1
|
Kitano E, Ueno H, Takahashi Y, Mori S, Murakami S, Wani K, Matsumoto Y, Ochi A, Hatano T, Okamoto M, Ishihara T. Postnatal sleep restriction in male mice impairs the development of parvalbumin-positive neurons in the prefrontal cortex and increases anxiety-like behaviour. Neuroscience 2025; 573:127-142. [PMID: 40113071 DOI: 10.1016/j.neuroscience.2025.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Sleep is crucial for maintaining homeostasis and is conserved across the animal kingdom. Sleep restriction has emerged as a significant health concern, particularly in adolescents and adults. In infants and children, it is linked to disrupted brain development, impaired social-emotional growth, deficits in executive function, and increased anxiety and depression. However, the precise biological mechanisms remain unclear. This study aimed to investigate the effects of sleep restriction on parvalbumin (PV)-expressing inhibitory interneurons, which mature postnatally, and to clarify some of the developmental consequences of sleep restriction on brain function. Three hours of sleep restriction was induced daily from postnatal day (P) 10 until P14, P21, and P28. Behavioural abnormalities were assessed on P21, followed by brain histology and behavioural recovery analysis after sleep restoration. Our results showed that sleep restriction did not alter the development of PV-positive neurons in the somatosensory cortex or amygdala but significantly reduced PV-positive neurons in the prefrontal cortex. Moreover, sleep-restricted mice exhibited increased anxiety-like behaviour at P21. Upon sleep restoration, adult mice showed reduced activity in the open field test, indicating a persistent effect of early-life sleep restriction. These findings suggest that sleep restriction during postnatal development selectively affects certain brain regions, with potential long-lasting consequences. Early intervention to mitigate sleep restriction's impact on brain development may be crucial for reducing neurodevelopmental deficits.
Collapse
Affiliation(s)
- Eriko Kitano
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | - Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama 701-0193, Japan.
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | - Sachiko Mori
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
| | - Ayaka Ochi
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama 701-0193, Japan.
| | - Tsukasa Hatano
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama 701-0193, Japan.
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan.
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| |
Collapse
|
2
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
3
|
Uccella S, Marazzotta V, Preiti D, Battaglini M, Burlando G, Roascio M, Rossi A, Arnulfo G, Ramenghi LA, Nobili L. Sleep architecture correlates with neurological and neurobehavioral short- and mid-term outcome in a sample of very preterm infants. A pilot study. Sleep Med 2025; 131:106538. [PMID: 40288251 DOI: 10.1016/j.sleep.2025.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Newborns spend most of their time sleeping. This activity fosters neurodevelopment. Prematurity, defined by birth occurring prior the 37th week of gestation, disrupts normal brain in-utero programming, with long-lasting consequences that carry a high social burden. Sleep alterations may contribute to these sequelae. In this pilot study we aimed to describe the 24-h distribution of sleep states among very preterm infants (VPI), and to correlate it with neurobehavioral assessment up to 6 months of corrected age (CA). Secondly, we aimed to assess if the presence of a brain lesion detected at MRI could affect sleep duration, architecture, and quality. Ten VPI were assessed at 32 weeks postmenstrual age (PMA) with a 24-h video-polysomnography and received a neurobehavioral examination at the time of the recording, at term equivalent age (TEA), and at 6 months CA. Analysis of sleep stages distribution and transitions, and power spectra were conducted. Total sleep time and amount of quiet sleep positively correlated with neurological, and neurobehavioral assessment at 32 weeks PMA, at TEA, and at 6 months CA, while Sleep Onset Active Sleep (SOAS) had a negative association. Infants carrying brain lesions showed lower QS time accompanied by a higher prevalence of AS + SOAS and showed a gradient for higher power of posterior slow activity (slow δ and δ) during SOAS in the left hemisphere posterior regions. Understanding sleep dynamics among preterm infants might provide future therapeutic/management strategies, which need to encompass sleep care.
Collapse
Affiliation(s)
- Sara Uccella
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili DINOGMI, Genova, Italy; Unità di Neuropsichiatria Infantile, Istituto Giannina Gaslini, Genova, Italy.
| | | | - Deborah Preiti
- Unità di Psicologia Clinica, Istituto Giannina Gaslini, Genova, Italy
| | | | - Gaia Burlando
- Università degli Studi di Genova, Dipartimento di informatica, bioingegneria, robotica e ingegneria dei sistemi, DIBRIS, Genova, Italy
| | - Monica Roascio
- Università degli Studi di Genova, Dipartimento di informatica, bioingegneria, robotica e ingegneria dei sistemi, DIBRIS, Genova, Italy
| | - Andrea Rossi
- Unità Neuroradiologia, Istituto Giannina Gaslini, Genova, Italy
| | - Gabriele Arnulfo
- Università degli Studi di Genova, Dipartimento di informatica, bioingegneria, robotica e ingegneria dei sistemi, DIBRIS, Genova, Italy
| | - Luca Antonio Ramenghi
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili DINOGMI, Genova, Italy; Unità di Patologia Neonatale, Istituto Giannina Gaslini, Genova, Italy
| | - Lino Nobili
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili DINOGMI, Genova, Italy; Unità di Neuropsichiatria Infantile, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
4
|
Menarchek BJ, Bridi MCD. Latent mechanisms of plasticity are upregulated during sleep. Curr Opin Neurobiol 2025; 93:103029. [PMID: 40267630 DOI: 10.1016/j.conb.2025.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/25/2025]
Abstract
Sleep is thought to serve an important role in learning and memory, but the mechanisms by which sleep promotes plasticity remain unclear. Even in the absence of plastic changes in neuronal function, many molecular, cellular, and physiological processes linked to plasticity are upregulated during sleep. Therefore, sleep may be a state in which latent plasticity mechanisms are poised to respond following novel experiences during prior wake. Many of these plasticity-related processes can promote both synaptic strengthening and weakening. Signaling pathways activated during sleep may interact with complements of proteins, determined by the content of prior waking experience, to establish the polarity of plasticity. Furthermore, precise reactivation of neuronal spiking patterns during sleep may interact with ongoing neuromodulatory, dendritic, and network activity to strengthen and weaken synapses. In this review, we will discuss the idea that sleep elevates latent plasticity mechanisms, which drive bidirectional plasticity depending on prior waking experience.
Collapse
Affiliation(s)
- Benjamin J Menarchek
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Michelle C D Bridi
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA.
| |
Collapse
|
5
|
Norman JF, Rahsepar B, Vena A, Thunemann M, Devor A, Ramirez S, White JA. Reactivation of memory-associated neurons induces downstream suppression of competing neuronal populations. Proc Natl Acad Sci U S A 2025; 122:e2410101122. [PMID: 40168126 PMCID: PMC12002025 DOI: 10.1073/pnas.2410101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Inducing apparent memory recall by tagging and optogenetically reactivating cells in the hippocampus was demonstrated over a decade ago. However, the hippocampal dynamics resulting from this reactivation remain largely unknown. While calcium imaging is commonly used as a measure of neuronal activity, GCaMP, the most common calcium indicator, cannot be used with optogenetic neuronal reactivation because both require blue light excitation. To resolve this overlap, we demonstrate optogenetic reactivation with a red-shifted opsin, ChrimsonR. We then conduct dual-color calcium imaging in CA1 during memory reactivation in DG. In addition to measuring population dynamics in CA1, CA1 cells tagged during the original experience were identified. In the fear-conditioned animals (FC+), nontagged cells in CA1 decreased their firing rate during stimulation, while tagged cells maintained their activity level. In the FC+ animals, as the behavioral effect of stimulation decreased across days, so did the changes in neural activity during stimulation. Our results both demonstrate the technical feasibility of calcium imaging during optogenetic reactivation of memory-associated neurons and advance our understanding of the dynamics underlying this reactivation.
Collapse
Affiliation(s)
- Jacob F. Norman
- Department of Biomedical Engineering, Boston University, Boston, MA02215
- Center for Systems Neuroscience, Neurophotonics Center, Boston University, Boston, MA02215
| | - Bahar Rahsepar
- Department of Biomedical Engineering, Boston University, Boston, MA02215
- Center for Systems Neuroscience, Neurophotonics Center, Boston University, Boston, MA02215
| | - Anna Vena
- Department of Biomedical Engineering, Boston University, Boston, MA02215
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, MA02215
- Center for Systems Neuroscience, Neurophotonics Center, Boston University, Boston, MA02215
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA02215
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA02215
| | - Steve Ramirez
- Department of Biomedical Engineering, Boston University, Boston, MA02215
- Center for Systems Neuroscience, Neurophotonics Center, Boston University, Boston, MA02215
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| | - John A. White
- Department of Biomedical Engineering, Boston University, Boston, MA02215
- Center for Systems Neuroscience, Neurophotonics Center, Boston University, Boston, MA02215
| |
Collapse
|
6
|
Doran S, Bradlaugh AA, Corke J, Baines RA. Circadian control in the timing of critical periods during Drosophila larval neuronal development. Curr Biol 2025; 35:1665-1671.e3. [PMID: 40132587 DOI: 10.1016/j.cub.2025.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Developing neural circuits are maximally open to modification during defined critical periods (CPs).1,2,3,4 We previously identified a CP in the Drosophila embryo, from 17 to 19 h after egg laying (AEL), during which activity manipulation (optogenetic and/or pharmacological) permanently alters locomotor network stability.5,6 Analysis of excitatory and inhibitory inputs to an identified motoneuron shows that CP activity manipulation preferentially enhances excitation.7 This effect is permanent, persisting through to third instars (5 days post manipulation). A manifestation of this effect is a marked increase in seizure recovery time (RT) in response to an electric shock. The induced seizure results in immediate paralysis, followed by uncoordinated peristalsis until the larva recovers sufficiently to move away from its original position (i.e., the seizure endpoint).6 Significantly, exposure to blue light (BL) during this same embryonic temporal window is similarly able to lead to an increased seizure RT, an effect that requires the presence of CRYPTOCHROME (CRY).8 Here, we identify a series of BL-sensitive CPs, occurring at ∼24-h intervals, from embryogenesis through larval development. Exposure to BL during these CPs increases the time taken for wandering larvae to recover from electroshock-induced seizure activity. This effect is absent when CRY or the principal clock-signaling neuropeptide-pigment-dispersing factor (PDF)-is absent. Thus, we uncover a novel role for the circadian clock during the embryonic and larval stages of Drosophila neural development.
