1
|
Halvorsen MW. Tourette Syndrome and Chronic Tic Disorders. Psychiatr Clin North Am 2025; 48:281-292. [PMID: 40348418 DOI: 10.1016/j.psc.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Tourette syndrome (TS) and chronic tic disorder (CTD) are characterized by persistent verbal and motor tics of varying severity. We describe modern genetic studies of TS/CTD focused on common and rare variation, which quantify genetic risk per patient and identify risk genes such as NRXN1 and CELSR3. In general, the burden of TS/CTD genetic risk correlates with tic severity and the likelihood of a case belonging to a multiplex family. These findings do not immediately alter patient treatment, though they may in some cases help better define sources of patient risk.
Collapse
Affiliation(s)
- Matthew W Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden.
| |
Collapse
|
2
|
Bandekar SJ, Garbett K, Kordon SP, Dintzner EE, Li J, Shearer T, Sando RC, Araç D. Structural basis for regulation of CELSR1 by a compact module in its extracellular region. Nat Commun 2025; 16:3972. [PMID: 40295529 PMCID: PMC12038025 DOI: 10.1038/s41467-025-59319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
The Cadherin EGF Laminin G seven-pass G-type receptor subfamily (CELSR/ADGRC) is one of the most conserved among adhesion G protein-coupled receptors and is essential for animal development. The extracellular regions (ECRs) of CELSRs are large with 23 adhesion domains. However, molecular insight into CELSR function is sparsely available. Here, we report the 3.8 Å cryo-EM reconstruction of the mouse CELSR1 ECR and reveal that 14 domains form a compact module mediated by conserved interactions majorly between the CADH9 and C-terminal GAIN domains. In the presence of Ca2+, the CELSR1 ECR forms a dimer species mediated by the cadherin repeats putatively in an antiparallel fashion. Cell-based assays reveal the N-terminal CADH1-8 repeat is required for cell-cell adhesion and the C-terminal CADH9-GAIN compact module can regulate cellular adhesion. Our work provides molecular insight into how one of the largest GPCRs uses defined structural modules to regulate receptor function.
Collapse
Affiliation(s)
- Sumit J Bandekar
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- The University of Chicago Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, The University of Chicago, Chicago, IL, USA
| | - Krassimira Garbett
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Szymon P Kordon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- The University of Chicago Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, The University of Chicago, Chicago, IL, USA
| | - Ethan E Dintzner
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- The University of Chicago Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, The University of Chicago, Chicago, IL, USA
| | - Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- The University of Chicago Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, The University of Chicago, Chicago, IL, USA
| | - Tanner Shearer
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Richard C Sando
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- The University of Chicago Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Center for Mechanical Excitability, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Cadeddu R, Branca C, Braccagni G, Musci T, Piras IS, Anderson CJ, Capecchi MR, Huentelman MJ, Moos PJ, Bortolato M. Tic-related behaviors in Celsr3 mutant mice are contributed by alterations of striatal D 3 dopamine receptors. Mol Psychiatry 2025:10.1038/s41380-025-02970-w. [PMID: 40155412 DOI: 10.1038/s41380-025-02970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
The gene CELSR3 (Cadherin EGF LAG Seven-pass-G-type Receptor 3) has been recently recognized as a high-confidence risk factor for Tourette syndrome (TS). Additionally, Celsr3 mutant mice have been reported to exhibit TS-related behaviors and increased dopamine release in the striatum. Building on these findings, we further characterized the neurobehavioral and molecular profile of Celsr3 mutant mice to understand better the biological mechanisms connecting the deficiency of this gene and TS-related phenotypes. Our analyses confirmed that Celsr3 mutant mice displayed grooming stereotypies and tic-like jerks, as well as sensorimotor gating deficits, which were opposed by TS therapies. Spatial transcriptomic analyses revealed widespread extracellular matrix abnormalities in the striatum of Celsr3 mutants. Single-nucleus transcriptomics also showed significant upregulation of the Drd3 gene, encoding the dopamine D3 receptor, in striosomal D1-positive neurons. In situ hybridization and immunofluorescence confirmed dysregulated D3 receptor expression, with lower levels in presynaptic striatal fibers and higher levels in striatal D1-positive neurons. Activating and blocking D3 receptors amplified or decreased tic-like jerks and stereotypies in Celsr3-deficient mice, respectively. These findings suggest that modifications of D3 receptor distribution contribute to the tic-like responses associated with Celsr3 deficiency.
Collapse
Affiliation(s)
- Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Caterina Branca
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Teresa Musci
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Collin J Anderson
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, University of Sydney, Camperdown, NSW, Australia
| | - Mario R Capecchi
- Department of Human Genetics, College of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Philip J Moos
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Liao CP, Majeed M, Hobert O. Experience-dependent, sexually dimorphic synaptic connectivity defined by sex-specific cadherin expression. SCIENCE ADVANCES 2024; 10:eadq9183. [PMID: 39536115 PMCID: PMC11559607 DOI: 10.1126/sciadv.adq9183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Early-life experience influences subsequent maturation and function of the adult brain, sometimes even in a sex-specific manner, but underlying molecular mechanisms are poorly understood. We describe here how juvenile experience defines sexually dimorphic synaptic connectivity in the adult Caenorhabditis elegans nervous system. Starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB. CREB acts through a cascade of transcription factors to control expression of an atypical cadherin protein, FMI-1/Flamingo/CELSR. During postembryonic development, FMI-1 promotes and maintains synaptic connectivity of PHB to a command interneuron, AVA, in both sexes, but a serotonin-dependent transcriptional regulatory cassette antagonizes FMI-1 expression in males, thereby establishing sexually dimorphic connectivity between PHB and AVA. A critical regulatory node is the CREB-target LIN-29, a Zn finger transcription factor that integrates four layers of information: sexual specificity, past experience, time and cell-type specificity. Our findings provide the mechanistic details of how an early juvenile experience defines sexually dimorphic synaptic connectivity.
Collapse
Affiliation(s)
- Chien-Po Liao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | | | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
5
|
Liao CP, Majeed M, Hobert O. Experience-dependent, sexually dimorphic synaptic connectivity defined by sex-specific cadherin expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593207. [PMID: 38766005 PMCID: PMC11100761 DOI: 10.1101/2024.05.08.593207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We describe here the molecular mechanisms by which juvenile experience defines patterns of sexually dimorphic synaptic connectivity in the adult nervous system of the nematode C. elegans. We show that starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB. CREB acts through a cascade of transcription factors to control expression of an atypical cadherin protein, FMI-1/Flamingo. During postembryonic development, FMI-1/Flamingo has the capacity to promote and maintain synaptic connectivity of the PHB nociceptive sensory to a command interneuron, AVA, in both sexes, but the serotonin transcriptional regulatory cassette antagonizes FMI-1/Flamingo expression in males, thereby establishing sexually dimorphic connectivity between PHB and AVA. A critical regulatory node in this process is the CREB-target LIN-29, a Zn finger transcription factor which integrates four different layers of information - sexual specificity, past feeding status, time and cell-type specificity. Our findings provide the mechanistic details of how an early juvenile experience defines sexually dimorphic synaptic connectivity.
Collapse
Affiliation(s)
- Chien-Po Liao
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
| | - Maryam Majeed
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
- Present address: Allen Institute for Brain Science, Seattle,
USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
6
|
Nasello C, Poppi LA, Wu J, Kowalski TF, Thackray JK, Wang R, Persaud A, Mahboob M, Lin S, Spaseska R, Johnson CK, Gordon D, Tissir F, Heiman GA, Tischfield JA, Bocarsly M, Tischfield MA. Human mutations in high-confidence Tourette disorder genes affect sensorimotor behavior, reward learning, and striatal dopamine in mice. Proc Natl Acad Sci U S A 2024; 121:e2307156121. [PMID: 38683996 PMCID: PMC11087812 DOI: 10.1073/pnas.2307156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Tourette disorder (TD) is poorly understood, despite affecting 1/160 children. A lack of animal models possessing construct, face, and predictive validity hinders progress in the field. We used CRISPR/Cas9 genome editing to generate mice with mutations orthologous to human de novo variants in two high-confidence Tourette genes, CELSR3 and WWC1. Mice with human mutations in Celsr3 and Wwc1 exhibit cognitive and/or sensorimotor behavioral phenotypes consistent with TD. Sensorimotor gating deficits, as measured by acoustic prepulse inhibition, occur in both male and female Celsr3 TD models. Wwc1 mice show reduced prepulse inhibition only in females. Repetitive motor behaviors, common to Celsr3 mice and more pronounced in females, include vertical rearing and grooming. Sensorimotor gating deficits and rearing are attenuated by aripiprazole, a partial agonist at dopamine type II receptors. Unsupervised machine learning reveals numerous changes to spontaneous motor behavior and less predictable patterns of movement. Continuous fixed-ratio reinforcement shows that Celsr3 TD mice have enhanced motor responding and reward learning. Electrically evoked striatal dopamine release, tested in one model, is greater. Brain development is otherwise grossly normal without signs of striatal interneuron loss. Altogether, mice expressing human mutations in high-confidence TD genes exhibit face and predictive validity. Reduced prepulse inhibition and repetitive motor behaviors are core behavioral phenotypes and are responsive to aripiprazole. Enhanced reward learning and motor responding occur alongside greater evoked dopamine release. Phenotypes can also vary by sex and show stronger affection in females, an unexpected finding considering males are more frequently affected in TD.
