutation-positive HD patients and healthy controls that met inclusion criteria were selected. The search strategy collected 303 studies, 9 of which met analysis inclusion criteria. From included studies, plasma IL-6 levels of 469 individuals with the HD mutation and 206 healthy controls were collected. Plasma IL-6 levels were meta-analytically compared between healthy controls and individuals with the confirmed HD mutation at all stages of disease and correlated to performance on standardized measures of total cognitive and motor function. Plasma IL-6 was significantly increased in HD groups compared to controls (g = 0.73, 95% CI = 0.31,1.16, P < 0.01) and increased significantly throughout most stages of disease progression, notably between pre-manifest and manifest (g = 0.31, 95% CI = 0.04,0.59, P < 0.05) and early and moderate HD stages (g = 0.52, 95% CI = 0.18,0.86, P < 0.01). Significant correlations between plasma IL-6 levels and HD symptomatic progression were identified, with increased cytokine levels associated with more severe motor impairments (r = 0.179, 95% CI = 0.0479,0.304, P = 0.008) and more extreme disabilities in activities of daily living and/or work tasks (r = -0.229, 95% CI = -0.334, -0.119, P < 0.001). Conclusively, plasma IL-6 levels correlate with disease and motor symptom progression and may act as a viable marker for clinical use. Analysis is limited by small study numbers and highlights the need for future work to identify definitive ranges or rates of change of plasma IL-6 levels that correlate to progressive HD disease states.
Collapse
Affiliation(s)
| | | | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
35
|
Gasser J, Gillet G, Valadas JS, Rouvière L, Kotian A, Fan W, Keaney J, Kadiu I. Innate immune activation and aberrant function in the R6/2 mouse model and Huntington's disease iPSC-derived microglia. Front Mol Neurosci 2023; 16:1191324. [PMID: 37415834 PMCID: PMC10319581 DOI: 10.3389/fnmol.2023.1191324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disease caused by CAG repeats in exon 1 of the HTT gene. A hallmark of HD along with other psychiatric and neurodegenerative diseases is alteration in the neuronal circuitry and synaptic loss. Microglia and peripheral innate immune activation have been reported in pre-symptomatic HD patients; however, what "activation" signifies for microglial and immune function in HD and how it impacts synaptic health remains unclear. In this study we sought to fill these gaps by capturing immune phenotypes and functional activation states of microglia and peripheral immunity in the R6/2 model of HD at pre-symptomatic, symptomatic and end stages of disease. These included characterizations of microglial phenotypes at single cell resolution, morphology, aberrant functions such as surveillance and phagocytosis and their impact on synaptic loss in vitro and ex vivo in R6/2 mouse brain tissue slices. To further understand how relevant the observed aberrant microglial behaviors are to human disease, transcriptomic analysis was performed using HD patient nuclear sequencing data and functional assessments were conducted using induced pluripotent stem cell (iPSC)-derived microglia. Our results show temporal changes in brain infiltration of peripheral lymphoid and myeloid cells, increases in microglial activation markers and phagocytic functions at the pre-symptomatic stages of disease. Increases in microglial surveillance and synaptic uptake parallel significant reduction of spine density in R6/2 mice. These findings were mirrored by an upregulation of gene signatures in the endocytic and migratory pathways in disease-associated microglial subsets in human HD brains, as well as increased phagocytic and migratory functions of iPSC-derived HD microglia. These results collectively suggest that targeting key and specific microglial functions related to synaptic surveillance and pruning may be therapeutically beneficial in attenuating cognitive decline and psychiatric aspects of HD.