Collapse
Affiliation(s)
- Sarah Doran
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Adam A Bradlaugh
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Jack Corke
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Richard A Baines
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
7
|
Pérez-Carbonell L, Iranzo A. REM sleep and neurodegeneration. J Sleep Res 2025; 34:e14263. [PMID: 38867555 DOI: 10.1111/jsr.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Several brainstem, subcortical and cortical areas are involved in the generation of rapid eye movement (REM) sleep. The alteration of these structures as a result of a neurodegenerative process may therefore lead to REM sleep anomalies. REM sleep behaviour disorder is associated with nightmares, dream-enacting behaviours and increased electromyographic activity in REM sleep. Its isolated form is a harbinger of synucleinopathies such as Parkinson's disease or dementia with Lewy bodies, and neuroprotective interventions are advocated. This link might also be present in patients taking antidepressants, with post-traumatic stress disorder, or with a history of repeated traumatic head injury. REM sleep likely contributes to normal memory processes. Its alteration has also been proposed to be part of the neuropathological changes occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Pérez-Carbonell
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Alex Iranzo
- Neurology Service, Sleep Disorders Centre, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Yuksel C, Denis D, Coleman J, Ren B, Oh A, Cox R, Morgan A, Sato E, Stickgold R. Both slow wave and rapid eye movement sleep contribute to emotional memory consolidation. Commun Biol 2025; 8:485. [PMID: 40123003 PMCID: PMC11930935 DOI: 10.1038/s42003-025-07868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Sleep supports memory consolidation, but the specific roles of different sleep stages in this process remain unclear. While rapid eye movement sleep (REM) has traditionally been linked to the processing of emotionally charged material, recent evidence suggests that slow wave sleep (SWS) also plays a role in strengthening emotional memories. Here, we use targeted memory reactivation (TMR) during REM and SWS in a daytime nap to directly examine which sleep stage is primarily involved in consolidating emotional declarative memories. Contrary to our hypothesis, reactivating emotional stimuli during REM impairs memory. Meanwhile, TMR benefit in SWS is strongly correlated with the product of time spent in REM and SWS. The emotional valence of cued items modulates both delta/theta power and sleep spindles. Furthermore, emotional memories benefit more from TMR than neutral ones. Our findings suggest that SWS and REM have complementary roles in consolidating emotional memories, with REM potentially involved in forgetting them. These results also expand on recent evidence highlighting a connection between sleep spindles and emotional processing.
Collapse
Affiliation(s)
- Cagri Yuksel
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| | - Dan Denis
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychology, University of York, Heslington, York, UK
| | - James Coleman
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatric Biostatistics Laboratory, McLean Hospital, Belmont, MA, USA
| | - Angela Oh
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Roy Cox
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Alexandra Morgan
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Erina Sato
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert Stickgold
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Wang W, Zhao L, He Z, Zhao Y, Jiang G, Gong C, Zhang Y, Yu J, Liang T, Guo L. Decoding Multifaceted Roles of Sleep-Related Genes as Molecular Bridges in Chronic Disease Pathogenesis. Int J Mol Sci 2025; 26:2872. [PMID: 40243466 PMCID: PMC11988575 DOI: 10.3390/ijms26072872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Sleep is a fundamental process essential for all organisms. Sleep deprivation can lead to significant detrimental effects, contributing to various physiological disorders and elevating the risk of several diseases. Investigating the relationship between sleep and human diseases offers valuable insights into the molecular mechanisms governing sleep regulation, potentially guiding the development of more effective treatments for sleep disorders and associated diseases. This study explored the roles of sleep-related genes in biological processes and their associations with chronic diseases, mainly including neurological, metabolic, cardiovascular diseases, and cancer. Additionally, an analysis on the sleep-related genes was also performed to understand the potential role in tumorigenesis. This review aims to enhance the understanding of the link between sleep-related genes and chronic diseases, contributing to the development of novel therapeutic approaches targeting sleep and circadian rhythm-related chronic diseases.
Collapse
Affiliation(s)
- Wenyuan Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Linjie Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Zhiheng He
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Yang Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Guijie Jiang
- School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Chengjun Gong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Yan Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Tingming Liang
- School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| |
Collapse
|
10
|
Tennin M, Matkins HT, Rexrode L, Bollavarapu R, Asplund SD, Pareek T, Kroeger D, Pantazopoulos H, Gisabella B. Sleep Deprivation Alters Hippocampal Dendritic Spines in a Contextual Fear Memory Engram. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641043. [PMID: 40093122 PMCID: PMC11908145 DOI: 10.1101/2025.03.02.641043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Sleep is critically involved in strengthening memories. However, our understanding of the morphological changes underlying this process is still emerging. Recent studies suggest that specific subsets of dendritic spines are strengthened during sleep in specific neurons involved in recent learning. Contextual memories associated with traumatic experiences are involved in post-traumatic stress disorder (PTSD) and represent recent learning that may be strengthened during sleep. We tested the hypothesis that dendritic spines encoding contextual fear memories are selectively strengthened during sleep. Furthermore, we tested how sleep deprivation after initial fear learning impacts dendritic spines following re-exposure to fear conditioning. We used ArcCreERT2 mice to visualize neurons that encode contextual fear learning (Arc+ neurons), and concomitantly labeled neurons that did not encode contextual fear learning (Arc- neurons). Dendritic branches of Arc+ and Arc- neurons were sampled using confocal imaging to assess spine densities using three-dimensional image analysis from either sleep deprived (SD) or control mice allowed to sleep normally. Mushroom spines in Arc+ branches displayed decreased density in SD mice, indicating upscaling of mushroom spines during sleep following fear learning. In comparison, no changes were observed in dendritic spines from Arc- branches. When animals were re-exposed to contextual fear conditioning 4 weeks later, we observed lower density of mushroom spines in both Arc+ and Arc- branches, as well as lower density of thin spines in Arc- branches in mice that were SD following the initial fear conditioning trial. Our findings indicate that sleep strengthens dendritic spines in neurons that recently encoded fear memory, and sleep deprivation following initial fear learning impairs dendritic spine strengthening initially and following later re-exposure. SD following a traumatic experience thus may be a viable strategy in weakening the strength of contextual memories associated with trauma and PTSD.
Collapse
Affiliation(s)
- Matthew Tennin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hunter T. Matkins
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lindsay Rexrode
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Samuel D. Asplund
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tanya Pareek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniel Kroeger
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
11
|
Toth BA, Burgess CR. Phasic Dopamine Release in the Nucleus Accumbens Influences REM Sleep Timing. J Neurosci 2025; 45:e1374242024. [PMID: 39794128 PMCID: PMC11867001 DOI: 10.1523/jneurosci.1374-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025] Open
Abstract
Based on the activity of dopamine (DA) neurons during behavioral states, the DA system has long been thought to be foundational in regulating sleep-wake behavior; over the past decade, advances in circuit manipulation and recording techniques have strengthened this perspective. Recently, several studies have demonstrated that DA release in regions of the limbic system is important in the promotion of REM sleep. Yet how DA dynamics change within bouts of sleep, how these changes are regulated, and whether they influence future state changes remains unclear. To address these questions, in mice of both sexes we used in vivo fiber photometry and inhibitory optogenetics to identify a specific role of DA transients in the nucleus accumbens (NAcc) in state transitions from NREM sleep. We found that DA transients increase their frequency and amplitude over the duration of NREM sleep and that this increase is more pronounced during NREM bouts that transition into REM sleep. Next, we found that DA transients in NREM sleep are influenced by changes in REM sleep pressure. Finally, we show that transient DA release in the NAcc plays a functional role in regulating the timing of REM sleep entrances, as inhibition of midbrain DA neuron terminals in the NAcc prolonged bouts of NREM sleep and decreased the frequency of bouts of REM sleep. These findings demonstrate that DA release in the NAcc is dynamically regulated by sleep pressure and has a functional role in transitions from NREM sleep, particularly those into REM sleep.
Collapse
Affiliation(s)
- Brandon A Toth
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Christian R Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
12
|
Ventura S, Mathieson SR, O'Toole JM, Livingstone V, Murray DM, Boylan GB. Infant sleep EEG features at 4 months as biomarkers of neurodevelopment at 18 months. Pediatr Res 2025:10.1038/s41390-025-03893-6. [PMID: 39979586 DOI: 10.1038/s41390-025-03893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Sleep parameters evolve in parallel with neurodevelopment. Sleep participates in synaptic homeostasis and memory consolidation and infant sleep parameters correlate with later aspects of early childhood cognition. METHODS Typically developing, term-born infants had a diurnal sleep-EEG at 4 months and Griffiths III developmental assessment at 18 months. EEG analysis included sleep macrostructure (i.e. durations of total sleep and sleep stages, and latencies to sleep and REM), sleep spindle features, and quantitative EEG features (qEEG): interhemispheric connectivity and spectral power. We assessed the correlations between these EEG features and Griffiths III quotients. RESULTS Sleep recordings from 92 infants were analyzed. Sleep latency was positively associated with the Griffiths III Foundations of Learning subscale and N3 sleep duration was positively correlated with the Personal-Social-Emotional subscale. Sleep spindle synchrony was negatively associated with Eye and Hand Coordination, Personal-Social-Emotional, Gross Motor, and General Development quotients. Sleep spindle duration was negatively associated with the Personal-Social-Emotional and Gross Motor subscales. In some sleep states, delta 1 and 2 EEG spectral power and interhemispheric coherence measures were correlated with subscale quotients. CONCLUSION Certain sleep features in the EEG of 4-month-old infants are associated with neurodevelopment at 18 months and may be useful early biomarkers of neurodevelopment. IMPACT This study shows that the EEG during infant sleep may provide insights into later neurodevelopmental outcomes. We have examined novel EEG sleep spindle features and shown that spindle duration and synchrony may help predict neurodevelopmental outcomes. Sleep macrostructure elements such as latency to sleep, N3 duration, and qEEG features such as interhemispheric coherence and spectral power measures at 4 months may be useful for the assessment of future neurodevelopmental outcomes. Due to exceptional neuroplasticity in infancy, EEG biomarkers of neurodevelopment may support early and targeted intervention to optimize outcomes.
