1
|
Kalyanasundar B, Harley A, Klimovich C, Travers S. Chemogenetic suppression of NST GABA neurons reveals inhibition of behavioral responses to sucrose and quinine. Physiol Behav 2025; 295:114889. [PMID: 40122484 DOI: 10.1016/j.physbeh.2025.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Central taste processing begins in the rostral nucleus of the solitary tract (rNST), a region rich in GABAergic neurons. We recently showed that chemogenetic activation of rNST GABA/GAD65 neurons dampens behavioral acceptance of palatable (sucrose and maltodextrin) and increases acceptance of unpalatable (quinine) taste stimuli (Travers et al., 2022). Here, we investigated whether suppressing activity in rNST GABA neurons likewise affects behavioral taste responsivity. Using mice in which Cre was expressed under the control of the GAD65 promoter, we made bilateral rNST injections of a Cre-dependent AAV driving expression of the inhibitory DREADD, hM4Di. Subsequently, we assessed concentration-dependent licking responses to sucrose, quinine, and quinine mixed in 300 mM sucrose. Relative to intraperitoneal injections of saline, clozapine-N-oxide injections significantly increased licking to sucrose and decreased licking to quinine, regardless of whether it was presented alone or mixed in sucrose. Neither oromotor (inter-lick intervals) nor appetitive (number of trials) variables were affected. Consistent with these behavioral effects, the neuronal activity marker, Fos, was expressed in more NST, reticular formation, and parabrachial nucleus cells following clozapine-N-oxide injections. A final experiment compared effects of chemogenetic GABA inhibition on sucrose licking in food deprived versus fed mice. Inhibiting GABA neurons enhanced sucrose licking in both homeostatic states. However, the impact was more marked under the latter state in female mice, suggesting a sex difference in the impact of satiety signals on GABA rNST neurons.
Collapse
Affiliation(s)
- B Kalyanasundar
- Ohio State University, College of Dentistry, Division of Biosciences, Columbus, OH, USA
| | - Andrew Harley
- Ohio State University, College of Dentistry, Division of Biosciences, Columbus, OH, USA
| | - Charlotte Klimovich
- Ohio State University, College of Dentistry, Division of Biosciences, Columbus, OH, USA
| | - Susan Travers
- Ohio State University, College of Dentistry, Division of Biosciences, Columbus, OH, USA.
| |
Collapse
|
2
|
Jensen ME, Klausen MK, Bergmann ML, Knudsen GM, Vilsbøll T, Stove C, Fink‐Jensen A. Blood phosphatidylethanol measurements indicate GLP-1 receptor stimulation causes delayed decreases in alcohol consumption. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:1161-1165. [PMID: 40123107 PMCID: PMC12098802 DOI: 10.1111/acer.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The investigation of glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RA) as a potential treatment for individuals with alcohol use disorder (AUD) and obesity is currently underway. In this secondary analysis of a randomized placebo-controlled trial, we included AUD patients with comorbid obesity and assessed the effect of the GLP-1RA exenatide versus placebo on alcohol consumption as measured by the alcohol biomarker phosphatidylethanol (PEth). METHODS Thirty AUD patients (9 females, 21 males), with an average age of 53 years and a body mass index (BMI) of at least 30 kg/m2, were included in this secondary analysis. Blood samples for PEth were collected at baseline and at weeks 4, 12, 20, and 26. The effect of time and treatment on PEth levels was analyzed using a baseline-adjusted linear mixed model. RESULTS A significant interaction between time and treatment was observed at Week 26, with PEth levels reduced by -0.9 μmol/L in the exenatide group compared to placebo (95% CI [-1.6 to -0.1], p = 0.03). However, the difference in PEth blood levels between the exenatide and placebo groups was not significant at earlier time points. CONCLUSION This secondary analysis indicates that exenatide has a delayed yet significant impact on alcohol consumption in individuals with AUD and obesity, as assessed by PEth levels. These findings warrant further investigation, which is currently underway (NCT05895643).
Collapse
Affiliation(s)
- Mathias E. Jensen
- Psychiatric Centre Copenhagen, FrederiksbergUniversity of CopenhagenCopenhagenDenmark
| | - Mette K. Klausen
- Psychiatric Centre Copenhagen, FrederiksbergUniversity of CopenhagenCopenhagenDenmark
| | - Marianne L. Bergmann
- Department of Biochemistry and ImmunologyUniversity Hospital of Southern DenmarkVejleDenmark
| | - Gitte M. Knudsen
- Neurobiology Research UnitCopenhagen University Hospital RigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Tina Vilsbøll
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Clinical Research, Steno Diabetes Center CopenhagenUniversity of CopenhagenHerlevDenmark
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Anders Fink‐Jensen
- Psychiatric Centre Copenhagen, FrederiksbergUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Jehl J, Ciscato M, Vicq E, Guyon N, Dejean de la Batie G, Mondoloni S, Frangieh J, Mohayyaei M, Nguyen C, Pons S, Maskos U, Hardelin JP, Marti F, Corringer PJ, Faure P, Mourot A. The interpeduncular nucleus blunts the rewarding effect of nicotine. Neuron 2025:S0896-6273(25)00255-7. [PMID: 40262615 DOI: 10.1016/j.neuron.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/22/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Nicotine stimulates ventral tegmental area (VTA) dopaminergic neurons, producing a rewarding effect that drives tobacco consumption. The interpeduncular nucleus (IPN) is thought to become engaged at high nicotine doses to limit drug intake, but its response dynamics are unknown. We developed a chemogenetic approach using a "suicide" antagonist that selectively attaches to designer β4 nicotinic acetylcholine receptors (nAChRs) in genetically modified mice, enabling sustained and pharmacologically specific antagonism. Local infusion in the IPN revealed that nicotine, even at low doses, simultaneously activates and inhibits two distinct populations of IPN neurons, with β4-containing nAChRs mediating only the activation response. Blocking nicotine-induced IPN activation enhanced VTA responses and increased the drug's rewarding effect in a conditioned place preference paradigm. Moreover, optogenetic inhibition of IPN projections to the laterodorsal tegmental nucleus (LDTg) replicated these behavioral effects. Our findings indicate that the IPN acts as a regulatory brake on the nicotine reward circuit via the LDTg.
Collapse
Affiliation(s)
- Joachim Jehl
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Maria Ciscato
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Eléonore Vicq
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Nicolas Guyon
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | | | - Sarah Mondoloni
- Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Jacinthe Frangieh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Monir Mohayyaei
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Claire Nguyen
- Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Stéphanie Pons
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Jean-Pierre Hardelin
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Fabio Marti
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Philippe Faure
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Alexandre Mourot
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France.
| |
Collapse
|
4
|
Hirotsu T, Taniguchi K, Nishimura R. Exploring factors predicting the effectiveness of oral semaglutide in Japanese individuals with type 2 diabetes switching from dipeptidyl peptidase 4 inhibitors: a pilot study. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2025; 6:1520389. [PMID: 40196376 PMCID: PMC11973326 DOI: 10.3389/fcdhc.2025.1520389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025]
Abstract
Introduction Oral semaglutide is a glucagon-like peptide-1 receptor agonist (GLP-1 RA) approved for the treatment of type 2 diabetes mellitus (T2DM). Findings from randomized controlled trials (RCTs) and real-world studies indicate that oral semaglutide leads to significant improvements in HbA1c and body weight, comparable to those observed with injectable GLP-1 RAs. Consequently, oral semaglutide is expected to significantly reduce barriers to initiating GLP-1 RA therapy in individuals with diabetes and may lead to an increased transition from dipeptidyl peptidase-4 inhibitors (DPP-4is) to GLP-1 RA therapy. This study was conducted to prospectively investigate the clinical characteristics predicting the achievement of HbA1c < 7% (52 mmol/mol) in Japanese individuals with T2DM who switched from DPP-4is to oral semaglutide. Methods The study enrolled a total of 74 patients who switched from DPP-4is to oral semaglutide between December 2021 and October 2022, with the dose being uptitrated to achieve HbA1c < 7% (52 mmol/mol) in these patients. Results The study included a total of 44 individuals who achieved the target with oral semaglutide 3 mg (n=7), 7 mg (n=24), or 14 mg (n=13), and 17 individuals who did not (un-achieved group; n=17), based on their clinical characteristics and hematological findings. In the comparison between the Un-achieved group and the Achieved (3 to 14 mg) group, the proportions of "Current alcohol drinking (p = 0.030)" and "Current alcohol drinking and smoking (p = 0.029)" were higher in the Un-achieved group, whereas the proportion of "Taking 31 minutes or longer to have breakfast after drug administration (p = 0.022)" was higher in the Achieved (3 to 14 mg) group. A logistic regression analysis using the stepwise method identified "No current history of both smoking and alcohol drinking (0.083[0.014-0.485]; p = 0.006)" and "Taking 31 minutes or longer to eat breakfast after drug administration (0.117[0.029-0.480]; p = 0.003)" as factors predicting the achievement of the HbA1c < 7% (52 mmol/mol). Conclusion Study findings suggest when considering switching T2D patients from DPP-4is to oral semaglutide, a detailed assessment of "current alcohol drinking and smoking status" and "the duration between the administration of oral semaglutide and breakfast" may be useful as a predictive indicator for achieving HbA1c < 7% (52 mmol/mol).
Collapse
Affiliation(s)
- Takao Hirotsu
- Department of Diabetes, Endocrinology and Hematology, Fuji Municipal Central Hospital, Fuji, Japan
| | - Kanta Taniguchi
- Department of Internal Medicine, Taniguchi Medical Clinic, Fujinomiya, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Minato, Japan
| |
Collapse
|
5
|
O'Keefe JH, Franco WG, O'Keefe EL. Anti-consumption agents: Tirzepatide and semaglutide for treating obesity-related diseases and addictions, and improving life expectancy. Prog Cardiovasc Dis 2025; 89:102-112. [PMID: 39743126 PMCID: PMC12103286 DOI: 10.1016/j.pcad.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
American culture encourages overconsumption, fueled by ubiquitous availability and pervasive marketing of ultra-processed foods and other addictive substances. This chronic overindulgence has contributed to rising rates of obesity, type 2 diabetes (T2D), substance abuse, mental health disorders and premature mortality. Glucose-like peptide-1 agonists (GLP-1RAs) affect the brain's reward pathway that mediates addiction to foods and various other substances. Evolving data suggest that tirzepatide and semaglutide may be the first effective "anti-consumption" agents with potential applications in reducing food cravings, obesity, alcohol consumption, nicotine addiction, recreational drug use, and even uncontrollable shopping behaviors. Tirzepatide and semaglutide, unlike prior weight-loss drugs, are effective and relatively safe/well-tolerated medications that are associated with reduced risks for myocardial infarction, stroke, cardiovascular death, heart failure, progressive kidney and liver disease, obstructive sleep apnea, debilitating osteoarthritis, polycystic ovarian syndrome, neurodegenerative disease and premature mortality. Observational studies show that GLP-1RAs are associated with spontaneous nonvolitional reductions in use of alcohol, nicotine, and recreational drugs. Because obesity and substance abuse are so prevalent in the United States, GLP-1RA drugs may be uniquely helpful in addressing overconsumption and addiction issues thereby improving overall health and life expectancy.