Collapse
Affiliation(s)
- Julien Gasser
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Gaelle Gillet
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Jorge S. Valadas
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Laura Rouvière
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Apoorva Kotian
- Development Science, UCB Biopharma SRL, Slough, United Kingdom
| | - Wenqiang Fan
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - James Keaney
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Irena Kadiu
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| |
Collapse
|
36
|
Santarelli S, Londero C, Soldano A, Candelaresi C, Todeschini L, Vernizzi L, Bellosta P. Drosophila melanogaster as a model to study autophagy in neurodegenerative diseases induced by proteinopathies. Front Neurosci 2023; 17:1082047. [PMID: 37274187 PMCID: PMC10232775 DOI: 10.3389/fnins.2023.1082047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Proteinopathies are a large group of neurodegenerative diseases caused by both genetic and sporadic mutations in particular genes which can lead to alterations of the protein structure and to the formation of aggregates, especially toxic for neurons. Autophagy is a key mechanism for clearing those aggregates and its function has been strongly associated with the ubiquitin-proteasome system (UPS), hence mutations in both pathways have been associated with the onset of neurodegenerative diseases, particularly those induced by protein misfolding and accumulation of aggregates. Many crucial discoveries regarding the molecular and cellular events underlying the role of autophagy in these diseases have come from studies using Drosophila models. Indeed, despite the physiological and morphological differences between the fly and the human brain, most of the biochemical and molecular aspects regulating protein homeostasis, including autophagy, are conserved between the two species.In this review, we will provide an overview of the most common neurodegenerative proteinopathies, which include PolyQ diseases (Huntington's disease, Spinocerebellar ataxia 1, 2, and 3), Amyotrophic Lateral Sclerosis (C9orf72, SOD1, TDP-43, FUS), Alzheimer's disease (APP, Tau) Parkinson's disease (a-syn, parkin and PINK1, LRRK2) and prion diseases, highlighting the studies using Drosophila that have contributed to understanding the conserved mechanisms and elucidating the role of autophagy in these diseases.
Collapse
Affiliation(s)
- Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Chiara Londero
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Candelaresi
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Leonardo Todeschini
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Luisa Vernizzi
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
37
|
Martínez-Gopar PE, Pérez-Rodríguez MJ, Angeles-López QD, Tristán-López L, González-Espinosa C, Pérez-Severiano F. Toll-Like Receptor 4 Plays a Significant Role in the Biochemical and Neurological Alterations Observed in Two Distinct Mice Models of Huntington's Disease. Mol Neurobiol 2023; 60:2678-2690. [PMID: 36701109 DOI: 10.1007/s12035-023-03234-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023]
Abstract
Toll-like receptors (TLRs) are central players in innate immunity responses. They are expressed in glial cells and neurons, and their overactivation leads to the production of proinflammatory molecules, neuroinflammation, and neural damage associated with many neurodegenerative pathologies, such as Huntington's disease (HD). HD is an inherited disorder caused by a mutation in the gene coding for the protein Huntingtin (Htt). Expression of mutated Htt (mHtt) causes progressive neuronal degeneration characterized by striatal loss of GABAergic neurons, oxidative damage, neuroinflammatory processes, and impaired motor behavior. The main animal models to study HD are the intrastriatal injection of quinolinic acid (QA) and the transgenic B6CBA-Tg (HDexon1)61Gpb/1 J mice (R6/1). Those models mimic neuronal damage and systemic manifestations of HD. The objective of this work was to study the participation of TLR4 in the manifestations of neuronal damage and HD symptoms in the two mentioned models. For this purpose, C57BL6/J and TLR4-KO mice were administered with QA, and after that motor activity, and neuronal and oxidative damages were measured. R6/1 and TLR4-KO were mated to study the effect of low expression of TLR4 on the phenotype manifestation in R6/1 mice. We found that TLR4 is involved in motor activity, and neurological and oxidative damage induced by intrastriatal injection of QA, and the low expression of TLR4 causes a delay in the onset of phenotypic manifestations by the mHtt expression in R6/1 mice. Our results show that TLR4 is involved in both models of HD and focuses then as a therapeutic target for some deleterious reactions in HD.
