1
|
Shaykevich DA, Woods GA, O'Connell LA, Hong G. Chronic recording of brain activity in awake toads. J Neurosci Methods 2025; 419:110449. [PMID: 40254187 DOI: 10.1016/j.jneumeth.2025.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Amphibians represent an important evolutionary transition from aquatic to terrestrial environments and they display a large variety of complex behaviors despite a relatively simple brain. However, their brain activity is not as well characterized as that of many other vertebrates, partially due to physiological traits that have made electrophysiology recordings difficult to perform in awake and moving animals. NEW METHOD We implanted flexible mesh electronics in the cane toad (Rhinella marina) and performed extracellular recordings in the telencephalon of anesthetized toads and awake toads over multiple days. RESULTS Though we struggled with maintaining implants in all operated animals, we recorded brain activity over five consecutive days in 5 awake toads and over a 15 week period in a toad that was anesthetized during recordings. We were able to perform spike sorting and identified single- and multi-unit activity in all toads. COMPARISON WITH EXISTING METHODS To our knowledge, this is the first report of a modern method to perform electrophysiology in non-paralyzed toads over multiple days, though there are historical references to short term recordings in the past. CONCLUSIONS Optimizing flexible mesh electronics in amphibian species will allow for advanced studies of the neural basis of amphibian behaviors.
Collapse
Affiliation(s)
| | - Grace A Woods
- Department of Applied Physics, Stanford University, Stanford, CA, USA; Wu Tsai Institute for Neuroscience, Stanford University, Stanford CA, USA
| | - Lauren A O'Connell
- Department of Biology, Stanford University, Stanford, CA, USA; Wu Tsai Institute for Neuroscience, Stanford University, Stanford CA, USA
| | - Guosong Hong
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford CA, USA; Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Ahmadlou M, Shirazi MY, Zhang P, Rogers ILM, Dziubek J, Young M, Hofer SB. A subcortical switchboard for perseverative, exploratory and disengaged states. Nature 2025; 641:151-161. [PMID: 40044848 PMCID: PMC12043504 DOI: 10.1038/s41586-025-08672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/17/2025] [Indexed: 04/13/2025]
Abstract
To survive in dynamic environments with uncertain resources, animals must adapt their behaviour flexibly, choosing strategies such as persevering with a current choice, exploring alternatives or disengaging altogether. Previous studies have mainly investigated how forebrain regions represent choice costs and values as well as optimal strategies during such decisions1-5. However, the neural mechanisms by which the brain implements alternative behavioural strategies such as persevering, exploring or disengaging remain poorly understood. Here we identify a neural hub that is critical for flexible switching between behavioural strategies, the median raphe nucleus (MRN). Using cell-type-specific optogenetic manipulations, fibre photometry and circuit tracing in mice performing diverse instinctive and learnt behaviours, we found that the main cell types of the MRN-GABAergic (γ-aminobutyric acid-expressing), glutamatergic (VGluT2+) and serotonergic neurons-have complementary functions and regulate perseverance, exploration and disengagement, respectively. Suppression of MRN GABAergic neurons-for instance, through inhibitory input from lateral hypothalamus, which conveys strong positive valence to the MRN-leads to perseverative behaviour. By contrast, activation of MRN VGluT2+ neurons drives exploration. Activity of serotonergic MRN neurons is necessary for general task engagement. Input from the lateral habenula that conveys negative valence suppresses serotonergic MRN neurons, leading to disengagement. These findings establish the MRN as a central behavioural switchboard that is uniquely positioned to flexibly control behavioural strategies. These circuits thus may also have an important role in the aetiology of major mental pathologies such as depressive or obsessive-compulsive disorders.
Collapse
Affiliation(s)
- Mehran Ahmadlou
- Sainsbury Wellcome Centre, University College London, London, UK.
| | | | - Pan Zhang
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Isaac L M Rogers
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Julia Dziubek
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Margaret Young
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre, University College London, London, UK.
| |
Collapse
|
3
|
Lee J, Mun J, Choo M, Park SM. Predictive modeling of hemodynamics during viscerosensory neurostimulation via neural computation mechanism in the brainstem. NPJ Digit Med 2025; 8:220. [PMID: 40269082 PMCID: PMC12019394 DOI: 10.1038/s41746-025-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
Neurostimulation for cardiovascular control faces challenges due to the lack of predictive modeling for stimulus-driven dynamic responses, which is crucial for precise neuromodulation via quality feedback. We address this by employing a digital twin approach that leverages computational mechanisms underlying neuro-hemodynamic responses during neurostimulation. Our results emphasize the computational role of the nucleus tractus solitarius (NTS) in the brainstem in determining these responses. The intrinsic neural circuit within the NTS harbors collective dynamics residing in a low-dimensional latent space, which effectively captures stimulus-driven hemodynamic perturbations. Building on this, we developed a digital twin framework for individually optimized predictive modeling of neuromodulatory outcomes. This framework potentially enables the design of closed-loop neurostimulation systems for precise hemodynamic control. Consequently, our digital twin based on neural computation mechanisms marks an advancement in the artificial regulation of internal organs, paving the way for precise translational medicine to treat chronic diseases.
Collapse
Affiliation(s)
- Jiho Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Junseung Mun
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Minhye Choo
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Institute of Convergence Science, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
MacDowell CJ, Libby A, Jahn CI, Tafazoli S, Ardalan A, Buschman TJ. Multiplexed subspaces route neural activity across brain-wide networks. Nat Commun 2025; 16:3359. [PMID: 40204762 PMCID: PMC11982558 DOI: 10.1038/s41467-025-58698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Cognition is flexible, allowing behavior to change on a moment-by-moment basis. Such flexibility relies on the brain's ability to route information through different networks of brain regions to perform different cognitive computations. However, the mechanisms that determine which network of regions is active are not well understood. Here, we combined cortex-wide calcium imaging with high-density electrophysiological recordings in eight cortical and subcortical regions of mice to understand the interactions between regions. We found different dimensions within the population activity of each region were functionally connected with different cortex-wide 'subspace networks' of regions. These subspace networks were multiplexed; each region was functionally connected with multiple independent, yet overlapping, subspace networks. The subspace network that was active changed from moment-to-moment. These changes were associated with changes in the geometric relationship between the neural response within a region and the subspace dimensions: when neural responses were aligned with (i.e., projected along) a subspace dimension, neural activity was increased in the associated regions. Together, our results suggest that changing the geometry of neural representations within a brain region may allow the brain to flexibly engage different brain-wide networks, thereby supporting cognitive flexibility.
Collapse
Affiliation(s)
- Camden J MacDowell
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA
| | - Alexandra Libby
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA
| | - Caroline I Jahn
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA
| | - Sina Tafazoli
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA
| | - Adel Ardalan
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA
| | - Timothy J Buschman
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA.
- Department of Psychology, Princeton University, Washington Rd, Princeton, NJ, USA.
| |
Collapse
|
5
|
Katlowitz KA, Shah S, Franch MC, Adkinson J, Belanger JL, Mathura RK, Meszéna D, Mickiewicz EA, McGinley M, Muñoz W, Banks GP, Cash SS, Hsu CW, Paulk AC, Provenza NR, Watrous A, Williams Z, Heilbronner SR, Kim R, Rungratsameetaweemana N, Hayden BY, Sheth SA. Learning and language in the unconscious human hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648012. [PMID: 40291737 PMCID: PMC12027328 DOI: 10.1101/2025.04.09.648012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Consciousness is a fundamental component of cognition, 1 but the degree to which higher-order perception relies on it remains disputed. 2,3 Here we demonstrate the persistence of learning, semantic processing, and online prediction in individuals under general anesthesia-induced loss of consciousness. 4,5 Using high-density Neuropixels microelectrodes 6 to record neural activity in the human hippocampus while playing a series of tones to anesthetized patients, we found that hippocampal neurons could reliably detect oddball tones. This effect size grew over the course of the experiment (∼10 minutes), consistent with learning effects. A biologically plausible recurrent neural network model showed that learning and oddball representation are an emergent property of flexible tone discrimination. Last, when we played language stimuli, single units and ensembles carried information about the semantic and grammatical features of natural speech, even predicting semantic information about upcoming words. Together these results indicate that in the hippocampus, which is anatomically and functionally distant from primary sensory cortices, 7 complex processing of sensory stimuli occurs even in the unconscious state.
Collapse
|
6
|
Yang Z, Long MA. Convergent vocal representations in parrot and human forebrain motor networks. Nature 2025; 640:427-434. [PMID: 40108457 DOI: 10.1038/s41586-025-08695-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/23/2025] [Indexed: 03/22/2025]
Abstract
Cortical networks for the production of spoken language in humans are organized by phonetic features1,2, such as articulatory parameters3,4 and vocal pitch5,6. Previous research has failed to find an equivalent forebrain representation in other species7-11. To investigate whether this functional organization is unique to humans, here we performed population recordings in the vocal production circuitry of the budgerigar (Melopsittacus undulatus), a small parrot that can generate flexible vocal output12-15, including mimicked speech sounds16. Using high-density silicon probes17, we measured the song-related activity of a forebrain region, the central nucleus of the anterior arcopallium (AAC), which directly projects to brainstem phonatory motor neurons18-20. We found that AAC neurons form a functional vocal motor map that reflects the spectral properties of ongoing vocalizations. We did not observe this organizing principle in the corresponding forebrain circuitry of the zebra finch, a songbird capable of more limited vocal learning21. We further demonstrated that the AAC represents the production of distinct vocal features (for example, harmonic structure and broadband energy). Furthermore, we discovered an orderly representation of vocal pitch at the population level, with single neurons systematically selective for different frequency values. Taken together, we have uncovered a functional representation in a vertebrate brain that displays unprecedented commonalities with speech-related motor cortices in humans. This work therefore establishes the parrot as an important animal model for investigating speech motor control and for developing therapeutic solutions for addressing a range of communication disorders22,23.