Collapse
Affiliation(s)
- James H O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, United States of America.
| | - W Grant Franco
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, United States of America
| | - Evan L O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, United States of America
| |
Collapse
|
6
|
Volkow ND, Xu R. GLP-1R agonist medications for addiction treatment. Addiction 2025; 120:198-200. [PMID: 39049203 DOI: 10.1111/add.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Affiliation(s)
| | - Rong Xu
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Yammine L, de Dios C, Suchting R, Green CE, Nielsen DA, Walss-Bass C, Schmitz JM. Exploring Predictors of Treatment Response to GLP-1 Receptor Agonists for Smoking Cessation. Nicotine Tob Res 2025:ntaf005. [PMID: 39780397 DOI: 10.1093/ntr/ntaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Understanding predictors of smoking cessation medication efficacy facilitates the ability to enhance treatment effectiveness. In our pilot trial, exenatide, a glucagon-like peptide-1 receptor agonist, adjunct to nicotine patch improved smoking abstinence compared to nicotine patch alone. This secondary analysis explores potential baseline characteristics associated with differential treatment response to exenatide. METHODS The parent trial randomized (1:1) 84 smokers with prediabetes and/or overweight to once-weekly placebo or exenatide, 2 mg, subcutaneously. All participants received nicotine patch (21 mg) and brief smoking cessation counseling, with biologically confirmed 7-day point prevalence abstinence at week 6 (end-of-treatment) deemed the primary outcome. Bayesian generalized linear modeling explored differential response to treatment as a function of baseline patient characteristics, including demographic, psychosocial, clinical, smoking related, and genetic factors. Posterior probability (PP)≥75% that an effect exists was taken as a minimum threshold of evidence in favor of model effects. RESULTS Exenatide showed stronger benefit versus placebo in participants that smoked >20 cigarettes per day (PP=81.7%) and in those without prediabetes (PP=76.0%) or obesity (PP=94.4%). Exenatide's efficacy was observed only in individuals with no/minimal depression symptoms but not in those with symptoms (PP=91.2%). Finally, exenatide was more efficacious than placebo only in those with the CHRNA rs16969968 GG genotype (PP=88.6%). CONCLUSIONS The effect of exenatide on abstinence may be moderated by the number of cigarettes smoked daily, metabolic, psychological, and genetic factors. Larger prospective investigations are needed to confirm and extend these findings. IMPLICATIONS Understanding predictors of smoking cessation medication efficacy enhances the ability to improve treatment effectiveness. In our pilot trial, extended-release exenatide, a GLP-1 receptor agonist, adjunct to nicotine patch, improved smoking abstinence in smokers with prediabetes and/or overweight. The current post-hoc analysis found that the effect of exenatide on smoking abstinence may be moderated by the number of cigarettes smoked daily, metabolic, psychological, and genetic factors. Larger investigations are needed to confirm and extend these findings.
Collapse
Affiliation(s)
- Luba Yammine
- Associate Professor, Louis A. Faillace, M.D., Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, 1941 East Road, BBSB, Houston, TX
| | - Constanza de Dios
- Instructor, Louis A. Faillace, M.D., Department of Psychiatry and Behavioral Sciences, UTHealth, McGovern Medical School, 1941 East Road, BBSB, Houston, TX
| | - Robert Suchting
- Assistant Professor, Louis A. Faillace, M.D., Department of Psychiatry and Behavioral Sciences, UTHealth, McGovern Medical School, 1941 East Road, BBSB, Houston, TX
| | - Charles E Green
- Professor, Department of Pediatrics, Center for Clinical Research and Evidence-Based Medicine, UTHealth, McGovern Medical School, 6431 Fannin, MSB 2.106, Houston, TX
| | - David A Nielsen
- Associate Professor Emeritus, Psychiatry & Behavioral Sciences and Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Place, Houston, TX
| | - Consuelo Walss-Bass
- Professor and John S. Dunn Foundation Distinguished Chair. Louis A. Faillace, M.D., Department of Psychiatry and Behavioral Sciences, UTHealth, McGovern Medical School, 1941 East Road, BBSB, Houston, TX
| | - Joy M Schmitz
- Professor and Director of Center for Neurobehavioral Research on Addiction, Louis A. Faillace, M.D., Department of Psychiatry and Behavioral Sciences, UTHealth, McGovern Medical School, 1941 East Road, BBSB, Houston, TX
| |
Collapse
|
8
|
Klausen MK, Kuzey T, Pedersen JN, Justesen SK, Rasmussen L, Knorr UB, Mason G, Ekstrøm CT, Holst JJ, Koob G, Benveniste H, Volkow ND, Knudsen GM, Vilsbøll T, Fink-Jensen A. Does semaglutide reduce alcohol intake in Danish patients with alcohol use disorder and comorbid obesity? Trial protocol of a randomised, double-blinded, placebo-controlled clinical trial (the SEMALCO trial). BMJ Open 2025; 15:e086454. [PMID: 39779270 PMCID: PMC11749217 DOI: 10.1136/bmjopen-2024-086454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Alcohol use disorder (AUD) is a massive burden for the individual, relatives and society. Despite this, the treatment gap is wide compared with other mental health disorders. Treatment options are sparse, with only three Food and Drug Administration (FDA)-approved pharmacotherapies. Glucagon-like peptide-1 (GLP-1) receptor agonists have shown promising effects in reducing alcohol consumption in preclinical experiments, and clinical trials are in high demand to investigate these potentially beneficial effects in patients diagnosed with AUD. METHODS AND ANALYSIS The effects of the once-weekly GLP-1 receptor agonist semaglutide will be investigated in a 26-week, randomised, placebo-controlled, double-blinded clinical trial. 108 patients diagnosed with AUD and comorbid obesity (body mass index (BMI)≥30 kg/m2)) will be randomised to treatment with either semaglutide or placebo in combination with cognitive behavioural therapy. A subgroup of the patients will have structural, functional and neurochemical brain imaging performed at baseline and after 26 weeks of treatment. The primary endpoint is the reduction in heavy drinking days, defined as days with excess consumption of 48/60 g of alcohol per day (women and men, respectively). Secondary endpoints include changes from baseline to week 26 in alcohol consumption, smoking status, quality of life, fibrosis-4 score, plasma concentration of phosphatidylethanol, brain gamma-aminobutyric acid (GABA) levels, alcohol cue reactivity, functional connectivity and white matter tract integrity. STATUS Recruitment started in June 2023. ETHICS AND DISSEMINATION The study is approved by the Ethics Committee of the Capital Region of Denmark, the Danish Board of Health and the Danish Data Protection Agency. All patients will sign the written consent form before being included in the trial. Results will be disseminated through peer-reviewed publications and conference presentations. After the results are published, all de-identified data will be available in the Mendeley database. TRIAL REGISTRATION NUMBER NCT05895643.
Collapse
Affiliation(s)
- Mette Kruse Klausen
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
| | - Tugba Kuzey
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
| | - Julie Niemann Pedersen
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
| | - Signe Keller Justesen
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
| | - Line Rasmussen
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
| | - Ulla B Knorr
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Graeme Mason
- Department of Radiology and Biomedical Imaging, Psychiatry, and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Claus Thorn Ekstrøm
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - George Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | | | - Nora D Volkow
- The National Institute on Drug abuse, National Institutes of Health, Bethesda, MD, USA
| | - Gitte M Knudsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tina Vilsbøll
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Centre Copenhagen, University of Copenhagen, Herlev, Denmark
| | - Anders Fink-Jensen
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Lu C, Xu C, Yang J. The Beneficial Effects of GLP-1 Receptor Agonists Other than Their Anti-Diabetic and Anti-Obesity Properties. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:17. [PMID: 39858999 PMCID: PMC11767243 DOI: 10.3390/medicina61010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival. Therefore, GLP-1R agonists have great potential for clinical application in various diseases. Here, we briefly summarized the beneficial effects of GLP-1R agonists other than the anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| | - Cong Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| |
Collapse
|
10
|
Lee S, Li M, Le GH, Teopiz KM, Vinberg M, Ho R, Au HCT, Wong S, Valentino K, Kwan ATH, Rosenblat JD, McIntyre RS. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) as treatment for nicotine cessation in psychiatric populations: a systematic review. Ann Gen Psychiatry 2024; 23:45. [PMID: 39529123 PMCID: PMC11552190 DOI: 10.1186/s12991-024-00527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Nicotine use and nicotine use disorder (NUD) are the leading causes of preventable death in the United States. Persons with mental disorders (e.g., bipolar disorder) are differentially susceptible to nicotine use. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are indicated for type 2 diabetes mellitus (T2DM) and obesity and show preliminary evidence of efficacy in addiction-related behaviours. Herein, we synthesize extant preclinical and clinical evidence evaluating the effect of GLP-1RAs on neurobiological systems and behaviours salient to nicotine consumption and cessation. METHODS Online databases (MedLine, Embase, AMED, PsychINFO, JBI EBP Database, PubMed, Web of Science, Google Scholar) were searched from inception to May 21, 2024. Relevant studies were also extracted from the reference lists of the obtained articles. All articles were screened against inclusion and exclusion criteria. RESULTS Administration of GLP-1RAs reduced nicotine self-administration and nicotine-seeking behaviour in animal models that, in some cases, is sustained beyond exposure to the agent. GLP-1RAs also mitigated post-nicotine cessation weight gain, craving, withdrawal, and hyperphagia. The preceding effects are attributable to modulation of reward-related brain regions (e.g., mesolimbic dopamine system), resulting in nicotine aversion. GLP-1RAs were also efficacious as adjunctive therapies [e.g., in combination with nicotine replacement therapies (NRTs)]. CONCLUSION The multi-effect characteristics in NUD paradigms provide a compelling rationale for large, adequately powered, long-term, randomized controlled trials of GLP-1RAs in the treatment and prevention of NUD. The replicated effect on mitigating post-nicotine cessation weight gain is a differentiating feature of GLP-1RAs from extant proven therapies for NUD.
Collapse
Affiliation(s)
- Serene Lee
- Brain and Cognition Discovery Foundation, 77 Bloor Street West, Suite 617, Toronto, ON, M5S 1M2, Canada
- Department of Health Sciences, Queen's University, Kingston, Canada
| | - Maggie Li
- Brain and Cognition Discovery Foundation, 77 Bloor Street West, Suite 617, Toronto, ON, M5S 1M2, Canada
| | - Gia Han Le
- Brain and Cognition Discovery Foundation, 77 Bloor Street West, Suite 617, Toronto, ON, M5S 1M2, Canada
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, 77 Bloor Street West, Suite 617, Toronto, ON, M5S 1M2, Canada
| | - Maj Vinberg
- The Early Multimodular Prevention and Intervention Research Institution (EMPIRI), Mental Health Centre, Northern Zealand, Copenhagen University Hospital-Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
- Division of Life Science (LIFS), Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Hong Kong, Hong Kong
| | - Hezekiah C T Au
- Brain and Cognition Discovery Foundation, 77 Bloor Street West, Suite 617, Toronto, ON, M5S 1M2, Canada
| | - Sabrina Wong
- Brain and Cognition Discovery Foundation, 77 Bloor Street West, Suite 617, Toronto, ON, M5S 1M2, Canada
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Kyle Valentino
- Brain and Cognition Discovery Foundation, 77 Bloor Street West, Suite 617, Toronto, ON, M5S 1M2, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, 77 Bloor Street West, Suite 617, Toronto, ON, M5S 1M2, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, 77 Bloor Street West, Suite 617, Toronto, ON, M5S 1M2, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.
- Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Kupnicka P, Król M, Żychowska J, Łagowski R, Prajwos E, Surówka A, Chlubek D. GLP-1 Receptor Agonists: A Promising Therapy for Modern Lifestyle Diseases with Unforeseen Challenges. Pharmaceuticals (Basel) 2024; 17:1470. [PMID: 39598383 PMCID: PMC11597758 DOI: 10.3390/ph17111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Modern lifestyle diseases remain a persistent challenge in healthcare. Currently, about 422 million people worldwide are affected by diabetes, while 1 in 8 people are living with obesity. The development of glucagon-like peptide 1 receptor agonists (GLP-1RAs) has marked a significant milestone in treating these conditions. Interest in GLP-1RAs has grown due to evidence that, beyond their established role in diabetes management, these drugs influence other metabolic disorders. This is attributed to the fact that GLP-1 receptors are found in various healthy human tissues. However, a potential cause for concern is the expression of GLP-1 receptors in certain cancers. This review focuses on the most recent findings concerning the actions of GLP-1RAs, detailing their documented impact on the thyroid gland and pancreas. It addresses concerns about the long-term use of GLP-1RAs in relation to the development of pancreatitis, pancreatic cancer, and thyroid neoplasms by exploring the mechanisms and long-term effects in different patient subgroups and including data not discussed previously. This review was conducted through an examination of the literature available in the MedLine (PubMed) database, covering publications from 1978 to 10 May 2024. The collected articles were selected based on their relevance to studies of GLP-1 agonists and their effects on the pancreas and thyroid and assessed to meet the established inclusion criteria. The revised papers suggest that prolonged use of GLP-1RA could contribute to the formation of thyroid tumors and may increase the risk of acute inflammatory conditions such as pancreatitis, particularly in high-risk patients. Therefore, physicians should advise patients on the need for more frequent and detailed follow-ups.