Collapse
Affiliation(s)
- Soraia Ventura
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Sean R Mathieson
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - John M O'Toole
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Vicki Livingstone
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Geraldine B Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland.
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
13
|
Kotagal S. Peering beyond hypersomnia and cataplexy of childhood narcolepsy: the role of sleep-dependent memory consolidation. Sleep 2025; 48:zsae261. [PMID: 39540654 DOI: 10.1093/sleep/zsae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Suresh Kotagal
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Devulder A, Vanderlinden G, Van Langenhoven L, Testelmans D, Van Den Bossche M, De Winter FL, Vandenbulcke M, Vandenberghe R, Theys T, Van Laere K, Van Paesschen W. Epileptic activity on foramen ovale electrodes is associated with sleep and tau pathology in Alzheimer's disease. Brain 2025; 148:506-520. [PMID: 38990981 PMCID: PMC11788210 DOI: 10.1093/brain/awae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Both sleep alterations and epileptiform activity are associated with the accumulation of amyloid-β and tau pathology and are currently investigated for potential therapeutic interventions in Alzheimer's disease. However, a bidirectional intertwining relationship between sleep and neuronal hyperexcitability might modulate the effects of Alzheimer's disease pathology on the corresponding associations. To investigate this, we performed multiple day simultaneous foramen ovale (FO) plus scalp EEG and polysomnography recordings and acquired 18F-MK6240 tau PET-MR in three patients in the prodromal stage of Alzheimer's disease and in two patients with mild and moderate dementia due to Alzheimer's disease, respectively. As an eligibility criterion for the present study, subjects either had a history of a recent seizure (n = 2) or subclinical epileptiform activity (SEA) on a previous scalp EEG taken in a research context (n = 3). The 18F-MK6240 standard uptake value ratio (SUVR) and asymmetry index (AI) were calculated in a priori-defined volumes of interest. Linear mixed-effects models were used to study associations between interictal epileptiform discharges (IEDs), polysomnography parameters and 18F-MK6240 SUVR. Epileptiform activity was bilateral but asymmetrically present on FO electrodes in all patients and ≥95% of IEDs were not visible on scalp EEG. In one patient, two focal seizures were detected on FO electrodes, both without visual scalp EEG correlate. We observed lateralized periodic discharges, brief potentially ictal rhythmic discharges and lateralized rhythmic delta activity on FO electrodes in four patients. Unlike scalp EEG, intracranial electrodes showed a lateralization of epileptiform activity. Although the amount of IEDs on intracranial electrodes was not associated to the 18F-MK6240 SUVR binding in different volumes of interest, there was a congruent asymmetry of the 18F-MK6240 binding towards the most epileptic hemisphere for the mesial (P = 0.007) and lateral temporal cortex (P = 0.006). IEDs on intracranial electrodes were most abundant during slow wave sleep (SWS) (92/h) and non-REM sleep 2 (N2, 81/h), followed by non-REM sleep 1 (N1, 33/h) and least frequent during wakefulness (17/h) and REM sleep (9/h). The extent of IEDs during sleep was not reflected in the relative time in each sleep stage spent [REM% (P = 0.415), N1% (P = 0.668), N2% (P = 0.442), SWS% (P = 0.988)], and not associated with the arousal index (P = 0.317), apnoea-hypopnoea index (P = 0.846) or oxygen desaturation index (P = 0.746). Together, our observations suggest a multi-directional interaction between sleep, epileptiform activity and tau pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Astrid Devulder
- Laboratory for Epilepsy Research, KU Leuven Biomedical Sciences Group, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Biomedical Sciences Group, Leuven 3000, Belgium
| | - Leen Van Langenhoven
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), KU Leuven Biomedical Sciences Group, Leuven 3000, Belgium
| | - Dries Testelmans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven Biomedical Sciences Group, Leuven 3000, Belgium
- Department of Pulmonary Diseases, University Hospitals Leuven, Leuven 3000, Belgium
| | - Maarten Van Den Bossche
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven Biomedical Sciences Group, Leuven 3000, Belgium
- Department of Geriatric Psychiatry, KUL University Psychiatric Center (UPC) KU Leuven, Leuven 3000, Belgium
| | - François-Laurent De Winter
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven Biomedical Sciences Group, Leuven 3000, Belgium
- Department of Geriatric Psychiatry, KUL University Psychiatric Center (UPC) KU Leuven, Leuven 3000, Belgium
| | - Mathieu Vandenbulcke
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven Biomedical Sciences Group, Leuven 3000, Belgium
- Department of Geriatric Psychiatry, KUL University Psychiatric Center (UPC) KU Leuven, Leuven 3000, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
- Laboratory for Cognitive Neurology, KU Leuven Biomedical Sciences Group, Leuven 3000, Belgium
| | - Tom Theys
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven Biomedical Sciences Group, Leuven 3000, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven 3000, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Biomedical Sciences Group, Leuven 3000, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven 3000, Belgium
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven Biomedical Sciences Group, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
15
|
Bridi MCD, Peixoto L. Excitatory/Inhibitory imbalance as a mechanism linking autism and sleep problems. Curr Opin Neurobiol 2025; 90:102968. [PMID: 39754885 PMCID: PMC11839321 DOI: 10.1016/j.conb.2024.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Sleep problems occur more frequently in individuals with autism spectrum disorder (ASD) than in typically developing individuals, and recent studies support a genetic link between ASD and sleep disturbances. However, it remains unclear how sleep problems may be mechanistically connected to ASD phenotypes. A longstanding hypothesis posits that an imbalance between excitatory and inhibitory (E/I) signaling in the brain underlies the behavioral characteristics of ASD. In recent years, emerging evidence has shown that regulation of the E/I ratio is coupled to sleep/wake states in wild-type animal models. In this review, we will explore the idea of altered E/I regulation over the sleep/wake cycle as a mechanism bridging sleep disruption and behavioral phenotypes in ASD.
Collapse
Affiliation(s)
- Michelle C D Bridi
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University Spokane, 99202, USA.
| |
Collapse
|
16
|
He Z, Xiong W, Yang Y, Zhang Y, Li B, Wang F, Li Y, Wang R, Sun Y. Lipidomics Analysis Reveals the Effects of Docosahexaenoic Acid from Different Sources on Prefrontal-Cortex Synaptic Plasticity. Nutrients 2025; 17:457. [PMID: 39940315 PMCID: PMC11819862 DOI: 10.3390/nu17030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Docosahexaenoic Acid (DHA) is an extensively used nutrition supplement in dairy food because of its beneficial effects on cognition. To find an effective DHA intervention for the synapses in the cortex during this period, this study aimed to use targeted lipidomics to evaluate the lipid composition of prefrontal-cortex (PFC) tissue in different DHA interference methods. METHODS Analyzed samples were taken from interfering feeding Bama pigs (BPs) (3 months) fed with soybean oil (Group B), blended oil (Group M), naturally DHA-supplemented milk with blended oil (Group OM), and DHA from fish oil (FO) with blended oil (Group Y). We also examined the protein expression levels of BDNF, GAP43, and MBP. RESULTS The lipidomics analysis identified 80 different related negative-ion lipid content and filtered the biomarker lipids in PFC tissue. We observed significant lipid composition changes between group Y and other groups, especially for content levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM). The same observations were made from mRNA and protein expressions related to lipid transportation, phosphatidylserine (PS) synthetase, and synaptic plasticity in PFC tissues between group Y and other groups, including the mRNA expression levels of CD36, BDNF, and PTDSS1. The analysis of protein expression levels showed that the metabolism mode of DHA intervention from FO benefited the PFC, PS metabolism, and PFC synaptic plasticity of infants. CONCLUSIONS The results highlight further prospects for the DHA intervention mode, which provides new routes for other studies on polyunsaturated-fatty-acid (PUFA) interference for infants.
Collapse
Affiliation(s)
- Zude He
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.H.); (Y.Z.)
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.X.); (Y.Y.); (B.L.); (Y.L.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yue Yang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.X.); (Y.Y.); (B.L.); (Y.L.)
| | - Yifan Zhang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.H.); (Y.Z.)
| | - Boying Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.X.); (Y.Y.); (B.L.); (Y.L.)
| | - Fuqing Wang
- Tibet Tianhong Science and Technology Co., Ltd., Lhasa 850000, China;
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.X.); (Y.Y.); (B.L.); (Y.L.)
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.X.); (Y.Y.); (B.L.); (Y.L.)
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.X.); (Y.Y.); (B.L.); (Y.L.)
| |
Collapse
|
17
|
Shuster AE, Morehouse A, McDevitt EA, Chen PC, Whitehurst LN, Zhang J, Sattari N, Uzoigwe T, Ekhlasi A, Cai D, Simon K, Niethard N, Mednick SC. REM refines and rescues memory representations: a new theory. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2025; 6:zpaf004. [PMID: 40161405 PMCID: PMC11954447 DOI: 10.1093/sleepadvances/zpaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/24/2024] [Indexed: 04/02/2025]
Abstract
Despite extensive evidence on the roles of nonrapid eye movement (NREM) and REM sleep in memory processing, a comprehensive model that integrates their complementary functions remains elusive due to a lack of mechanistic understanding of REM's role in offline memory processing. We present the REM Refining and Rescuing (RnR) Hypothesis, which posits that the principal function of REM sleep is to increase the signal-to-noise ratio within and across memory representations. As such, REM sleep selectively enhances essential nodes within a memory representation while inhibiting the majority (Refine). Additionally, REM sleep modulates weak and strong memory representations so they fall within a similar range of recallability (Rescue). Across multiple NREM-REM cycles, tuning functions of individual memory traces get sharpened, allowing for integration of shared features across representations. We hypothesize that REM sleep's unique cellular, neuromodulatory, and electrophysiological milieu, marked by greater inhibition and a mixed autonomic state of both sympathetic and parasympathetic activity, underpins these processes. The RnR Hypothesis offers a unified framework that explains diverse behavioral and neural outcomes associated with REM sleep, paving the way for future research and a more comprehensive model of sleep-dependent cognitive functions.