Collapse
Affiliation(s)
- Pablo E Martínez-Gopar
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Marian J Pérez-Rodríguez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Quetzalli D Angeles-López
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Luis Tristán-López
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico.
| |
Collapse
|
38
|
Wang Y, Qiu L, Deng S, Liu F, He Z, Li M, Wang Y. Ursolic Acid Promotes Microglial Polarization Toward the M2 Phenotype Via PPARγ Regulation of MMP2 Transcription. Neurotoxicology 2023; 96:81-91. [PMID: 37019307 DOI: 10.1016/j.neuro.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/19/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Microglia, which are the primary inflammatory cells of the brain, can undergo phenotypic switching between M1 and M2 polarization, which have opposing effects on inflammation. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear receptor family of ligand-inducible transcription factors, and PPARγ is known to regulate M2 macrophage polarization. Previous studies have shown that the natural pentacyclic triterpenoid ursolic acid (3β-hydroxy-urs-12-en-28-oic acid; UA) influences microglial activation. Additionally, UA increases tissue inhibitor matrix metalloproteinase 1 (TIMP1), while greatly reducing the release of matrix metalloproteinase 2 (MMP2) and MMP9 in a PPARγ-dependent manner. Here, we examined the anti-inflammatory properties of UA by observing how well it promotes the phenotypic transition of lipopolysaccharide (LPS) and interferon gamma (IFNγ)-activated BV2 microglia from M1 to M2 polarization. To determine if PPARγ is involved in the underlying molecular pathway, we treated rats with UA and the PPARγ inhibitor BADGE. We also investigated the mechanisms by which PPARγ controls transcription from the MMP2 promoter. The in-vitro experiments showed that UA shifted LPS/IFNγ-activated BV2 microglia from the M1 to the M2 phenotype, which was associated with a reduction in the neurotoxic factors MMP2 and MMP9, and an increase in the anti-inflammatory factor TIMP1. Co-treatment with increased MMP2 and MMP9 synthesis while decreasing TIMP1 release, indicating that UA has anti-inflammatory effects on LPS/IFNγ-activated BV2 cells via activation of PPARγ. Next, we found that PPARγ directly influences MMP2 transcriptional activity by identifying the crucial peroxisome proliferator response element (PPRE) among five potential PPREs in the MMP2 promoter. These results suggest that UA has a protective anti-inflammatory effect against neuroinflammatory toxicity, which is exerted by direct activation of PPARγ and selectively modulates microglial polarization and suppresses MMP2 formation.
Collapse
|
39
|
Siew JJ, Chern Y, Khoo KH, Angata T. Roles of Siglecs in neurodegenerative diseases. Mol Aspects Med 2023; 90:101141. [PMID: 36089405 DOI: 10.1016/j.mam.2022.101141] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 02/08/2023]
Abstract
Microglia are resident myeloid cells in the central nervous system (CNS) with a unique developmental origin, playing essential roles in developing and maintaining the CNS environment. Recent studies have revealed the involvement of microglia in neurodegenerative diseases, such as Alzheimer's disease, through the modulation of neuroinflammation. Several members of the Siglec family of sialic acid recognition proteins are expressed on microglia. Since the discovery of the genetic association between a polymorphism in the CD33 gene and late-onset Alzheimer's disease, significant efforts have been made to elucidate the molecular mechanism underlying the association between the polymorphism and Alzheimer's disease. Furthermore, recent studies have revealed additional potential associations between Siglecs and Alzheimer's disease, implying that the reduced signal from inhibitory Siglec may have an overall protective effect in lowering the disease risk. Evidences suggesting the involvement of Siglecs in other neurodegenerative diseases are also emerging. These findings could help us predict the roles of Siglecs in other neurodegenerative diseases. However, little is known about the functionally relevant Siglec ligands in the brain, which represents a new frontier. Understanding how microglial Siglecs and their ligands in CNS contribute to the regulation of CNS homeostasis and pathogenesis of neurodegenerative diseases may provide us with a new avenue for disease prevention and intervention.