Collapse
Affiliation(s)
- Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Małgorzata Król
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Justyna Żychowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryszard Łagowski
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Eryk Prajwos
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Surówka
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
12
|
Pollock TA, Margetts AV, Vilca SJ, Tuesta LM. Cocaine taking and craving produce distinct transcriptional profiles in dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617923. [PMID: 39416214 PMCID: PMC11482921 DOI: 10.1101/2024.10.11.617923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Dopamine (DA) signaling plays an essential role in reward valence attribution and in encoding the reinforcing properties of natural and artificial rewards. The adaptive responses from midbrain dopamine neurons to artificial rewards such as drugs of abuse are therefore important for understanding the development of substance use disorders. Drug-induced changes in gene expression are one such adaptation that can determine the activity of dopamine signaling in projection regions of the brain reward system. One of the major challenges to obtaining this understanding involves the complex cellular makeup of the brain, where each neuron population can be defined by a distinct transcriptional profile. To bridge this gap, we have adapted a virus-based method for labeling and capture of dopamine nuclei, coupled with nuclear RNA-sequencing, to study the transcriptional adaptations, specifically, of dopamine neurons in the ventral tegmental area (VTA) during cocaine taking and cocaine craving, using a mouse model of cocaine intravenous self-administration (IVSA). Our results show significant changes in gene expression across non-drug operant training, cocaine taking, and cocaine craving, highlighted by an enrichment of repressive epigenetic modifying enzyme gene expression during cocaine craving. Immunohistochemical validation further revealed an increase of H3K9me3 deposition in DA neurons during cocaine craving. These results demonstrate that cocaine-induced transcriptional adaptations in dopamine neurons vary by phase of self-administration and underscore the utility of this approach for identifying relevant phase-specific molecular targets to study the behavioral course of substance use disorders.
Collapse
Affiliation(s)
- Tate A. Pollock
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Alexander V. Margetts
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Samara J. Vilca
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Luis M. Tuesta
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
13
|
Nestor LJ, Ersche KD. Gut Hormones: Possible Mediators of Addictive Disorders? Eur Addict Res 2024; 30:339-346. [PMID: 39389039 DOI: 10.1159/000540743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alcohol and drug dependence are major health and economic burdens to society. One of the major challenges to reducing this burden will be to develop more effective and better tolerated medications that target alternative mechanisms in the brain. While the dopamine system has been well characterized for mediating the reward value of drugs, there is evidence that the endocrine system also conveys signals to the same neural systems using gut hormones. SUMMARY These gut hormones, produced in the stomach and intestine and that regulate food intake, have also been shown to control the use of other substances, such as alcohol and drugs of abuse. Examples of such hormones are ghrelin and glucagon-like peptide-1, which exert their effects on dopamine transmission in parts of the brain known to be involved in some of the core features of addiction, such as reward sensitivity. KEY MESSAGES This raises the possibility that gut hormone systems may play a pivotal role in addictive disorders. This review will briefly outline emerging evidence that the ghrelin and glucagon-like peptide-1 hormones are contrasting mediators of alcohol and drug use and may present a promising alternative target for treatment intervention in addictive disorders.
Collapse
Affiliation(s)
- Liam J Nestor
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
14
|
Braunscheidel KM, Voren G, Fowler CD, Lu Q, Kuryatov A, Cameron MD, Ibañez-Tallon I, Lindstrom JM, Kamenecka TM, Kenny PJ. SR9883 is a novel small-molecule enhancer of α4β2* nicotinic acetylcholine receptor signaling that decreases intravenous nicotine self-administration in rats. Front Mol Neurosci 2024; 17:1459098. [PMID: 39346680 PMCID: PMC11428108 DOI: 10.3389/fnmol.2024.1459098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024] Open
Abstract
Background Most smokers attempting to quit will quickly relapse to tobacco use even when treated with the most efficacious smoking cessation agents currently available. This highlights the need to develop effective new smoking cessation medications. Evidence suggests that positive allosteric modulators (PAM) and other enhancers of nicotinic acetylcholine receptor (nAChR) signaling could have therapeutic utility as smoking cessation agents. Methods 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283) was used as a starting point for medical chemistry efforts to develop novel small molecule enhancers of α4β2* nAChR stoichiometries containing a low-affinity agonist binding site at the interface of α4/α4 and α4/α5 subunits. Results The NS9283 derivative SR9883 enhanced the effect of nicotine on α4β2* nAChR stoichiometries containing low-affinity agonist binding sites, with EC50 values from 0.2-0.4 μM. SR9883 had no effect on α3β2* or α3β4* nAChRs. SR9883 was bioavailable after intravenous (1 mg kg-1) and oral (10-20 mg kg-1) administration and penetrated into the brain. When administered alone, SR9883 (5-10 mg kg-1) had no effect on locomotor activity or intracranial self-stimulation (ICSS) thresholds in mice. When co-administered with nicotine, SR9883 enhanced locomotor suppression and elevations of ICSS thresholds induced by nicotine. SR9883 (5 and 10 mg kg-1) decreased responding for intravenous nicotine infusions (0.03 mg kg-1 per infusion) but had no effect on responding for food rewards in rats. Conclusions These data suggest that SR9883 is useful for investigating behavioral processes regulated by certain α4β2* nAChR stoichiometries. SR9883 and related compounds with favorable drug-like physiochemical and pharmacological properties hold promise as novel treatments of tobacco use disorder.
Collapse
Affiliation(s)
- Kevin M. Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George Voren
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christie D. Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Qun Lu
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Alexander Kuryatov
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Michael D. Cameron
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Ines Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, United States
| | - Jon M. Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Theodore M. Kamenecka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Paul J. Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
15
|
Bruns Vi N, Tressler EH, Vendruscolo LF, Leggio L, Farokhnia M. IUPHAR review - Glucagon-like peptide-1 (GLP-1) and substance use disorders: An emerging pharmacotherapeutic target. Pharmacol Res 2024; 207:107312. [PMID: 39032839 PMCID: PMC11467891 DOI: 10.1016/j.phrs.2024.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Addiction is a chronic relapsing disease with high morbidity and mortality. Treatments for addiction include pharmacological and psychosocial interventions; however, currently available medications are limited in number and efficacy. The glucagon-like-peptide-1 (GLP-1) system is emerging as a potential novel pharmacotherapeutic target for alcohol and other substance use disorders (ASUDs). In this review, we summarize and discuss the wealth of available evidence from testing GLP-1 receptor (GLP-1R) agonist medications in preclinical models and humans with ASUDs, possible mechanisms underlying the impact of GLP-1R agonists on alcohol/substance use, gaps in knowledge, and future directions. Most of the research with GLP-1R agonists has been conducted in relation to alcohol use; psychostimulants, opioids, and nicotine have also been investigated. Preclinical evidence suggests that GLP-1R agonists reduce alcohol/substance use and other related outcomes. The main proposed mechanisms are related to reward processing, stress, and cognitive function, as well as broader mechanisms related to satiety, changes in gastric motility, and glucose homeostasis. More in-depth mechanistic studies are warranted. Clinical studies have been limited and their findings have been less conclusive; however, most support the safety and potential efficacy of GLP-1R agonists in ASUD treatment. Identifying preferred compounds, as well as possible subgroups who are most responsive to GLP-1R agonists are some of the key research questions to translate the promising preclinical data into clinical settings. Several clinical trials are underway to test GLP-1R agonists in people with ASUDs.
Collapse
Affiliation(s)
- Nicolaus Bruns Vi
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Elizabeth H Tressler
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
16
|
Wang W, Volkow ND, Berger NA, Davis PB, Kaelber DC, Xu R. Association of semaglutide with reduced incidence and relapse of cannabis use disorder in real-world populations: a retrospective cohort study. Mol Psychiatry 2024; 29:2587-2598. [PMID: 38486046 DOI: 10.1038/s41380-024-02498-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 09/21/2024]
Abstract
Cannabis is the most frequently used illicit drug in the United States with more than 45 million users of whom one-third suffer from a cannabis use disorder (CUD). Despite its high prevalence, there are currently no FDA-approved medications for CUD. Patients treated with semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA) approved for treating type 2 diabetes (T2D) and for weight management have reported reduced desire to drink and smoke. Preclinical studies have shown that semaglutide decreased nicotine and alcohol consumption. Preclinical and preliminary clinical evidence of semaglutide's potential beneficial effects on various substance use disorders led us to evaluate if it pertained to CUD. In this retrospective cohort study of electronic health records (EHRs) from the TriNetX Analytics Network, a global federated health research network of approximately 105.3 million patients from 61 large healthcare organizations in the US, we aimed to assess the associations of semaglutide with both incident and recurrent CUD diagnosis compared to non-GLP-1RA anti-obesity or anti-diabetes medications. Hazard ratio (HR) and 95% confidence intervals (CI) of incident and recurrent CUD were calculated for 12-month follow-up by comparing propensity-score matched patient cohorts. The study population included 85,223 patients with obesity who were prescribed semaglutide or non-GLP-1RA anti-obesity medications, with the findings replicated in 596,045 patients with T2D. In patients with obesity (mean age 51.3 years, 65.6% women), semaglutide compared with non-GLP-1RA anti-obesity medications was associated with lower risk for incident CUD in patients with no prior history CUD (HR: 0.56, 95% CI: 0.42-0.75), and recurrent CUD diagnosis in patients with a prior history CUD (HR: 0.62, 95% CI: 0.46-0.84). Consistent reductions were seen for patients stratified by gender, age group, race and in patients with and without T2D. Similar findings were replicated in the study population with T2D when comparing semaglutide with non-GLP-1RA anti-diabetes medications for incident CUD (HR: 0.40, 95% CI: 0.29-0.56) and recurrent CUD (HR: 0.66, 95% CI: 0.42-1.03). While these findings provide preliminary evidence of the potential benefit of semaglutide in CUD in real-world populations, further preclinical studies are warranted to understand the underlying mechanism and randomized clinical trials are needed to support its use clinically for CUD.
Collapse
Affiliation(s)
- William Wang
- Center for Science, Health, and Society, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA.
| | - Nathan A Berger
- Center for Science, Health, and Society, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pamela B Davis
- Center for Community Health Integration, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David C Kaelber
- Center for Clinical Informatics Research and Education, The MetroHealth System, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
17
|
Wang W, Volkow ND, Berger NA, Davis PB, Kaelber DC, Xu R. Association of Semaglutide With Tobacco Use Disorder in Patients With Type 2 Diabetes : Target Trial Emulation Using Real-World Data. Ann Intern Med 2024; 177:1016-1027. [PMID: 39074369 DOI: 10.7326/m23-2718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Reports of reduced desire to smoke in patients treated with semaglutide, a glucagon-like peptide receptor agonist (GLP-1RA) medication for type 2 diabetes mellitus (T2DM) and obesity, have raised interest about its potential benefit for tobacco use disorders (TUDs). OBJECTIVE To examine the association of semaglutide with TUD-related health care measures in patients with comorbid T2DM and TUD. DESIGN Emulation target trial based on a nationwide population-based database of patient electronic health records. SETTING United States, 1 December 2017 to 31 March 2023. PARTICIPANTS Seven target trials were emulated among eligible patients with comorbid T2DM and TUD by comparing the new use of semaglutide versus 7 other antidiabetes medications (insulins, metformin, dipeptidyl-peptidase-4 inhibitors, sodium-glucose cotransporter-2 inhibitors, sulfonylureas, thiazolidinediones, and other GLP-1RAs). MEASUREMENTS The TUD-related health care measures (medical encounter for diagnosis of TUD, smoking cessation medication prescriptions, and smoking cessation counseling) that occurred within a 12-month follow-up were examined using Cox proportional hazards and Kaplan-Meier survival analyses. RESULTS The study compared 222 942 new users of antidiabetes medications including 5967 of semaglutide. Semaglutide was associated with a significantly lower risk for medical encounters for TUD diagnosis compared with other antidiabetes medications, and was strongest compared with insulins (hazard ratio [HR], 0.68 [95% CI, 0.63 to 0.74]) and weakest but statistically significant compared with other GLP-1RAs (HR, 0.88 [CI, 0.81 to 0.96]). Semaglutide was associated with reduced smoking cessation medication prescriptions and counseling. Similar findings were observed in patients with and without a diagnosis of obesity. For most of the group comparisons, the differences occurred within 30 days of prescription initiation. LIMITATION Documentation bias, residual confounding, missing data on current smoking behavior, body mass index, and medication adherence. CONCLUSION Semaglutide was associated with lower risks for TUD-related health care measures in patients with comorbid T2DM and TUD compared with other antidiabetes medications including other GLP-1Ras, primarily within 30 days of prescription. These findings suggest the need for clinical trials to evaluate semaglutide's potential for TUD treatment. PRIMARY FUNDING SOURCE National Institutes of Health.
Collapse
Affiliation(s)
- William Wang
- Center for Science, Health, and Society, Case Western Reserve University School of Medicine, Cleveland, Ohio (W.W., N.A.B.)