Collapse
Affiliation(s)
- Zetian Yang
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
7
|
Lakhani A, Huang W, Rodgers CC, Wenner P. Impairment in the homeostatic recruitment of layer 5/6 neurons following whisker stimulation in Fmr1 KO mice. Neurobiol Dis 2025; 207:106837. [PMID: 39938578 PMCID: PMC12019994 DOI: 10.1016/j.nbd.2025.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025] Open
Abstract
Mouse models of Fragile X Syndrome (FXS) have demonstrated impairments in sensory-evoked neuronal firing of excitatory and inhibitory neurons. Homeostatic plasticity does not compensate for these changes in activity. Previous work has shown that impairments in homeostatic plasticity mechanisms are observed in FXS, including deficits in synaptic scaling and intrinsic excitability. Here, we aimed to examine how sensory integration changes in vivo following a homeostatic perturbation, unilateral whisker deprivation (WD), in an Fmr1 knock out (KO) mouse model. We used multi-electrode array recordings of neurons in the lightly anesthetized juvenile mouse somatosensory cortex, and found that whisker-evoked responses in layer 5/6 (L5/6) excitatory neurons were weaker in the KO compared to the wild-type (WT). We show that WD in the WT leads to a compensatory increase in the proportion of L5/6 somatosensory neurons that were recruited following whisker stimulation, but this did not occur in the KO. On the other hand, certain compensatory responses were observed in the KO following WD; the firing rate of the whisker-responsive neurons was increased following both a 2- and 7-day WD. Similar to excitatory neurons, we observed increased recruitment of fast spiking (presumed inhibitory) neurons following WD in the WT, but not KO. Our results suggest that certain homeostatic mechanisms are impaired in the KO, while others appear to remain intact. Compromised homeostatic plasticity in development could influence adult sensory processing and long-term cortical organization.
Collapse
Affiliation(s)
- Alishah Lakhani
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States of America.
| | - Washington Huang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Chris C Rodgers
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America.
| | - Peter Wenner
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States of America.
| |
Collapse
|
8
|
Babl SS, Sigurdsson T. The dorsal and ventral hippocampus contribute differentially to spatial working memory and spatial coding in the prefrontal cortex. PLoS Biol 2025; 23:e3003140. [PMID: 40267163 PMCID: PMC12052143 DOI: 10.1371/journal.pbio.3003140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 05/05/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
The hippocampus (HPC) supports spatial working memory (SWM) through its interactions with the prefrontal cortex (PFC). However, it is not clear whether and how the dorsal (dHPC) and ventral (vHPC) poles of the HPC make distinct contributions to SWM and whether they differentially influence the PFC. To address this question, we optogenetically silenced the dHPC or the vHPC while simultaneously recording from the PFC of mice performing a SWM task. We found that whereas both HPC subregions were necessary during the encoding phase of the task, only the dHPC was necessary during the choice phase. Unexpectedly, silencing of either subregion did not affect PFC neurons' ability to represent the animal's position, but did alter how it was represented. In contrast, only silencing of the vHPC affected their coding of spatial goals. These results thus reveal distinct contributions of the dorsal and ventral HPC poles to SWM and the coding of behaviorally relevant spatial information by PFC neurons.
Collapse
Affiliation(s)
- Susanne S. Babl
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| |
Collapse
|
9
|
Del Rosario J, Coletta S, Kim SH, Mobille Z, Peelman K, Williams B, Otsuki AJ, Del Castillo Valerio A, Worden K, Blanpain LT, Lovell L, Choi H, Haider B. Lateral inhibition in V1 controls neural and perceptual contrast sensitivity. Nat Neurosci 2025; 28:836-847. [PMID: 40033123 DOI: 10.1038/s41593-025-01888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
Lateral inhibition is a central principle in sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. However, the neurons, computations and mechanisms underlying cortical lateral inhibition remain debated, and its importance for perception remains unknown. Here we show that lateral inhibition from parvalbumin neurons in mouse primary visual cortex reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from somatostatin neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model, anatomical tracing and direct subthreshold measurements indicated that the larger spatial footprint for somatostatin versus parvalbumin synaptic inhibition explains this difference. Together, these results define cell-type-specific computational roles for lateral inhibition in primary visual cortex, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.
Collapse
Affiliation(s)
- Joseph Del Rosario
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Stefano Coletta
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Soon Ho Kim
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zach Mobille
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kayla Peelman
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Brice Williams
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alan J Otsuki
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Kendell Worden
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lou T Blanpain
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lyndah Lovell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hannah Choi
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bilal Haider
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Angotzi GN, Vöröslakos M, Perentos N, Ribeiro JF, Vincenzi M, Boi F, Lecomte A, Orban G, Genewsky A, Schwesig G, Aykan D, Buzsáki G, Sirota A, Berdondini L. Multi-Shank 1024 Channels Active SiNAPS Probe for Large Multi-Regional Topographical Electrophysiological Mapping of Neural Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416239. [PMID: 40013985 PMCID: PMC12021112 DOI: 10.1002/advs.202416239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Implantable active dense CMOS neural probes unlock the possibility of spatiotemporally resolving the activity of hundreds of single neurons in multiple brain circuits to investigate brain dynamics. Mapping neural dynamics in brain circuits with anatomical structures spanning several millimeters, however, remains challenging. Here, a CMOS neural probe advancing lateral sampling for mapping intracortical neural dynamics (both LFPs and spikes) in awake, behaving mice from an area >4 mm2 is demonstrated. By taking advantage of SiNAPS technology modularity, an 8-shank probe with 1024 recording channels arranged in regular arrays of 128 electrodes/shank with an electrode pitch <30 µm is realized. Continuous low-noise recordings (spikes with 6.67 ± 1.02 µVRMS) from all 1024 electrodes at 20 kHz/channel demonstrate the monitoring at high spatial and temporal resolution of a field of view spanning the 2D lattice of the entire mice hippocampal circuit, together with cortical and thalamic regions. This arrangement allows combining large population unit monitoring across distributed networks with precise intra- and interlaminar/nuclear mapping of the oscillatory dynamics.
Collapse
Affiliation(s)
- Gian Nicola Angotzi
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
- Corticale Srlvia Pietro Chiesa 9Genova16149Italy
| | - Mihály Vöröslakos
- Neuroscience InstituteGrossman School of MedicineNew York University550 First AvenueNew YorkNY10016USA
| | - Nikolas Perentos
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
- University of Nicosia School of Veterinary Medicine21 Ilia Papakyriakou2414NicosiaCyprus
| | - Joao Filipe Ribeiro
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Matteo Vincenzi
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Fabio Boi
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
- Corticale Srlvia Pietro Chiesa 9Genova16149Italy
| | - Aziliz Lecomte
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Gabor Orban
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Andreas Genewsky
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
| | - Gerrit Schwesig
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
| | - Deren Aykan
- Neuroscience InstituteGrossman School of MedicineNew York University550 First AvenueNew YorkNY10016USA
| | - György Buzsáki
- Neuroscience InstituteGrossman School of MedicineNew York University550 First AvenueNew YorkNY10016USA
- Department of NeurologyGrossman School of MedicineNew York University435 East 30th StreetNew YorkNY10016USA
| | - Anton Sirota
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
| | - Luca Berdondini
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| |
Collapse
|
11
|
Li X, Reddy JW, Jain V, Forssell M, Ahmed Z, Chamanzar M. AECuration: automated event curation for spike sorting. J Neural Eng 2025; 22:026027. [PMID: 39808932 PMCID: PMC11931169 DOI: 10.1088/1741-2552/adaa1c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Objective. This paper discusses a novel method for automating the curation of neural spike events detected from neural recordings using spike sorting methods. Spike sorting seeks to identify isolated neural events from extracellular recordings. This is critical for interpretation of electrophysiology recordings in neuroscience studies. Spike sorting analysis is vulnerable to errors because of non-neural events, such as experimental artifacts or electrical interference. To improve the specificity of spike sorting results, a manual postprocessing curation is typically used to examine the detected events and identify neural spikes based on their specific features. However, this manual curation process is subjective, prone to human errors and not scalable, especially for large datasets.Approach. To address these challenges, we introduce AECuration, a novel automatic curation method based on an autoencoder model trained on features of simulated extracellular spike waveforms. Using reconstruction error as a performance metric, our method classifies neural and non-neural events in experimental electrophysiology datasets.Main results. This paper demonstrates that AECuration can classify neural events with 97.46% accuracy on synthetic datasets. Moreover, our method can improve the sensitivity of different spike sorting pipelines on datasets with ground-truth recordings by up to 20%. The ratio of clustered units with low interspike interval violation rates is improved from 55.3% to 85.5% as demonstrated using our in-house experimental dataset.Significance. AEcuration is a time-domain evaluation method that automates the analysis of extracellular recordings based on learned time-domain features. Once trained on a synthetic dataset, this method can be applied to real extracellular datasets without the need for re-training. This highlights the generalizability of AECuration. It can be readily integrated with existing spike sorting pipelines as a preprocessing filtering or a postprocessing curation step to improve the overall accuracy and efficiency.
Collapse
Affiliation(s)
- Xiang Li
- Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Jay W Reddy
- Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Vishal Jain
- Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Mats Forssell
- Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
12
|
Peelman K, Haider B. Environmental context influences visual processing in thalamus. Curr Biol 2025; 35:1422-1430.e5. [PMID: 40049173 PMCID: PMC11952198 DOI: 10.1016/j.cub.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/23/2024] [Accepted: 02/05/2025] [Indexed: 03/12/2025]
Abstract
Behavioral state modulates neural activity throughout the visual system.1,2,3 This is largely due to changes in arousal that alter internal brain states.4,5,6,7,8,9,10 Much is known about how these internal factors influence visual processing,7,8,9,10,11 but comparatively less is known about the role of external environmental contexts.12 Environmental contexts can promote or prevent certain actions,13 and it remains unclear if and how this affects visual processing. Here, we addressed this question in the thalamus of awake, head-fixed mice while they viewed stimuli but remained stationary in two different environmental contexts: either a cylindrical tube or a circular running wheel that enabled locomotion. We made silicon probe recordings in the dorsal lateral geniculate nucleus (dLGN) while simultaneously measuring multiple metrics of arousal changes so that we could control for these across contexts. We found surprising differences in spatial and temporal processing in dLGN across contexts. The wheel context (versus tube) showed elevated baseline activity and faster but less spatially selective visual responses; however, these visual processing differences disappeared if the wheel no longer enabled locomotion. Our results reveal an unexpected influence of the physical environmental context on fundamental aspects of early visual processing, even in otherwise identical states of alertness and stillness.