Collapse
Affiliation(s)
- Jian Jing Siew
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Wilson DM, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell 2023; 186:693-714. [PMID: 36803602 DOI: 10.1016/j.cell.2022.12.032] [Citation(s) in RCA: 598] [Impact Index Per Article: 299.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 02/18/2023]
Abstract
Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs.
Collapse
Affiliation(s)
- David M Wilson
- Hasselt University, Biomedical Research Institute, BIOMED, 3500 Hasselt, Belgium.
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ilse Dewachter
- Hasselt University, Biomedical Research Institute, BIOMED, 3500 Hasselt, Belgium.
| |
Collapse
|
41
|
Zhang S, Cheng Y, Shang H. The updated development of blood-based biomarkers for Huntington's disease. J Neurol 2023; 270:2483-2503. [PMID: 36692635 PMCID: PMC9873222 DOI: 10.1007/s00415-023-11572-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by mutation of the huntingtin (HTT) gene. The identification of mutation carriers before symptom onset provides an opportunity to intervene in the early stage of the disease course. Optimal biomarkers are of great value to reflect neuropathological and clinical progression and are sensitive to potential disease-modifying treatments. Blood-based biomarkers have the merits of minimal invasiveness, low cost, easy accessibility and safety. In this review, we summarized the updated development of blood-based biomarkers for HD from six aspects, including neuronal injuries, oxidative stress, endocrine functions, immune reactions, metabolism and differentially expressed miRNAs. The blood-based biomarkers presented and discussed in this review were close to clinical applicability and might facilitate clinical design as surrogate endpoints. Exploration and validation of robust blood-based biomarkers require further standard and systemic study design in the future.
Collapse
Affiliation(s)
- Sirui Zhang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yangfan Cheng
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Huifang Shang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
42
|
Bhat SA, Ahamad S, Dar NJ, Siddique YH, Nazir A. The Emerging Landscape of Natural Small-molecule Therapeutics for Huntington's Disease. Curr Neuropharmacol 2023; 21:867-889. [PMID: 36797612 PMCID: PMC10227909 DOI: 10.2174/1570159x21666230216104621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 02/18/2023] Open
Abstract
Huntington's disease (HD) is a rare and fatal neurodegenerative disorder with no diseasemodifying therapeutics. HD is characterized by extensive neuronal loss and is caused by the inherited expansion of the huntingtin (HTT) gene that encodes a toxic mutant HTT (mHTT) protein having expanded polyglutamine (polyQ) residues. Current HD therapeutics only offer symptomatic relief. In fact, Food and Drug Administration (FDA) approved two synthetic small-molecule VMAT2 inhibitors, tetrabenazine (1) and deutetrabenazine (2), for managing HD chorea and various other diseases in clinical trials. Therefore, the landscape of drug discovery programs for HD is evolving to discover disease- modifying HD therapeutics. Likewise, numerous natural products are being evaluated at different stages of clinical development and have shown the potential to ameliorate HD pathology. The inherent anti-inflammatory and antioxidant properties of natural products mitigate the mHTT-induced oxidative stress and neuroinflammation, improve mitochondrial functions, and augment the anti-apoptotic and pro-autophagic mechanisms for increased survival of neurons in HD. In this review, we have discussed HD pathogenesis and summarized the anti-HD clinical and pre-clinical natural products, focusing on their therapeutic effects and neuroprotective mechanism/s.