Collapse
Affiliation(s)
- Cara Nasello
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Lauren A. Poppi
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Junbing Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Tess F. Kowalski
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Joshua K. Thackray
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Riley Wang
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Angelina Persaud
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Mariam Mahboob
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School and Rutgers Biomedical and Health Sciences, Newark, NJ07103
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Rodna Spaseska
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - C. K. Johnson
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Derek Gordon
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha34110, Qatar
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels1200, Belgium
| | - Gary A. Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Jay A. Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Miriam Bocarsly
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School and Rutgers Biomedical and Health Sciences, Newark, NJ07103
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| |
Collapse
|
7
|
Stegmann JD, Kalanithy JC, Dworschak GC, Ishorst N, Mingardo E, Lopes FM, Ho YM, Grote P, Lindenberg TT, Yilmaz Ö, Channab K, Seltzsam S, Shril S, Hildebrandt F, Boschann F, Heinen A, Jolly A, Myers K, McBride K, Bekheirnia MR, Bekheirnia N, Scala M, Morleo M, Nigro V, Torella A, Pinelli M, Capra V, Accogli A, Maitz S, Spano A, Olson RJ, Klee EW, Lanpher BC, Jang SS, Chae JH, Steinbauer P, Rieder D, Janecke AR, Vodopiutz J, Vogel I, Blechingberg J, Cohen JL, Riley K, Klee V, Walsh LE, Begemann M, Elbracht M, Eggermann T, Stoppe A, Stuurman K, van Slegtenhorst M, Barakat TS, Mulhern MS, Sands TT, Cytrynbaum C, Weksberg R, Isidori F, Pippucci T, Severi G, Montanari F, Kruer MC, Bakhtiari S, Darvish H, Reutter H, Hagelueken G, Geyer M, Woolf AS, Posey JE, Lupski JR, Odermatt B, Hilger AC. Bi-allelic variants in CELSR3 are implicated in central nervous system and urinary tract anomalies. NPJ Genom Med 2024; 9:18. [PMID: 38429302 PMCID: PMC10907620 DOI: 10.1038/s41525-024-00398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024] Open
Abstract
CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.
Collapse
Affiliation(s)
- Jil D Stegmann
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany.
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany.
| | - Jeshurun C Kalanithy
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Gabriel C Dworschak
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
- Department of Neuropediatrics, University Hospital Bonn, Bonn, 53127, Germany
| | - Nina Ishorst
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Enrico Mingardo
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Yee Mang Ho
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Phillip Grote
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Tobias T Lindenberg
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Öznur Yilmaz
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Khadija Channab
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Steve Seltzsam
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - André Heinen
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angad Jolly
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Myers
- Center for Cardiovascular Research, Nationwide Children's Hospital, Department of Pediatrics, Ohio State University, Columbus, OH, USA
| | - Kim McBride
- Center for Cardiovascular Research, Nationwide Children's Hospital, Department of Pediatrics, Ohio State University, Columbus, OH, USA
| | - Mir Reza Bekheirnia
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Renal Service, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Nasim Bekheirnia
- Department of Pediatrics, Renal Service, Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132, Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Manuela Morleo
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Vincenzo Nigro
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Annalaura Torella
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Gaslini, Genoa, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Silvia Maitz
- Medical Genetics Service, Oncology Department of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | | | - Rory J Olson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Brendan C Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Se Song Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Genomics Medicine, Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Philipp Steinbauer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090, Vienna, Austria
| | - Ida Vogel
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jenny Blechingberg
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jennifer L Cohen
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kacie Riley
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Victoria Klee
- Pediatric Neurology, Riley Hospital for Children Indiana University Health, Indianapolis, IN, USA
| | - Laurence E Walsh
- Pediatric Neurology, Riley Hospital for Children Indiana University Health, Indianapolis, IN, USA
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Arzu Stoppe
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Kyra Stuurman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maureen S Mulhern
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Tristan T Sands
- Division of Child Neurology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Cheryl Cytrynbaum
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Federica Isidori
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Severi
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Montanari
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Heiko Reutter
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Division Neonatology and Pediatric Intensive Care, Department of Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jennifer E Posey
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - Benjamin Odermatt
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Alina C Hilger
- Department of Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, 91054, Germany.
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, 91054, Erlangen, Germany.
| |
Collapse
|
8
|
Bandekar SJ, Garbett K, Kordon SP, Dintzner E, Shearer T, Sando RC, Araç D. Structure of the extracellular region of the adhesion GPCR CELSR1 reveals a compact module which regulates G protein-coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577439. [PMID: 38328199 PMCID: PMC10849658 DOI: 10.1101/2024.01.26.577439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cadherin EGF Laminin G seven-pass G-type receptors (CELSRs or ADGRCs) are conserved adhesion G protein-coupled receptors which are essential for animal development. CELSRs have extracellular regions (ECRs) containing 23 adhesion domains which couple adhesion to intracellular signaling. However, molecular-level insight into CELSR function is sparsely available. We report the 4.3 Å cryo-EM reconstruction of the mCELSR1 ECR with 13 domains resolved in the structure. These domains form a compact module mediated by interdomain interactions with contact between the N- and C-terminal domains. We show the mCELSR1 ECR forms an extended species in the presence of Ca 2+ , which we propose represents the antiparallel cadherin repeat dimer. Using assays for adhesion and G protein-coupling, we assign the N-terminal CADH1-8 module as necessary for cell adhesion and we show the C-terminal CAHD9-GAIN module regulates signaling. Our work provides important molecular context to the literature on CELSR function and opens the door towards further mechanistic studies.
Collapse
|
9
|
Nasello C, Poppi LA, Wu J, Kowalski TF, Thackray JK, Wang R, Persaud A, Mahboob M, Lin S, Spaseska R, Johnson CK, Gordon D, Tissir F, Heiman GA, Tischfield JA, Bocarsly M, Tischfield MA. Human mutations in high-confidence Tourette disorder genes affect sensorimotor behavior, reward learning, and striatal dopamine in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569034. [PMID: 38077033 PMCID: PMC10705456 DOI: 10.1101/2023.11.28.569034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Tourette disorder (TD) is poorly understood, despite affecting 1/160 children. A lack of animal models possessing construct, face, and predictive validity hinders progress in the field. We used CRISPR/Cas9 genome editing to generate mice with mutations orthologous to human de novo variants in two high-confidence Tourette genes, CELSR3 and WWC1 . Mice with human mutations in Celsr3 and Wwc1 exhibit cognitive and/or sensorimotor behavioral phenotypes consistent with TD. Sensorimotor gating deficits, as measured by acoustic prepulse inhibition, occur in both male and female Celsr3 TD models. Wwc1 mice show reduced prepulse inhibition only in females. Repetitive motor behaviors, common to Celsr3 mice and more pronounced in females, include vertical rearing and grooming. Sensorimotor gating deficits and rearing are attenuated by aripiprazole, a partial agonist at dopamine type II receptors. Unsupervised machine learning reveals numerous changes to spontaneous motor behavior and less predictable patterns of movement. Continuous fixed-ratio reinforcement shows Celsr3 TD mice have enhanced motor responding and reward learning. Electrically evoked striatal dopamine release, tested in one model, is greater. Brain development is otherwise grossly normal without signs of striatal interneuron loss. Altogether, mice expressing human mutations in high-confidence TD genes exhibit face and predictive validity. Reduced prepulse inhibition and repetitive motor behaviors are core behavioral phenotypes and are responsive to aripiprazole. Enhanced reward learning and motor responding occurs alongside greater evoked dopamine release. Phenotypes can also vary by sex and show stronger affection in females, an unexpected finding considering males are more frequently affected in TD. Significance Statement We generated mouse models that express mutations in high-confidence genes linked to Tourette disorder (TD). These models show sensorimotor and cognitive behavioral phenotypes resembling TD-like behaviors. Sensorimotor gating deficits and repetitive motor behaviors are attenuated by drugs that act on dopamine. Reward learning and striatal dopamine is enhanced. Brain development is grossly normal, including cortical layering and patterning of major axon tracts. Further, no signs of striatal interneuron loss are detected. Interestingly, behavioral phenotypes in affected females can be more pronounced than in males, despite male sex bias in the diagnosis of TD. These novel mouse models with construct, face, and predictive validity provide a new resource to study neural substrates that cause tics and related behavioral phenotypes in TD.
Collapse
|
10
|
Adhesion G protein-coupled receptors-Structure and functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:1-25. [PMID: 36707149 DOI: 10.1016/bs.pmbts.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are an ancient class of receptors that represent some of the largest transmembrane-integrated proteins in humans. First recognized as surface markers on immune cells, it took more than a decade to appreciate their 7-transmembrane structure, which is reminiscent of GPCRs. Roughly 30 years went by before the first functional proof of an interaction with a G protein was published. Besides classic features of GPCRs (extracellular N terminus, 7-transmembrane region, intracellular C terminus), aGPCRs display a distinct N-terminal structure, which harbors the highly conserved GPCR autoproteolysis-inducing (GAIN) domain with the GPCR proteolysis site (GPS) in addition to several functional domains. Several human diseases have been associated with variants of aGPCRs and subsequent animal models have been established to investigate these phenotypes. Much progress has been made in recent years to decipher the structure and functions of these receptors. This chapter gives an overview of our current understanding with respect to the molecular structural patterns governing aGPCR activation and the contribution of these giant molecules to the development of pathologies.