Collapse
Affiliation(s)
- Kayla Peelman
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Bilal Haider
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
13
|
Efron B, Ntelezos A, Katz Y, Lampl I. Detection and neural encoding of whisker-generated sounds in mice. Curr Biol 2025; 35:1211-1226.e8. [PMID: 39978346 DOI: 10.1016/j.cub.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
The vibrissa system of mice and other rodents enables active sensing via whisker movements and is traditionally considered a purely tactile system. Here, we ask whether whisking against objects produces audible sounds and whether mice are capable of perceiving these sounds. We found that whisking by head-fixed mice against objects produces audible sounds well within their hearing range. We recorded neural activity in the auditory cortex of mice in which we had abolished vibrissae tactile sensation and found that the firing rate of auditory neurons was strongly modulated by whisking against objects. Furthermore, the object's identity could be reliably decoded from the population's neuronal activity and closely matched the decoding patterns derived from sounds that were recorded simultaneously, suggesting that neuronal activity reflects acoustic information. Lastly, trained mice, in which vibrissae tactile sensation was abolished, were able to accurately identify objects solely based on the sounds produced during whisking. Our results suggest that, beyond its traditional role as a tactile sensory system, the vibrissa system of rodents engages both tactile and auditory modalities in a multimodal manner during active exploration.
Collapse
Affiliation(s)
- Ben Efron
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Athanasios Ntelezos
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonatan Katz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilan Lampl
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Hahn LA, Fongaro E, Rose J. Neuronal correlates of endogenous selective attention in the endbrain of crows. Commun Biol 2025; 8:470. [PMID: 40119198 PMCID: PMC11928645 DOI: 10.1038/s42003-025-07914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
The ability to direct attention and select important information is a cornerstone of adaptive behavior. Directed attention supports adaptive cognitive operations underlying flexible behavior, for example in extinction learning, and was demonstrated behaviorally in both mammals and in birds. The neural foundation of such endogenous attention, however, has been thoroughly investigated only in mammals and is still poorly understood in birds. And despite the similarities at the behavioral level, cognition of birds and mammals evolved in parallel for over 300 million years, resulting in different architectures of the endbrain, most notably the absence of cortical layering in birds. We recorded neuronal signals from the nidopallium caudolaterale, the avian equivalent to mammalian pre-frontal cortex, while crows employed endogenous attention to perform change detection in a working memory task. The neuronal activity profile clearly reflected attentional enhancement of information maintained by working memory. Our results show that top-down endogenous attention is possible without the layered configuration of the mammalian cortex.
Collapse
Affiliation(s)
- Lukas Alexander Hahn
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Erica Fongaro
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Jonas Rose
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
15
|
Ikefuama EC, Slaviero AN, Silvagnoli AD, Crespo EL, Schalau R, Gott M, Tree MO, Dunbar GL, Rossignol J, Hochgeschwender U. Presymptomatic targeted circuit manipulation for ameliorating Huntington's disease pathogenesis. iScience 2025; 28:112022. [PMID: 40092615 PMCID: PMC11910118 DOI: 10.1016/j.isci.2025.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/23/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Early stages of Huntington's disease (HD) before the onset of motor and cognitive symptoms are characterized by imbalanced excitatory and inhibitory output from the cortex to striatal and subcortical structures. The window before the onset of symptoms presents an opportunity to adjust the firing rate within microcircuits with the goal of restoring the impaired E/I balance, thereby preventing or slowing down disease progression. Here, we investigated the effect of presymptomatic cell-type specific manipulation of activity of pyramidal neurons and parvalbumin interneurons in the M1 motor cortex on disease progression in the R6/2 HD mouse model. Our results show that dampening excitation of Emx1 pyramidal neurons or increasing activity of parvalbumin interneurons once daily for 3 weeks during the pre-symptomatic phase alleviated HD-related motor coordination dysfunction. Cell-type-specific modulation to normalize the net output of the cortex is a potential therapeutic avenue for HD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ebenezer C. Ikefuama
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ashley N. Slaviero
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | | | - Emmanuel L. Crespo
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Raegan Schalau
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Madison Gott
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Maya O. Tree
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Gary L. Dunbar
- Department of Psychology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Julien Rossignol
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
16
|
Elliott MA, Andrews JP, van der Molen T, Geng J, Spaeth A, Toledo A, Voitiuk K, Core C, Gillespie T, Sinervo A, Parks DF, Robbins A, Solís D, Chang EF, Nowakowski TJ, Teodorescu M, Haussler D, Sharf T. Pathological microcircuits and epileptiform events in patient hippocampal slices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.13.623525. [PMID: 39605666 PMCID: PMC11601452 DOI: 10.1101/2024.11.13.623525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
How seizures begin at the level of microscopic neuronal circuits remains unknown. Advancements in high-density CMOS-based microelectrode arrays can be harnessed to study neuronal network activity with unprecedented spatial and temporal resolution. We use high-density electrophysiology recordings to probe the network activity of human hippocampal brain slices from six patients with mesial temporal lobe epilepsy. Two slices from the dentate gyrus exhibited epileptiform activity in the presence of low magnesium media with kainic acid. Both slices exhibit network oscillations indicative of a reciprocally connected circuit, which is unexpected under normal physiological conditions. Future studies may apply this approach to elucidate the network signals that underlie seizure initiation.
Collapse
Affiliation(s)
- Matthew A.T. Elliott
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - John P. Andrews
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Tjitse van der Molen
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jinghui Geng
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Alex Spaeth
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Anna Toledo
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kateryna Voitiuk
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Cordero Core
- Scientific Software Engineering Center, eScience Institute, University of Washington, Seattle, WA USA
| | - Thomas Gillespie
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ari Sinervo
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David F. Parks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ash Robbins
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Daniel Solís
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Edward F. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Scientific Software Engineering Center, eScience Institute, University of Washington, Seattle, WA USA
| | - Tomasz Jan Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Mircea Teodorescu
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Tal Sharf
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
17
|
Brockhoff M, Träuble J, Middya S, Fuchsberger T, Fernandez-Villegas A, Stephens A, Robbins M, Dai W, Haider B, Vora S, Läubli NF, Kaminski CF, Malliaras GG, Paulsen O, Kaminski Schierle GS. PseudoSorter: A self-supervised spike sorting approach applied to reveal Tau-induced reductions in neuronal activity. SCIENCE ADVANCES 2025; 11:eadr4155. [PMID: 40085717 PMCID: PMC11908484 DOI: 10.1126/sciadv.adr4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
Microelectrode arrays (MEAs) permit recordings with high electrode counts, thus generating complex datasets that would benefit from precise neuronal spike sorting for meaningful data extraction. Nevertheless, conventional spike sorting methods face limitations in recognizing diverse spike shapes. Here, we introduce PseudoSorter, which uses self-supervised learning techniques, a density-based pseudolabeling strategy, and an iterative fine-tuning process to enhance spike sorting accuracy. Through benchmarking, we demonstrate the superior performance of PseudoSorter compared to other spike sorting algorithms before applying PseudoSorter on MEA recordings from hippocampal neurons exposed to subneuronal concentrations of monomeric Tau as a model for Alzheimer's disease. Our results unveil that Tau diminishes the firing rate of a subset of neurons, which complement our findings observed using conventional electrophysiology analysis, and demonstrate that PseudoSorter's high accuracy and throughput make it a valuable tool for studying neurodegenerative diseases, enhancing our understanding of their underlying mechanisms, as well as for therapeutic drug screening.
Collapse
Affiliation(s)
- Marius Brockhoff
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jakob Träuble
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sagnik Middya
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Tanja Fuchsberger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ana Fernandez-Villegas
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Amberley Stephens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Miranda Robbins
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Wenyue Dai
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Belquis Haider
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sulay Vora
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nino F. Läubli
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
18
|
de las Casas EM, Killmann K, Drüke M, Münster L, Ebner C, Sachdev R, Jaeger D, Larkum ME. Tuft dendrites in frontal motor cortex enable flexible learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.642781. [PMID: 40161800 PMCID: PMC11952515 DOI: 10.1101/2025.03.13.642781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Flexible learning relies on integrating sensory and contextual information to adjust behavioral output in different environments. The anterolateral motor cortex (ALM) is a frontal area critical for action selection in rodents. Here we show that inputs critical to decision-making converge on the apical tuft dendrites of L5b pyramidal neurons in ALM. We therefore investigated the role of these dendrites in a rule-switching paradigm. Activation of dendrite-inhibiting layer 1 interneurons impaired relearning, without affecting previously learned behavior. Remarkably, this inhibition profoundly suppressed calcium activity selectively in dendritic shafts but not spines while reducing burst firing. Moreover, excitatory synaptic inputs to tuft dendrites exhibited rule-dependent clustering. We conclude that active dendritic integration is a key computational component of flexible learning.
Collapse
Affiliation(s)
| | - Kris Killmann
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Moritz Drüke
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Lukas Münster
- Zentrum für molekulare Neurobiologie, UKE Hamburg, Hamburg, Germany
| | - Christian Ebner
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence Charité Universitätsmedizin Berlin, Berlin
| | - Robert Sachdev
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | | | - Matthew E. Larkum
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
19
|
Suematsu N, Sato AY, Kimura A, Shimegi S, Soma S. Perceptual Visual Acuity Declines With Age in a Rat Model of Retinitis Pigmentosa While Light Perception is Maintained. Invest Ophthalmol Vis Sci 2025; 66:31. [PMID: 40094656 PMCID: PMC11925224 DOI: 10.1167/iovs.66.3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a leading cause of blindness and genetically induces impairment of the retinal epithelium and photoreceptors. In this study, we investigated the decline in the visual response and visual ability during disease progression. This understanding is crucial for disease staging in patients, establishing therapeutic plans in advance, and evaluating the effects of interventional treatments. Methods We used a rat model of inherited RP (Royal College of Surgeons [RCS] rats) and evaluated form visual acuity and light perception using behavioral tests and electrophysiological recordings in the dorsal lateral geniculate nucleus, superior colliculus, and primary visual cortex. Results The perceptual form vision (detection of grating stimulus) was attenuated by 9 weeks old. The neural responses in the three early visual areas to flashing grating stimuli with various contrasts and spatial frequencies showed similar degeneration progress as the behavioral evaluations. Light perception (detection of a bright uniform light source) was maintained until at least 11 weeks old. The neural responses to the uniform flashlight stimulus in the three early visual areas were maintained during the same period. Conclusions Our findings suggest that form vision is primarily affected by the progression of RP, whereas non-form vision is potentially robust to retinal degeneration. This maintenance of light perception is likely due to the preserved function of intrinsically photosensitive retinal ganglion cells. These results provide useful and fundamental knowledge for evaluating the protective or restorative effects of experimental treatments for RP.