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (N.D.V.)
| | - Nathan A Berger
- Center for Science, Health, and Society, Case Western Reserve University School of Medicine, Cleveland, Ohio (W.W., N.A.B.)
| | - Pamela B Davis
- Center for Community Health Integration, Case Western Reserve University School of Medicine, Cleveland, Ohio (P.B.D.)
| | - David C Kaelber
- Center for Clinical Informatics Research and Education, The MetroHealth System, Cleveland, Ohio (D.C.K.)
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, Ohio (R.X.)
| |
Collapse
|
18
|
Huang KP, Acosta AA, Ghidewon MY, McKnight AD, Almeida MS, Nyema NT, Hanchak ND, Patel N, Gbenou YSK, Adriaenssens AE, Bolding KA, Alhadeff AL. Dissociable hindbrain GLP1R circuits for satiety and aversion. Nature 2024; 632:585-593. [PMID: 38987598 DOI: 10.1038/s41586-024-07685-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
The most successful obesity therapeutics, glucagon-like peptide-1 receptor (GLP1R) agonists, cause aversive responses such as nausea and vomiting1,2, effects that may contribute to their efficacy. Here, we investigated the brain circuits that link satiety to aversion, and unexpectedly discovered that the neural circuits mediating these effects are functionally separable. Systematic investigation across drug-accessible GLP1R populations revealed that only hindbrain neurons are required for the efficacy of GLP1-based obesity drugs. In vivo two-photon imaging of hindbrain GLP1R neurons demonstrated that most neurons are tuned to either nutritive or aversive stimuli, but not both. Furthermore, simultaneous imaging of hindbrain subregions indicated that area postrema (AP) GLP1R neurons are broadly responsive, whereas nucleus of the solitary tract (NTS) GLP1R neurons are biased towards nutritive stimuli. Strikingly, separate manipulation of these populations demonstrated that activation of NTSGLP1R neurons triggers satiety in the absence of aversion, whereas activation of APGLP1R neurons triggers strong aversion with food intake reduction. Anatomical and behavioural analyses revealed that NTSGLP1R and APGLP1R neurons send projections to different downstream brain regions to drive satiety and aversion, respectively. Importantly, GLP1R agonists reduce food intake even when the aversion pathway is inhibited. Overall, these findings highlight NTSGLP1R neurons as a population that could be selectively targeted to promote weight loss while avoiding the adverse side effects that limit treatment adherence.
Collapse
Affiliation(s)
| | | | - Misgana Y Ghidewon
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron D McKnight
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Nisha Patel
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Alice E Adriaenssens
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Kevin A Bolding
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber L Alhadeff
- Monell Chemical Senses Center, Philadelphia, PA, USA.
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Shankar K, Bonnet-Zahedi S, Milan K, D'argence AR, Sneddon E, Qiao R, Chonwattangul S, Carrette LLG, Kallupi M, George O. Acute nicotine activates orectic and inhibits anorectic brain regions in rats exposed to chronic nicotine. Neuropharmacology 2024; 253:109959. [PMID: 38648925 PMCID: PMC11734747 DOI: 10.1016/j.neuropharm.2024.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Nicotine use produces psychoactive effects, and chronic use is associated with physiological and psychological symptoms of addiction. However, chronic nicotine use is known to decrease food intake and body weight gain, suggesting that nicotine also affects central metabolic and appetite regulation. We recently showed that acute nicotine self-administration in nicotine-dependent animals produces a short-term increase in food intake, contrary to its long-term decrease of feeding behavior. As feeding behavior is regulated by complex neural signaling mechanisms, this study aimed to test the hypothesis that nicotine intake in animals exposed to chronic nicotine may increase activation of pro-feeding regions and decrease activation of pro-satiety regions to produce the acute increase in feeding behavior. FOS immunohistochemistry revealed that acute nicotine intake in nicotine self-administering animals increased activation of the pro-feeding arcuate and lateral hypothalamic nuclei and decreased activation of the pro-satiety parabrachial nucleus. Regional correlational analysis also showed that acute nicotine changes the functional connectivity of the hunger/satiety network. Further dissection of the role of the arcuate nucleus using electrophysiology found that putative POMC neurons in animals given chronic nicotine exhibited decreased firing following acute nicotine application. These brain-wide central signaling changes may contribute to the acute increase in feeding behavior we see in rats after acute nicotine and provide new areas of focus for studying both nicotine addiction and metabolic regulation.
Collapse
Affiliation(s)
- Kokila Shankar
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sélène Bonnet-Zahedi
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA; Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, 13005, France
| | - Kristel Milan
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Andrea Ruiz D'argence
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Elizabeth Sneddon
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Ran Qiao
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Supakorn Chonwattangul
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Lieselot L G Carrette
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Randolph AB, Zheng H, Rinaman L. Populations of Hindbrain Glucagon-Like Peptide 1 (GLP1) Neurons That Innervate the Hypothalamic PVH, Thalamic PVT, or Limbic Forebrain BST Have Axon Collaterals That Reach All Central Regions Innervated by GLP1 Neurons. J Neurosci 2024; 44:e2063232024. [PMID: 38811166 PMCID: PMC11293452 DOI: 10.1523/jneurosci.2063-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt) that express the glucagon gene (Gcg) give rise to glucagon-like peptide 1 (GLP1)-immunopositive axons in the spinal cord and many subcortical brain regions. Central GLP1 receptor signaling contributes to motivated behavior and stress responses in rats and mice, in which hindbrain GLP1 neurons are activated to express c-Fos in a metabolic state-dependent manner. The present study examined whether GLP1 inputs to distinct brain regions arise from distinct subsets of Gcg-expressing neurons, and mapped the distribution of axon collaterals arising from projection-defined GLP1 neural populations. Using our Gcg-Cre knock-in rat model, Cre-dependent adeno-associated virus (AAV) tracing was conducted in adult male and female rats to compare axonal projections of IRt versus cNTS GLP1 neurons. Overlapping projections were observed in all brain regions that receive GLP1 input, with the caveat that cNTS injections produced Cre-dependent labeling of some IRt neurons, and vice versa. In additional experiments, specific diencephalic or limbic forebrain nuclei were microinjected with Cre-dependent retrograde AAVs (AAVrg) that expressed reporters to fully label the axon collaterals of transduced GLP1 neurons. AAVrg injected into each forebrain site labeled Gcg-expressing neurons in both the cNTS and IRt. The collective axon collaterals of labeled neurons entered the spinal cord and every brain region previously reported to contain GLP1-positive axons. These results indicate that the axons of GLP1 neural populations that innervate the thalamic paraventricular nucleus, paraventricular nucleus of the hypothalamus, and/or bed nucleus of the stria terminalis collectively innervate all central regions that receive GLP1 axonal input.
Collapse
Affiliation(s)
- Abigail B Randolph
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Huiyuan Zheng
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
21
|
Herman RJ, Schmidt HD. Targeting GLP-1 receptors to reduce nicotine use disorder: Preclinical and clinical evidence. Physiol Behav 2024; 281:114565. [PMID: 38663460 PMCID: PMC11128349 DOI: 10.1016/j.physbeh.2024.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Nicotine use disorder (NUD) remains a leading cause of preventable death in the U.S. Unfortunately, current FDA-approved pharmacotherapies for smoking cessation have limited efficacy and are associated with high rates of relapse. One major barrier to long-term smoking abstinence is body weight gain during withdrawal. Nicotine withdrawal-induced body weight gain can also lead to development of chronic disease states like obesity and type II diabetes mellitus. Therefore, it is critical to identify novel pharmacotherapies for NUD that decrease relapse and nicotine withdrawal symptoms including body weight gain. Recent studies demonstrate that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate voluntary nicotine taking and seeking and prevent withdrawal-induced hyperphagia and body weight gain. Emerging evidence also suggests that GLP-1R agonists improve cognitive deficits, as well as depressive- and anxiety-like behaviors, which contribute to smoking relapse during withdrawal. While further studies are necessary to fully characterize the effects of GLP-1R agonists on NUD and understand the mechanisms by which GLP-1R agonists decrease nicotine withdrawal-mediated behaviors, the current literature supports GLP-1R-based approaches to treating NUD.
Collapse
Affiliation(s)
- Rae J Herman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
22
|
Dumiaty Y, Underwood BM, Phy-Lim J, Chee MJ. Neurocircuitry underlying the actions of glucagon-like peptide 1 and peptide YY 3-36 in the suppression of food, drug-seeking, and anxiogenesis. Neuropeptides 2024; 105:102427. [PMID: 38579490 DOI: 10.1016/j.npep.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Obesity is a critical health condition worldwide that increases the risks of comorbid chronic diseases, but it can be managed with weight loss. However, conventional interventions relying on diet and exercise are inadequate for achieving and maintaining weight loss, thus there is significant market interest for pharmaceutical anti-obesity agents. For decades, receptor agonists for the gut peptide glucagon-like peptide 1 (GLP-1) featured prominently in anti-obesity medications by suppressing appetite and food reward to elicit rapid weight loss. As the neurocircuitry underlying food motivation overlaps with that for drugs of abuse, GLP-1 receptor agonism has also been shown to decrease substance use and relapse, thus its therapeutic potential may extend beyond weight management to treat addictions. However, as prolonged use of anti-obesity drugs may increase the risk of mood-related disorders like anxiety and depression, and individuals taking GLP-1-based medication commonly report feeling demotivated, the long-term safety of such drugs is an ongoing concern. Interestingly, current research now focuses on dual agonist approaches that include GLP-1 receptor agonism to enable synergistic effects on weight loss or associated functions. GLP-1 is secreted from the same intestinal cells as the anorectic gut peptide, Peptide YY3-36 (PYY3-36), thus this review assessed the therapeutic potential and underlying neural circuits targeted by PYY3-36 when administered independently or in combination with GLP-1 to curb the appetite for food or drugs of abuse like opiates, alcohol, and nicotine. Additionally, we also reviewed animal and human studies to assess the impact, if any, for GLP-1 and/or PYY3-36 on mood-related behaviors in relation to anxiety and depression. As dual agonists targeting GLP-1 and PYY3-36 may produce synergistic effects, they can be effective at lower doses and offer an alternative approach for therapeutic benefits while mitigating undesirable side effects.
Collapse
Affiliation(s)
- Yasmina Dumiaty
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Brett M Underwood
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Jenny Phy-Lim
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
23
|
Valentino RJ, Nair SG, Volkow ND. Neuroscience in addiction research. J Neural Transm (Vienna) 2024; 131:453-459. [PMID: 37947883 DOI: 10.1007/s00702-023-02713-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
The prevention and treatment of addiction (moderate to severe substance use disorder-SUD) have remained challenging because of the dynamic and complex interactions between multiple biological and social determinants that shape SUD. The pharmacological landscape is ever changing and the use of multiple drugs is increasingly common, requiring an unraveling of pharmacological interactions to understand the effects. There are different stages in the trajectory from drug use to addiction that are characterized by distinct cognitive and emotional features. These are directed by different neurobiological processes that require identification and characterization including those that underlie the high co-morbidity with other disorders. Finally, there is substantial individual variability in the susceptibility to develop SUD because there are multiple determinants, including genetics, sex, developmental trajectories and times of drug exposures, and psychosocial and environmental factors including commercial determinants that influence drug availability. Elucidating how these factors interact to determine risk is essential for identifying the biobehavioral basis of addiction and developing prevention and treatment strategies. Basic research is tasked with addressing each of these challenges. The recent proliferation of technological advances that allow for genetic manipulation, visualization of molecular reactions and cellular activity in vivo, multiscale whole brain mapping across the life span, and the mining of massive data sets including multimodality human brain imaging are accelerating our ability to understand how the brain functions and how drugs influence it. Here, we highlight how the application of these tools to the study of addiction promises to illuminate its neurobiological basis and guide strategies for prevention and treatment.