Collapse
|
11
|
Basta LP, Sil P, Jones RA, Little KA, Hayward-Lara G, Devenport D. Celsr1 and Celsr2 exhibit distinct adhesive interactions and contributions to planar cell polarity. Front Cell Dev Biol 2023; 10:1064907. [PMID: 36712970 PMCID: PMC9878842 DOI: 10.3389/fcell.2022.1064907] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 01/15/2023] Open
Abstract
Cadherin EGF LAG seven-pass G-type receptor (Celsr) proteins 1-3 comprise a subgroup of adhesion GPCRs whose functions range from planar cell polarity (PCP) signaling to axon pathfinding and ciliogenesis. Like its Drosophila ortholog, Flamingo, mammalian Celsr1 is a core component of the PCP pathway, which, among other roles, is responsible for the coordinated alignment of hair follicles across the skin surface. Although the role of Celsr1 in epidermal planar polarity is well established, the contribution of the other major epidermally expressed Celsr protein, Celsr2, has not been investigated. Here, using two new CRISPR/Cas9-targeted Celsr1 and Celsr2 knockout mouse lines, we define the relative contributions of Celsr1 and Celsr2 to PCP establishment in the skin. We find that Celsr1 is the major Celsr family member involved in epidermal PCP. Removal of Celsr1 function alone abolishes PCP protein asymmetry and hair follicle polarization, whereas epidermal PCP is unaffected by loss of Celsr2. Further, elimination of both Celsr proteins only minimally enhances the Celsr1 -/- phenotype. Using FRAP and junctional enrichment assays to measure differences in Celsr1 and Celsr2 adhesive interactions, we find that compared to Celsr1, which stably enriches at junctional interfaces, Celsr2 is much less efficiently recruited to and immobilized at junctions. As the two proteins seem equivalent in their ability to interact with core PCP proteins Vangl2 and Fz6, we suggest that perhaps differences in homophilic adhesion contribute to the differential involvement of Celsr1 and Celsr2 in epidermal PCP.
Collapse
Affiliation(s)
- Lena P. Basta
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Katherine A. Little
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Gabriela Hayward-Lara
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States,Current Affiliation. University of Pennsylvania, Philadelphia, PA, United States
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States,*Correspondence: Danelle Devenport,
| |
Collapse
|
12
|
Liebscher I, Cevheroğlu O, Hsiao CC, Maia AF, Schihada H, Scholz N, Soave M, Spiess K, Trajković K, Kosloff M, Prömel S. A guide to adhesion GPCR research. FEBS J 2022; 289:7610-7630. [PMID: 34729908 DOI: 10.1111/febs.16258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 01/14/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a class of structurally and functionally highly intriguing cell surface receptors with essential functions in health and disease. Thus, they display a vastly unexploited pharmacological potential. Our current understanding of the physiological functions and signaling mechanisms of aGPCRs form the basis for elucidating further molecular aspects. Combining these with novel tools and methodologies from different fields tailored for studying these unusual receptors yields a powerful potential for pushing aGPCR research from singular approaches toward building up an in-depth knowledge that will facilitate its translation to applied science. In this review, we summarize the state-of-the-art knowledge on aGPCRs in respect to structure-function relations, physiology, and clinical aspects, as well as the latest advances in the field. We highlight the upcoming most pressing topics in aGPCR research and identify strategies to tackle them. Furthermore, we discuss approaches how to promote, stimulate, and translate research on aGPCRs 'from bench to bedside' in the future.
Collapse
Affiliation(s)
- Ines Liebscher
- Division of Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | | | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - André F Maia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IBMC - Instituto Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Hannes Schihada
- C3 Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, UK
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Katarina Trajković
- Biology of Robustness Group, Mediterranean Institute for Life Sciences, Split, Croatia
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, The University of Haifa, Israel
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Alkailani MI, Aittaleb M, Tissir F. WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Front Mol Neurosci 2022; 15:1017568. [PMID: 36267699 PMCID: PMC9577257 DOI: 10.3389/fnmol.2022.1017568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Neurogenesis and tumorigenesis share signaling molecules/pathways involved in cell proliferation, differentiation, migration, and death. Self-renewal of neural stem cells is a tightly regulated process that secures the accuracy of cell division and eliminates cells that undergo mitotic errors. Abnormalities in the molecular mechanisms controlling this process can trigger aneuploidy and genome instability, leading to neoplastic transformation. Mutations that affect cell adhesion, polarity, or migration enhance the invasive potential and favor the progression of tumors. Here, we review recent evidence of the WNT pathway’s involvement in both neurogenesis and tumorigenesis and discuss the experimental progress on therapeutic opportunities targeting components of this pathway.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mohamed Aittaleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Fadel Tissir,
| |
Collapse
|
14
|
Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol Rev 2022; 102:1587-1624. [PMID: 35468004 PMCID: PMC9255715 DOI: 10.1152/physrev.00027.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
15
|
Erisken S, Nune G, Chung H, Kang JW, Koh S. Time and age dependent regulation of neuroinflammation in a rat model of mesial temporal lobe epilepsy: Correlation with human data. Front Cell Dev Biol 2022; 10:969364. [PMID: 36172274 PMCID: PMC9512631 DOI: 10.3389/fcell.2022.969364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Acute brain insults trigger diverse cellular and signaling responses and often precipitate epilepsy. The cellular, molecular and signaling events relevant to the emergence of the epileptic brain, however, remain poorly understood. These multiplex structural and functional alterations tend also to be opposing - some homeostatic and reparative while others disruptive; some associated with growth and proliferation while others, with cell death. To differentiate pathological from protective consequences, we compared seizure-induced changes in gene expression hours and days following kainic acid (KA)-induced status epilepticus (SE) in postnatal day (P) 30 and P15 rats by capitalizing on age-dependent differential physiologic responses to KA-SE; only mature rats, not immature rats, have been shown to develop spontaneous recurrent seizures after KA-SE. To correlate gene expression profiles in epileptic rats with epilepsy patients and demonstrate the clinical relevance of our findings, we performed gene analysis on four patient samples obtained from temporal lobectomy and compared to four control brains from NICHD Brain Bank. Pro-inflammatory gene expressions were at higher magnitudes and more sustained in P30. The inflammatory response was driven by the cytokines IL-1β, IL-6, and IL-18 in the acute period up to 72 h and by IL-18 in the subacute period through the 10-day time point. In addition, a panoply of other immune system genes was upregulated, including chemokines, glia markers and adhesion molecules. Genes associated with the mitogen activated protein kinase (MAPK) pathways comprised the largest functional group identified. Through the integration of multiple ontological databases, we analyzed genes belonging to 13 separate pathways linked to Classical MAPK ERK, as well as stress activated protein kinases (SAPKs) p38 and JNK. Interestingly, genes belonging to the Classical MAPK pathways were mostly transiently activated within the first 24 h, while genes in the SAPK pathways had divergent time courses of expression, showing sustained activation only in P30. Genes in P30 also had different regulatory functions than in P15: P30 animals showed marked increases in positive regulators of transcription, of signaling pathways as well as of MAPKKK cascades. Many of the same inflammation-related genes as in epileptic rats were significantly upregulated in human hippocampus, higher than in lateral temporal neocortex. They included glia-associated genes, cytokines, chemokines and adhesion molecules and MAPK pathway genes. Uniquely expressed in human hippocampus were adaptive immune system genes including immune receptors CDs and MHC II HLAs. In the brain, many immune molecules have additional roles in synaptic plasticity and the promotion of neurite outgrowth. We propose that persistent changes in inflammatory gene expression after SE leads not only to structural damage but also to aberrant synaptogenesis that may lead to epileptogenesis. Furthermore, the sustained pattern of inflammatory genes upregulated in the epileptic mature brain was distinct from that of the immature brain that show transient changes and are resistant to cell death and neuropathologic changes. Our data suggest that the epileptogenic process may be a result of failed cellular signaling mechanisms, where insults overwhelm the system beyond a homeostatic threshold.