Collapse
Affiliation(s)
- Naofumi Suematsu
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Akinori Y. Sato
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| | - Akihiro Kimura
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Healthcare, Osaka Health Science University, Osaka, Japan
| | - Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Center for Education in Liberal Arts and Sciences, Osaka University, Osaka, Japan
| | - Shogo Soma
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Ellison L, Raiser G, Garrido-Peña A, Kemenes G, Nowotny T. SSSort 2.0: A semi-automated spike detection and sorting system for single sensillum recordings. J Neurosci Methods 2025; 415:110351. [PMID: 39709073 DOI: 10.1016/j.jneumeth.2024.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Single-sensillum recordings are a valuable tool for sensory research which, by their nature, access extra-cellular signals typically reflecting the combined activity of several co-housed sensory neurons. However, isolating the contribution of an individual neuron through spike-sorting has remained a major challenge due to firing rate-dependent changes in spike shape and the overlap of co-occurring spikes from several neurons. These challenges have so far made it close to impossible to investigate the responses to more complex, mixed odour stimuli. NEW METHOD Here we present SSSort 2.0, a method and software addressing both problems through automated and semi-automated signal processing. We have also developed a method for more objective validation of spike sorting methods based on generating surrogate ground truth data and we have tested the practical effectiveness of our software in a user study. RESULTS We find that SSSort 2.0 typically matches or exceeds the performance of expert manual spike sorting. We further demonstrate that, for novices, accuracy is much better with SSSort 2.0 under most conditions. CONCLUSION Overall, we have demonstrated that spike-sorting with SSSort 2.0 software can automate data processing of SSRs with accuracy levels comparable to, or above, expert manual performance.
Collapse
Affiliation(s)
- Lydia Ellison
- Sussex Neuroscience, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | | | - Alicia Garrido-Peña
- Dpto. Ingenieria Informatica, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Madrid, 28049, Spain.
| | - György Kemenes
- Sussex Neuroscience, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | - Thomas Nowotny
- Sussex AI, University of Sussex, Falmer, Brighton, BN1 9QJ, UK.
| |
Collapse
|
21
|
Jung YJ, Meffin H, Ibbotson MR. Characterization of receptive fields in the dorsal lateral geniculate nucleus of the tammar wallaby. J Neurophysiol 2025; 133:815-824. [PMID: 39887254 DOI: 10.1152/jn.00352.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Orientation selectivity is a prominent feature of neurons in the mammalian primary visual cortex (V1), yet its emergence along the visual pathway varies across species. In carnivores and primates, neurons with elongated and orientation-selective receptive fields (RFs) emerge in V1, whereas in mice such RFs appear earlier, in the retina or dorsal lateral geniculate nucleus (dLGN). Here, we investigate the RF properties of neurons in the dLGN of a marsupial, the wallaby (Macropus eugenii) (n = 2; males), using multichannel electrodes and nonlinear input model (NIM) analysis. Do dLGN RFs resemble those of carnivores and primates or exhibit unique characteristics, particularly regarding orientation selectivity? We found that 82% of neurons have a predominant ON-center response. We identified two main cell types: X-cells (n = 15/22), which exhibit linear properties, and Y-cells (n = 7/22), which display nonlinear characteristics. Most dLGN RFs were blob-like and lacked the oriented structures seen in cortical neurons but some had slightly elongated central areas. These results indicate that robust orientation selectivity develops fully in V1 (76% of neurons). However, mild orientation biases were observed in 41% of dLGN neurons. This study enhances our understanding of visual processing in marsupials and underscores the evolutionary significance of orientation selectivity in mammalian visual pathways.NEW & NOTEWORTHY This study examines receptive field (RF) properties of neurons in the dorsal lateral geniculate nucleus (dLGN) of wallabies using multichannel electrodes and nonlinear input model (NIM) analysis. We identified two main cell types: X-cells (linear) and Y-cells (nonlinear). Most dLGN RFs were blob-like, with mild orientation biases in 41% of neurons, indicating robust orientation selectivity develops fully in primary visual cortex (V1) (76% of neurons).
Collapse
Affiliation(s)
- Young Jun Jung
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Hamish Meffin
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael R Ibbotson
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Tsukano H, Garcia MM, Dandu PR, Kato HK. Predictive filtering of sensory response via orbitofrontal top-down input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.17.613562. [PMID: 39345607 PMCID: PMC11429993 DOI: 10.1101/2024.09.17.613562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Habituation is a crucial sensory filtering mechanism whose dysregulation can lead to a continuously intense world in disorders with sensory overload. While habituation is considered to require top-down predictive signaling to suppress irrelevant inputs, the exact brain loci storing the internal predictive model and the circuit mechanisms of sensory filtering remain unclear. We found that daily neural habituation in the primary auditory cortex (A1) was reversed by inactivation of the orbitofrontal cortex (OFC). Top-down projections from the ventrolateral OFC, but not other frontal areas, carried predictive signals that grew with daily sound experience and suppressed A1 via somatostatin-expressing inhibitory neurons. Thus, prediction signals from the OFC cancel out behaviorally irrelevant anticipated stimuli by generating their "negative images" in sensory cortices.
Collapse
Affiliation(s)
- Hiroaki Tsukano
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Michellee M. Garcia
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Pranathi R. Dandu
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Hiroyuki K. Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| |
Collapse
|
23
|
Palchaudhuri S, Lin BX, Osypenko D, Wu J, Kochubey O, Schneggenburger R. A posterior insula to lateral amygdala pathway transmits US-offset information with a limited role in fear learning. Cell Rep 2025; 44:115320. [PMID: 39954251 DOI: 10.1016/j.celrep.2025.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/21/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
During fear learning, associations between a sensory cue (conditioned stimulus, CS) and an aversive stimulus (unconditioned stimulus, US) are formed in specific brain circuits. The lateral amygdala (LA) is involved in CS-US integration; however, US pathways to the LA remain understudied. Here, we investigated whether the posterior insular cortex (pInsCx), a hub for aversive state signaling, transmits US information to the LA during fear learning. We find that the pInsCx makes a robust, glutamatergic projection specifically targeting the anterior LA. In vivo Ca2+ imaging reveals that neurons in the pInsCx and anterior LA display US-onset and US-offset responses; imaging combined with axon silencing shows that the pInsCx selectively transmits US-offset information to the anterior LA. Optogenetic silencing, however, does not show a role for US-driven activity in the anterior LA or its pInsCx afferents in fear memory formation. Thus, we describe a cortical projection that carries US-offset information to the amygdala with a limited role in fear learning.
Collapse
Affiliation(s)
- Shriya Palchaudhuri
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Bei-Xuan Lin
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Denys Osypenko
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Jinyun Wu
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olexiy Kochubey
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
24
|
Härmson O, Grennan I, Perry B, Toth R, McNamara CG, Denison T, Cagnan H, Manohar SG, Walton ME, Sharott A. Multi-level encoding of reward, effort, and choice across the frontal cortex and basal ganglia during cost-benefit decision-making. Cell Rep 2025; 44:115209. [PMID: 39847484 PMCID: PMC11860760 DOI: 10.1016/j.celrep.2024.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/25/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Adaptive value-guided decision-making requires weighing up the costs and benefits of pursuing an available opportunity. Though neurons across frontal cortical-basal ganglia circuits have been repeatedly shown to represent decision-related parameters, it is unclear whether and how this information is coordinated. To address this question, we performed large-scale single-unit recordings simultaneously across 5 medial/orbital frontal and basal ganglia regions as rats decided whether to pursue varying reward payoffs available at different effort costs. Single neurons encoding combinations of decision variables (reward, effort, and choice) were represented within all recorded regions. Coactive cell assemblies, ensembles of neurons that repeatedly coactivated within short time windows (<25 ms), represented the same decision variables despite the members often having diverse individual coding properties. Together, these findings demonstrate a multi-level encoding structure for cost-benefit computations where individual neurons are coordinated into larger assemblies that can represent task variables independently of their constituent components.
Collapse
Affiliation(s)
- Oliver Härmson
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Isaac Grennan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Brook Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Colin G McNamara
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Timothy Denison
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Engineering Science, University of Oxford, Oxford, UK
| | - Hayriye Cagnan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Garcia MM, Kline AM, Onodera K, Tsukano H, Dandu PR, Acosta HC, Kasten M, Manis PB, Kato HK. Noncanonical Short-Latency Auditory Pathway Directly Activates Deep Cortical Layers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631598. [PMID: 39829930 PMCID: PMC11741258 DOI: 10.1101/2025.01.06.631598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Auditory processing in the cerebral cortex is considered to begin with thalamocortical inputs to layer 4 (L4) of the primary auditory cortex (A1). In this canonical model, A1 L4 inputs initiate a hierarchical cascade, with higher-order cortices receiving pre-processed information for the slower integration of complex sounds. Here, we identify alternative ascending pathways in mice that bypass A1 and directly reach multiple layers of the secondary auditory cortex (A2), indicating parallel activation of these areas alongside sequential information processing. We found that L6 of both A1 and A2 receive short-latency (<10 ms) sound inputs, comparable in speed to the canonical A1 L4 input but transmitted through higher-order thalamic nuclei. Additionally, A2 L4 is innervated by a caudal subdivision within the traditionally defined primary thalamus, which we now identify as belonging to the non-primary system. Notably, both thalamic regions receive projections from distinct subdivisions of the higher-order inferior colliculus, which in turn are directly innervated by cochlear nucleus neurons. These findings reveal alternative ascending pathways reaching A2 at L4 and L6 via secondary subcortical structures. Thus, higher-order auditory cortex processes both slow, pre-processed information and rapid, direct sensory inputs, enabling parallel and distributed processing of fast sensory information across cortical areas.