Collapse
Affiliation(s)
- Rita J Valentino
- National Institute On Drug Abuse, National Institutes of Health, Bethesda, MD, USA.
| | - Sunila G Nair
- National Institute On Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute On Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Ortegon S, Giner P, Cruz B, Carcoba LM, Clapp B, Clegg DJ, O'Dell LE. Effectiveness of pharmacotherapies for diabetes on nicotine, food, and water intake in insulin-resistant rats. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 3:11812. [PMID: 38389818 PMCID: PMC10880793 DOI: 10.3389/adar.2023.11812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
The intersectionality between diabetes medications and nicotine consumption was assessed in female and male rats. Briefly, the rats were fed a high-fat diet (HFD) or regular diet (RD) for 4 weeks. Then separate groups received vehicle or a low dose of streptozotocin (STZ; 25 mg/kg). Three days later, insulin resistance was assessed by measuring plasma glucose levels for 180 min following an injection of insulin (0.75 U/kg). The rats were then prepared with jugular catheters, and they were given 23 h access to nicotine intravenous self-administration (IVSA) in 4 days cycles with 3 days of forced abstinence in their home cages where they consumed their respective diet. During the IVSA sessions, operant responses for food and water and changes in body weight were recorded. Prior to administration of the pharmacotherapies, the rats were given access to two doses of nicotine (0.015 then 0.03 mg/kg for the remainder of the study). Then, daily injections of the pharmacotherapies were given at the onset of dark cycle (6 p.m.) in the following order: 1) dapagliflozin (3.0 then 10.0 mg/kg), 2) insulin (0.75 U/kg twice), and 3) bromocriptine (3.0 then 10.0 mg/kg). The results suggest that our HFD+STZ regiment induced insulin resistance in female and male rats. Also, the HFD-fed rats displayed higher nicotine intake than RD controls, regardless of sex. Administration of insulin, but not dapagliflozin or bromocriptine, normalized nicotine intake in HFD-fed rats to control levels. These results have clinical implications regarding the potential efficacy of insulin to control excessive nicotine intake in persons with diabetes.
Collapse
Affiliation(s)
- Sebastian Ortegon
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Priscilla Giner
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Luis M Carcoba
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Benjamin Clapp
- Texas Tech University Health Science Center-El Paso, Paul Foster School of Medicine, El Paso, TX, United States
| | - Deborah J Clegg
- Texas Tech University Health Science Center-El Paso, Paul Foster School of Medicine, El Paso, TX, United States
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
25
|
Probst L, Monnerat S, Vogt DR, Lengsfeld S, Burkard T, Meienberg A, Bathelt C, Christ-Crain M, Winzeler B. Effects of dulaglutide on alcohol consumption during smoking cessation. JCI Insight 2023; 8:e170419. [PMID: 37991022 PMCID: PMC10721313 DOI: 10.1172/jci.insight.170419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/04/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUNDAlcohol use disorder has a detrimental impact on global health and new treatment targets are needed. Preclinical studies show attenuating effects of glucagon-like peptide-1 (GLP-1) agonists on addiction-related behaviors in rodents and nonhuman primates. Some trials have shown an effect of GLP-1 agonism on reward processes in humans; however, results from clinical studies remain inconclusive.METHODSThis is a predefined secondary analysis of a double-blind, randomized, placebo-controlled trial evaluating the GLP-1 agonist dulaglutide as a therapy for smoking cessation. The main objective was to assess differences in alcohol consumption after 12 weeks of treatment with dulaglutide compared to placebo. The effect of dulaglutide on alcohol consumption was analyzed using a multivariable generalized linear model.RESULTSIn the primary analysis, participants out of the cohort (n = 255) who reported drinking alcohol at baseline and who completed 12 weeks of treatment (n = 151; placebo n = 75, dulaglutide n = 76) were included. The median age was 42 (IQR 33-53) with 61% (n = 92) females. At week 12, participants receiving dulaglutide drank 29% less (relative effect = 0.71, 95% CI 0.52-0.97, P = 0.04) than participants receiving placebo. Changes in alcohol consumption were not correlated with smoking status at week 12.CONCLUSIONThese results provide evidence that dulaglutide reduces alcohol intake in humans and contribute to the growing body of literature promoting the use of GLP-1 agonists in treatment of substance use disorders.TRIAL REGISTRATIONClinicalTrials.gov NCT03204396.FUNDINGSwiss National Foundation, Gottfried Julia Bangerter-Rhyner Foundation, Goldschmidt-Jacobson Foundation, Hemmi Foundation, University of Basel, University Hospital Basel, Swiss Academy of Medical Science.
Collapse
Affiliation(s)
- Leila Probst
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Sophie Monnerat
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Deborah R. Vogt
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Sophia Lengsfeld
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Thilo Burkard
- Department of Cardiology, and
- Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
| | - Andrea Meienberg
- Department of Cardiology, and
- Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
| | - Cemile Bathelt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Bettina Winzeler
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
26
|
Caffrey A, Lavecchia E, Merkel R, Zhang Y, Chichura KS, Hayes MR, Doyle RP, Schmidt HD. PYY 3-36 infused systemically or directly into the VTA attenuates fentanyl seeking in male rats. Neuropharmacology 2023; 239:109686. [PMID: 37572954 PMCID: PMC10528880 DOI: 10.1016/j.neuropharm.2023.109686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
More effective treatments for fentanyl use disorder are urgently needed. An emerging literature indicates that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate voluntary opioid taking and seeking in rodents. However, GLP-1R agonists produce adverse malaise-like effects that may limit patient compliance. Recently, we developed a dual agonist of GLP-1Rs and neuropeptide Y2 receptors (Y2Rs) that attenuates fentanyl taking and seeking at doses that do not produce malaise-like effects in opioid-experienced rats. Whether activating Y2Rs alone is sufficient to reduce opioid taking and seeking, however, is not known. Here, we investigated the efficacy of the Y2R ligand PYY3-36 to reduce fentanyl self-administration and the reinstatement of fentanyl-seeking behavior, a model of relapse in humans. Male rats were allowed to self-administer fentanyl (2.5 μg/kg, i.v.) for 21 days on a fixed-ratio 5 (FR5) schedule of reinforcement. Rats were then pretreated with vehicle or PYY3-36 (50 μg/kg s.c.; 0.1 and 1.0 μg/100 nL intra-VTA) prior to fentanyl self-administration test sessions. There were no effects of systemic or intra-VTA PYY3-36 on intravenous fentanyl self-administration. Opioid taking was then extinguished. Prior to subsequent reinstatement test sessions, rats were pretreated with vehicle or PYY3-36 (50 μg/kg s.c.; 0.1 and 1.0 μg/100 nL intra-VTA). Both systemic and intra-VTA administration of PYY3-36 attenuated fentanyl reinstatement in male rats at doses that did not affect food intake or produce adverse malaise-like effects. These findings indicate that Y2R agonism alone is sufficient to decrease fentanyl-seeking behavior during abstinence in opioid-experienced rats and further support strategies aimed at targeting Y2Rs for treating opioid use disorders.
Collapse
Affiliation(s)
- A Caffrey
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - E Lavecchia
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R Merkel
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Y Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - K S Chichura
- Department of Chemistry, Syracuse University, NY, 13244, USA
| | - M R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R P Doyle
- Department of Chemistry, Syracuse University, NY, 13244, USA; Departments of Medicine and Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - H D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Abstract
Diseases associated with nicotine dependence in the form of habitual tobacco use are a major cause of premature death in the United States. The majority of tobacco smokers will relapse within the first month of attempted abstinence. Smoking cessation agents increase the likelihood that smokers can achieve long-term abstinence. Nevertheless, currently available smoking cessation agents have limited utility and fail to prevent relapse in the majority of smokers. Pharmacotherapy is therefore an effective strategy to aid smoking cessation efforts but considerable risk of relapse persists even when the most efficacious medications currently available are used. The past decade has seen major breakthroughs in our understanding of the molecular, cellular, and systems-level actions of nicotine in the brain that contribute to the development and maintenance of habitual tobacco use. In parallel, large-scale human genetics studies have revealed allelic variants that influence vulnerability to tobacco use disorder. These advances have revealed targets for the development of novel smoking cessation agents. Here, we summarize current efforts to develop smoking cessation therapeutics and highlight opportunities for future efforts.
Collapse
Affiliation(s)
- Dana Lengel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul J. Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute (DDI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
28
|
Chen Z, Liu XA, Kenny PJ. Central and peripheral actions of nicotine that influence blood glucose homeostasis and the development of diabetes. Pharmacol Res 2023; 194:106860. [PMID: 37482325 DOI: 10.1016/j.phrs.2023.106860] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cigarette smoking has long been recognized as a risk factor for type 2 diabetes (T2D), although the precise causal mechanisms underlying this relationship remain poorly understood. Recent evidence suggests that nicotine, the primary reinforcing component in tobacco, may play a pivotal role in connecting cigarette smoking and T2D. Extensive research conducted in both humans and animals has demonstrated that nicotine can elevate blood glucose levels, disrupt glucose homeostasis, and induce insulin resistance. The review aims to elucidate the genetic variants of nicotinic acetylcholine receptors associated with diabetes risk and provide a comprehensive overview of the available data on the mechanisms through which nicotine influences blood glucose homeostasis and the development of diabetes. Here we emphasize the central and peripheral actions of nicotine on the release of glucoregulatory hormones, as well as its effects on glucose tolerance and insulin sensitivity. Notably, the central actions of nicotine within the brain, which encompass both insulin-dependent and independent mechanisms, are highlighted as potential targets for intervention strategies in diabetes management.
Collapse
Affiliation(s)
- Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
29
|
Kawano T, Zhou J, Anwar S, Salah H, Dayal AH, Ishikawa Y, Boetel K, Takahashi T, Sharma K, Inoue M. T cell infiltration into the brain triggers pulmonary dysfunction in murine Cryptococcus-associated IRIS. Nat Commun 2023; 14:3831. [PMID: 37380639 DOI: 10.1038/s41467-023-39518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
Cryptococcus-associated immune reconstitution inflammatory syndrome (C-IRIS) is a condition frequently occurring in immunocompromised patients receiving antiretroviral therapy. C-IRIS patients exhibit many critical symptoms, including pulmonary distress, potentially complicating the progression and recovery from this condition. Here, utilizing our previously established mouse model of unmasking C-IRIS (CnH99 preinfection and adoptive transfer of CD4+ T cells), we demonstrated that pulmonary dysfunction associated with the C-IRIS condition in mice could be attributed to the infiltration of CD4+ T cells into the brain via the CCL8-CCR5 axis, which triggers the nucleus tractus solitarius (NTS) neuronal damage and neuronal disconnection via upregulated ephrin B3 and semaphorin 6B in CD4+ T cells. Our findings provide unique insight into the mechanism behind pulmonary dysfunction in C-IRIS and nominate potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Tasuku Kawano
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
| | - Jinyan Zhou
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- Neuroscience Program, The University of Illinois at Urbana-Champaign, 405 North Matthews Avenue, Urbana, IL, 61801, USA
| | - Shehata Anwar
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University (BSU), Beni-Suef, 62511, Egypt
| | - Haneen Salah
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- School of Molecular and Cell Biology, The University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Andrea H Dayal
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- School of Molecular and Cell Biology, The University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Yuzuki Ishikawa
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- School of Molecular and Cell Biology, The University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Katelyn Boetel
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- School of Molecular and Cell Biology, The University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
| | - Kamal Sharma
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, 808 S. Wood Street, Chicago, IL, 60612, USA
| | - Makoto Inoue
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Neuroscience Program, The University of Illinois at Urbana-Champaign, 405 North Matthews Avenue, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, 405 North Matthews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
30
|
Yammine L, Verrico CD, Versace F, Webber HE, Suchting R, Weaver MF, Kosten TR, Alibhai H, Cinciripini PM, Lane SD, Schmitz JM. Exenatide as an adjunct to nicotine patch for smoking cessation and prevention of postcessation weight gain among treatment-seeking smokers with pre-diabetes and/or overweight: study protocol for a randomised, placebo-controlled clinical trial. BMJ Open 2023; 13:e072707. [PMID: 37316311 DOI: 10.1136/bmjopen-2023-072707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION Obesity and smoking are the two leading causes of preventable death in the USA. Unfortunately, most smokers gain weight after quitting. Postcessation weight gain (PCWG) is frequently cited as one of the primary barriers to a quit attempt and a common cause of relapse. Further, excessive PCWG may contribute to the onset or progression of metabolic conditions, such as hyperglycaemia and obesity. The efficacy of the current treatments for smoking cessation is modest, and these treatments have no clinically meaningful impact on mitigating PCWG. Here, we outline a novel approach using glucagon-like peptide 1 receptor agonists (GLP-1RA), which have demonstrated efficacy in reducing both food and nicotine intake. This report describes the design of a double-blind, placebo-controlled, randomised clinical trial that evaluates the effects of the GLP-1RA exenatide as an adjunct to nicotine patches on smoking abstinence and PCWG. METHODS AND ANALYSIS The study will be conducted at two university-affiliated research sites in Houston, Texas, the UTHealth Center for Neurobehavioral Research on Addiction and Baylor College of Medicine Michael E. DeBakey VA Medical Centre. The sample will consist of 216 treatment-seeking smokers with pre-diabetes (haemoglobin A1c of 5.7%-6.4%) and/or overweight (body mass index of 25 kg/m2 or above). Participants will be randomised (1:1) to receive subcutaneous injections of placebo or 2 mg exenatide, once weekly for 14 weeks. All participants will receive transdermal nicotine replacement therapy and brief smoking cessation counselling for 14 weeks. The primary outcomes are 4-week continuous abstinence and changes in body weight at the end of treatment. The secondary outcomes are (1) abstinence and changes in body weight at 12 weeks post end of treatment and (2) changes in neuroaffective responses to cigarette-related and food-related cues as measured by electroencephalogram. ETHICS AND DISSEMINATION The study has been approved by the UTHealth Committee for the Protection of Human Subjects (HSC-MS-21-0639) and Baylor College of Medicine Institutional Review Board (H-50543). All participants will sign informed consent. The study results will be disseminated via peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT05610800.