Collapse
Affiliation(s)
- Sinem Erisken
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - George Nune
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Hyokwon Chung
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
| | - Joon Won Kang
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
- Department of Pediatrics & Medical Science, Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sookyong Koh
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
- *Correspondence: Sookyong Koh,
| |
Collapse
|
16
|
Chen B, Li F, Jia B, So KF, Wei JA, Liu Y, Qu Y, Zhou L. Celsr3 Inactivation in the Brainstem Impairs Rubrospinal Tract Development and Mouse Behaviors in Motor Coordination and Mechanic-Induced Response. Mol Neurobiol 2022; 59:5179-5192. [PMID: 35678978 PMCID: PMC9363480 DOI: 10.1007/s12035-022-02910-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Inactivation of Celsr3 in the forebrain results in defects of longitudinal axonal tracts such as the corticospinal tract. In this study, we inactivated Celsr3 in the brainstem using En1-Cre mice (Celsr3 cKO) and analyzed axonal and behavioral phenotypes. Celsr3 cKO animals showed an 83% reduction of rubrospinal axons and 30% decrease of corticospinal axons in spinal segments, associated with increased branching of dopaminergic fibers in the ventral horn. Decreases of spinal motoneurons, neuromuscular junctions, and electromyographic signal amplitude of the biceps were also found in mutant animals. Mutant mice had impaired motor coordination and defective response to heavy mechanical stimulation, but no disability in walking and food pellet handling. Transsynaptic tracing demonstrated that rubrospinal axons synapse on spinal neurons in the deep layer of the dorsal horn, and mechanical stimulation of hindpaws induced strong calcium signal of red nuclei in control mice, which was less prominent in mutant mice. In conclusion, Celsr3 regulates development of spinal descending axons and the motor network in cell and non-cell autonomous manners, and the maturation of the rubrospinal system is required for motor coordination and response to mechanical stimulation.
Collapse
Affiliation(s)
- Boli Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China
| | - Fuxiang Li
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China
| | - Bin Jia
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, People's Republic of China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical, Neuroscience Institute of Jinan University, Guangzhou, 510632, People's Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, People's Republic of China
- Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, People's Republic of China
| | - Ji-An Wei
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yuchu Liu
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yibo Qu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, People's Republic of China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, People's Republic of China.
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical, Neuroscience Institute of Jinan University, Guangzhou, 510632, People's Republic of China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, People's Republic of China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
17
|
Boëx M, Cottin S, Halliez M, Bauché S, Buon C, Sans N, Montcouquiol M, Molgó J, Amar M, Ferry A, Lemaitre M, Rouche A, Langui D, Baskaran A, Fontaine B, Messéant J, Strochlic L. The cell polarity protein Vangl2 in the muscle shapes the neuromuscular synapse by binding to and regulating the tyrosine kinase MuSK. Sci Signal 2022; 15:eabg4982. [PMID: 35580169 DOI: 10.1126/scisignal.abg4982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of the neuromuscular junction (NMJ) requires dynamic trans-synaptic coordination orchestrated by secreted factors, including Wnt family morphogens. To investigate how these synaptic cues in NMJ development are transduced, particularly in the regulation of acetylcholine receptor (AChR) accumulation in the postsynaptic membrane, we explored the function of Van Gogh-like protein 2 (Vangl2), a core component of Wnt planar cell polarity signaling. We found that conditional, muscle-specific ablation of Vangl2 in mice reproduced the NMJ differentiation defects seen in mice with global Vangl2 deletion. These alterations persisted into adulthood and led to NMJ disassembly, impaired neurotransmission, and deficits in motor function. Vangl2 and the muscle-specific receptor tyrosine kinase MuSK were functionally associated in Wnt signaling in the muscle. Vangl2 bound to and promoted the signaling activity of MuSK in response to Wnt11. The loss of Vangl2 impaired RhoA activation in cultured mouse myotubes and caused dispersed, rather than clustered, organization of AChRs at the postsynaptic or muscle cell side of NMJs in vivo. Our results identify Vangl2 as a key player of the core complex of molecules shaping neuromuscular synapses and thus shed light on the molecular mechanisms underlying NMJ assembly.
Collapse
Affiliation(s)
- Myriam Boëx
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Steve Cottin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Marius Halliez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Stéphanie Bauché
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Céline Buon
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Nathalie Sans
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, UMR-S 1215, Bordeaux 33077, France.,Université Bordeaux, Neurocentre Magendie, Bordeaux, 33000, France
| | - Mireille Montcouquiol
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, UMR-S 1215, Bordeaux 33077, France.,Université Bordeaux, Neurocentre Magendie, Bordeaux, 33000, France
| | - Jordi Molgó
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux énergies Alternatives, Institut des Sciences du Vivant Frédéric Joliot, Département Médicaments et Technologies pour la Santé, Equipe Mixte de Recherche CNRS 9004, Service d'Ingénierie Moléculaire pour la Santé, Gif-sur-Yvette 91191, France
| | - Muriel Amar
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux énergies Alternatives, Institut des Sciences du Vivant Frédéric Joliot, Département Médicaments et Technologies pour la Santé, Equipe Mixte de Recherche CNRS 9004, Service d'Ingénierie Moléculaire pour la Santé, Gif-sur-Yvette 91191, France
| | - Arnaud Ferry
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Mégane Lemaitre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Phénotypage du Petit Animal, Paris 75013, France
| | - Andrée Rouche
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Dominique Langui
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle, Plate-forme d'Imagerie Cellulaire Pitié-Salpêtrière, Paris 75013, France
| | - Asha Baskaran
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle, Plate-forme d'Imagerie Cellulaire Pitié-Salpêtrière, Paris 75013, France
| | - Bertrand Fontaine
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Service de Neuro-Myologie, Hôpital Universitaire Pitié-Salpêtrière, Paris 75013, France
| | - Julien Messéant
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Laure Strochlic
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| |
Collapse
|
18
|
Chmielowiec J, Szlachcic WJ, Yang D, Scavuzzo MA, Wamble K, Sarrion-Perdigones A, Sabek OM, Venken KJT, Borowiak M. Human pancreatic microenvironment promotes β-cell differentiation via non-canonical WNT5A/JNK and BMP signaling. Nat Commun 2022; 13:1952. [PMID: 35414140 PMCID: PMC9005503 DOI: 10.1038/s41467-022-29646-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
In vitro derivation of pancreatic β-cells from human pluripotent stem cells holds promise as diabetes treatment. Despite recent progress, efforts to generate physiologically competent β-cells are still hindered by incomplete understanding of the microenvironment's role in β-cell development and maturation. Here, we analyze the human mesenchymal and endothelial primary cells from weeks 9-20 fetal pancreas and identify a time point-specific microenvironment that permits β-cell differentiation. Further, we uncover unique factors that guide in vitro development of endocrine progenitors, with WNT5A markedly improving human β-cell differentiation. WNT5A initially acts through the non-canonical (JNK/c-JUN) WNT signaling and cooperates with Gremlin1 to inhibit the BMP pathway during β-cell maturation. Interestingly, we also identify the endothelial-derived Endocan as a SST+ cell promoting factor. Overall, our study shows that the pancreatic microenvironment-derived factors can mimic in vivo conditions in an in vitro system to generate bona fide β-cells for translational applications.
Collapse
Affiliation(s)
- Jolanta Chmielowiec
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wojciech J Szlachcic
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katrina Wamble
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alejandro Sarrion-Perdigones
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Omaima M Sabek
- Department of Surgery, The Methodist Hospital, Houston, TX, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Malgorzata Borowiak
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA. .,Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Cunningham JG, Scripter JD, Nti SA, Tucker ES. Early construction of the thalamocortical axon pathway requires c-Jun N-terminal kinase signaling within the ventral forebrain. Dev Dyn 2022; 251:459-480. [PMID: 34494344 PMCID: PMC8891049 DOI: 10.1002/dvdy.416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Thalamocortical connectivity is essential for normal brain function. This important pathway is established during development, when thalamic axons extend a long distance through the forebrain before reaching the cerebral cortex. In this study, we identify a novel role for the c-Jun N-terminal kinase (JNK) signaling pathway in guiding thalamocortical axons through intermediate target territories. RESULTS Complete genetic removal of JNK signaling from the Distal-less 5/6 (Dlx5/6) domain in mice prevents thalamocortical axons from crossing the diencephalon-telencephalon boundary (DTB) and the internal capsule fails to form. Ventral telencephalic cells critical for thalamocortical axon extensions including corridor and guidepost neurons are also disrupted. In addition, corticothalamic, striatonigral, and nigrostriatal axons fail to cross the DTB. Analyses of different JNK mutants demonstrate that thalamocortical axon pathfinding has a non-autonomous requirement for JNK signaling. CONCLUSIONS We conclude that JNK signaling within the Dlx5/6 territory enables the construction of major axonal pathways in the developing forebrain. Further exploration of this intermediate axon guidance territory is needed to uncover mechanisms of axonal pathfinding during normal brain development and to elucidate how this vital process may be compromised in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jessica G. Cunningham
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - James D. Scripter
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Stephany A. Nti
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Eric S. Tucker
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
20
|
Joshi B, Gaur H, Hui SP, Patra C. Celsr family genes are dynamically expressed in embryonic and juvenile zebrafish. Dev Neurobiol 2022; 82:192-213. [PMID: 35213071 DOI: 10.1002/dneu.22868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/06/2022]
Abstract
The Cadherin EGF LAG seven-pass G-type receptor (Celsr) family belongs to the adhesion G-protein coupled receptor superfamily. In most vertebrates, the Celsr family has three members (CELSR1-3), whereas zebrafish display four paralogues (celsr1a, 1b, 2, 3). Although studies have shown the importance of the Celsr family in planar cell polarity, axonal guidance, and dendritic growth, the molecular mechanisms of the Celsr family regulating these cellular processes in vertebrates remain elusive. Zebrafish is an experimentally more amenable model to study vertebrate development, as zebrafish embryos develop externally, optically transparent, remain alive with malformed organs, and zebrafish is genetically similar to humans. Understanding the detailed expression pattern is the first step of exploring the functional mechanisms of the genes involved in development. Thus, we report the spatiotemporal expression pattern of Celsr family members in zebrafish nervous tissues. Our analysis shows that celsr1b and celsr2 are expressed maternally. In embryos, celsr1a, celsr1b, and celsr2 are expressed in the neural progenitors, and celsr3 is expressed in all five primary neural clusters of the brain and mantle layer of the spinal cord. In juvenile zebrafish, celsr1a, celsr1b, and celsr2 are presumably expressed in the neural progenitor enriched regions of the CNS. Therefore, the expression pattern of zebrafish Celsr family members is reminiscent of patterns described in other vertebrates or mammalian speciate. This indicates the conserved role of Celsr family genes in nervous system development and suggests zebrafish as an excellent model to explore the cellular and molecular mechanisms of Celsr family genes in vertebrate neurogenesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bhagyashri Joshi
- Agharkar Research Institute, Developmental Biology, Pune, 411004, India.,Also affiliated to SP Pune University, Pune, 411007, India
| | - Himanshu Gaur
- Agharkar Research Institute, Developmental Biology, Pune, 411004, India
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, 700019, India
| | - Chinmoy Patra
- Agharkar Research Institute, Developmental Biology, Pune, 411004, India.,Also affiliated to SP Pune University, Pune, 411007, India
| |
Collapse
|
21
|
Miller KM, Marfull-Oromí P, Zou Y. Characterization of Axon Guidance Phenotypes in Wnt/PCP Mutant Mice. Methods Mol Biol 2022; 2438:277-286. [PMID: 35147948 DOI: 10.1007/978-1-0716-2035-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Our lab showed that the Wnt family proteins can function as axon guidance molecules and the planar cell polarity (PCP) pathway mediates the function of Wnts in axon guidance. One of the key evidences was by identifying the axon guidance defects in knockout or conditional knockout animals. We utilized a variety of axon tracing and labeling techniques, including immunohistochemistry (IHC), DiI, BDA, and fluorescent reporters (GFP or tdTomato). These studies have primarily been conducted in spinal cord commissural axons, but have been applied to retinal ganglion cell axons, corticospinal tract axons, dopaminergic and serotonergic projections.