Collapse
Affiliation(s)
- Alessandra E Shuster
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Allison Morehouse
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | | | - Pin-Chun Chen
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | | | - Jing Zhang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Negin Sattari
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Tracy Uzoigwe
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Ali Ekhlasi
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Denise Cai
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine Simon
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Pulmonology Department, Children’s Hospital of Orange County, Orange, CA, USA
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
18
|
Zhang Y, Bai L, Wang X, Zhao Y, Zhang T, Ye L, Du X, Zhang Z, Du J, Wang K. Super-resolution imaging of fast morphological dynamics of neurons in behaving animals. Nat Methods 2025; 22:177-186. [PMID: 39578627 DOI: 10.1038/s41592-024-02535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
Neurons are best studied in their native states in which their functional and morphological dynamics support animals' natural behaviors. Super-resolution microscopy can potentially reveal these dynamics in higher details but has been challenging in behaving animals due to severe motion artifacts. Here we report multiplexed, line-scanning, structured illumination microscopy, which can tolerate motion of up to 50 μm s-1 while achieving 150-nm and 100-nm lateral resolutions in its linear and nonlinear forms, respectively. We continuously imaged the dynamics of spinules in dendritic spines and axonal boutons volumetrically over thousands of frames and tens of minutes in head-fixed mouse brains during sleep-wake cycles. Super-resolution imaging of axonal boutons revealed spinule dynamics on a scale of seconds. Simultaneous two-color imaging further enabled analyses of the spatial distributions of diverse PSD-95 clusters and opened up possibilities to study their correlations with the structural dynamics of dendrites in the brains of head-fixed awake mice.
Collapse
Affiliation(s)
- Yujie Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Bai
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuchen Zhao
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianlei Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lichen Ye
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xufei Du
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiulin Du
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kai Wang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
19
|
Embang JEG, Tan YHV, Ng YX, Loyola GJP, Wong LW, Guo Y, Dong Y. Role of sleep and neurochemical biomarkers in synaptic plasticity related to neurological and psychiatric disorders: A scoping review. J Neurochem 2025; 169:e16270. [PMID: 39676063 DOI: 10.1111/jnc.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 12/17/2024]
Abstract
Sleep is vital for maintaining physical and mental well-being, impacting cognitive functions like memory and learning through neuroplasticity. Sleep disturbances prevalent in neurological and psychiatric disorders exacerbate cognitive decline, imposing societal burdens. Exploring the relationship between sleep and neuroplasticity elucidates the mechanisms influencing cognition, particularly amidst the prevalent sleep disturbances in these clinical populations. While existing reviews provide valuable insights, gaps remain in understanding the neurophysiological mechanisms underlying sleep and cognitive function. This scoping review aims to investigate the characteristic patterns of sleep parameters and neurochemical biomarkers in reflecting neuroplasticity changes related to neurological and psychiatric disorders and to explore how these markers interact and influence cognition at the molecular level. Studies involving adults and older adults were included, excluding animal models and the paediatric population. Selected studies explored the relationship between sleep parameter or neurochemical biomarker changes and cognitive impairment, reflecting underlying neuroplasticity changes. Peer-reviewed articles, clinical trials, theses, and dissertations in English were included while excluding secondary research and non-peer-reviewed sources. A three-step search strategy was executed following the updated Joanna Briggs Institute methodology for scoping reviews. Published studies were retrieved from nine databases, grey literature, expert recommendations, and hand-searching of the included studies' bibliography. A basic qualitative content synthesis of 34 studies was conducted per JBI's scoping review guidance. Slow-wave and Rapid-Eye Movement sleep, sleep spindles, sleep cycle disruption, K-Complex(KC) density, Hippocampal sEEG, BDNF, IL-6, iNOS mRNA expression, plasma serotonin, CSF Aβ-42, t-tau and p-tau proteins, and serum cortisol revealed associations with cognitive dysfunction. Examining the relationship between sleep parameters, neurochemical biomarkers, and cognitive function reveals neuronal mechanisms that guide potential therapeutic interventions and enhance quality patient care.
Collapse
Affiliation(s)
- Johann Emilio Gonzales Embang
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Division of Nursing, National University Hospital, Singapore City, Singapore
- National University Health System, Singapore City, Singapore
| | - Ying Hui Valerie Tan
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Division of Nursing, National University Hospital, Singapore City, Singapore
- National University Health System, Singapore City, Singapore
| | - Yu Xuan Ng
- National University Health System, Singapore City, Singapore
- Division of Nursing, Alexandra Hospital, Singapore City, Singapore
| | - Gerard Jude Ponce Loyola
- College of Medicine, University of the Philippines, Manila, Philippines
- Philippine General Hospital, Manila, Philippines
| | - Lik-Wei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yuqing Guo
- Sue & Bill Gross School of Nursing, University of California, Irvine, California, USA
| | - Yanhong Dong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
20
|
Crowley R, Alderman E, Javadi AH, Tamminen J. A systematic and meta-analytic review of the impact of sleep restriction on memory formation. Neurosci Biobehav Rev 2024; 167:105929. [PMID: 39427809 DOI: 10.1016/j.neubiorev.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Modern life causes a quarter of adults and half of teenagers to sleep for less than is recommended (Kocevska et al., 2021). Given well-documented benefits of sleep on memory, we must understand the cognitive costs of short sleep. We analysed 125 sleep restriction effect sizes from 39 reports involving 1234 participants. Restricting sleep (3-6.5 hours) compared to normal sleep (7-11 hours) negatively affects memory formation with a small effect size (Hedges' g = 0.29, 95 % CI = [0.13, 0.44]). We detected no evidence for publication bias. When sleep restriction effect sizes were compared with 185 sleep deprivation effect sizes (Newbury et al., 2021) no statistically significant difference was found, suggesting that missing some sleep has similar consequences for memory as not sleeping at all. When the analysis was restricted to post-encoding, rather than pre-encoding, sleep loss, sleep deprivation was associated with larger memory impairment than restriction. Our findings are best accounted for by the sequential hypothesis which emphasises complementary roles of slow-wave sleep and REM sleep for memory.
Collapse
Affiliation(s)
- Rebecca Crowley
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | - Eleanor Alderman
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | | | - Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| |
Collapse
|
21
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
22
|
Gay SM, Chartampila E, Lord JS, Grizzard S, Maisashvili T, Ye M, Barker NK, Mordant AL, Mills CA, Herring LE, Diering GH. Developing forebrain synapses are uniquely vulnerable to sleep loss. Proc Natl Acad Sci U S A 2024; 121:e2407533121. [PMID: 39441640 PMCID: PMC11536182 DOI: 10.1073/pnas.2407533121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Sleep is an essential behavior that supports lifelong brain health and cognition. Neuronal synapses are a major target for restorative sleep function and a locus of dysfunction in response to sleep deprivation (SD). Synapse density is highly dynamic during development, becoming stabilized with maturation to adulthood, suggesting sleep exerts distinct synaptic functions between development and adulthood. Importantly, problems with sleep are common in neurodevelopmental disorders including autism spectrum disorder (ASD). Moreover, early life sleep disruption in animal models causes long-lasting changes in adult behavior. Divergent plasticity engaged during sleep necessarily implies that developing and adult synapses will show differential vulnerability to SD. To investigate distinct sleep functions and mechanisms of vulnerability to SD across development, we systematically examined the behavioral and molecular responses to acute SD between juvenile (P21 to P28), adolescent (P42 to P49), and adult (P70 to P100) mice of both sexes. Compared to adults, juveniles lack robust adaptations to SD, precipitating cognitive deficits in the novel object recognition task. Subcellular fractionation, combined with proteome and phosphoproteome analysis revealed the developing synapse is profoundly vulnerable to SD, whereas adults exhibit comparative resilience. SD in juveniles, and not older mice, aberrantly drives induction of synapse potentiation, synaptogenesis, and expression of perineuronal nets. Our analysis further reveals the developing synapse as a putative node of convergence between vulnerability to SD and ASD genetic risk. Together, our systematic analysis supports a distinct developmental function of sleep and reveals how sleep disruption impacts key aspects of brain development, providing insights for ASD susceptibility.