Collapse
Affiliation(s)
- Luba Yammine
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Christopher D Verrico
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
- Michael E DeBakey VA Medical Center, Houston, Texas, USA
| | - Francesco Versace
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Heather E Webber
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Robert Suchting
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael F Weaver
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Thomas R Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
- Michael E DeBakey VA Medical Center, Houston, Texas, USA
| | | | | | - Scott D Lane
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Joy M Schmitz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
31
|
Cawthon CR, Blonde GD, Nisi AV, Bloomston HM, Krubitski B, le Roux CW, Spector AC. Chronic Semaglutide Treatment in Rats Leads to Daily Excessive Concentration-Dependent Sucrose Intake. J Endocr Soc 2023; 7:bvad074. [PMID: 37388574 PMCID: PMC10306276 DOI: 10.1210/jendso/bvad074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Indexed: 07/01/2023] Open
Abstract
Context The glucagon-like peptide-1 receptor (GLP-1R) agonist semaglutide (SEMA) produces 15% weight loss when chronically administered to humans with obesity. Methods In 2 separate experiments, rats received daily injections of either vehicle (VEH) or SEMA starting at 7 µg/kg body weight (BW) and increasing over 10 days to the maintenance dose (70 µg/kg-BW), emulating clinical dose escalation strategies. Results During dose escalation and maintenance, SEMA rats reduced chow intake and bodyweight. Experiment 2 meal pattern analysis revealed that meal size, not number, mediated these SEMA-induced changes in chow intake. This suggests SEMA affects neural processes controlling meal termination and not meal initiation. Two-bottle preference tests (vs water) began after 10 to 16 days of maintenance dosing. Rats received either an ascending sucrose concentration series (0.03-1.0 M) and 1 fat solution (Experiment 1) or a 4% and 24% sucrose solution in a crossover design (Experiment 2). At lower sucrose concentrations, SEMA-treated rats in both experiments drank sometimes >2× the volume consumed by VEH controls; at higher sucrose concentrations (and 10% fat), intake was similar between treatment groups. Energy intake of SEMA rats became similar to VEH rats. This was unexpected because GLP-1R agonism is thought to decrease the reward and/or increase the satiating potency of palatable foods. Despite sucrose-driven increases in both groups, a significant bodyweight difference between SEMA- and VEH-treated rats remained. Conclusion The basis of the SEMA-induced overconsumption of sucrose at lower concentrations relative to VEH controls remains unclear, but the effects of chronic SEMA treatment on energy intake and BW appear to depend on the caloric sources available.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - A Valentina Nisi
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Haley M Bloomston
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Belle Krubitski
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Carel W le Roux
- Diabetes Complications Research Center, Conway Institute, School of Medicine, University College Dublin, Dublin, D04 C1P1, Ireland
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
32
|
Allingbjerg ML, Hansen SN, Secher A, Thomsen M. Glucagon-like peptide-1 receptors in nucleus accumbens, ventral hippocampus, and lateral septum reduce alcohol reinforcement in mice. Exp Clin Psychopharmacol 2023; 31:612-620. [PMID: 36480394 PMCID: PMC10198891 DOI: 10.1037/pha0000620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) receptor agonists can decrease alcohol intake by central mechanisms that are still poorly understood. The lateral septum (LS) and the ventral/caudal part of the hippocampus are enriched in GLP-1 receptors, and activity in these regions was shown to modulate reward-related behaviors. Using microinfusions of the GLP-1 receptor agonist exendin-4 in mice trained to self-administer oral alcohol in an operant assay, we tested whether pharmacological stimulation of GLP-1 receptors in hippocampus and LS decrease alcohol self-administration. We report that infusion of exendin-4 in the ventral hippocampus or LS was sufficient to reduce alcohol self-administration with as large effect sizes as we previously reported with systemic exendin-4 administration. Infusion of exendin-4 into the nucleus accumbens also reduced alcohol self-administration, as anticipated based on earlier reports, while infusion of exendin-4 into the caudate-putamen (dorsal striatum) had little effect, consistent with lack of GLP-1 receptor expression in this region. The distribution of exendin-4 after infusion into the LS or caudate putamen was visualized using a fluorescently labeled ligand. These findings add to our understanding of the circuit-level mechanisms underlying the ability of GLP-1 receptor agonists to reduce alcohol self-administration. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Marie-Louise Allingbjerg
- Laboratory of Neuropsychiatry, University Hospital of Copenhagen, Mental Health Services, Capital Region of Denmark
| | | | | | - Morgane Thomsen
- Laboratory of Neuropsychiatry, University Hospital of Copenhagen, Mental Health Services, Capital Region of Denmark
| |
Collapse
|
33
|
Herman RJ, Hayes MR, Audrain-McGovern J, Ashare RL, Schmidt HD. Liraglutide attenuates nicotine self-administration as well as nicotine seeking and hyperphagia during withdrawal in male and female rats. Psychopharmacology (Berl) 2023; 240:1373-1386. [PMID: 37129617 PMCID: PMC11088902 DOI: 10.1007/s00213-023-06376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
RATIONALE Nicotine cessation is associated with increased consumption of highly palatable foods and body weight gain in most smokers. Concerns about body weight gain are a major barrier to maintaining long-term smoking abstinence, and current treatments for nicotine use disorder (NUD) delay, but do not prevent, body weight gain during abstinence. Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are FDA-approved for treating obesity. However, the effects of GLP-1R agonist monotherapy on nicotine seeking and withdrawal-induced hyperphagia are unknown. OBJECTIVES We screened the efficacy of the long-lasting GLP-1R agonist liraglutide to reduce nicotine-mediated behaviors including voluntary nicotine taking, as well as nicotine seeking and hyperphagia during withdrawal. METHODS Male and female rats self-administered intravenous nicotine (0.03 mg/kg/inf) for ~21 days. Daily liraglutide administration (25 μg/kg, i.p.) started on the last self-administration day and continued throughout the extinction and reinstatement phases of the experiment. Once nicotine taking was extinguished, the reinstatement of nicotine-seeking behavior was assessed after an acute priming injection of nicotine (0.2 mg/kg, s.c.) and re-exposure to conditioned light cues. Using a novel model of nicotine withdrawal-induced hyperphagia, intake of a high fat diet (HFD) was measured during home cage abstinence in male and female rats with a history of nicotine self-administration. RESULTS Liraglutide attenuated nicotine self-administration and reinstatement in male and female rats. Repeated liraglutide attenuated withdrawal-induced hyperphagia and body weight gain in male and female rats at a dose that was not associated with malaise-like effects. CONCLUSIONS These findings support further studies investigating the translational potential of GLP-1R agonists to treat NUD.
Collapse
Affiliation(s)
- R J Herman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA
| | - J Audrain-McGovern
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA
| | - R L Ashare
- Department of Psychology, College of Arts and Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - H D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA.
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Falk S, Petersen J, Svendsen C, Romero-Leguizamón CR, Jørgensen SH, Krauth N, Ludwig MQ, Lundø K, Roostalu U, Skovbjerg G, Nielsen DAG, Ejdrup AL, Pers TH, Dmytriyeva O, Hecksher-Sørensen J, Gether U, Kohlmeier KA, Clemmensen C. GLP-1 and nicotine combination therapy engages hypothalamic and mesolimbic pathways to reverse obesity. Cell Rep 2023:112466. [PMID: 37148870 DOI: 10.1016/j.celrep.2023.112466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists promote nicotine avoidance. Here, we show that the crosstalk between GLP-1 and nicotine extends beyond effects on nicotine self-administration and can be exploited pharmacologically to amplify the anti-obesity effects of both signals. Accordingly, combined treatment with nicotine and the GLP-1R agonist, liraglutide, inhibits food intake and increases energy expenditure to lower body weight in obese mice. Co-treatment with nicotine and liraglutide gives rise to neuronal activity in multiple brain regions, and we demonstrate that GLP-1R agonism increases excitability of hypothalamic proopiomelanocortin (POMC) neurons and dopaminergic neurons in the ventral tegmental area (VTA). Further, using a genetically encoded dopamine sensor, we reveal that liraglutide suppresses nicotine-induced dopamine release in the nucleus accumbens in freely behaving mice. These data support the pursuit of GLP-1R-based therapies for nicotine dependence and encourage further evaluation of combined treatment with GLP-1R agonists and nicotinic receptor agonists for weight loss.
Collapse
Affiliation(s)
- Sarah Falk
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cesar R Romero-Leguizamón
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Heide Jørgensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Krauth
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Q Ludwig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Lundø
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Grethe Skovbjerg
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Gubra, Hørsholm, Denmark
| | - Duy Anh Gurskov Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aske Lykke Ejdrup
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
Lengsfeld S, Burkard T, Meienberg A, Jeanloz N, Coynel D, Vogt DR, Hemkens LG, Speich B, Zanchi D, Erlanger TE, Christ-Crain M, Winzeler B. Glucagon-like peptide-1 analogues: a new way to quit smoking? (SKIP)-a structured summary of a study protocol for a randomized controlled study. Trials 2023; 24:284. [PMID: 37081574 PMCID: PMC10120253 DOI: 10.1186/s13063-023-07164-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/09/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Cigarette smoking is the leading preventable cause of premature death. Despite dedicated programmes, quit rates remain low due to barriers such as nicotine withdrawal syndrome or post-cessation weight gain. Glucagon-like peptide-1 (GLP-1) analogues reduce energy intake and body weight and seem to modulate addictive behaviour. These GLP-1 properties are of major interest in the context of smoking cessation. The aim of this study is to evaluate the GLP-1 analogue dulaglutide as a new therapy for smoking cessation. METHODS This is a placebo-controlled, double-blind, parallel group, superiority, single-centre randomized study including 255 patients. The intervention consists of a 12-week dulaglutide treatment phase with 1.5 mg once weekly or placebo subcutaneously, in addition to standard of care (behavioural counselling and pharmacotherapy with varenicline). A 40-week non-treatment phase follows. The primary outcome is the point prevalence abstinence rate at week 12. Smoking status is self-reported and biochemically confirmed by end-expiratory exhaled carbon monoxide measurement. Further endpoints include post-cessational weight gain, nicotine craving analysis, glucose homeostasis and long-term nicotine abstinence. Two separate substudies assess behavioural, functional and structural changes by functional magnetic resonance imaging and measures of energy metabolism (i.e. resting energy expenditure, body composition). DISCUSSION Combining behavioural counselling and medical therapy, e.g. with varenicline, improves abstinence rates and is considered the standard of care. We expect a further increase in quit rates by adding a second component of medical therapy and assume a dual effect of dulaglutide treatment (blunting nicotine withdrawal symptoms and reducing post-cessational weight gain). This project is of high relevance as it explores novel treatment options aimed at preventing the disastrous consequences of nicotine consumption and obesity. TRIAL REGISTRATION ClinicalTrials.gov NCT03204396 . Registered on June 26, 2017.