Collapse
Affiliation(s)
- Kathryn M Miller
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, CA, USA
| | - Pau Marfull-Oromí
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, CA, USA
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, CA, USA.
| |
Collapse
|
22
|
Li J, Lin SM, Qiao JD, Liu XR, Wang J, Jiang M, Zhang J, Zhong M, Chen XQ, Zhu J, He N, Su T, Shi YW, Yi YH, Liao WP. CELSR3 variants are associated with febrile seizures and epilepsy with antecedent febrile seizures. CNS Neurosci Ther 2021; 28:382-389. [PMID: 34951123 PMCID: PMC8841303 DOI: 10.1111/cns.13781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022] Open
Abstract
Aims To identify novel pathogenic gene of febrile seizures (FS)/epilepsy with antecedent FS (EFS+). Methods The trio‐based whole‐exome sequencing was performed in a cohort of 462 cases with FS/EFS+. Silico programs, sequence alignment, and protein modeling were used to predict the damaging of variants. Statistical testing was performed to analyze gene‐based burden of variants. Results Five heterozygous missense variants in CELSR3 were detected in five cases (families) with eight individuals (five females, three males) affected. Two variants were de novo, and three were identified in families with more than one individual affected. All the variants were predicted to be damaging in silico tools. Protein modeling showed that the variants resulted in disappearance of multiple hydrogen bonds and one disulfide bond, which potentially caused functional impairments of protein. The frequency of CELSR3 variants identified in this study was significantly higher than that in controls. All affected individuals were diagnosed with FS/EFS+, including six patients with FS and two patients with EFS+. All cases presented favorable outcomes without neurodevelopmental disorders. Conclusions CELSR3 variants are potentially associated with FS/EFS+.
Collapse
Affiliation(s)
- Jia Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Si-Mei Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing-Da Qiao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Mi Jiang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing Zhang
- Department of Pediatrics, Xiangya Changde Hospital, Changde, China
| | - Min Zhong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xu-Qin Chen
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Zhu
- Department of Pediatrics, The First Hospital of Anhui Medical University, Hefei, China
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | | |
Collapse
|
23
|
Hakanen J, Parmentier N, Sommacal L, Garcia-Sanchez D, Aittaleb M, Vertommen D, Zhou L, Ruiz-Reig N, Tissir F. The Celsr3-Kif2a axis directs neuronal migration in the postnatal brain. Prog Neurobiol 2021; 208:102177. [PMID: 34582949 DOI: 10.1016/j.pneurobio.2021.102177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022]
Abstract
The tangential migration of immature neurons in the postnatal brain involves consecutive migration cycles and depends on constant remodeling of the cell cytoskeleton, particularly in the leading process (LP). Despite the identification of several proteins with permissive and empowering functions, the mechanisms that specify the direction of migration remain largely unknown. Here, we report that planar cell polarity protein Celsr3 orients neuroblasts migration from the subventricular zone (SVZ) to olfactory bulb (OB). In Celsr3-forebrain conditional knockout mice, neuroblasts loose directionality and few can reach the OB. Celsr3-deficient neuroblasts exhibit aberrant branching of LP, de novo LP formation, and decreased growth rate of microtubules (MT). Mechanistically, we show that Celsr3 interacts physically with Kif2a, a MT depolymerizing protein and that conditional inactivation of Kif2a in the forebrain recapitulates the Celsr3 knockout phenotype. Our findings provide evidence that Celsr3 and Kif2a cooperatively specify the directionality of neuroblasts tangential migration in the postnatal brain.
Collapse
Affiliation(s)
- Janne Hakanen
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Nicolas Parmentier
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Leonie Sommacal
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Dario Garcia-Sanchez
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Mohamed Aittaleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Didier Vertommen
- Université catholique de Louvain, de Duve Institute, Massprot Platform, Brussels, Belgium
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, PR China
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
24
|
Zhou Q, Qin J, Liang Y, Zhang W, He S, Tissir F, Qu Y, Zhou L. Celsr3 is required for Purkinje cell maturation and regulates cerebellar postsynaptic plasticity. iScience 2021; 24:102812. [PMID: 34308297 PMCID: PMC8283331 DOI: 10.1016/j.isci.2021.102812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Atypical cadherin Celsr3 is critical for brain embryonic development, and its role in the postnatal cerebellum remains unknown. Using Celsr3-GFP mice, Celsr3 shows high expression in postnatal Purkinje cells (PCs). Mice with conditional knockout (cKO) of Celsr3 in postnatal PCs exhibit deficit in motor coordination and learning, atrophic PC dendrites, and decreased synapses. Whole-PC recording in cerebellar slices discloses a reduction frequency of mEPSC and defective postsynaptic plasticity (LTP and LTD) in Celsr3 cKO mutants. Wnt5a perfusion enhances LTP formation, which could be occluded by cAMP agonist and diminished by cAMP antagonist in control, but not in Celsr3 cKO or Fzd3 cKO cerebellar slices. Celsr3 cKO resulted in the failure of mGluR1 agonist-induced LTD and paired stimulation-induced PKCα overexpression in PC dendrites, and downregulation of mGluR1 expression compvared to controls. In conclusion, Celsr3 is required for PCs maturation and regulates postsynaptic LTP and LTD through Wnt5a/cAMP and mGluR1/PKCα signaling respectively. Celsr3 cKO in postnatal PCs impairs mouse motor coordination and learning Celsr3 inactivation affects the maturation of PC dendrites and synapses Celsr3 is required for the cerebellar LTP induction via the Wnt5a/cAMP signaling Celsr3 regulates the cerebellar LTD induction through the mGluR1/PKCα pathway
Collapse
Affiliation(s)
- Qinji Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Jingwen Qin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Yaying Liang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Wei Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Siyuan He
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium.,College of Life and Health Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, P.R. China.,The First Affiliated Hospital of Jian University, Guangzhou 510632, P. R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, P. R. China
| |
Collapse
|
25
|
Corgiat EB, List SM, Rounds JC, Corbett AH, Moberg KH. The RNA-binding protein Nab2 regulates the proteome of the developing Drosophila brain. J Biol Chem 2021; 297:100877. [PMID: 34139237 PMCID: PMC8260979 DOI: 10.1016/j.jbc.2021.100877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/14/2022] Open
Abstract
The human ZC3H14 gene, which encodes a ubiquitously expressed polyadenosine zinc finger RNA-binding protein, is mutated in an inherited form of autosomal recessive, nonsyndromic intellectual disability. To gain insight into neurological functions of ZC3H14, we previously developed a Drosophila melanogaster model of ZC3H14 loss by deleting the fly ortholog, Nab2. Studies in this invertebrate model revealed that Nab2 controls final patterns of neuron projection within fully developed adult brains, but the role of Nab2 during development of the Drosophila brain is not known. Here, we identify roles for Nab2 in controlling the dynamic growth of axons in the developing brain mushroom bodies, which support olfactory learning and memory, and regulating abundance of a small fraction of the total brain proteome. The group of Nab2-regulated brain proteins, identified by quantitative proteomic analysis, includes the microtubule-binding protein Futsch, the neuronal Ig-family transmembrane protein turtle, the glial:neuron adhesion protein contactin, the Rac GTPase-activating protein tumbleweed, and the planar cell polarity factor Van Gogh, which collectively link Nab2 to the processes of brain morphogenesis, neuroblast proliferation, circadian sleep/wake cycles, and synaptic development. Overall, these data indicate that Nab2 controls the abundance of a subset of brain proteins during the active process of wiring the pupal brain mushroom body and thus provide a window into potentially conserved functions of the Nab2/ZC3H14 RNA-binding proteins in neurodevelopment.