Collapse
Affiliation(s)
- Michellee M. Garcia
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amber M Kline
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Koun Onodera
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hiroaki Tsukano
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pranathi R. Dandu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey C. Acosta
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Kasten
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul B. Manis
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hiroyuki K. Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
26
|
Mederos S, Blakely P, Vissers N, Clopath C, Hofer SB. Overwriting an instinct: Visual cortex instructs learning to suppress fear responses. Science 2025; 387:682-688. [PMID: 39913581 DOI: 10.1126/science.adr2247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/06/2025] [Indexed: 04/23/2025]
Abstract
Fast instinctive responses to environmental stimuli can be crucial for survival but are not always optimal. Animals can adapt their behavior and suppress instinctive reactions, but the neural pathways mediating such ethologically relevant forms of learning remain unclear. We found that posterolateral higher visual areas (plHVAs) are crucial for learning to suppress escapes from innate visual threats through a top-down pathway to the ventrolateral geniculate nucleus (vLGN). plHVAs are no longer necessary after learning; instead, the learned behavior relies on plasticity within vLGN populations that exert inhibitory control over escape responses. vLGN neurons receiving input from plHVAs enhance their responses to visual threat stimuli during learning through endocannabinoid-mediated long-term suppression of their inhibitory inputs. We thus reveal the detailed circuit, cellular, and synaptic mechanisms underlying experience-dependent suppression of fear responses.
Collapse
Affiliation(s)
- Sara Mederos
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Patty Blakely
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Nicole Vissers
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Claudia Clopath
- Sainsbury Wellcome Centre, University College London, London, UK
- Bioengineering Department, Imperial College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre, University College London, London, UK
| |
Collapse
|
27
|
Acland BT, Palanca BJA, Bijsterbosch J, Snyder LH. Gamma-burst cortical activity in awake behaving macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.26.559594. [PMID: 37808642 PMCID: PMC10557640 DOI: 10.1101/2023.09.26.559594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Electrophysiological recordings during ketamine anesthesia have revealed a slow alternating pattern of high- and low- frequency activity (a "gamma-burst" pattern) that develops with the onset of general anesthesia. We examine the role of NMDA receptor antagonism in generating the gamma-burst pattern and the link between gamma-bursts and dissociative anesthesia. We compare the effects of ketamine with those of the highly selective NMDA receptor antagonist CGS 19755 on multi-site intracranial electrophysiology and behavior in rhesus macaques. Remarkably, we find that animals given a moderate dose of CGS 19755 are able to perform a difficult memory task, while at the same time showing electrophysiological activity similar to ketamine anesthesia, with one key difference: a lack of delta-band LFP modulation. This difference demonstrates that ketamine's ability to drive strong delta-band oscillations relies on additional mechanisms beyond NMDA receptor antagonism alone, and points to a key role for the activity underlying delta-band oscillations in causing anesthesia.
Collapse
|
28
|
Hozhabri E, Corredera Asensio A, Elmaleh M, Kim JW, Phillips MB, Frazel PW, Dimidschstein J, Fishell G, Long MA. Differential behavioral engagement of inhibitory interneuron subtypes in the zebra finch brain. Neuron 2025; 113:460-470.e7. [PMID: 39644901 PMCID: PMC11802303 DOI: 10.1016/j.neuron.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Inhibitory interneurons are highly heterogeneous circuit elements often characterized by cell biological properties, but how these factors relate to specific roles underlying complex behavior remains poorly understood. Using chronic silicon probe recordings, we demonstrate that distinct interneuron groups perform different inhibitory roles within HVC, a song production circuit in the zebra finch forebrain. To link these functional subtypes to molecular identity, we performed two-photon targeted electrophysiological recordings of HVC interneurons followed by post hoc immunohistochemistry of subtype-specific markers. We find that parvalbumin-expressing interneurons are highly modulated by sensory input and likely mediate auditory gating, whereas a more heterogeneous set of somatostatin-expressing interneurons can strongly regulate activity based on arousal. Using this strategy, we uncover important cell-type-specific network functions in the context of an ethologically relevant motor skill.
Collapse
Affiliation(s)
- Ellie Hozhabri
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Ariadna Corredera Asensio
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Jeong Woo Kim
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Matthew B Phillips
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Paul W Frazel
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gord Fishell
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
29
|
Horrocks M, Mohn JL, Jaramillo S. The serotonergic psychedelic DOI impairs deviance detection in the auditory cortex. J Neurophysiol 2025; 133:388-398. [PMID: 39726382 DOI: 10.1152/jn.00411.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Psychedelics are known to induce profound perceptual distortions, yet the neural mechanisms underlying these effects, particularly within the auditory system, remain poorly understood. In this study, we investigated the effects of the psychedelic compound 2,5-dimethoxy-4-iodoamphetamine (DOI), a serotonin 2A receptor agonist, on the activity of neurons in the auditory cortex of awake mice. We examined whether DOI administration alters sound-frequency tuning, variability in neural responses, and deviance detection (a neural process reflecting the balance between top-down and bottom-up processing). Our results show that whereas DOI does not alter the frequency selectivity of auditory cortical neurons in a consistent manner, it increases trial-by-trial variability in responses and consistently diminishes the neural distinction between expected (standard) and unexpected (oddball) stimuli. This reduction in deviance detection was primarily driven by a decrease in the response to oddball sounds, suggesting that DOI dampens the auditory cortex's sensitivity to unexpected events. These findings provide insights into how psychedelics disrupt sensory processing and shed light on the neural mechanisms underlying the altered perception of auditory stimuli observed in the psychedelic state.NEW & NOTEWORTHY The neural basis of perceptual distortions induced by psychedelics remains poorly understood. This study demonstrates that the serotonergic psychedelic DOI increases neural response variability and impairs deviance detection in the auditory cortex by reducing sensitivity to unexpected sounds. These findings provide new insights into how psychedelics disrupt sensory processing and alter the balance between bottom-up and top-down neural signaling, contributing to our understanding of altered perception in the psychedelic state.
Collapse
Affiliation(s)
- Max Horrocks
- Institute of NeuroscienceUniversity of Oregon, Eugene. Oregon, United States
| | - Jennifer L Mohn
- Institute of NeuroscienceUniversity of Oregon, Eugene. Oregon, United States
| | - Santiago Jaramillo
- Institute of NeuroscienceUniversity of Oregon, Eugene. Oregon, United States
| |
Collapse
|
30
|
Zichó K, Balog BZ, Sebestény RZ, Brunner J, Takács V, Barth AM, Seng C, Orosz Á, Aliczki M, Sebők H, Mikics E, Földy C, Szabadics J, Nyiri G. Identification of the subventricular tegmental nucleus as brainstem reward center. Science 2025; 387:eadr2191. [PMID: 39847621 DOI: 10.1126/science.adr2191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025]
Abstract
Rewards are essential for motivation, decision-making, memory, and mental health. We identified the subventricular tegmental nucleus (SVTg) as a brainstem reward center. In mice, reward and its prediction activate the SVTg, and SVTg stimulation leads to place preference, reduced anxiety, and accumbal dopamine release. Mice self-stimulate the SVTg, which can also be activated directly by the neocortex, resulting in effective inhibition of the lateral habenula, a region associated with depression. This mechanism may also explain why SVTg suppression induces aversion and increases fear. The translational relevance of these findings is supported by evidence in the rat, monkey, and human brainstem, establishing SVTg as a key hub for reward processing, emotional valence, and motivation.
Collapse
Affiliation(s)
- Krisztián Zichó
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Boldizsár Zsolt Balog
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Réka Z Sebestény
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - János Brunner
- Laboratory of Cellular Neuropharmacology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Virág Takács
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Albert M Barth
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - Áron Orosz
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Manó Aliczki
- Laboratory of Translational Behavioral Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Hunor Sebők
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Eva Mikics
- Laboratory of Translational Behavioral Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - János Szabadics
- Laboratory of Cellular Neuropharmacology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
31
|
Peelman K, Haider B. Environmental context sculpts spatial and temporal visual processing in thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.26.605345. [PMID: 39091887 PMCID: PMC11291113 DOI: 10.1101/2024.07.26.605345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Behavioral state modulates neural activity throughout the visual system1-3. This is largely due to changes in arousal that alter internal brain state4-10. Much is known about how these internal factors influence visual processing7-11, but comparatively less is known about the role of external environmental contexts12. Environmental contexts can promote or prevent certain actions13, and it remains unclear if and how this affects visual processing. Here, we addressed this question in the thalamus of awake head-fixed mice while they viewed stimuli but remained stationary in two different environmental contexts: either a cylindrical tube, or a circular running wheel that enabled locomotion. We made silicon probe recordings in the dorsal lateral geniculate nucleus (dLGN) while simultaneously measuring multiple metrics of arousal changes, so that we could control for them across contexts. We found surprising differences in spatial and temporal processing in dLGN across contexts. The wheel context (versus tube) showed elevated baseline activity, and faster but less spatially selective visual responses; however, these visual processing differences disappeared if the wheel no longer enabled locomotion. Our results reveal an unexpected influence of the physical environmental context on fundamental aspects of early visual processing, even in otherwise identical states of alertness and stillness.
Collapse
Affiliation(s)
- Kayla Peelman
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Bilal Haider
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| |
Collapse
|
32
|
Riccitelli S, Yaakov H, Heukamp AS, Ankri L, Rivlin-Etzion M. Retinal ganglion cells encode the direction of motion outside their classical receptive field. Proc Natl Acad Sci U S A 2025; 122:e2415223122. [PMID: 39793063 PMCID: PMC11725840 DOI: 10.1073/pnas.2415223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc. Pharmacological manipulations revealed the necessity of glycinergic amacrine cells for this response. Using in vivo recordings, we identified similar extraclassical responses in lateral geniculate nucleus neurons, suggesting such non conventional DS information is transferred to downstream structures. Our results suggest a complex integration of motion direction processing across the visual field, which arises beyond the classical receptive field boundaries.
Collapse
Affiliation(s)
- Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Hadar Yaakov
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Alina S. Heukamp
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Michal Rivlin-Etzion
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
33
|
Zimmerman MP, Kissinger ST, Edens P, Towers RC, Nareddula S, Nadew YY, Quinn CJ, Chubykin AA. Origin of visual experience-dependent theta oscillations. Curr Biol 2025; 35:87-99.e6. [PMID: 39657670 PMCID: PMC11720618 DOI: 10.1016/j.cub.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Visual experience gives rise to persistent theta oscillations in the mouse primary visual cortex (V1) that are specific to the familiar stimulus. Our recent work demonstrated the presence of these oscillations in higher visual areas (HVAs), where they are synchronized with V1 in a context-dependent manner. However, it remains unclear where these unique oscillatory dynamics originate. To investigate this, we conducted paired extracellular electrophysiological recordings in two visual thalamic nuclei (dorsal lateral geniculate nucleus [dLGN] and lateral posterior nucleus [LP]), the retrosplenial cortex (RSC), and the hippocampus (HPC). Oscillatory activity was not found in either of the thalamic nuclei, but a sparse ensemble of oscillating neurons was observed in both the RSC and HPC, similar to V1. To infer functional connectivity changes between the brain regions, we performed directed information analysis, which indicated a trend toward decreased connectivity in all V1-paired regions, with a consistent increase in V1 → V1 connections, suggesting that the oscillations appear to initiate independently within V1. Lastly, complete NMDA lesioning of the HPC did not abolish theta oscillations in V1 that emerge with familiarity. Altogether, these results suggest that (1) theta oscillations do not originate in the thalamus; (2) RSC exhibits theta oscillations, which may follow V1 given the temporal delay present; and (3) the HPC had a sparse group of neurons, with theta oscillations matching V1; however, lesioning suggests that these oscillations emerge independent of each other. Overall, our findings pave the way for future studies to determine the mechanisms by which diverse inputs and outputs shape this memory-related oscillatory activity in the brain.