Collapse
Affiliation(s)
- Sean M. Gay
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Elissavet Chartampila
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Julia S. Lord
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Sawyer Grizzard
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Tekla Maisashvili
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Michael Ye
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Natalie K. Barker
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Angie L. Mordant
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - C. Allie Mills
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Laura E. Herring
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Graham H. Diering
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Carolina Institute for Developmental Disabilities, Carrboro, NC27510
| |
Collapse
|
23
|
Chartampila E, Diering GH. Sleep now little one, remember why when you grow up. Sleep 2024; 47:zsae191. [PMID: 39140481 DOI: 10.1093/sleep/zsae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Elissavet Chartampila
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Graham Hugh Diering
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities Chapel Hill, NC, USA
| |
Collapse
|
24
|
He T, Xu C, Hu W, Zhang Z, Zhou Z, Cui X, Tang Y, Dong X. Research progress on the main brain network mechanisms of sleep disorders in autism spectrum disorder. CURRENT PSYCHOLOGY 2024; 43:31674-31685. [DOI: 10.1007/s12144-024-06711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 01/03/2025]
|
25
|
Zhang R, Zheng X, Zhang L, Xu Y, Lin X, Wang X, Wu C, Jiang F, Wang J. LANMAO sleep recorder versus polysomnography in neonatal EEG recording and sleep analysis. J Neurosci Methods 2024; 410:110222. [PMID: 39038718 DOI: 10.1016/j.jneumeth.2024.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND The field of neonatal sleep analysis is burgeoning with devices that purport to offer alternatives to polysomnography (PSG) for monitoring sleep patterns. However, the majority of these devices are limited in their capacity, typically only distinguishing between sleep and wakefulness. This study aims to assess the efficacy of a novel wearable electroencephalographic (EEG) device, the LANMAO Sleep Recorder, in capturing EEG data and analyzing sleep stages, and to compare its performance against the established PSG standard. METHODS The study involved concurrent sleep monitoring of 34 neonates using both PSG and the LANMAO device. Initially, the study verified the consistency of raw EEG signals captured by the LANMAO device, employing relative spectral power analysis and Pearson correlation coefficients (PCC) for validation. Subsequently, the LANMAO device's integrated automated sleep staging algorithm was evaluated by comparing its output with expert-generated sleep stage classifications. RESULTS Analysis revealed that the PCC between the relative spectral powers of various frequency bands during different sleep stages ranged from 0.28 to 0.48. Specifically, the correlation for delta waves was recorded at 0.28. The automated sleep staging algorithm of the LANMAO device demonstrated an overall accuracy of 79.60 %, Cohen kappa of 0.65, and F1 Score of 76.93 %. Individual accuracy for Wake at 87.20 %, NREM at 85.70 %, and REM Sleep at 81.30 %. CONCLUSION While the LANMAO Sleep Recorder's automated sleep staging algorithm necessitates further refinement, the device shows promise in accurately recording neonatal EEG during sleep. Its potential for minimal invasiveness makes it an appealing option for monitoring sleep conditions in newborns, suggesting a novel approach in the field of neonatal sleep analysis.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xin Zheng
- Department of Data and Algorithms, Department of Software Development, Shanghai Quanlan Technology Co., Ltd, China
| | - Lu Zhang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yan Xu
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical-Center, Shanghai, China
| | - Xinao Lin
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xuefeng Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Jimei Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Liu L, Luo L, Wei JA, Xu X, So KF, Zhang L. Treadmill Exercise Reshapes Cortical Astrocytic and Neuronal Activity to Improve Motor Learning Deficits Under Chronic Alcohol Exposure. Neurosci Bull 2024; 40:1287-1298. [PMID: 38807019 PMCID: PMC11365901 DOI: 10.1007/s12264-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 05/30/2024] Open
Abstract
Alcohol abuse induces various neurological disorders including motor learning deficits, possibly by affecting neuronal and astrocytic activity. Physical exercise is one effective approach to remediate synaptic loss and motor deficits as shown by our previous works. In this study, we unrevealed the role of exercise training in the recovery of cortical neuronal and astrocytic functions. Using a chronic alcohol injection mouse model, we found the hyperreactivity of astrocytes along with dendritic spine loss plus lower neuronal activity in the primary motor cortex. Persistent treadmill exercise training, on the other hand, improved neural spine formation and inhibited reactive astrocytes, alleviating motor learning deficits induced by alcohol exposure. These data collectively support the potency of endurance exercise in the rehabilitation of motor functions under alcohol abuse.
Collapse
Affiliation(s)
- Linglin Liu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Lanzhi Luo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Ji-An Wei
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xintong Xu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
27
|
Kim DY, Kim SM, Han IO. Chronic rapid eye movement sleep deprivation aggravates the pathogenesis of Alzheimer's disease by decreasing brain O-GlcNAc cycling in mice. J Neuroinflammation 2024; 21:180. [PMID: 39044290 PMCID: PMC11264383 DOI: 10.1186/s12974-024-03179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
This study investigated the role of O-GlcNAc cycling in Alzheimer's disease-related changes in brain pathophysiology induced by chronic REM sleep deprivation (CSD) in mice. CSD increased amyloid beta (Aβ) and p-Tau accumulation and impaired learning and memory (L/M) function. CSD decreased dendritic length and spine density. CSD also increased the intensity of postsynaptic density protein-95 (PSD-95) staining. All of these Alzheimer's disease (AD) pathogenic changes were effectively reversed through glucosamine (GlcN) treatment by enhancing O-GlcNAcylation. Interestingly, the lelvel of O-GlcNAcylated-Tau (O-Tau) exhibited an opposite trend compared to p-Tau, as it was elevated by CSD and suppressed by GlcN treatment. CSD increased neuroinflammation, as indicated by elevated levels of glial fibrillary acidic protein and IBA-1-positive glial cells in the brain, which were suppressed by GlcN treatment. CSD promoted the phosphorylation of GSK3β and led to an upregulation in the expression of endoplasmic reticulum (ER) stress regulatory proteins and genes. These alterations were effectively suppressed by GlcN treatment. Minocycline not only suppressed neuroinflammation induced by CSD, but it also rescued the decrease in O-GlcNAc levels caused by CSD. Minocycline also reduced AD neuropathy without affecting CSD-induced ER stress. Notably, overexpressing O-GlcNAc transferase in the dentate gyrus region of the mouse brain rescued CSD-induced cognitive dysfunction, neuropathy, neuroinflammation, and ER stress responses. Collectively, our findings reveal that dysregulation of O-GlcNAc cycling underlies CSD-induced AD pathology and demonstrate that restoration of OGlcNAcylation protects against CSD-induced neurodegeneration.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Sang-Min Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
28
|
Zhang R, Dong X, Zhang L, Lin X, Wang X, Xu Y, Wu C, Jiang F, Wang J. Quantitative Electroencephalography in Term Neonates During the Early Postnatal Period Across Various Sleep States. Nat Sci Sleep 2024; 16:1011-1025. [PMID: 39071545 PMCID: PMC11282454 DOI: 10.2147/nss.s472595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Background Neonatal sleep is pivotal for their growth and development, yet manual interpretation of raw images is time-consuming and labor-intensive. Quantitative Electroencephalography (QEEG) presents significant advantages in terms of objectivity and convenience for investigating neonatal sleep patterns. However, research on the sleep patterns of healthy neonates remains scarce. This study aims to identify QEEG markers that distinguish between different neonatal sleep cycles and analyze QEEG alterations across various sleep stages in relation to postmenstrual age. Methods From September 2023 to February 2024, full-term neonates admitted to the neonatology department at the Obstetrics and Gynecology Hospital of Fudan University were enrolled in this study. Electroencephalographic (EEG) recordings were obtained from neonates aged 37-42 weeks, within 1-7 days post-birth. The ROC curve was employed to evaluate QEEG features related to amplitude, range EEG (rEEG), spectral density, and connectivity across different sleep stages. Furthermore, regression analyses were performed to investigate the association between these QEEG characteristics and postmenstrual age. Results The alpha frequency band's spectral_diff_F3 emerged as the most potent discriminator between active sleep (AS) and quiet sleep (QS). In distinguishing AS from wakefulness (W), the theta frequency's spectral_diff_C4 was the most effective, whereas the delta frequency's spectral_diff_P4 excelled in differentiating QS from W. During AS and QS phases, there was a notable increase in entropy within the delta frequency band across all monitored brain regions and in the spectral relative power within the theta frequency band, correlating with postmenstrual age (PMA). Conclusion Spectral difference showcases the highest discriminative capability across awake and various sleep states. The observed patterns of neonatal QEEG alterations in relation to PMA are consistent with the maturation of neonatal sleep, offering insights into the prediction and evaluation of brain development outcomes.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xinran Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Lu Zhang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xinao Lin
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xuefeng Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yan Xu
- Department of Neurology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, People’s Republic of China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jimei Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
29
|
Tekin M, Shen H, Smith SS. Sex differences in motor learning flexibility are accompanied by sex differences in mushroom spine pruning of the mouse primary motor cortex during adolescence. Front Neurosci 2024; 18:1420309. [PMID: 39040633 PMCID: PMC11262054 DOI: 10.3389/fnins.2024.1420309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background Although males excel at motor tasks requiring strength, females exhibit greater motor learning flexibility. Cognitive flexibility is associated with low baseline mushroom spine densities achieved by pruning which can be triggered by α4βδ GABAA receptors (GABARs); defective synaptic pruning impairs this process. Methods We investigated sex differences in adolescent pruning of mushroom spine pruning of layer 5 pyramidal cells of primary motor cortex (L5M1), a site essential for motor learning, using microscopic evaluation of Golgi stained sections. We assessed α4GABAR expression using immunohistochemical and electrophysiological techniques (whole cell patch clamp responses to 100 nM gaboxadol, selective for α4βδ GABARs). We then compared performance of groups with different post-pubertal mushroom spine densities on motor learning (constant speed) and learning flexibility (accelerating speed following constant speed) rotarod tasks. Results Mushroom spines in proximal L5M1 of female mice decreased >60% from PND35 (puberty onset) to PND56 (Pubertal: 2.23 ± 0.21 spines/10 μm; post-pubertal: 0.81 ± 0.14 spines/10 μm, P < 0.001); male mushroom spine density was unchanged. This was due to greater α4βδ GABAR expression in the female (P < 0.0001) because α4 -/- mice did not exhibit mushroom spine pruning. Although motor learning was similar for all groups, only female wild-type mice (low mushroom spine density) learned the accelerating rotarod task after the constant speed task (P = 0.006), a measure of motor learning flexibility. Conclusions These results suggest that optimal motor learning flexibility of female mice is associated with low baseline levels of post-pubertal mushroom spine density in L5M1 compared to male and female α4 -/- mice.
Collapse
Affiliation(s)
- Michael Tekin
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Sheryl S. Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
30
|
Nwabudike I, Che A. Early-life maturation of the somatosensory cortex: sensory experience and beyond. Front Neural Circuits 2024; 18:1430783. [PMID: 39040685 PMCID: PMC11260818 DOI: 10.3389/fncir.2024.1430783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Early life experiences shape physical and behavioral outcomes throughout lifetime. Sensory circuits are especially susceptible to environmental and physiological changes during development. However, the impact of different types of early life experience are often evaluated in isolation. In this mini review, we discuss the specific effects of postnatal sensory experience, sleep, social isolation, and substance exposure on barrel cortex development. Considering these concurrent factors will improve understanding of the etiology of atypical sensory perception in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ijeoma Nwabudike
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
31
|
Di T, Zhang L, Meng S, Liu W, Guo Y, Zheng E, Xie C, Xiang S, Jia T, Lu L, Sun Y, Shi J. The impact of REM sleep loss on human brain connectivity. Transl Psychiatry 2024; 14:270. [PMID: 38956035 PMCID: PMC11219886 DOI: 10.1038/s41398-024-02985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
Brain function is vulnerable to the consequences of inadequate sleep, an adverse trend that is increasingly prevalent. The REM sleep phase has been implicated in coordinating various brain structures and is hypothesized to have potential links to brain variability. However, traditional imaging research have encountered challenges in attributing specific brain region activity to REM sleep, remained understudied at the whole-brain connectivity level. Through the spilt-night paradigm, distinct patterns of REM sleep phases were observed among the full-night sleep group (n = 36), the early-night deprivation group (n = 41), and the late-night deprivation group (n = 36). We employed connectome-based predictive modeling (CPM) to delineate the effects of REM sleep deprivation on the functional connectivity of the brain (REM connectome) during its resting state. The REM sleep-brain connectome was characterized by stronger connectivity within the default mode network (DMN) and between the DMN and visual networks, while fewer predictive edges were observed. Notably, connections such as those between the cingulo-opercular network (CON) and the auditory network, as well as between the subcortex and visual networks, also made significant contributions. These findings elucidate the neural signatures of REM sleep loss and reveal common connectivity patterns across individuals, validated at the group level.