Collapse
Affiliation(s)
- Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA; Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA; Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Sara M List
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia, USA
| | - J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA; Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA; Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia, USA.
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
26
|
Qin J, Wang M, Zhao T, Xiao X, Li X, Yang J, Yi L, Goffinet AM, Qu Y, Zhou L. Early Forebrain Neurons and Scaffold Fibers in Human Embryos. Cereb Cortex 2021; 30:913-928. [PMID: 31298263 DOI: 10.1093/cercor/bhz136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
Neural progenitor proliferation, neuronal migration, areal organization, and pioneer axon wiring are critical events during early forebrain development, yet remain incompletely understood, especially in human. Here, we studied forebrain development in human embryos aged 5 to 8 postconceptional weeks (WPC5-8), stages that correspond to the neuroepithelium/early marginal zone (WPC5), telencephalic preplate (WPC6 & 7), and incipient cortical plate (WPC8). We show that early telencephalic neurons are formed at the neuroepithelial stage; the most precocious ones originate from local telencephalic neuroepithelium and possibly from the olfactory placode. At the preplate stage, forebrain organization is quite similar in human and mouse in terms of areal organization and of differentiation of Cajal-Retzius cells, pioneer neurons, and axons. Like in mice, axons from pioneer neurons in prethalamus, ventral telencephalon, and cortical preplate cross the diencephalon-telencephalon junction and the pallial-subpallial boundary, forming scaffolds that could guide thalamic and cortical axons at later stages. In accord with this model, at the early cortical plate stage, corticofugal axons run in ventral telencephalon in close contact with scaffold neurons, which express CELSR3 and FZD3, two molecules that regulates formation of similar scaffolds in mice.
Collapse
Affiliation(s)
- Jingwen Qin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China
| | - Meizhi Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China
| | - Tianyun Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou, P R China
| | - Xue Xiao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China
| | - Xuejun Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China
| | - Jieping Yang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou, P R China
| | - Lisha Yi
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou, P R China
| | - Andre M Goffinet
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou, P R China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou, P R China.,Key Laboratory of Neuroscience, School of Basic Medical Sciences; Institute of Neuroscience, The Second Affiliated Hospital Guangzhou Medical University Guangzhou, P R China
| |
Collapse
|
27
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2021; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
28
|
Morenilla-Palao C, López-Cascales MT, López-Atalaya JP, Baeza D, Calvo-Díaz L, Barco A, Herrera E. A Zic2-regulated switch in a noncanonical Wnt/βcatenin pathway is essential for the formation of bilateral circuits. SCIENCE ADVANCES 2020; 6:6/46/eaaz8797. [PMID: 33188033 PMCID: PMC7673756 DOI: 10.1126/sciadv.aaz8797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 09/30/2020] [Indexed: 05/06/2023]
Abstract
The Wnt pathway is involved in a wide array of biological processes during development and is deregulated in many pathological scenarios. In neurons, Wnt proteins promote both axon extension and repulsion, but the molecular mechanisms underlying these opposing axonal responses are unknown. Here, we show that Wnt5a is expressed at the optic chiasm midline and promotes the crossing of retinal axons by triggering an alternative Wnt pathway that depends on the accumulation of βcatenin but does not activate the canonical pathway. In ipsilateral neurons, the transcription factor Zic2 switches this alternative Wnt pathway by regulating the expression of a set of Wnt receptors and intracellular proteins. In combination with this alternative Wnt pathway, the asymmetric activation of EphB1 receptors at the midline phosphorylates βcatenin and elicits a repulsive response. This alternative Wnt pathway and its Zic2-triggered switch may operate in other contexts that require a two-way response to Wnt ligands.
Collapse
Affiliation(s)
- Cruz Morenilla-Palao
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - María Teresa López-Cascales
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - José P López-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Diana Baeza
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Luís Calvo-Díaz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Angel Barco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Eloísa Herrera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain.
| |
Collapse
|
29
|
Soleilhavoup C, Travaglio M, Patrick K, Garção P, Boobalan E, Adolfs Y, Spriggs RV, Moles-Garcia E, Dhiraj D, Oosterveen T, Ferri SL, Abel T, Brodkin ES, Pasterkamp RJ, Brooks BP, Panman L. Nolz1 expression is required in dopaminergic axon guidance and striatal innervation. Nat Commun 2020; 11:3111. [PMID: 32561725 PMCID: PMC7305235 DOI: 10.1038/s41467-020-16947-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/29/2020] [Indexed: 11/24/2022] Open
Abstract
Midbrain dopaminergic (DA) axons make long longitudinal projections towards the striatum. Despite the importance of DA striatal innervation, processes involved in establishment of DA axonal connectivity remain largely unknown. Here we demonstrate a striatal-specific requirement of transcriptional regulator Nolz1 in establishing DA circuitry formation. DA projections are misguided and fail to innervate the striatum in both constitutive and striatal-specific Nolz1 mutant embryos. The lack of striatal Nolz1 expression results in nigral to pallidal lineage conversion of striatal projection neuron subtypes. This lineage switch alters the composition of secreted factors influencing DA axonal tract formation and renders the striatum non-permissive for dopaminergic and other forebrain tracts. Furthermore, transcriptomic analysis of wild-type and Nolz1-/- mutant striatal tissue led to the identification of several secreted factors that underlie the observed guidance defects and proteins that promote DA axonal outgrowth. Together, our data demonstrate the involvement of the striatum in orchestrating dopaminergic circuitry formation.
Collapse
Affiliation(s)
- Clement Soleilhavoup
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Marco Travaglio
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Kieran Patrick
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Pedro Garção
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Elangovan Boobalan
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Ruth V Spriggs
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Emma Moles-Garcia
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Dalbir Dhiraj
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Tony Oosterveen
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Sarah L Ferri
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Edward S Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104-3403, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lia Panman
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
30
|
Li L, Li H, Wang L, Wu S, Lv L, Tahir A, Xiao X, Wong CKC, Sun F, Ge R, Cheng CY. Role of cell polarity and planar cell polarity (PCP) proteins in spermatogenesis. Crit Rev Biochem Mol Biol 2020; 55:71-87. [PMID: 32207344 DOI: 10.1080/10409238.2020.1742091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies on cell polarity proteins and planar cell polarity (PCP) proteins date back to almost 40 years ago in Drosophila and C. elegans when these proteins were shown to be crucial to support apico-basal polarity and also directional alignment of polarity cells across the plane of an epithelium during morphogenesis. In adult mammals, cell polarity and PCP are most notable in cochlear hair cells. However, the role of these two groups of proteins to support spermatogenesis was not explored until a decade earlier when several proteins that confer cell polarity and PCP proteins were identified in the rat testis. Since then, there are several reports appearing in the literature to examine the role of both cell polarity and PCP in supporting spermatogenesis. Herein, we provide an overview regarding the role of cell polarity and PCP proteins in the testis, evaluating these findings in light of studies in other mammalian epithelial cells/tissues. Our goal is to provide a timely evaluation of these findings, and provide some thought provoking remarks to guide future studies based on an evolving concept in the field.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Lingling Wang
- Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Anam Tahir
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| |
Collapse
|
31
|
Dos-Santos Carvalho S, Moreau MM, Hien YE, Garcia M, Aubailly N, Henderson DJ, Studer V, Sans N, Thoumine O, Montcouquiol M. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. eLife 2020; 9:51822. [PMID: 31909712 PMCID: PMC6946565 DOI: 10.7554/elife.51822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dynamic mechanical interactions between adhesion complexes and the cytoskeleton are essential for axon outgrowth and guidance. Whether planar cell polarity (PCP) proteins, which regulate cytoskeleton dynamics and appear necessary for some axon guidance, also mediate interactions with membrane adhesion is still unclear. Here we show that Vangl2 controls growth cone velocity by regulating the internal retrograde actin flow in an N-cadherin-dependent fashion. Single molecule tracking experiments show that the loss of Vangl2 decreased fast-diffusing N-cadherin membrane molecules and increased confined N-cadherin trajectories. Using optically manipulated N-cadherin-coated microspheres, we correlated this behavior to a stronger mechanical coupling of N-cadherin with the actin cytoskeleton. Lastly, we show that the spatial distribution of Vangl2 within the growth cone is selectively affected by an N-cadherin-coated substrate. Altogether, our data show that Vangl2 acts as a negative regulator of axonal outgrowth by regulating the strength of the molecular clutch between N-cadherin and the actin cytoskeleton.