Collapse
Affiliation(s)
- Michael P Zimmerman
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA; Department of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Samuel T Kissinger
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA
| | - Paige Edens
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA
| | - Renee C Towers
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA
| | - Sanghamitra Nareddula
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA
| | - Yididiya Y Nadew
- Department of Computer Sciences, Iowa State University, 2434 Osborn Dr., Ames, IA 50011, USA
| | - Christopher J Quinn
- Department of Computer Sciences, Iowa State University, 2434 Osborn Dr., Ames, IA 50011, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA.
| |
Collapse
|
34
|
Xia F, Fascianelli V, Vishwakarma N, Ghinger FG, Kwon A, Gergues MM, Lalani LK, Fusi S, Kheirbek MA. Understanding the neural code of stress to control anhedonia. Nature 2025; 637:654-662. [PMID: 39633053 PMCID: PMC11735319 DOI: 10.1038/s41586-024-08241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
Anhedonia, the diminished drive to seek, value, and learn about rewards, is a core feature of major depressive disorder1-3. The neural underpinnings of anhedonia and how this emotional state drives behaviour remain unclear. Here we investigated the neural code of anhedonia by taking advantage of the fact that when mice are exposed to traumatic social stress, susceptible animals become socially withdrawn and anhedonic, whereas others remain resilient. By performing high-density electrophysiology to record neural activity patterns in the basolateral amygdala (BLA) and ventral CA1 (vCA1), we identified neural signatures of susceptibility and resilience. When mice actively sought rewards, BLA activity in resilient mice showed robust discrimination between reward choices. By contrast, susceptible mice exhibited a rumination-like signature, in which BLA neurons encoded the intention to switch or stay on a previously chosen reward. Manipulation of vCA1 inputs to the BLA in susceptible mice rescued dysfunctional neural dynamics, amplified dynamics associated with resilience, and reversed anhedonic behaviour. Finally, when animals were at rest, the spontaneous BLA activity of susceptible mice showed a greater number of distinct neural population states. This spontaneous activity allowed us to decode group identity and to infer whether a mouse had a history of stress better than behavioural outcomes alone. This work reveals population-level neural dynamics that explain individual differences in responses to traumatic stress, and suggests that modulating vCA1-BLA inputs can enhance resilience by regulating these dynamics.
Collapse
Affiliation(s)
- Frances Xia
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Valeria Fascianelli
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Nina Vishwakarma
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Frances Grace Ghinger
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew Kwon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mark M Gergues
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lahin K Lalani
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University Irving Medical Center, New York, NY, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
35
|
McNaughton BL. Neuronal 'Ensemble' Recording and the Search for the Cell Assembly: A Personal History. Hippocampus 2025; 35:e23669. [PMID: 39676610 PMCID: PMC11647560 DOI: 10.1002/hipo.23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
This contribution is part of the special issue on the Hippocampus focused on personal histories of advances in knowledge on the hippocampus and related structures. An account is offered of the author's role in the development of neural ensemble recording: stereo recording (stereotrodes, tetrodes) and the use of this approach to search for evidence of Hebb's "cell assemblies" and "phase sequences", the holy grail of the neuroscience of learning and memory.
Collapse
Affiliation(s)
- Bruce L. McNaughton
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineUSA
- Department of NeuroscienceThe University of LethbridgeIrvineUSA
| |
Collapse
|
36
|
Dai W, Wang T, Li Y, Yang Y, Zhang Y, Wu Y, Zhou T, Yu H, Li L, Wang Y, Wang G, Xing D. Cortical direction selectivity increases from the input to the output layers of visual cortex. PLoS Biol 2025; 23:e3002947. [PMID: 39777916 PMCID: PMC11709279 DOI: 10.1371/journal.pbio.3002947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Sensitivity to motion direction is a feature of visual neurons that is essential for motion perception. Recent studies have suggested that direction selectivity is re-established at multiple stages throughout the visual hierarchy, which contradicts the traditional assumption that direction selectivity in later stages largely derives from that in earlier stages. By recording laminar responses in areas 17 and 18 of anesthetized cats of both sexes, we aimed to understand how direction selectivity is processed and relayed across 2 successive stages: the input layers and the output layers within the early visual cortices. We found a strong relationship between the strength of direction selectivity in the output layers and the input layers, as well as the preservation of preferred directions across the input and output layers. Moreover, direction selectivity was enhanced in the output layers compared to the input layers, with the response strength maintained in the preferred direction but reduced in other directions and under blank stimuli. We identified a direction-tuned gain mechanism for interlaminar signal transmission, which likely originated from both feedforward connections across the input and output layers and recurrent connections within the output layers. This direction-tuned gain, coupled with nonlinearity, contributed to the enhanced direction selectivity in the output layers. Our findings suggest that direction selectivity in later cortical stages partially inherits characteristics from earlier cortical stages and is further refined by intracortical connections.
Collapse
Affiliation(s)
- Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yange Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tingting Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hongbo Yu
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yizheng Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Gang Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
37
|
Jung YJ, Almasi A, Sun S, Yunzab M, Baquier SH, Renfree M, Meffin H, Ibbotson MR. Feature selectivity and invariance in marsupial primary visual cortex. J Physiol 2025; 603:423-445. [PMID: 39625561 PMCID: PMC11737535 DOI: 10.1113/jp285757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/15/2024] [Indexed: 01/18/2025] Open
Abstract
A fundamental question in sensory neuroscience revolves around how neurons represent complex visual stimuli. In mammalian primary visual cortex (V1), neurons decode intricate visual features to identify objects, with most being selective for edge orientation, but with half of those also developing invariance to edge position within their receptive fields. Position invariance allows cells to continue to code an edge even when it moves around. Combining feature selectivity and invariance is integral to successful object recognition. Considering the marsupial-eutherian divergence 160 million years ago, we explored whether feature selectivity and invariance was similar in marsupials and eutherians. We recovered the spatial filters and non-linear processing characteristics of the receptive fields of neurons in wallaby V1 and compared them with previous results from cat cortex. We stimulated the neurons in V1 with white Gaussian noise and analysed responses using the non-linear input model. Wallabies exhibit the same high percentage of orientation selective neurons as cats. However, in wallabies we observed a notably higher prevalence of neurons with three or more filters compared to cats. We show that having three or more filters substantially increases phase invariance in the V1s of both species, but that wallaby V1 accentuates this feature, suggesting that the species condenses more processing into the earliest cortical stage. These findings suggest that evolution has led to more than one solution to the problem of creating complex visual processing strategies. KEY POINTS: Previous studies have shown that the primary visual cortex (V1) in mammals is essential for processing complex visual stimuli, with neurons displaying selectivity for edge orientation and position. This research explores whether the visual processing mechanisms in marsupials, such as wallabies, are similar to those in eutherian mammals (e.g. cats). The study found that wallabies have a higher prevalence of neurons with multiple spatial filters in V1, indicating more complex visual processing. Using a non-linear input model, we demonstrated that neurons with three or more filters increase phase invariance. These findings suggest that marsupials and eutherian mammals have evolved similar strategies for visual processing, but marsupials have condensed more capacity to build phase invariance into the first step in the cortical pathway.
Collapse
Affiliation(s)
- Young Jun Jung
- Department of Biomedical EngineeringThe University of MelbourneMelbourneVictoriaAustralia
- National Vision Research Institute, MelbourneAustralian College of OptometryVictoriaAustralia
- Department of Optometry and Vision SciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Ali Almasi
- National Vision Research Institute, MelbourneAustralian College of OptometryVictoriaAustralia
| | - Shi Sun
- National Vision Research Institute, MelbourneAustralian College of OptometryVictoriaAustralia
| | - Molis Yunzab
- National Vision Research Institute, MelbourneAustralian College of OptometryVictoriaAustralia
| | - Sebastien H. Baquier
- Melbourne Veterinary School, Faculty of ScienceThe University of MelbourneMelbourneVictoriaAustralia
| | - Marilyn Renfree
- School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Hamish Meffin
- Department of Biomedical EngineeringThe University of MelbourneMelbourneVictoriaAustralia
| | - Michael R. Ibbotson
- Department of Biomedical EngineeringThe University of MelbourneMelbourneVictoriaAustralia
- National Vision Research Institute, MelbourneAustralian College of OptometryVictoriaAustralia
- Department of Optometry and Vision SciencesThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
38
|
Silva SADCE, McDonald NJ, Chamaria A, Stujenske JM. Population imaging of internal state circuits relevant to psychiatric disease: a review. NEUROPHOTONICS 2025; 12:S14607. [PMID: 39872404 PMCID: PMC11772092 DOI: 10.1117/1.nph.12.s1.s14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
Internal states involve brain-wide changes that subserve coordinated behavioral and physiological responses for adaptation to changing environments and body states. Investigations of single neurons or small populations have yielded exciting discoveries for the field of neuroscience, but it has been increasingly clear that the encoding of internal states involves the simultaneous representation of multiple different variables in distributed neural ensembles. Thus, an understanding of the representation and regulation of internal states requires capturing large population activity and benefits from approaches that allow for parsing intermingled, genetically defined cell populations. We will explain imaging technologies that permit recording from large populations of single neurons in rodents and the unique capabilities of these technologies in comparison to electrophysiological methods. We will focus on findings for appetitive and aversive states given their high relevance to a wide range of psychiatric disorders and briefly explain how these approaches have been applied to models of psychiatric disease in rodents. We discuss challenges for studying internal states which must be addressed with future studies as well as the therapeutic implications of findings from rodents for improving treatments for psychiatric diseases.