Collapse
Affiliation(s)
- Tianqi Di
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Libo Zhang
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Shiqiu Meng
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Wangyue Liu
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Yang Guo
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Enyu Zheng
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Lin Lu
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Yan Sun
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
| | - Jie Shi
- Department of Pharmacology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, 100191, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453000, China.
| |
Collapse
|
32
|
Pinto MJ, Bizien L, Fabre JM, Ðukanović N, Lepetz V, Henderson F, Pujol M, Sala RW, Tarpin T, Popa D, Triller A, Léna C, Fabre V, Bessis A. Microglial TNFα controls daily changes in synaptic GABAARs and sleep slow waves. J Cell Biol 2024; 223:e202401041. [PMID: 38695719 PMCID: PMC11070559 DOI: 10.1083/jcb.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.
Collapse
Affiliation(s)
- Maria Joana Pinto
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Lucy Bizien
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Julie M.J. Fabre
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Nina Ðukanović
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Valentin Lepetz
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fiona Henderson
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Marine Pujol
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Romain W. Sala
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Thibault Tarpin
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Daniela Popa
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Antoine Triller
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Clément Léna
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Véronique Fabre
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Alain Bessis
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
33
|
Martínez-Magaña CJ, Muñoz-Castillo PA, Murbartián J. Spinal bestrophin-1 and anoctamin-1 channels have a pronociceptive role in the tactile allodynia induced by REM sleep deprivation in rats. Brain Res 2024; 1834:148915. [PMID: 38582414 DOI: 10.1016/j.brainres.2024.148915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.
Collapse
Affiliation(s)
| | | | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Sede sur, Mexico City, Mexico.
| |
Collapse
|
34
|
Goel P, Goel A. Exploring the Evolution of Sleep Patterns From Infancy to Adolescence. Cureus 2024; 16:e64759. [PMID: 39156264 PMCID: PMC11329291 DOI: 10.7759/cureus.64759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Sleep is a critical component of healthy development, particularly during the formative years from infancy through adolescence. Sleep undergoes continuous change throughout life characterized by frequent awakenings and a high proportion of rapid eye movement (REM) sleep during infancy, changes in sleep architecture, an increase in non-rapid eye movement (NREM) sleep during adolescence, and an eventual decrease in REM sleep in old age. Adequate sleep is therefore essential for cognitive development, especially between ages 10 and 16. Sleep deprivation may negatively affect academic performance, attention regulation, and emotional well-being. Biological factors, such as hormonal changes during puberty, significantly influence sleep patterns, leading to later bedtimes and a tendency for chronic sleep deprivation in adolescents. Environmental factors, including light exposure and screen time, also play a critical role in regulating sleep. This paper examines the evolution of sleep patterns across infancy and adolescence, describing changes in sleep architecture, timing, and regulation. The influence of biological, environmental, and socio-cultural factors on sleep is explored, highlighting how these factors collectively shape sleep behaviors and health outcomes. It also addresses the profound role sleep plays in cognitive development, brain maturation, and emotional well-being. The importance of understanding sleep patterns and their developmental trajectories to address sleep-related issues is emphasized. Promoting healthy sleep from an early age can enhance cognitive and emotional outcomes, contributing to better academic performance and overall well-being in children and adolescents. The findings advocate for further standardized sleep intervention programs globally to prioritize sleep health and support optimal development.
Collapse
|
35
|
da Silva NC, Giacheti CM, do Couto MCH, de Jesus SS, Ribeiro EM, Verçosa IMC, Pinato L. Association between Sleep and Language Development in Children with Congenital Zika Syndrome. Viruses 2024; 16:1003. [PMID: 39066166 PMCID: PMC11281447 DOI: 10.3390/v16071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
AIM Congenital Zika Virus Syndrome (CZS) presents notable hurdles to neurodevelopment, with language development emerging as a crucial aspect. This study investigates sleep patterns and language skills in children with CZS, aiming to explore the potential synchronization of sleep development with their neurodevelopment. METHOD We studied cross-sectionally 135 children with CZS aged 0 to 48 months, investigating sleep using the BISQ Questionnaire. Language development was assessed using the Early Language Milestone Scale, while motor development and cognitive and social ability were assessed using the Bayley Scales of Infant and Young Child Development 3rd edition. We also studied longitudinally a cohort of 16 children (initially aged 0 to 12 months) whom we followed for four years, assessing at one-year intervals. RESULTS Sleep disturbances and language deficits were highly frequent in this population. In the 0-12 months group, a late bedtime and frequent nighttime awakenings were associated with poorer auditory expressive skills. At 13-24 months, nighttime awakenings were associated with poorer auditory expressive skills, while among 25-36-month-olds decreased auditory receptive skills were associated with longer sleep onset latency and reduced nighttime sleep duration. CONCLUSION The brain alterations caused by Zika virus infection affect both sleep disturbances and delays in language development. It is possible that sleep disturbance may be a mediating factor in the pathway between CZS and delayed language development, as the three analyzed language skills showed a correlation with sleep parameters.
Collapse
Affiliation(s)
- Nathani C. da Silva
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marília 17525-900, Brazil; (N.C.d.S.); (C.M.G.); (M.C.H.d.C.); (S.S.d.J.)
| | - Celia M. Giacheti
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marília 17525-900, Brazil; (N.C.d.S.); (C.M.G.); (M.C.H.d.C.); (S.S.d.J.)
| | - Maria C. H. do Couto
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marília 17525-900, Brazil; (N.C.d.S.); (C.M.G.); (M.C.H.d.C.); (S.S.d.J.)
| | - Stefany S. de Jesus
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marília 17525-900, Brazil; (N.C.d.S.); (C.M.G.); (M.C.H.d.C.); (S.S.d.J.)
| | | | - Islane M. C. Verçosa
- Center for Perfecting Sight See Hope Reviver (CAVIVER), Fortaleza 60110-370, Brazil;
| | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marília 17525-900, Brazil; (N.C.d.S.); (C.M.G.); (M.C.H.d.C.); (S.S.d.J.)
| |
Collapse
|
36
|
Tamaki M, Yamada T, Barnes-Diana T, Wang Z, Watanabe T, Sasaki Y. First-night effect reduces the beneficial effects of sleep on visual plasticity and modifies the underlying neurochemical processes. Sci Rep 2024; 14:14388. [PMID: 38909129 PMCID: PMC11193735 DOI: 10.1038/s41598-024-64091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024] Open
Abstract
Individuals experience difficulty falling asleep in a new environment, termed the first night effect (FNE). However, the impact of the FNE on sleep-induced brain plasticity remains unclear. Here, using a within-subject design, we found that the FNE significantly reduces visual plasticity during sleep in young adults. Sleep-onset latency (SOL), an indicator of the FNE, was significantly longer during the first sleep session than the second session, confirming the FNE. We assessed performance gains in visual perceptual learning after sleep and increases in the excitatory-to-inhibitory neurotransmitter (E/I) ratio in early visual areas during sleep using magnetic resonance spectroscopy and polysomnography. These parameters were significantly smaller in sleep with the FNE than in sleep without the FNE; however, these parameters were not correlated with SOL. These results suggest that while the neural mechanisms of the FNE and brain plasticity are independent, sleep disturbances temporarily block the neurochemical process fundamental for brain plasticity.
Collapse
Affiliation(s)
- Masako Tamaki
- Cognitive Somnology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Saitama, 351-0106, Japan
- RIKEN Center for Brain Science, Saitama, 351-0106, Japan
| | - Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Tyler Barnes-Diana
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Zhiyan Wang
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA.
| |
Collapse
|
37
|
Shuster AE, Chen PC, Niknazar H, McDevitt EA, Lopour B, Mednick SC. Novel Electrophysiological Signatures of Learning and Forgetting in Human Rapid Eye Movement Sleep. J Neurosci 2024; 44:e1517232024. [PMID: 38670803 PMCID: PMC11170679 DOI: 10.1523/jneurosci.1517-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Despite the known behavioral benefits of rapid eye movement (REM) sleep, discrete neural oscillatory events in human scalp electroencephalography (EEG) linked with behavior have not been discovered. This knowledge gap hinders mechanistic understanding of the function of sleep, as well as the development of biophysical models and REM-based causal interventions. We designed a detection algorithm to identify bursts of activity in high-density, scalp EEG within theta (4-8 Hz) and alpha (8-13 Hz) bands during REM sleep. Across 38 nights of sleep, we characterized the burst events (i.e., count, duration, density, peak frequency, amplitude) in healthy, young male and female human participants (38; 21F) and investigated burst activity in relation to sleep-dependent memory tasks: hippocampal-dependent episodic verbal memory and nonhippocampal visual perceptual learning. We found greater burst count during the more REM-intensive second half of the night (p < 0.05), longer burst duration during the first half of the night (p < 0.05), but no differences across the night in density or power (p > 0.05). Moreover, increased alpha burst power was associated with increased overnight forgetting for episodic memory (p < 0.05). Furthermore, we show that increased REM theta burst activity in retinotopically specific regions was associated with better visual perceptual performance. Our work provides a critical bridge between discrete REM sleep events in human scalp EEG that support cognitive processes and the identification of similar activity patterns in animal models that allow for further mechanistic characterization.