Collapse
Affiliation(s)
- Steve Dos-Santos Carvalho
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Maite M Moreau
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Yeri Esther Hien
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Mikael Garcia
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Aubailly
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Vincent Studer
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Olivier Thoumine
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| |
Collapse
|
32
|
Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat Rev Drug Discov 2019; 18:869-884. [PMID: 31462748 DOI: 10.1038/s41573-019-0039-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/24/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) - one of the five main families in the GPCR superfamily - have several atypical characteristics, including large, multi-domain N termini and a highly conserved region that can be autoproteolytically cleaved. Although GPCRs overall have well-established pharmacological tractability, currently no therapies that target any of the 33 members of the aGPCR family are either approved or in clinical trials. However, human genetics and preclinical research have strengthened the links between aGPCRs and disease in recent years. This, together with a greater understanding of their functional complexity, has led to growing interest in aGPCRs as drug targets. A framework for prioritizing aGPCR targets and supporting approaches to develop aGPCR modulators could therefore be valuable in harnessing the untapped therapeutic potential of this family. With this in mind, here we discuss the unique opportunities and challenges for drug discovery in modulating aGPCR functions, including target identification, target validation, assay development and safety considerations, using ADGRG1 as an illustrative example.
Collapse
|
33
|
Laufer BI, Hwang H, Vogel Ciernia A, Mordaunt CE, LaSalle JM. Whole genome bisulfite sequencing of Down syndrome brain reveals regional DNA hypermethylation and novel disorder insights. Epigenetics 2019; 14:672-684. [PMID: 31010359 PMCID: PMC6557615 DOI: 10.1080/15592294.2019.1609867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023] Open
Abstract
Down Syndrome (DS) is the most common genetic cause of intellectual disability, in which an extra copy of human chromosome 21 (HSA21) affects regional DNA methylation profiles across the genome. Although DNA methylation has been previously examined at select regulatory regions across the genome in a variety of DS tissues and cells, differentially methylated regions (DMRs) have yet to be examined in an unbiased sequencing-based approach. Here, we present the first analysis of DMRs from whole genome bisulfite sequencing (WGBS) data of human DS and matched control brain, specifically frontal cortex. While no global differences in DNA methylation were observed, we identified 3,152 DS-DMRs across the entire genome, the majority of which were hypermethylated in DS. DS-DMRs were significantly enriched at CpG islands and de-enriched at specific gene body and regulatory regions. Functionally, the hypermethylated DS-DMRs were enriched for one-carbon metabolism, membrane transport, and glutamatergic synaptic signalling, while the hypomethylated DMRs were enriched for proline isomerization, glial immune response, and apoptosis. Furthermore, in a cross-tissue comparison to previous studies of DNA methylation from diverse DS tissues and reference epigenomes, hypermethylated DS-DMRs showed a strong cross-tissue concordance, while a more tissue-specific pattern was observed for the hypomethylated DS-DMRs. Overall, this approach highlights that low-coverage WGBS of clinical samples can identify epigenetic alterations to known biological pathways, which are potentially relevant to therapeutic treatments and include metabolic pathways. These results also provide new insights into the genome-wide effects of genetic alterations on DNA methylation profiles indicative of altered neurodevelopment and brain function.
Collapse
Affiliation(s)
- Benjamin I. Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
34
|
Hakanen J, Ruiz-Reig N, Tissir F. Linking Cell Polarity to Cortical Development and Malformations. Front Cell Neurosci 2019; 13:244. [PMID: 31213986 PMCID: PMC6558068 DOI: 10.3389/fncel.2019.00244] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
Cell polarity refers to the asymmetric distribution of signaling molecules, cellular organelles, and cytoskeleton in a cell. Neural progenitors and neurons are highly polarized cells in which the cell membrane and cytoplasmic components are compartmentalized into distinct functional domains in response to internal and external cues that coordinate polarity and behavior during development and disease. In neural progenitor cells, polarity has a prominent impact on cell shape and coordinate several processes such as adhesion, division, and fate determination. Polarity also accompanies a neuron from the beginning until the end of its life. It is essential for development and later functionality of neuronal circuitries. During development, polarity governs transitions between multipolar and bipolar during migration of postmitotic neurons, and directs the specification and directional growth of axons. Once reaching final positions in cortical layers, neurons form dendrites which become compartmentalized to ensure proper establishment of neuronal connections and signaling. Changes in neuronal polarity induce signaling cascades that regulate cytoskeletal changes, as well as mRNA, protein, and vesicle trafficking, required for synapses to form and function. Hence, defects in establishing and maintaining cell polarity are associated with several neural disorders such as microcephaly, lissencephaly, schizophrenia, autism, and epilepsy. In this review we summarize the role of polarity genes in cortical development and emphasize the relationship between polarity dysfunctions and cortical malformations.
Collapse
Affiliation(s)
- Janne Hakanen
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| |
Collapse
|
35
|
Bremer J, Marsden KC, Miller A, Granato M. The ubiquitin ligase PHR promotes directional regrowth of spinal zebrafish axons. Commun Biol 2019; 2:195. [PMID: 31149640 PMCID: PMC6531543 DOI: 10.1038/s42003-019-0434-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023] Open
Abstract
To reconnect with their synaptic targets, severed axons need to regrow robustly and directionally along the pre-lesional trajectory. While mechanisms directing axonal regrowth are poorly understood, several proteins direct developmental axon outgrowth, including the ubiquitin ligase PHR (Mycbp2). Invertebrate PHR also limits regrowth of injured axons, whereas its role in vertebrate axonal regrowth remains elusive. Here we took advantage of the high regrowth capacity of spinal zebrafish axons and observed robust and directional regrowth following laser transection of spinal Mauthner axons. We found that PHR directs regrowing axons along the pre-lesional trajectory and across the transection site. At the transection site, initial regrowth of wild-type axons was multidirectional. Over time, misdirected sprouts were corrected in a PHR-dependent manner. Ablation of cyfip2, known to promote F-actin-polymerization and pharmacological inhibition of JNK reduced misdirected regrowth of PHR-deficient axons, suggesting that PHR controls directional Mauthner axonal regrowth through cyfip2- and JNK-dependent pathways.
Collapse
Affiliation(s)
- Juliane Bremer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA USA
| | - Kurt C. Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA USA
- Present Address: Department of Biological Sciences, North Carolina State University, Raleigh, 27607 NC USA
| | - Adam Miller
- Institute of Neuroscience, University of Oregon, Eugene, 97405 OR USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA USA
| |
Collapse
|
36
|
Folts CJ, Giera S, Li T, Piao X. Adhesion G Protein-Coupled Receptors as Drug Targets for Neurological Diseases. Trends Pharmacol Sci 2019; 40:278-293. [PMID: 30871735 DOI: 10.1016/j.tips.2019.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023]
Abstract
The family of adhesion G protein-coupled receptors (aGPCRs) consists of 33 members in humans. Although the majority are orphan receptors with unknown functions, many reports have demonstrated critical functions for some members of this family in organogenesis, neurodevelopment, myelination, angiogenesis, and cancer progression. Importantly, mutations in several aGPCRs have been linked to human diseases. The crystal structure of a shared protein domain, the GPCR Autoproteolysis INducing (GAIN) domain, has enabled the discovery of a common signaling mechanism - a tethered agonist - for this class of receptors. A series of recent reports has shed new light on their biological functions and disease relevance. This review focuses on these recent advances in our understanding of aGPCR biology in the nervous system and the untapped potential of aGPCRs as novel therapeutic targets for neurological disease.
Collapse
Affiliation(s)
- Christopher J Folts
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Sanofi S.A., 49 New York Avenue, Framingham, MA 01701, USA
| | - Tao Li
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Lindenmaier LB, Parmentier N, Guo C, Tissir F, Wright KM. Dystroglycan is a scaffold for extracellular axon guidance decisions. eLife 2019; 8:42143. [PMID: 30758284 PMCID: PMC6395066 DOI: 10.7554/elife.42143] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Axon guidance requires interactions between extracellular signaling molecules and transmembrane receptors, but how appropriate context-dependent decisions are coordinated outside the cell remains unclear. Here we show that the transmembrane glycoprotein Dystroglycan interacts with a changing set of environmental cues that regulate the trajectories of extending axons throughout the mammalian brain and spinal cord. Dystroglycan operates primarily as an extracellular scaffold during axon guidance, as it functions non-cell autonomously and does not require signaling through its intracellular domain. We identify the transmembrane receptor Celsr3/Adgrc3 as a binding partner for Dystroglycan, and show that this interaction is critical for specific axon guidance events in vivo. These findings establish Dystroglycan as a multifunctional scaffold that coordinates extracellular matrix proteins, secreted cues, and transmembrane receptors to regulate axon guidance.