Collapse
Affiliation(s)
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India
| | - Nawab John Dar
- School of Medicine, UT Health San Antonio, Texas, TX, USA
| | | | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
43
|
Cvetanovic M, Gray M. Contribution of Glial Cells to Polyglutamine Diseases: Observations from Patients and Mouse Models. Neurotherapeutics 2023; 20:48-66. [PMID: 37020152 PMCID: PMC10119372 DOI: 10.1007/s13311-023-01357-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 04/07/2023] Open
Abstract
Neurodegenerative diseases are broadly characterized neuropathologically by the degeneration of vulnerable neuronal cell types in a specific brain region. The degeneration of specific cell types has informed on the various phenotypes/clinical presentations in someone suffering from these diseases. Prominent neurodegeneration of specific neurons is seen in polyglutamine expansion diseases including Huntington's disease (HD) and spinocerebellar ataxias (SCA). The clinical manifestations observed in these diseases could be as varied as the abnormalities in motor function observed in those who have Huntington's disease (HD) as demonstrated by a chorea with substantial degeneration of striatal medium spiny neurons (MSNs) or those with various forms of spinocerebellar ataxia (SCA) with an ataxic motor presentation primarily due to degeneration of cerebellar Purkinje cells. Due to the very significant nature of the degeneration of MSNs in HD and Purkinje cells in SCAs, much of the research has centered around understanding the cell autonomous mechanisms dysregulated in these neuronal cell types. However, an increasing number of studies have revealed that dysfunction in non-neuronal glial cell types contributes to the pathogenesis of these diseases. Here we explore these non-neuronal glial cell types with a focus on how each may contribute to the pathogenesis of HD and SCA and the tools used to evaluate glial cells in the context of these diseases. Understanding the regulation of supportive and harmful phenotypes of glia in disease could lead to development of novel glia-focused neurotherapeutics.
Collapse
Affiliation(s)
- Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
44
|
Chintapula U, Chikate T, Sahoo D, Kieu A, Guerrero Rodriguez ID, Nguyen KT, Trott D. Immunomodulation in age-related disorders and nanotechnology interventions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1840. [PMID: 35950266 PMCID: PMC9840662 DOI: 10.1002/wnan.1840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 01/31/2023]
Abstract
Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tanmayee Chikate
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Deepsundar Sahoo
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Amie Kieu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | | | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
45
|
Jia Q, Li S, Li XJ, Yin P. Neuroinflammation in Huntington's disease: From animal models to clinical therapeutics. Front Immunol 2022; 13:1088124. [PMID: 36618375 PMCID: PMC9815700 DOI: 10.3389/fimmu.2022.1088124] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease characterized by preferential loss of neurons in the striatum in patients, which leads to motor and cognitive impairments and death that often occurs 10-15 years after the onset of symptoms. The expansion of a glutamine repeat (>36 glutamines) in the N-terminal region of huntingtin (HTT) has been defined as the cause of HD, but the mechanism underlying neuronal death remains unclear. Multiple mechanisms, including inflammation, may jointly contribute to HD pathogenesis. Altered inflammation response is evident even before the onset of classical symptoms of HD. In this review, we summarize the current evidence on immune and inflammatory changes, from HD animal models to clinical phenomenon of patients with HD. The understanding of the impact of inflammation on HD would help develop novel strategies to treat HD.
Collapse
Affiliation(s)
| | | | | | - Peng Yin
- *Correspondence: Xiao-Jiang Li, ; Peng Yin,
| |
Collapse
|
46
|
Okumura H, Kawasaki T, Nakamura K. Probing protein misfolding and dissociation with an infrared free-electron laser. Methods Enzymol 2022; 679:65-96. [PMID: 36682873 DOI: 10.1016/bs.mie.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding is observed in the mutant proteins that are causative for neurodegenerative disorders such as polyglutamine diseases. These proteins are prone to aggregate in the cytoplasm and nucleus of cells. To reproduce cells with the aggregated proteins, gene expression system is usually applied, in which the expression construct having the mutated DNA sequence of the interest is transfected into cells. The transfected DNA is finally converted into the mutant protein, which is gradually aggregated in the cells. In addition, a simple method to prepare the cells having aggregates inside has been recently applied. Peptides were first aggregated by incubating them in water. The aggregates are spontaneously taken up by cells because aggregated proteins generally transfer between cells. Peptides with different degrees of aggregation can be made by changing the incubation times and temperatures, which enables to examine contribution of aggregation to the toxicity to the recipient cells. Moreover, such cells can be used for therapeutic researches of diseases in which aggregates are involved. In this chapter, we show methods to induce aggregation of peptides. The functional analyses of the cells with aggregates are also described. Then, experimental dissociation of the aggregates produced using this method by mid infrared free electron laser irradiation and its theoretical support by molecular dynamics simulation are introduced as the therapeutic research for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan.