Collapse
Affiliation(s)
| | - Pin-Chun Chen
- University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hamid Niknazar
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| | | | - Beth Lopour
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| | - Sara C Mednick
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| |
Collapse
|
38
|
Lui KK, Dave A, Sprecher KE, Chappel-Farley MG, Riedner BA, Heston MB, Taylor CE, Carlsson CM, Okonkwo OC, Asthana S, Johnson SC, Bendlin BB, Mander BA, Benca RM. Older adults at greater risk for Alzheimer's disease show stronger associations between sleep apnea severity in REM sleep and verbal memory. Alzheimers Res Ther 2024; 16:102. [PMID: 38725033 PMCID: PMC11080222 DOI: 10.1186/s13195-024-01446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/01/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) increases risk for cognitive decline and Alzheimer's disease (AD). While the underlying mechanisms remain unclear, hypoxemia during OSA has been implicated in cognitive impairment. OSA during rapid eye movement (REM) sleep is usually more severe than in non-rapid eye movement (NREM) sleep, but the relative effect of oxyhemoglobin desaturation during REM versus NREM sleep on memory is not completely characterized. Here, we examined the impact of OSA, as well as the moderating effects of AD risk factors, on verbal memory in a sample of middle-aged and older adults with heightened AD risk. METHODS Eighty-one adults (mean age:61.7 ± 6.0 years, 62% females, 32% apolipoprotein E ε4 allele (APOE4) carriers, and 70% with parental history of AD) underwent clinical polysomnography including assessment of OSA. OSA features were derived in total, NREM, and REM sleep. REM-NREM ratios of OSA features were also calculated. Verbal memory was assessed with the Rey Auditory Verbal Learning Test (RAVLT). Multiple regression models evaluated the relationships between OSA features and RAVLT scores while adjusting for sex, age, time between assessments, education years, body mass index (BMI), and APOE4 status or parental history of AD. The significant main effects of OSA features on RAVLT performance and the moderating effects of AD risk factors (i.e., sex, age, APOE4 status, and parental history of AD) were examined. RESULTS Apnea-hypopnea index (AHI), respiratory disturbance index (RDI), and oxyhemoglobin desaturation index (ODI) during REM sleep were negatively associated with RAVLT total learning and long-delay recall. Further, greater REM-NREM ratios of AHI, RDI, and ODI (i.e., more events in REM than NREM) were related to worse total learning and recall. We found specifically that the negative association between REM ODI and total learning was driven by adults 60 + years old. In addition, the negative relationships between REM-NREM ODI ratio and total learning, and REM-NREM RDI ratio and long-delay recall were driven by APOE4 carriers. CONCLUSION Greater OSA severity, particularly during REM sleep, negatively affects verbal memory, especially for people with greater AD risk. These findings underscore the potential importance of proactive screening and treatment of REM OSA even if overall AHI appears low.
Collapse
Affiliation(s)
- Kitty K Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Abhishek Dave
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
| | - Kate E Sprecher
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Miranda G Chappel-Farley
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Brady A Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Margo B Heston
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Chase E Taylor
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Cynthia M Carlsson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Ozioma C Okonkwo
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Sterling C Johnson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA.
- Department of Cognitive Sciences, University of California, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
| | - Ruth M Benca
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA.
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
39
|
Weissenkampen JD, Ghorai A, Fasolino M, Gehringer B, Rajan M, Dow HC, Sebro R, Rader DJ, Keenan BT, Almasy L, Brodkin ES, Bucan M. Sleep and Activity Patterns in Autism Spectrum Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592263. [PMID: 38766266 PMCID: PMC11100584 DOI: 10.1101/2024.05.02.592263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Autism spectrum disorder (ASD) is a highly heritable and heterogeneous neurodevelopmental disorder characterized by impaired social interactions, repetitive behaviors, and a wide range of comorbidities. Between 44-83% of autistic individuals report sleep disturbances, which may share an underlying neurodevelopmental basis with ASD. Methods We recruited 382 ASD individuals and 223 of their family members to obtain quantitative ASD-related traits and wearable device-based accelerometer data spanning three consecutive weeks. An unbiased approach identifying traits associated with ASD was achieved by applying the elastic net machine learning algorithm with five-fold cross-validation on 6,878 days of data. The relationship between sleep and physical activity traits was examined through linear mixed-effects regressions using each night of data. Results This analysis yielded 59 out of 242 actimetry measures associated with ASD status in the training set, which were validated in a test set (AUC: 0.777). For several of these traits (e.g. total light physical activity), the day-to-day variability, in addition to the mean, was associated with ASD. Individuals with ASD were found to have a stronger correlation between physical activity and sleep, where less physical activity decreased their sleep more significantly than that of their non-ASD relatives. Conclusions The average duration of sleep/physical activity and the variation in the average duration of sleep/physical activity strongly predict ASD status. Physical activity measures were correlated with sleep quality, traits, and regularity, with ASD individuals having stronger correlations. Interventional studies are warranted to investigate whether improvements in both sleep and increased physical activity may improve the core symptoms of ASD.
Collapse
|
40
|
Zhou H, Bi GQ, Liu G. Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity. Nat Commun 2024; 15:3406. [PMID: 38649706 PMCID: PMC11035601 DOI: 10.1038/s41467-024-47571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Synapses at dendritic branches exhibit specific properties for information processing. However, how the synapses are orchestrated to dynamically modify their properties, thus optimizing information processing, remains elusive. Here, we observed at hippocampal dendritic branches diverse configurations of synaptic connectivity, two extremes of which are characterized by low transmission efficiency, high plasticity and coding capacity, or inversely. The former favors information encoding, pertinent to learning, while the latter prefers information storage, relevant to memory. Presynaptic intracellular Mg2+ crucially mediates the dynamic transition continuously between the two extreme configurations. Consequently, varying intracellular Mg2+ levels endow individual branches with diverse synaptic computations, thus modulating their ability to process information. Notably, elevating brain Mg2+ levels in aging animals restores synaptic configuration resembling that of young animals, coincident with improved learning and memory. These findings establish intracellular Mg2+ as a crucial factor reconfiguring synaptic connectivity at dendrites, thus optimizing their branch-specific properties in information processing.
Collapse
Affiliation(s)
- Hang Zhou
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China.
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Guo-Qiang Bi
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230031, China
| | - Guosong Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- NeuroCentria Inc., Walnut Creek, CA, 94596, USA.
| |
Collapse
|
41
|
Cowen MH, Raizen DM, Hart MP. Structural neuroplasticity after sleep loss modifies behavior and requires neurexin and neuroligin. iScience 2024; 27:109477. [PMID: 38551003 PMCID: PMC10973677 DOI: 10.1016/j.isci.2024.109477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 03/08/2024] [Indexed: 02/08/2025] Open
Abstract
Structural neuroplasticity (changes in the size, strength, number, and targets of synaptic connections) can be modified by sleep and sleep disruption. However, the causal relationships between genetic perturbations, sleep loss, neuroplasticity, and behavior remain unclear. The C. elegans GABAergic DVB neuron undergoes structural plasticity in adult males in response to adolescent stress, which rewires synaptic connections, alters behavior, and is dependent on conserved autism-associated genes NRXN1/nrx-1 and NLGN3/nlg-1. We find that four methods of sleep deprivation transiently induce DVB neurite extension in day 1 adults and increase the time to spicule protraction, which is the functional and behavioral output of the DVB neuron. Loss of nrx-1 and nlg-1 prevent DVB structural plasticity and behavioral changes at day 1 caused by adolescent sleep loss. Therefore, nrx-1 and nlg-1 mediate the morphologic and behavioral consequences of sleep loss, providing insight into the relationship between sleep, neuroplasticity, behavior, and neurologic disease.
Collapse
Affiliation(s)
- Mara H. Cowen
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M. Raizen
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael P. Hart
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Gay SM, Chartampila E, Lord JS, Grizzard S, Maisashvili T, Ye M, Barker NK, Mordant AL, Mills CA, Herring LE, Diering GH. Developing forebrain synapses are uniquely vulnerable to sleep loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565853. [PMID: 37986967 PMCID: PMC10659326 DOI: 10.1101/2023.11.06.565853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Sleep is an essential behavior that supports lifelong brain health and cognition. Neuronal synapses are a major target for restorative sleep function and a locus of dysfunction in response to sleep deprivation (SD). Synapse density is highly dynamic during development, becoming stabilized with maturation to adulthood, suggesting sleep exerts distinct synaptic functions between development and adulthood. Importantly, problems with sleep are common in neurodevelopmental disorders including autism spectrum disorder (ASD). Moreover, early life sleep disruption in animal models causes long lasting changes in adult behavior. Different plasticity engaged during sleep necessarily implies that developing and adult synapses will show differential vulnerability to SD. To investigate distinct sleep functions and mechanisms of vulnerability to SD across development, we systematically examined the behavioral and molecular responses to acute SD between juvenile (P21-28), adolescent (P42-49) and adult (P70-100) mice of both sexes. Compared to adults, juveniles lack robust adaptations to SD, precipitating cognitive deficits in the novel object recognition test. Subcellular fractionation, combined with proteome and phosphoproteome analysis revealed the developing synapse is profoundly vulnerable to SD, whereas adults exhibit comparative resilience. SD in juveniles, and not older mice, aberrantly drives induction of synapse potentiation, synaptogenesis, and expression of peri-neuronal nets. Our analysis further reveals the developing synapse as a convergent node between vulnerability to SD and ASD genetic risk. Together, our systematic analysis supports a distinct developmental function of sleep and reveals how sleep disruption impacts key aspects of brain development, providing mechanistic insights for ASD susceptibility.
Collapse
|
43
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
44
|
Cabrera Y, Koymans KJ, Poe GR, Kessels HW, Van Someren EJW, Wassing R. Overnight neuronal plasticity and adaptation to emotional distress. Nat Rev Neurosci 2024; 25:253-271. [PMID: 38443627 DOI: 10.1038/s41583-024-00799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Expressions such as 'sleep on it' refer to the resolution of distressing experiences across a night of sound sleep. Sleep is an active state during which the brain reorganizes the synaptic connections that form memories. This Perspective proposes a model of how sleep modifies emotional memory traces. Sleep-dependent reorganization occurs through neurophysiological events in neurochemical contexts that determine the fates of synapses to grow, to survive or to be pruned. We discuss how low levels of acetylcholine during non-rapid eye movement sleep and low levels of noradrenaline during rapid eye movement sleep provide a unique window of opportunity for plasticity in neuronal representations of emotional memories that resolves the associated distress. We integrate sleep-facilitated adaptation over three levels: experience and behaviour, neuronal circuits, and synaptic events. The model generates testable hypotheses for how failed sleep-dependent adaptation to emotional distress is key to mental disorders, notably disorders of anxiety, depression and post-traumatic stress with the common aetiology of insomnia.