Collapse
Affiliation(s)
- Sophia Lengsfeld
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Thilo Burkard
- Medical Outpatient Department, University Hospital Basel, Petersgraben 4, Basel, 4031, Switzerland
- Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Andrea Meienberg
- Medical Outpatient Department, University Hospital Basel, Petersgraben 4, Basel, 4031, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Nica Jeanloz
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - David Coynel
- Division of Cognitive Neuroscience, Department of Psychology and Transfaculty Research Platform, University of Basel, Basel, Switzerland
| | - Deborah R Vogt
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Department of Clinical Research, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Lars G Hemkens
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University of Basel and University Hospital of Basel, Basel, Switzerland
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA
- Meta-Research Innovation Center Berlin (METRIC-B), Berlin Institute of Health, Berlin, Germany
| | - Benjamin Speich
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Davide Zanchi
- Roche Innovation Centre Basel, F. Hoffmann- La Roche, Basel, Switzerland
- Stanford University Graduate School of Business, Stanford, CA, USA
| | - Tobias E Erlanger
- Department of Clinical Research, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Bettina Winzeler
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
36
|
Ables JL, Park K, Ibañez-Tallon I. Understanding the habenula: A major node in circuits regulating emotion and motivation. Pharmacol Res 2023; 190:106734. [PMID: 36933754 PMCID: PMC11081310 DOI: 10.1016/j.phrs.2023.106734] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Over the last decade, the understanding of the habenula has rapidly advanced from being an understudied brain area with the Latin name 'habena" meaning "little rein", to being considered a "major rein" in the control of key monoaminergic brain centers. This ancient brain structure is a strategic node in the information flow from fronto-limbic brain areas to brainstem nuclei. As such, it plays a crucial role in regulating emotional, motivational, and cognitive behaviors and has been implicated in several neuropsychiatric disorders, including depression and addiction. This review will summarize recent findings on the medial (MHb) and lateral (LHb) habenula, their topographical projections, cell types, and functions. Additionally, we will discuss contemporary efforts that have uncovered novel molecular pathways and synaptic mechanisms with a focus on MHb-Interpeduncular nucleus (IPN) synapses. Finally, we will explore the potential interplay between the habenula's cholinergic and non-cholinergic components in coordinating related emotional and motivational behaviors, raising the possibility that these two pathways work together to provide balanced roles in reward prediction and aversion, rather than functioning independently.
Collapse
Affiliation(s)
- Jessica L Ables
- Psychiatry Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kwanghoon Park
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Inés Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
37
|
Jerlhag E. The therapeutic potential of glucagon-like peptide-1 for persons with addictions based on findings from preclinical and clinical studies. Front Pharmacol 2023; 14:1063033. [PMID: 37063267 PMCID: PMC10097922 DOI: 10.3389/fphar.2023.1063033] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Although the multifaceted mechanisms underlying alcohol use disorder (AUD) have been partially defined, the neurobiological complexity of this disorder is yet to be unraveled. One of the systems that have gained attention in recent times is the gut–brain axis. Although numerous peptides participate in this axis, glucagon-like peptide-1 (GLP-1) plays a central role. GLP-1 is a crucial anorexigenic peptide, with potent abilities to reduce food intake and body weight. The physiological complexity of GLP-1 entails glucose homeostasis, gastrointestinal motility, and the release of insulin and glucagon. As reviewed in this study, acute or repeated treatment with GLP-1 receptor (GLP-1R) agonists decreases alcohol consumption in rodents. Moreover, the abilities of alcohol to promote hyperlocomotion, dopamine release in the nucleus accumbens, and reward in the conditioned place preference paradigm are all suppressed by GLP-1R ligands. Moreover, activation of GLP-1R suppresses the motivation to consume alcohol, alcohol-seeking behaviors, and relapse drinking in male rodents. Similarly, abstinence symptoms experienced during alcohol withdrawal are attenuated by activation of the GLP-1 pathway. On a similar note, the activation of GLP-1 receptors within areas of the brain that are processing reward modulates these alcohol-related responses. Another area that is crucial for this ability is the nucleus of the solitary tract, which is where GLP-1 is produced and from which GLP-1-containing neurons project to areas of reward. These findings may have clinical relevance as AUD is associated with polymorphisms in GLP-1-related genes. Although a GLP-1R agonist does not alter alcohol intake in AUD patients, it reduces this consumption in a sub-population of obese AUD individuals. Given the uncertainty of this outcome, additional clinical studies of obese AUD patients should explore the effects of the GLP-1R agonists on alcohol intake and body weight. Furthermore, GLP-1 receptors modulate the behavioral and neurochemical responses to addictive drugs. Taken together, these preclinical and clinical findings imply that the GLP-1 pathway plays a role in the complex mechanisms regulating alcohol and drug consumption patterns, unveiling a novel aspect of addiction medicine.
Collapse
|
38
|
Lengsfeld S, Burkard T, Meienberg A, Jeanloz N, Vukajlovic T, Bologna K, Steinmetz M, Bathelt C, Sailer CO, Vogt DR, Hemkens LG, Speich B, Urwyler SA, Kühne J, Baur F, Lutz LN, Erlanger TE, Christ-Crain M, Winzeler B. Effect of dulaglutide in promoting abstinence during smoking cessation: a single-centre, randomized, double-blind, placebo-controlled, parallel group trial. EClinicalMedicine 2023; 57:101865. [PMID: 36874396 PMCID: PMC9981899 DOI: 10.1016/j.eclinm.2023.101865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Quitting smoking is difficult due to barriers such as craving for cigarettes and post-cessation weight gain. Recent experimental data suggest a role of glucagon-like peptide-1 (GLP-1) in the pathophysiology of addiction in addition to appetite regulation and weight control. We hypothesized that a pharmacological intervention with the GLP-1 analogue dulaglutide during smoking cessation may improve abstinence rates and reduce post-cessation weight gain. METHODS This is a single-centre, randomized, double-blind, placebo-controlled, parallel group, superiority study conducted in the University Hospital Basel in Switzerland. We included adult smokers with at least moderate cigarette dependence who wanted to quit. Participants were randomly assigned to a 12-week treatment with dulaglutide 1.5 mg once weekly or placebo subcutaneously in addition to standard of care including behavioural counselling and oral varenicline pharmacotherapy of 2 mg/day. The primary outcome was self-reported and biochemically confirmed point prevalence abstinence rate at week 12. Secondary outcomes included post-cessation weight, glucose metabolism, and craving for smoking. All participants who received one dose of study drug were included in the primary and safety analyses. The trial was registered on ClinicalTrials.gov (NCT03204396). FINDINGS Between June 22, 2017, and December 3, 2020, 255 participants were enrolled and randomly assigned to each group (127 in the dulaglutide group and 128 in the placebo group). After 12 weeks, 63% (80/127) participants on dulaglutide and 65% (83/128) on placebo treatment were abstinent (difference in proportions -1.9% [95% Confidence interval (CI) -10.7, 14.4], p-value (p) = 0.859). Dulaglutide decreased post-cessation weight (-1 kg [standard deviation (SD) 2.7]), while weight increased on placebo (+1.9 kg [SD 2.4]). The baseline-adjusted difference in weight change between groups was -2.9 kg (95% CI -3.59, -2.3, p < 0.001). Haemoglobin A1c (HbA1c) level declined on dulaglutide treatment (baseline-adjusted median difference in HbA1c between groups -0.25% [interquartile range (IQR) -0.36, -0.14], p < 0.001). Craving for smoking declined during treatment without any difference between the groups. Treatment-emergent gastrointestinal symptoms were very common in both groups: 90% (114/127) of participants on dulaglutide and 81% (81/128) on placebo). INTERPRETATION Dulaglutide had no effect on abstinence rates but prevented post-cessation weight gain and decreased HbA1c levels. GLP-1 analogues may play a role in future cessation therapy targeting metabolic parameters such as weight and glucose metabolism. FUNDING Swiss National Science Foundation, the Gottfried Julia Bangerter-Rhyner Foundation, the Goldschmidt-Jacobson Foundation, the Hemmi-Foundation, the University of Basel, the Swiss Academy of Medical Sciences.
Collapse
Affiliation(s)
- Sophia Lengsfeld
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Thilo Burkard
- Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
- Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Andrea Meienberg
- Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
- Faculty of Medicine University of Basel, Basel, Switzerland
| | - Nica Jeanloz
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tanja Vukajlovic
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katja Bologna
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michelle Steinmetz
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cemile Bathelt
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Clara O. Sailer
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Deborah R. Vogt
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lars G. Hemkens
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA
- Meta-Research Innovation Center Berlin (METRIC-B), Berlin Institute of Health, Berlin, Germany
| | - Benjamin Speich
- CLEAR Methods Center, Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandrine A. Urwyler
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jill Kühne
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Fabienne Baur
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Linda N. Lutz
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tobias E. Erlanger
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Bettina Winzeler
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Corresponding author. University Hospital Basel, Deptartment of Endocrinology, Diabetology und Metabolism, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
39
|
Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2023; 133:473-491. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1(GLP-1) is a multifunctional polypeptide throughout the lifespan via activating Glucagon-like peptide-1 receptor (GLP-1R).GLP-1 can affect food ingestion, enhance the secretion of insulin from pancreatic islets induced by glucose and be utilized to treat type 2 diabetes mellitus(T2DM).But, accumulating evidences from the decades suggest that activation GLP-1R can not only regulate the blood glucose, but also sustain the homeostasis of intracellular environment and protect neuron from various damaged responses such as oxidative stress, inflammation, excitotoxicity, ischemia and so on. And more and more pre-clinical and clinical studies identified that GLP-1 and its analogues may play a significant role in improving multiple central nervous system (CNS) diseases including neurodegenerative diseases, epilepsy, mental disorders, ischemic stroke, hemorrhagic stroke, traumatic brain injury, spinal cord injury, chronic pain, addictive disorders, other diseases neurological complications and so on. In order to better reveal the relationship between GLP-1/GLP-1R axis and the growth, development and survival of neurons, herein, this review is aimed to summarize the multi-function of GLP-1/GLP-1R axis in CNS diseases.
Collapse
Affiliation(s)
- LongQing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - XueBi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
40
|
Fang J, Miller P, Grigson PS. Sleep is increased by liraglutide, a glucagon-like peptide-1 receptor agonist, in rats. Brain Res Bull 2023; 192:142-155. [PMID: 36410565 DOI: 10.1016/j.brainresbull.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Sleep disturbances are prominent in drug use disorders, including those involving opioids in both humans and animals. Recent studies have shown that administration of liraglutide, a glucagon-like peptide-1 agonist, significantly reduces heroin taking and seeking in rats. In an effort to further understand the action of this substance on physiological functions and to evaluate safety issues for its potential clinical use, the aim of the present study was to determine whether the dose of liraglutide found effective in reducing responding for an opioid also could improve sleep in drug-naïve rats. METHODS Using a within-subjects design, adult male rats chronically implanted with EEG and EMG electrodes received subcutaneous injection of saline or 0.06, 0.10, 0.30 or 0.60 mg/kg liraglutide. The 0.10 and 0.30 mg/kg doses are known to be most effective in reducing responding for heroin in rats at light or dark onset during a 12:12 h light-dark cycle (0.10 mg/kg for taking and seeking, 0.30 mg/kg for seeking). EEG and EMG were recorded across the 24 h period following each injection. RESULTS After both dark and light onset injections, liraglutide dose-dependently decreased wakefulness and increased non-rapid eye movement (NREM) sleep except at the lowest dose. The bout length of wakefulness and NREM sleep were decreased and increased, respectively. Whether administered at light or dark onset, the above alterations occurred primarily during the dark period (i.e., during the active period). The animals' body weight was decreased after liraglutide treatments as expected since it is clinically used for the treatment of obesity. CONCLUSION These data indicate that liraglutide, at doses known to reduce responding for heroin and fentanyl, also increases NREM sleep, suggesting that the increase in sleep may contribute to the protective effects of liraglutide and may promote overall general health.