Collapse
Affiliation(s)
- Sophia Arruda Da Costa E. Silva
- University of Pittsburgh, Department of Psychiatry, Translational Neuroscience Program, Pittsburgh, Pennsylvania, United States
| | - Nicholas J. McDonald
- University of Pittsburgh, Department of Psychiatry, Translational Neuroscience Program, Pittsburgh, Pennsylvania, United States
| | - Arushi Chamaria
- University of Pittsburgh, Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, Pennsylvania, United States
| | - Joseph M. Stujenske
- University of Pittsburgh, Department of Psychiatry, Translational Neuroscience Program, Pittsburgh, Pennsylvania, United States
- University of Pittsburgh, Center for Neuroscience, Pittsburgh, Pennsylvania, United States
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
39
|
Horrocks M, Mohn JL, Jaramillo S. The serotonergic psychedelic DOI impairs deviance detection in the auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611733. [PMID: 39314372 PMCID: PMC11418932 DOI: 10.1101/2024.09.06.611733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Psychedelics are known to induce profound perceptual distortions, yet the neural mechanisms underlying these effects, particularly within the auditory system, remain poorly understood. In this study, we investigated the effects of the psychedelic compound 2,5-Dimethoxy-4-iodoamphetamine (DOI), a serotonin 2A receptor agonist, on the activity of neurons in the auditory cortex of awake mice. We examined whether DOI administration alters sound-frequency tuning, variability in neural responses, and deviance detection (a neural process reflecting the balance between top-down and bottom-up processing). Our results show that while DOI does not alter the frequency selectivity of auditory cortical neurons in a consistent manner, it increases trial-by-trial variability in responses and consistently diminishes the neural distinction between expected (standard) and unexpected (oddball) stimuli. This reduction in deviance detection was primarily driven by a decrease in the response to oddball sounds, suggesting that DOI dampens the auditory cortex's sensitivity to unexpected events. These findings provide insights into how psychedelics disrupt sensory processing and shed light on the neural mechanisms underlying the altered perception of auditory stimuli observed in the psychedelic state.
Collapse
Affiliation(s)
- Max Horrocks
- Institute of Neuroscience, University of Oregon. Eugene, OR 97403
| | - Jennifer L Mohn
- Institute of Neuroscience, University of Oregon. Eugene, OR 97403
| | | |
Collapse
|
40
|
Andrews JP, Geng J, Voitiuk K, Elliott MAT, Shin D, Robbins A, Spaeth A, Wang A, Li L, Solis D, Keefe MG, Sevetson JL, Rivera de Jesús JA, Donohue KC, Larson HH, Ehrlich D, Auguste KI, Salama S, Sohal V, Sharf T, Haussler D, Cadwell CR, Schaffer DV, Chang EF, Teodorescu M, Nowakowski TJ. Multimodal evaluation of network activity and optogenetic interventions in human hippocampal slices. Nat Neurosci 2024; 27:2487-2499. [PMID: 39548326 DOI: 10.1038/s41593-024-01782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/30/2024] [Indexed: 11/17/2024]
Abstract
Seizures are made up of the coordinated activity of networks of neurons, suggesting that control of neurons in the pathologic circuits of epilepsy could allow for control of the disease. Optogenetics has been effective at stopping seizure-like activity in non-human disease models by increasing inhibitory tone or decreasing excitation, although this effect has not been shown in human brain tissue. Many of the genetic means for achieving channelrhodopsin expression in non-human models are not possible in humans, and vector-mediated methods are susceptible to species-specific tropism that may affect translational potential. Here we demonstrate adeno-associated virus-mediated, optogenetic reductions in network firing rates of human hippocampal slices recorded on high-density microelectrode arrays under several hyperactivity-provoking conditions. This platform can serve to bridge the gap between human and animal studies by exploring genetic interventions on network activity in human brain tissue.
Collapse
Affiliation(s)
- John P Andrews
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jinghui Geng
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kateryna Voitiuk
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Matthew A T Elliott
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Shin
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ash Robbins
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alex Spaeth
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Albert Wang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lin Li
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel Solis
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Matthew G Keefe
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica L Sevetson
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, USA
| | | | - Kevin C Donohue
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - H Hanh Larson
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Drew Ehrlich
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Computational Media, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kurtis I Auguste
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sofie Salama
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, USA
| | - Vikaas Sohal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tal Sharf
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Haussler
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - David V Schaffer
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, California, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), University of California, Berkeley, Berkeley, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
| | - Tomasz Jan Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Petty GH, Bruno RM. Attentional modulation of secondary somatosensory and visual thalamus of mice. eLife 2024; 13:RP97188. [PMID: 39601499 PMCID: PMC11602186 DOI: 10.7554/elife.97188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Each sensory modality has its own primary and secondary thalamic nuclei. While the primary thalamic nuclei are well understood to relay sensory information from the periphery to the cortex, the role of secondary sensory nuclei is elusive. We trained head-fixed mice to attend to one sensory modality while ignoring a second modality, namely to attend to touch and ignore vision, or vice versa. Arrays were used to record simultaneously from the secondary somatosensory thalamus (POm) and secondary visual thalamus (LP). In mice trained to respond to tactile stimuli and ignore visual stimuli, POm was robustly activated by touch and largely unresponsive to visual stimuli. A different pattern was observed when mice were trained to respond to visual stimuli and ignore touch, with POm now more robustly activated during visual trials. This POm activity was not explained by differences in movements (i.e. whisking, licking, pupil dilation) resulting from the two tasks. Post hoc histological reconstruction of array tracks through POm revealed that subregions varied in their degree of plasticity. LP exhibited similar phenomena. We conclude that behavioral training reshapes activity in secondary thalamic nuclei. Secondary nuclei respond to the same behaviorally relevant, reward-predicting stimuli regardless of stimulus modality.
Collapse
Affiliation(s)
- Gordon H Petty
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Department of Physiology, Anatomy, & Genetics, University of OxfordOxfordUnited Kingdom
| | - Randy M Bruno
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Department of Physiology, Anatomy, & Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
42
|
Leong A, Li Y, Ruikes TR, Voillot J, Yuan Y, Chen G, Facon A, Chhuon CA, Joffrois C, Tessier G, Cornebois M, Dégardin J, Louise JD, Cheng JX, Yang C, Moulet H, Picaud S. A flexible high-precision photoacoustic retinal prosthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611068. [PMID: 39282448 PMCID: PMC11398364 DOI: 10.1101/2024.09.03.611068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Retinal degenerative diseases of photoreceptors are a leading cause of blindness with no effective treatment. Retinal prostheses aim to restore sight by stimulating remaining retinal cells. Here, we present a photoacoustic retinal stimulation technology. We designed a polydimethylsiloxane and carbon-based flexible film that converts near-infrared laser pulses into a localized acoustic field with 56-μm lateral resolution, aiming at high-precision acoustic stimulation of mechanosensitive retinal cells. This photoacoustic stimulation resulted in robust and localized modulation of retinal ganglion cell activity in both wild-type and degenerated ex vivo retinae. When a millimeter-sized photoacoustic film was implanted in the rat subretinal space, pulsed laser stimulation generated neural modulation in vivo along the visual pathway to the superior colliculus, as measured by functional ultrasound imaging. The biosafety of the film was confirmed by the absence of short-term adverse effects under optical coherence tomography retinal imaging, while local thermal increases were measured below 1 °C. These findings demonstrate the potential of photoacoustic stimulation for high-acuity visual restoration over a large field of view in blind patients.
Collapse
|
43
|
Meyer LM, Zamani M, Rokai J, Demosthenous A. Deep learning-based spike sorting: a survey. J Neural Eng 2024; 21:061003. [PMID: 39454590 DOI: 10.1088/1741-2552/ad8b6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
Objective.Deep learning is increasingly permeating neuroscience, leading to a rise in signal-processing applications for extracellular recordings. These signals capture the activity of small neuronal populations, necessitating 'spike sorting' to assign action potentials (spikes) to their underlying neurons. With the rise in publications delving into new methodologies and techniques for deep learning-based spike sorting, it is crucial to synthesise these findings critically. This survey provides an in-depth evaluation of the approaches, methodologies and outcomes presented in recent articles, shedding light on the current state-of-the-art.Approach.Twenty-four articles published until December 2023 on deep learning-based spike sorting have been examined. The proposed methods are divided into three sub-problems of spike sorting: spike detection, feature extraction and classification. Moreover, integrated systems, i.e. models that detect spikes and extract features or do classification within a single network, are included.Main results.Although most algorithms have been developed for single-channel recordings, models utilising multi-channel data have already shown promising results, with efficient hardware implementations running quantised models on application-specific integrated circuits and field programmable gate arrays. Convolutional neural networks have been used extensively for spike detection and classification as the data can be processed spatiotemporally while maintaining low-parameter models and increasing generalisation and efficiency. Autoencoders have been mainly utilised for dimensionality reduction, enabling subsequent clustering with standard methods. Also, integrated systems have shown great potential in solving the spike sorting problem from end to end.Significance.This survey explores recent articles on deep learning-based spike sorting and highlights the capabilities of deep neural networks in overcoming associated challenges, but also highlights potential biases of certain models. Serving as a resource for both newcomers and seasoned researchers in the field, this work provides insights into the latest advancements and may inspire future model development.
Collapse
Affiliation(s)
- Luca M Meyer
- Currently not Affiliated with any Institution, Wiesbaden, Germany
| | - Majid Zamani
- School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
| | - János Rokai
- Institute of Cognitive Neurosciences and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| |
Collapse
|
44
|
Hariharan S, Palomares EG, Babl SS, López-Jury L, Hechavarria JC. Cerebellar activity predicts vocalization in fruit bats. Curr Biol 2024; 34:5112-5119.e3. [PMID: 39389060 DOI: 10.1016/j.cub.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Echolocating bats exhibit remarkable auditory behaviors, enabled by adaptations both within and outside their auditory system. Yet research on echolocating bats has focused mostly on brain areas that belong to the classic ascending auditory pathway. This study provides direct evidence linking the cerebellum, an evolutionarily ancient and non-classic auditory structure, to vocalization and hearing. We report that in the fruit-eating bat Carollia perspicillata, external sounds can evoke cerebellar responses with latencies below 20 ms. Such fast responses are indicative of early inputs to the bat cerebellum. After establishing fruit-eating bats as a good model to study cerebellar auditory responses, we searched for a neural correlate of vocal production within the cerebellum. We investigated spike trains and field potentials occurring before and after vocalization and found that the type of sound produced (echolocation pulses or communication calls) can be decoded from pre-vocal and post-vocal neural signals, with prediction accuracies that reach above 85%. The latter provides a direct correlate of vocalization in an ancient motor-coordination structure that lies outside of the classic ascending auditory pathway. Taken together, our findings provide evidence of specializations for vocalization and hearing in the cerebellum of an auditory specialist.