| |
Collapse
|
47
|
Owada R, Kakuta Y, Yoshida K, Mitsui S, Nakamura K. Conditioned medium from BV2 microglial cells having polyleucine specifically alters startle response in mice. Sci Rep 2022; 12:18718. [PMID: 36333586 PMCID: PMC9636192 DOI: 10.1038/s41598-022-23571-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Repeat-associated non-AUG translation (RAN translation) is observed in transcripts that are causative for polyglutamine (polyQ) diseases and generates proteins with mono amino acid tracts such as polyalanine (polyA), polyleucine (polyL) and polyserine (polyS) in neurons, astrocytes and microglia. We have previously shown that microglia with aggregated polyQ led to defective differentiation and degeneration of neuron-like cells. However, it has not been determined whether only microglia containing a specific RAN product, but not other RAN products, is harmful in vitro and in vivo. Here we show that polyL-incorporating microglia specifically led to altered startle response in mice. Aggregated polyA, polyS and polyL induced aberrant differentiation of microglia-like BV2 cells. Differentiated PC12 cells treated with conditioned medium (CM) of polyS- and polyL- but not polyA-incorporating microglia-like BV2 cells showed retraction of neurites and loss of branch of neurites. Injection of the polyL-CM, but not polyA-CM and polyS-CM, into the lateral ventricle lowered startle response in mice. Consistently, polyL induced the highest expression of CD68 in BV2 cells. The lowered startle response was replicated in mice given the polyL-CM in the caudal pontine reticular nucleus (PnC), the key region of startle response. Thus, endogenous RAN proteins having polyL derived from polyQ diseases-causative genes in microglia might specifically impair startle response.
Collapse
Affiliation(s)
- Ryuji Owada
- grid.256642.10000 0000 9269 4097Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Yohei Kakuta
- grid.256642.10000 0000 9269 4097Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Kosuke Yoshida
- grid.256642.10000 0000 9269 4097Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Shinichi Mitsui
- grid.256642.10000 0000 9269 4097Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Kazuhiro Nakamura
- grid.256642.10000 0000 9269 4097Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| |
Collapse
|
48
|
Yuan J, Zhu Q, Zhang X, Wen Z, Zhang G, Li N, Pei Y, Wang Y, Pei S, Xu J, Jia P, Peng C, Lu W, Qin J, Cao Q, Xiao Y. Ezh2 competes with p53 to license lncRNA Neat1 transcription for inflammasome activation. Cell Death Differ 2022; 29:2009-2023. [PMID: 35568718 PMCID: PMC9525607 DOI: 10.1038/s41418-022-00992-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammasome contributes to the pathogenesis of various inflammatory diseases, but the epigenetic mechanism controlling its activation remains elusive. Here, we found that the histone methyltransferase Ezh2 mediates the activation of multiple types of inflammasomes in macrophages/microglia independent of its methyltransferase activity and thus promotes inflammasome-related pathologies. Mechanistically, Ezh2 functions through its SANT2 domain to maintain the enrichment of H3K27 acetylation in the promoter region of the long noncoding RNA (lncRNA) Neat1, thereby promoting chromatin accessibility and facilitating p65-mediated transcription of Neat1, which is a critical mediator of inflammasome assembly and activation. In addition, the tumour suppressor protein p53 competes with Ezh2 for the same binding region in the Neat1 promoter and thus antagonises Ezh2-induced Neat1 transcription and inflammasome activation. Therefore, loss of Ezh2 strongly promotes the binding of p53, which recruits the deacetylase SIRT1 for H3K27 deacetylation of the Neat1 promoter and thus suppresses Neat1 transcription and inflammasome activation. Overall, our study demonstrates an epigenetic mechanism involved in modulating inflammasome activation through an Ezh2/p53 competition model and highlights a novel function of Ezh2 in maintaining H3K27 acetylation to support lncRNA Neat1 transcription.