Collapse
Affiliation(s)
- Jidong Fang
- The Pennsylvania State University College of Medicine, Department of Psychiatry, USA.
| | - Patti Miller
- The Pennsylvania State University College of Medicine, Department of Psychiatry, USA.
| | | |
Collapse
|
41
|
Caligiuri SPB, Howe WM, Wills L, Smith ACW, Lei Y, Bali P, Heyer MP, Moen JK, Ables JL, Elayouby KS, Williams M, Fillinger C, Oketokoun Z, Lehmann VE, DiFeliceantonio AG, Johnson PM, Beaumont K, Sebra RP, Ibanez-Tallon I, Kenny PJ. Hedgehog-interacting protein acts in the habenula to regulate nicotine intake. Proc Natl Acad Sci U S A 2022; 119:e2209870119. [PMID: 36346845 PMCID: PMC9674224 DOI: 10.1073/pnas.2209870119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2023] Open
Abstract
Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the Hhip gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - William M Howe
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alexander C W Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ye Lei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Purva Bali
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mary P Heyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maya Williams
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zainab Oketokoun
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Vanessa E Lehmann
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Paul M Johnson
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ines Ibanez-Tallon
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY 10065
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
42
|
Liu C, Tose AJ, Verharen JPH, Zhu Y, Tang LW, de Jong JW, Du JX, Beier KT, Lammel S. An inhibitory brainstem input to dopamine neurons encodes nicotine aversion. Neuron 2022; 110:3018-3035.e7. [PMID: 35921846 PMCID: PMC9509462 DOI: 10.1016/j.neuron.2022.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
Nicotine stimulates the dopamine (DA) system, which is essential for its rewarding effect. Nicotine is also aversive at high doses; yet, our knowledge about nicotine's dose-dependent effects on DA circuits remains limited. Here, we demonstrate that high doses of nicotine, which induce aversion-related behavior in mice, cause biphasic inhibitory and excitatory responses in VTA DA neurons that can be dissociated by distinct projections to lateral and medial nucleus accumben subregions, respectively. Guided by computational modeling, we performed a pharmacological investigation to establish that inhibitory effects of aversive nicotine involve desensitization of α4β2 and activation of α7 nicotinic acetylcholine receptors. We identify α7-dependent activation of upstream GABA neurons in the laterodorsal tegmentum (LDT) as a key regulator of heterogeneous DA release following aversive nicotine. Finally, inhibition of LDT GABA terminals in VTA prevents nicotine aversion. Together, our findings provide a mechanistic circuit-level understanding of nicotine's dose-dependent effects on reward and aversion.
Collapse
Affiliation(s)
- Christine Liu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Amanda J Tose
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Jeroen P H Verharen
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Yichen Zhu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Lilly W Tang
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Jessica X Du
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California Irvine, 825 Health Sciences Road, Med Sci D320, Irvine, CA 92697, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA.
| |
Collapse
|
43
|
Farokhnia M, Browning BD, Crozier ME, Sun H, Akhlaghi F, Leggio L. The glucagon‐like peptide‐1 system is modulated by acute and chronic alcohol exposure: Findings from human laboratory experiments and a post‐mortem brain study. Addict Biol 2022; 27:e13211. [DOI: 10.1111/adb.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
- Center on Compulsive Behaviors National Institutes of Health Bethesda Maryland USA
- Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
| | - Brittney D. Browning
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
| | - Madeline E. Crozier
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
| | - Hui Sun
- Clinical Core Laboratory, Office of the Clinical Director National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Bethesda Maryland USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences University of Rhode Island Kingston Rhode Island USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
- Center on Compulsive Behaviors National Institutes of Health Bethesda Maryland USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences Brown University Providence Rhode Island USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program National Institutes of Health Baltimore Maryland USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
44
|
O'Connor RM, Kenny PJ. Utility of 'substance use disorder' as a heuristic for understanding overeating and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110580. [PMID: 35636576 DOI: 10.1016/j.pnpbp.2022.110580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Rates of obesity and obesity-associated diseases have increased dramatically in countries with developed economies. Substance use disorders (SUDs) are characterized by the persistent use of the substance despite negative consequences. It has been hypothesized that overconsumption of palatable energy dense food can elicit SUD-like maladaptive behaviors that contribute to persistent caloric intake beyond homeostatic need even in the face of negative consequences. Palatable food and drugs of abuse act on many of the same motivation-related circuits in the brain, and can induce, at least superficially, similar molecular, cellular, and physiological adaptations on these circuits. As such, applying knowledge about the neurobiological mechanisms of SUDs may serve as useful heuristic to better understand the persistent overconsumption of palatable food that contributes to obesity. However, many important differences exist between the actions of drugs of abuse and palatable food in the brain. This warrants caution when attributing weight gain and obesity to the manifestation of a putative SUD-related behavioral disorder. Here, we describe similarities and differences between compulsive drug use in SUDs and overconsumption in obesity and consider the merit of the concept of "food addiction".
Collapse
Affiliation(s)
- Richard M O'Connor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America.
| |
Collapse
|
45
|
White O, Roeder N, Blum K, Eiden RD, Thanos PK. Prenatal Effects of Nicotine on Obesity Risks: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9477. [PMID: 35954830 PMCID: PMC9368674 DOI: 10.3390/ijerph19159477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Nicotine usage by mothers throughout pregnancy has been observed to relate to numerous deleterious effects in children, especially relating to obesity. Children who have prenatally been exposed to nicotine tend to have lower birth weights, with an elevated risk of becoming overweight throughout development and into their adolescent and adult life. There are numerous theories as to how this occurs: catch-up growth theory, thrifty phenotype theory, neurotransmitter or endocrine imbalances theory, and a more recent examination on the genetic factors relating to obesity risk. In addition to the negative effect on bodyweight and BMI, individuals with obesity may also suffer from numerous comorbidities involving metabolic disease. These may include type 1 and 2 diabetes, high cholesterol levels, and liver disease. Predisposition for obesity with nicotine usage may also be associated with genetic risk alleles for obesity, such as the DRD2 A1 variant. This is important for prenatally nicotine-exposed individuals as an opportunity to provide early prevention and intervention of obesity-related risks.
Collapse
Affiliation(s)
- Olivia White
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Kenneth Blum
- Division of Addiction Research, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA;
| | - Rina D. Eiden
- Department of Psychology, Social Science Research Institute, The Pennsylvania State University, University Park, PA 16801, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
46
|
GLP-1 mediates the neuroprotective action of crocin against cigarette smoking-induced cognitive disorders via suppressing HMGB1-RAGE/TLR4-NF-κB pathway. Int Immunopharmacol 2022; 110:108995. [PMID: 35785730 DOI: 10.1016/j.intimp.2022.108995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
Cigarette smoking (CS) has been associated with an increased risk of cognitive disorders. Although HMGB1 has been connected to various neurological ailments, its role in the pathogenesis of CS-induced cognitive impairments is undefined. With the ability of GLP-1 to lower HMGB1 expression and improve learning and memory performance, we sought to assess the potential neuroprotective efficacy of Crocin (Cro) as a GLP-1 stimulator against CS-induced cognitive impairments, with a focus on the HMGB1-RAGE/TLR4-NF-κB pathway. Fifty adult rats were specified into: Control; Cro (30 mg/kg); CS; Cro then CS and CS concurrently with Cro. Cognitive functions were assessed by MWM, EMP, and passive avoidance tests. Hippocampal levels of GLP-1, HMGB1, pro-inflammatory cytokines, and apoptotic markers were detected using ELISA, western blotting, and immunohistochemistry. Hippocampal oxidant/antioxidant status was evaluated via colorimetric determination of MDA and TAC. The results revealed that Cro either before or along with CS produced a significant improvement in learning and memory. Cro markedly hindered HMGB1-RAGE/TLR4-NF-κB pathway through enhancing GLP-1 level and expression, which in turn suppressed TNF-α and IL-1β levels and alleviated CS-induced neuroinflammation. Cro significantly counteracted CS-triggered oxidative stress as evidenced by reducing MDA level and raising TAC. Histopathologically, Cro lessened neuronal apoptosis by lowering Bax/Bcl-2 ratio at hippocampal CA2 region. These findings confirmed a GLP-1-dependent neuroprotective action of Cro against CS-induced cognitive disorders via suppressing HMGB1-RAGE/TLR4-NF-κB axis.
Collapse
|
47
|
Breum AW, Falk S, Svendsen CSA, Nicolaisen TS, Mathiesen CV, Maskos U, Clemmensen C. Divergent Roles of α5 and β4 Nicotinic Receptor Subunits in Food Reward and Nicotine-induced Weight Loss in Male Mice. Endocrinology 2022; 163:6590007. [PMID: 35595472 PMCID: PMC9217964 DOI: 10.1210/endocr/bqac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
A major obstacle to successful smoking cessation is the prospect of weight gain. Despite a clear relationship between cigarette smoking and body weight, surprisingly little is known about the physiological and molecular mechanism by which nicotine affects energy homeostasis and food-motivated behaviors. Here we use loss-of-function mouse models to demonstrate that 2 nicotinic acetylcholine receptor (nAChR) subunits encoded by the CHRNA5-CHRNA3-CHRNB4 gene cluster, α5 and β4, exhibit divergent roles in food reward. We also reveal that β4-containing nAChRs are essential for the weight-lowering effects of nicotine in diet-induced obese mice. Finally, our data support the notion of crosstalk between incretin biology and nAChR signaling, as we demonstrate that the glycemic benefits of glucagon-like peptide-1 receptor activation partially relies on β4-containing nAChRs. Together, these data encourage further research into the role of cholinergic neurotransmission in regulating food reward and the translational pursuit of site-directed targeting of β4-containing nAChRs for treatment of metabolic disease.
Collapse
Affiliation(s)
| | | | - Charlotte Sashi Aier Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Sand Nicolaisen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Uwe Maskos
- Institut Pasteur, Université de Paris, Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Paris, France
| | - Christoffer Clemmensen
- Correspondence: Christoffer Clemmensen, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Effects of linagliptin on morphine dependence in larval zebrafish ( Danio rerio). CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Drug addiction is a chronic, recurrent disease of the central nervous system that leads to the development of comorbidities and premature death. Despite extensive scientific research concerning addiction, no effective method of addiction pharmacotherapy has been known so far. Glucagon-like peptide 1 has been suggested to play a role in the rewarding effect of addictive drugs. Linagliptin is a selective dipeptidyl peptidase-4 inhibitor that suppresses the rapid degradation of endogenous glucagon-like peptide-1. In clinical practice, it is used as an antidiabetic drug, but recent studies have confirmed its role in the activity of the central nervous system. This pilot study was conducted to ascertain whether linagliptin might influence morphine dependence – a locomotor activity test was carried out to assess the intensity of morphine withdrawal symptom. The obtained results clearly confirmed that linagliptin (0.01 and 0.1 mM) reduced the locomotor activity in morphine-dependent larval zebrafish. The undertaken experiments clearly indicates that linagliptin is involved in the addictive effects of morphine, thus, further studies on higher organisms should be carried out.
Collapse
|
49
|
Holt MK. The ins and outs of the caudal nucleus of the solitary tract: An overview of cellular populations and anatomical connections. J Neuroendocrinol 2022; 34:e13132. [PMID: 35509189 PMCID: PMC9286632 DOI: 10.1111/jne.13132] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
The body and brain are in constant two-way communication. Driving this communication is a region in the lower brainstem: the dorsal vagal complex. Within the dorsal vagal complex, the caudal nucleus of the solitary tract (cNTS) is a major first stop for incoming information from the body to the brain carried by the vagus nerve. The anatomy of this region makes it ideally positioned to respond to signals of change in both emotional and bodily states. In turn, the cNTS controls the activity of regions throughout the brain that are involved in the control of both behaviour and physiology. This review is intended to help anyone with an interest in the cNTS. First, I provide an overview of the architecture of the cNTS and outline the wide range of neurotransmitters expressed in subsets of neurons in the cNTS. Next, in detail, I discuss the known inputs and outputs of the cNTS and briefly highlight what is known regarding the neurochemical makeup and function of those connections. Then, I discuss one group of cNTS neurons: glucagon-like peptide-1 (GLP-1)-expressing neurons. GLP-1 neurons serve as a good example of a group of cNTS neurons, which receive input from varied sources and have the ability to modulate both behaviour and physiology. Finally, I consider what we might learn about other cNTS neurons from our study of GLP-1 neurons and why it is important to remember that the manipulation of molecularly defined subsets of cNTS neurons is likely to affect physiology and behaviours beyond those monitored in individual experiments.
Collapse
Affiliation(s)
- Marie K. Holt
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
50
|
Dunigan AI, Roseberry AG. Actions of feeding-related peptides on the mesolimbic dopamine system in regulation of natural and drug rewards. ADDICTION NEUROSCIENCE 2022; 2:100011. [PMID: 37220637 PMCID: PMC10201992 DOI: 10.1016/j.addicn.2022.100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mesolimbic dopamine system is the primary neural circuit mediating motivation, reinforcement, and reward-related behavior. The activity of this system and multiple behaviors controlled by it are affected by changes in feeding and body weight, such as fasting, food restriction, or the development of obesity. Multiple different peptides and hormones that have been implicated in the control of feeding and body weight interact with the mesolimbic dopamine system to regulate many different dopamine-dependent, reward-related behaviors. In this review, we summarize the effects of a selected set of feeding-related peptides and hormones acting within the ventral tegmental area and nucleus accumbens to alter feeding, as well as food, drug, and social reward.
Collapse
Affiliation(s)
- Anna I. Dunigan
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron G. Roseberry
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|