Collapse
Affiliation(s)
- Yesenia Cabrera
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Karin J Koymans
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Gina R Poe
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Synaptic Plasticity and Behaviour, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology and Psychiatry, VU University, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam UMC, Amsterdam, Netherlands
| | - Rick Wassing
- Sleep and Circadian Research, Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia.
- School of Psychological Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
- Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
45
|
Luppi PH, Chancel A, Malcey J, Cabrera S, Fort P, Maciel RM. Which structure generates paradoxical (REM) sleep: The brainstem, the hypothalamus, the amygdala or the cortex? Sleep Med Rev 2024; 74:101907. [PMID: 38422648 DOI: 10.1016/j.smrv.2024.101907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France.
| | - Amarine Chancel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Renato M Maciel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| |
Collapse
|
46
|
Huang Y, Zhang X, Li W. Involvement of primary somatosensory cortex in motor learning and task execution. Neurosci Lett 2024; 828:137753. [PMID: 38554843 DOI: 10.1016/j.neulet.2024.137753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The primary somatosensory cortex (S1) is responsible for processing information related to tactile stimulation, motor learning and control. Despite its significance, the connection between S1 and the primary motor cortex (M1), as well as its role in motor learning, remains a topic of ongoing exploration. In the present study, we silenced S1 by the GABA receptor agonist muscimol to study the potential roles of S1 in motor learning and task execution. Our results show that the inhibition of S1 leads to an immediate impairment in performance during the training session and also a substantial reduction in performance improvement during post-test session on the subsequent day. To understand the underlying mechanism, we used intravital two-photon imaging to investigate the dynamics of dendritic spines of layer V pyramidal neurons and the calcium activities of pyramidal neurons in M1 after inhibition of S1. Notably, S1 inhibition reduces motor training-induced spine formation and facilitates the elimination of existing spines of layer V pyramidal neurons in M1. The calcium activities in M1 exhibit a significant decrease during both resting and running periods following S1 inhibition. Furthermore, inhibition of S1, but not M1, significantly impairs the execution of the acquired motor task in the well-trained animals. Together, these findings reveal that S1 plays important roles in motor learning and task execution.
Collapse
Affiliation(s)
- Yunxuan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyu Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
47
|
Spruyt K. Neurocognitive Effects of Sleep Disruption in Children and Adolescents. Psychiatr Clin North Am 2024; 47:27-45. [PMID: 38302211 DOI: 10.1016/j.psc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A main childhood task is learning. In this task, the role of sleep is increasingly demonstrated. Although most literature examining this role focuses on preadolescence and middle adolescence, some studies apply napping designs in preschoolers. Studies overall conclude that without proper sleep a child's cognitive abilities suffer, but questions on how and to what extent linger. Observational studies show the hazards of potential confounders such as an individual's resilience to poor sleep as well as developmental risk factors (eg, disorders, stressors). A better understanding of cognitive sleep neuroscience may have a big impact on pediatric sleep research and clinical applications.
Collapse
Affiliation(s)
- Karen Spruyt
- Université Paris Cité, INSERM - NeuroDiderot, Paris, France.
| |
Collapse
|
48
|
Navarrete M, Greco V, Rakowska M, Bellesi M, Lewis PA. Auditory stimulation during REM sleep modulates REM electrophysiology and cognitive performance. Commun Biol 2024; 7:193. [PMID: 38365955 PMCID: PMC10873307 DOI: 10.1038/s42003-024-05825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024] Open
Abstract
REM sleep is critical for memory, emotion, and cognition. Manipulating brain activity during REM could improve our understanding of its function and benefits. Earlier studies have suggested that auditory stimulation in REM might modulate REM time and reduce rapid eye movement density. Building on this, we studied the cognitive effects and electroencephalographic responses related to such stimulation. We used acoustic stimulation locked to eye movements during REM and compared two overnight conditions (stimulation and no-stimulation). We evaluated the impact of this stimulation on REM sleep duration and electrophysiology, as well as two REM-sensitive memory tasks: visual discrimination and mirror tracing. Our results show that this auditory stimulation in REM decreases the rapid eye movements that characterize REM sleep and improves performance on the visual task but is detrimental to the mirror tracing task. We also observed increased beta-band activity and decreased theta-band activity following stimulation. Interestingly, these spectral changes were associated with changes in behavioural performance. These results show that acoustic stimulation can modulate REM sleep and suggest that different memory processes underpin its divergent impacts on cognitive performance.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
- Psychology and Biobehavioral Sciences Department, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Viviana Greco
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Martyna Rakowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Michele Bellesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino (MC), Italy
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
49
|
Denis C, Jaussent I, Guiraud L, Mestejanot C, Arquizan C, Mourand I, Chenini S, Abril B, Wacongne A, Tamisier R, Baillieul S, Pepin JL, Barateau L, Dauvilliers Y. Functional recovery after ischemic stroke: Impact of different sleep health parameters. J Sleep Res 2024; 33:e13964. [PMID: 37338010 DOI: 10.1111/jsr.13964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Sleep disturbances after ischaemic stroke include alterations of sleep architecture, obstructive sleep apnea, restless legs syndrome, daytime sleepiness and insomnia. Our aim was to explore their impacts on functional outcomes at month 3 after stroke, and to assess the benefit of continuous positive airway pressure in patients with severe obstructive sleep apnea. Ninety patients with supra-tentorial ischaemic stroke underwent clinical screening for sleep disorders and polysomnography at day 15 ± 4 after stroke in a multisite study. Patients with severe obstructive apnea (apnea-hypopnea index ≥ 30 per hr) were randomized into two groups: continuous positive airway pressure-treated and sham (1:1 ratio). Functional independence was assessed with the Barthel Index at month 3 after stroke in function of apnea-hypopnea index severity and treatment group. Secondary objectives were disability (modified Rankin score) and National Institute of Health Stroke Scale according to apnea-hypopnea index. Sixty-one patients (71.8 years, 42.6% men) completed the study: 51 (83.6%) had obstructive apnea (21.3% severe apnea), 10 (16.7%) daytime sleepiness, 13 (24.1%) insomnia, 3 (5.7%) depression, and 20 (34.5%) restless legs syndrome. Barthel Index, modified Rankin score and Stroke Scale were similar at baseline and 3 months post-stroke in the different obstructive sleep apnea groups. Changes at 3 months in those three scores were similar in continuous positive airway pressure versus sham-continuous positive airway pressure patients. In patients with worse clinical outcomes at month 3, mean nocturnal oxygen saturation was lower whereas there was no association with apnea-hypopnea index. Poorer outcomes at 3 months were also associated with insomnia, restless legs syndrome, depressive symptoms, and decreased total sleep time and rapid eye movement sleep.
Collapse
Affiliation(s)
- Claire Denis
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
| | | | - Lily Guiraud
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
| | - Caroline Mestejanot
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
| | - Caroline Arquizan
- Stroke University, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
| | - Isabelle Mourand
- Stroke University, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
| | - Sofiène Chenini
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
- INM, University Montpellier, INSERM, Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Beatriz Abril
- Sleep University, Carémeau Hospital, CHU, Nîmes, France
| | - Anne Wacongne
- Neurology Department, Carémeau Hospital, CHU, Nîmes, France
| | - Renaud Tamisier
- University Grenoble Alpes, Inserm, U1300, CHU Grenoble Alpes, Service Universitaire de Pneumologie Physiologie, Grenoble, France
| | - Sébastien Baillieul
- University Grenoble Alpes, Inserm, U1300, CHU Grenoble Alpes, Service Universitaire de Pneumologie Physiologie, Grenoble, France
| | - Jean-Louis Pepin
- University Grenoble Alpes, Inserm, U1300, CHU Grenoble Alpes, Service Universitaire de Pneumologie Physiologie, Grenoble, France
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
- INM, University Montpellier, INSERM, Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
- INM, University Montpellier, INSERM, Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| |
Collapse
|
50
|
Zareba MR, Fafrowicz M, Marek T, Oginska H, Beldzik E, Domagalik A. Tracing diurnal differences in brain anatomy with voxel-based morphometry - associations with sleep characteristics. Chronobiol Int 2024; 41:201-212. [PMID: 38192011 DOI: 10.1080/07420528.2024.2301944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
Multiple aspects of brain functioning, including arousal, motivation, and cognitive performance, are governed by circadian rhythmicity. Although the recent rise in the use of magnetic resonance imaging (MRI) has enabled investigations into the macroscopic correlates of the diurnal brain processes, neuroanatomical studies are scarce. The current work investigated how time-of-day (TOD) impacts white (WM) and grey matter (GM) volumes using voxel-based morphometry (VBM) in a large dataset (N = 72) divided into two equal, comparable subsamples to assess the replicability of effects. Furthermore, we aimed to assess how the magnitude of these diurnal differences was related to actigraphy-derived indices of sleep health. The results extend the current knowledge by reporting that TOD is predominantly associated with regional WM volume decreases. Additionally, alongside corroborating previously observed volumetric GM decreases, we provide the first evidence for positive TOD effects. Higher replicability was observed for WM, with the only two replicated GM clusters being volumetric increases in the amygdala and hippocampus, and decreases in the retrosplenial cortex, with the latter more pronounced in individuals with shorter sleep times. These findings implicate the existence of region-specific mechanisms behind GM effects, which might be related to cognitive processes taking place during wakefulness and homeostatic sleep pressure.
Collapse
Affiliation(s)
- Michal Rafal Zareba
- Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, Castellon de la Plana, Spain
- Centre for Brain Research, Jagiellonian University, Kraków, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Tadeusz Marek
- Faculty of Psychology, SWPS University, Katowice, Poland
| | - Halszka Oginska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Ewa Beldzik
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|