Collapse
Affiliation(s)
- Jia Yuan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xingli Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhenzhen Wen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
| | - Guiheng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yifei Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pan Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, 201210, China
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
49
|
Yan P, Li Z, Xian S, Wang S, Fu Q, Zhu J, Yue X, Zhang X, Chen S, Zhang W, Lu J, Yin H, Huang R, Huang Z. Construction of the prognostic enhancer RNA regulatory network in osteosarcoma. Transl Oncol 2022; 25:101499. [PMID: 36001923 PMCID: PMC9421318 DOI: 10.1016/j.tranon.2022.101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Our enhancer RNAs-based prognostic model showed good predictive ability in osteosarcoma. CCAAT enhancer binding protein alpha (CEBPA) may regulate CD8A molecule (CD8A). CD8A activation may promote CD3E molecule (CD3E) expression and activate allograft rejection in CD8+ T cells. Above signal axis provided new insights in the mechanism of osteosarcoma tumorigenesis.
Background Osteosarcoma (OS) is a common malignant tumor in osteoarticular system, the 5-year overall survival of which is poor. Enhancer RNAs (eRNAs) have been implicated in the tumorigenesis of various cancer types, whereas their roles in OS tumorigenesis remains largely unclear. Methods Differentially expressed eRNAs (DEEs), transcription factors (DETFs), target genes (DETGs) were identified using limma (Linear Models for Microarray Analysis) package. Prognosis-related DEEs were accessed by univariate Cox regression analysis. A multivariate model was constructed to evaluate the prognosis of OS samples. Prognosis-related DEEs, DETFs, DETGs, immune cells, and hallmark gene sets were co-analyzed to construct an regulatory network. Specific inhibitors were also filtered by connectivity Map analysis. External validation and scRNA-seq analysis were performed to verify our key findings. Results 3,981 DETGs, 468 DEEs, 51 DETFs, and 27 differentially expressed hallmark gene sets were identified. A total of Multivariate risk predicting model based on 18 prognosis-related DEEs showed a high accuracy (area under curve (AUC) = 0.896). GW-8510 was the candidate inhibitor targeting prognosis-related DEEs (mean = 0.670, p < 0.001). Based on the OS tumorigenesis-related regulation network, we identified that CCAAT enhancer binding protein alpha (CEBPA, DETF) may regulate CD8A molecule (CD8A, DEE), thereby promoting the transcription of CD3E molecule (CD3E, DETG), which may affect allograft rejection based on CD8+ T cells. Conclusion We constructed an eRNA-based prognostic model for predicting the OS patients’ prognosis and explored the potential regulation network for OS tumorigenesis by an integrated bioinformatics analysis, providing promising therapeutic targets for OS patients.
Collapse
Affiliation(s)
- Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenyu Li
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Shanghai 200092, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai 200092, China; Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Qing Fu
- Tongji University School of Medicine, Shanghai 200092, China
| | - Jiwen Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xi Yue
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xinkun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shaofeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200065, China.
| | - Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Tongji University School of Medicine, Shanghai 200092, China; Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
50
|
Wang Q, Xie C. Microglia activation linking amyloid-β drive tau spatial propagation in Alzheimer's disease. Front Neurosci 2022; 16:951128. [PMID: 36033617 PMCID: PMC9417618 DOI: 10.3389/fnins.2022.951128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
- Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- *Correspondence: Chunming Xie
| |
Collapse
|