Collapse
Affiliation(s)
- Shivani Hariharan
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| | - Eugenia González Palomares
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Susanne S Babl
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Luciana López-Jury
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Julio C Hechavarria
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
45
|
Ankri L, Riccitelli S, Rivlin-Etzion M. A new role for excitation in the retinal direction-selective circuit. J Physiol 2024; 602:6301-6328. [PMID: 39462912 DOI: 10.1113/jp286581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
A key feature of the receptive field of neurons in the visual system is their centre-surround antagonism, whereby the centre and the surround exhibit responses of opposite polarity. This organization is thought to enhance visual acuity, but whether and how such antagonism plays a role in more complex processing remains poorly understood. Here, we investigate the role of centre and surround receptive fields in retinal direction selectivity by exposing posterior-preferring On-Off direction-selective ganglion cells (pDSGCs) to adaptive light and recording their response to globally moving objects. We reveal that light adaptation leads to surround expansion in pDSGCs. The pDSGCs maintain their original directional tuning in the centre receptive field, but present the oppositely tuned response in their surround. Notably, although inhibition is the main substrate for retinal direction selectivity, we found that following light adaptation, both the centre- and surround-mediated responses originate from directionally tuned excitatory inputs. Multi-electrode array recordings show similar oppositely tuned responses in other DSGC subtypes. Together, these data attribute a new role for excitation in the direction-selective circuit. This excitation carries an antagonistic centre-surround property, possibly designed to sharpen the detection of motion direction in the retina. KEY POINTS: Receptive fields of direction-selective retinal ganglion cells expand asymmetrically following light adaptation. The increase in the surround receptive field generates a delayed spiking phase that is tuned to the null direction and is mediated by excitation. Following light adaptation, excitation rules the computation in the centre receptive field and is tuned to the preferred direction. GABAergic and glycinergic inputs modulate the null-tuned delayed response differentially. Null-tuned delayed spiking phases can be detected in all types of direction-selective retinal ganglion cells. Light adaptation exposes a hidden directional excitation in the circuit, which is tuned to opposite directions in the centre and surround receptive fields.
Collapse
Affiliation(s)
- Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
46
|
Hope J, Beckerle TM, Cheng PH, Viavattine Z, Feldkamp M, Fausner SML, Saxena K, Ko E, Hryb I, Carter RE, Ebner TJ, Kodandaramaiah SB. Brain-wide neural recordings in mice navigating physical spaces enabled by robotic neural recording headstages. Nat Methods 2024; 21:2171-2181. [PMID: 39375573 DOI: 10.1038/s41592-024-02434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/21/2024] [Indexed: 10/09/2024]
Abstract
Technologies that can record neural activity at cellular resolution at multiple spatial and temporal scales are typically much larger than the animals that are being recorded from and are thus limited to recording from head-fixed subjects. Here we have engineered robotic neural recording devices-'cranial exoskeletons'-that assist mice in maneuvering recording headstages that are orders of magnitude larger and heavier than the mice, while they navigate physical behavioral environments. We discovered optimal controller parameters that enable mice to locomote at physiologically realistic velocities while maintaining natural walking gaits. We show that mice learn to work with the robot to make turns and perform decision-making tasks. Robotic imaging and electrophysiology headstages were used to record recordings of Ca2+ activity of thousands of neurons distributed across the dorsal cortex and spiking activity of hundreds of neurons across multiple brain regions and multiple days, respectively.
Collapse
Affiliation(s)
- James Hope
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Travis M Beckerle
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Pin-Hao Cheng
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Zoey Viavattine
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Michael Feldkamp
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Skylar M L Fausner
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Kapil Saxena
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Eunsong Ko
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Ihor Hryb
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Suhasa B Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, USA.
- Department of Neuroscience, University of Minnesota, Twin Cities, Minneapolis, MN, USA.
- Department of Biomedical Engineering, University of MinnesotaTwin Cities, Minneapolis, MN, USA.
| |
Collapse
|
47
|
He Y, Chou XL, Lavoie A, Liu J, Russo M, Liu BH. Brainstem inhibitory neurons enhance behavioral feature selectivity by sharpening the tuning of excitatory neurons. Curr Biol 2024; 34:4623-4638.e8. [PMID: 39303712 DOI: 10.1016/j.cub.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
The brainstem is a hub for sensorimotor integration, which mediates crucial innate behaviors. This brain region is characterized by a rich population of GABAergic inhibitory neurons, required for the proper expression of these innate behaviors. However, what roles these inhibitory neurons play in innate behaviors and how they function are still not fully understood. Here, we show that inhibitory neurons in the nucleus of the optic tract and dorsal-terminal nuclei (NOT-DTN) of the mouse can modulate the innate eye movement optokinetic reflex (OKR) by shaping the tuning properties of excitatory NOT-DTN neurons. Specifically, we demonstrate that although these inhibitory neurons do not directly induce OKR, they enhance the visual feature selectivity of OKR behavior, which is mediated by the activity of excitatory NOT-DTN neurons. Moreover, consistent with the sharpening role of inhibitory neurons in OKR behavior, they have broader tuning relative to excitatory neurons. Last, we demonstrate that inhibitory NOT-DTN neurons directly provide synaptic inhibition to nearby excitatory neurons and sharpen their tuning in a sustained manner, accounting for the enhanced feature selectivity of OKR behavior. In summary, our findings uncover a fundamental principle underlying the computational role of inhibitory neurons in brainstem sensorimotor circuits.
Collapse
Affiliation(s)
- Yingtian He
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Xiao-Lin Chou
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Andreanne Lavoie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jiashu Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Milena Russo
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Bao-Hua Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
48
|
Shaykevich DA, Woods GA, O'Connell LA, Hong G. Chronic recording of brain activity in awake toads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618567. [PMID: 39463987 PMCID: PMC11507864 DOI: 10.1101/2024.10.16.618567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Amphibians represent an important evolutionary transition from aquatic to terrestrial environments and they display a large variety of complex behaviors despite a relatively simple brain. However, their brain activity is not as well characterized as that of many other vertebrates, partially due to physiological traits that have made electrophysiology recordings difficult to perform in awake and moving animals. New method We implanted flexible mesh electronics in the cane toad (Rhinella marina) and performed extracellular recordings in the telencephalon of anesthetized toads and partially restrained, awake toads over multiple days. Results We recorded brain activity over five consecutive days in awake toads and over a 15 week period in a toad that was anesthetized during recordings. We were able to perform spike sorting and identified single- and multi-unit activity in all toads. Comparison with existing methods To our knowledge, this is the first report of a modern method to perform electrophysiology in non-paralyzed toads over multiple days, though there are historical references to short term recordings in the past. Conclusions Implementing flexible mesh electronics in amphibian species will allow for advanced studies of the neural basis of amphibian behaviors.
Collapse
Affiliation(s)
| | - Grace A Woods
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford CA, USA
| | - Lauren A O'Connell
- Department of Biology, Stanford University, Stanford, CA, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford CA, USA
| | - Guosong Hong
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford CA, USA
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
49
|
Lakhani A, Huang W, Rodgers CC, Wenner P. Whisker deprivation triggers a distinct form of cortical homeostatic plasticity that is impaired in the Fmr1 KO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614487. [PMID: 39386532 PMCID: PMC11463509 DOI: 10.1101/2024.09.23.614487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mouse models of Fragile X Syndrome (FXS) have demonstrated impairments in excitatory and inhibitory sensory-evoked neuronal firing. Homeostatic plasticity, which encompasses a set of mechanisms to stabilize baseline activity levels, does not compensate for these changes in activity. Previous work has shown that impairments in homeostatic plasticity are observed in FXS, including deficits in synaptic scaling and intrinsic excitability. Here, we aimed to examine how homeostatic plasticity is altered in vivo in an Fmr1 KO mouse model following unilateral whisker deprivation (WD). We show that WD in the wild type leads to an increase in the proportion of L5/6 somatosensory neurons that are recruited, but this does not occur in the KO. In addition, we observed a change in the threshold of excitatory neurons at a later developmental stage in the KO. Compromised homeostatic plasticity in development could influence sensory processing and long-term cortical organization.
Collapse
|
50
|
Riyahi P, Phillips MA, Boley N, Colonnese MT. Experience Dependence of Alpha Rhythms and Neural Dynamics in the Mouse Visual Cortex. J Neurosci 2024; 44:e2011222024. [PMID: 39151954 PMCID: PMC11411595 DOI: 10.1523/jneurosci.2011-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The role of experience in the development and maintenance of emergent network properties such as cortical oscillations and states is poorly understood. To define how early-life experience affects cortical dynamics in the visual cortex of adult, head-fixed mice, we examined the effects of two forms of blindness initiated before eye opening and continuing through recording: (1) bilateral loss of retinal input (enucleation) and (2) degradation of visual input (eyelid suture). Neither form of deprivation fundamentally altered the state-dependent regulation of firing rates or local field potentials. However, each deprivation caused unique changes in network behavior. Laminar analysis revealed two different generative mechanisms for low-frequency synchronization: one prevalent during movement and the other during quiet wakefulness. The former was absent in enucleated mice, suggesting a mouse homolog of human alpha oscillations. In addition, neurons in enucleated animals were less correlated and fired more regularly, but no change in mean firing rate. Eyelid suture decreased firing rates during quiet wakefulness, but not during movement, with no effect on neural correlations or regularity. Sutured animals showed a broadband increase in depth EEG power and an increased occurrence, but reduced central frequency, of narrowband gamma oscillations. The complementary-rather than additive-effects of lid suture and enucleation suggest that the development of emergent network properties does not require vision but is plastic to modified input. Our results suggest a complex interaction of internal set points and experience determines mature cortical activity, with low-frequency synchronization being particularly susceptible to early deprivation.
Collapse
Affiliation(s)
- Pouria Riyahi
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
- Department of Biomedical Engineering, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Marnie A Phillips
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| | - Nathaniel Boley
- Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| |
Collapse
|