Collapse
Affiliation(s)
| | - Nicolas Parmentier
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Fadel Tissir
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
38
|
He CW, Liao CP, Pan CL. Wnt signalling in the development of axon, dendrites and synapses. Open Biol 2018; 8:rsob.180116. [PMID: 30282660 PMCID: PMC6223216 DOI: 10.1098/rsob.180116] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Wnts are a highly conserved family of secreted glycoproteins that play essential roles in the morphogenesis and body patterning during the development of metazoan species. In recent years, mounting evidence has revealed important functions of Wnt signalling in diverse aspects of neural development, including neuronal polarization, guidance and branching of the axon and dendrites, as well as synapse formation and its structural remodelling. In contrast to Wnt signalling in cell proliferation and differentiation, which mostly acts through β-catenin-dependent pathways, Wnts engage a diverse array of non-transcriptional cascades in neuronal development, such as the planar cell polarity, cytoskeletal or calcium signalling pathways. In this review, we summarize recent advances in the mechanisms of Wnt signalling in the development of axon, dendrite and synapse formation.
Collapse
Affiliation(s)
- Chun-Wei He
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chien-Po Liao
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chun-Liang Pan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| |
Collapse
|
39
|
Martin-Lopez E, Meller SJ, Greer CA. Development of piriform cortex interhemispheric connections via the anterior commissure: progressive and regressive strategies. Brain Struct Funct 2018; 223:4067-4085. [PMID: 30141078 DOI: 10.1007/s00429-018-1741-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022]
Abstract
The anterior commissure (AC) is a phylogenetically conserved inter-hemispheric connection found among vertebrates with bilateral symmetry. The AC connects predominantly olfactory areas but many aspects of its development and structure are unknown. To fill this gap, we investigated the embryonic and postnatal development of the AC by tracing axons with DiI and the piggyback transposon multicolor system. With this strategy, we show that axon growth during establishment of the AC follows a strictly regulated timeline of events that include waiting periods ("regressive strategies") as well as periods of active axon outgrowth ("progressive strategies"). We also provide evidence that these processes may be regulated in the midline via overexpression of chondroitin sulfate proteoglycans. Additionally, we demonstrate that the ipsi- and contralateral innervation of piriform cortex occurs simultaneously. Morphologically, we found that 20% of axons were myelinated by postnatal day (P) 22, in a process that occurred fundamentally around P14. By immunohistochemistry, we described the presence of glial cells and two new subtypes of neurons: one expressing a calretinin (CR)-/MAP2+ phenotype, distributed homogeneously inside the AC; and the other expressing a CR+/MAP2+ phenotype that lies beneath the bed nucleus of the stria terminalis. Our results are consistent with the notion that the AC follows a strictly regulated program during the embryonic and postnatal development similarly to other distal targeting axonal tracts.
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA. .,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA. .,The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
40
|
Ghimire SR, Ratzan EM, Deans MR. A non-autonomous function of the core PCP protein VANGL2 directs peripheral axon turning in the developing cochlea. Development 2018; 145:dev.159012. [PMID: 29784671 DOI: 10.1242/dev.159012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/14/2018] [Indexed: 01/02/2023]
Abstract
The cochlea is innervated by neurons that relay sound information from hair cells to central auditory targets. A subset of these are the type II spiral ganglion neurons, which have nociceptive features and contribute to feedback circuits providing neuroprotection in extreme noise. Type II neurons make a distinctive 90° turn towards the cochlear base to synapse with 10-15 outer hair cells. We demonstrate that this axon turning event requires planar cell polarity (PCP) signaling and is disrupted in Vangl2 and Celsr1 knockout mice, and that VANGL2 acts non-autonomously from the cochlea to direct turning. Moreover, VANGL2 is asymmetrically distributed at intercellular junctions between cochlear supporting cells, and in a pattern that could allow it to act directly as an axon guidance cue. Together, these data reveal a non-autonomous function for PCP signaling during axon guidance occurring in the tissue that is innervated, rather than the navigating growth cone.
Collapse
Affiliation(s)
- Satish R Ghimire
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Evan M Ratzan
- Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Michael R Deans
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA .,Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.,Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
41
|
Homan CC, Pederson S, To TH, Tan C, Piltz S, Corbett MA, Wolvetang E, Thomas PQ, Jolly LA, Gecz J. PCDH19 regulation of neural progenitor cell differentiation suggests asynchrony of neurogenesis as a mechanism contributing to PCDH19 Girls Clustering Epilepsy. Neurobiol Dis 2018; 116:106-119. [PMID: 29763708 DOI: 10.1016/j.nbd.2018.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 01/12/2023] Open
Abstract
PCDH19-Girls Clustering Epilepsy (PCDH19-GCE) is a childhood epileptic encephalopathy characterised by a spectrum of neurodevelopmental problems. PCDH19-GCE is caused by heterozygous loss-of-function mutations in the X-chromosome gene, Protocadherin 19 (PCDH19) encoding a cell-cell adhesion molecule. Intriguingly, hemizygous males are generally unaffected. As PCDH19 is subjected to random X-inactivation, heterozygous females are comprised of a mosaic of cells expressing either the normal or mutant allele, which is thought to drive pathology. Despite being the second most prevalent monogeneic cause of epilepsy, little is known about the role of PCDH19 in brain development. In this study we show that PCDH19 is highly expressed in human neural stem and progenitor cells (NSPCs) and investigate its function in vitro in these cells of both mouse and human origin. Transcriptomic analysis of mouse NSPCs lacking Pcdh19 revealed changes to genes involved in regulation of neuronal differentiation, and we subsequently show that loss of Pcdh19 causes increased NSPC neurogenesis. We reprogramed human fibroblast cells harbouring a pathogenic PCDH19 mutation into human induced pluripotent stem cells (hiPSC) and employed neural differentiation of these to extend our studies into human NSPCs. As in mouse, loss of PCDH19 function caused increased neurogenesis, and furthermore, we show this is associated with a loss of human NSPC polarity. Overall our data suggests a conserved role for PCDH19 in regulating mammalian cortical neurogenesis and has implications for the pathogenesis of PCDH19-GCE. We propose that the difference in timing or "heterochrony" of neuronal cell production originating from PCDH19 wildtype and mutant NSPCs within the same individual may lead to downstream asynchronies and abnormalities in neuronal network formation, which in-part predispose the individual to network dysfunction and epileptic activity.
Collapse
Affiliation(s)
- Claire C Homan
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Thu-Hien To
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Chuan Tan
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Mark A Corbett
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Lachlan A Jolly
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia.
| | - Jozef Gecz
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia.
| |
Collapse
|
42
|
Diao Y, Chen Y, Zhang P, Cui L, Zhang J. Molecular guidance cues in the development of visual pathway. Protein Cell 2017; 9:909-929. [PMID: 29181831 PMCID: PMC6208478 DOI: 10.1007/s13238-017-0490-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/30/2017] [Indexed: 01/23/2023] Open
Abstract
70%–80% of our sensory input comes from vision. Light hit the retina at the back of our eyes and the visual information is relayed into the dorsal lateral geniculate nuclei (dLGN) and primary visual cortex (V1) thereafter, constituting the image-forming visual circuit. Molecular cues are one of the key factors to guide the wiring and refinement of the image-forming visual circuit during pre- and post-embryonic stages. Distinct molecular cues are involved in different developmental stages and nucleus, suggesting diverse guidance mechanisms. In this review, we summarize molecular guidance cues throughout the image-forming visual circuit, including chiasm determination, eye-specific segregation and refinement in the dLGN, and at last the reciprocal connections between the dLGN and V1.
Collapse
Affiliation(s)
- Yupu Diao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuqing Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peijun Zhang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Liyuan Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
43
|
Lefebvre JL. Neuronal territory formation by the atypical cadherins and clustered protocadherins. Semin Cell Dev Biol 2017; 69:111-121. [DOI: 10.1016/j.semcdb.2017.07.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/04/2023]
|
44
|
Smith R, Huang YT, Tian T, Vojtasova D, Mesalles-Naranjo O, Pollard SM, Pratt T, Price DJ, Fotaki V. The Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk. J Neurosci 2017; 37:7975-7993. [PMID: 28729440 PMCID: PMC5559767 DOI: 10.1523/jneurosci.0286-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/25/2017] [Accepted: 07/02/2017] [Indexed: 11/21/2022] Open
Abstract
During vertebrate eye morphogenesis, a transient fissure forms at its inferior part, known as the optic fissure. This will gradually close, giving rise to a healthy, spherical optic cup. Failure of the optic fissure to close gives rise to an ocular disorder known as coloboma. During this developmental process, Foxg1 is expressed in the optic neuroepithelium, with highest levels of expression in the nasal optic stalk. Foxg1-/- mutant mice have microphthalmic eyes with a large ventral coloboma. We found Wnt8b expression upregulated in the Foxg1-/- optic stalk and hypothesized that, similar to what is observed in telencephalic development, Foxg1 directs development of the optic neuroepithelium through transcriptional suppression of Wnt8b To test this, we generated Foxg1-/-;Wnt8b-/- double mutants of either sex and found that the morphology of the optic cup and stalk and the closure of the optic fissure were substantially rescued in these embryos. This rescue correlates with restored Pax2 expression in the anterior tip of the optic fissure. In addition, although we do not find evidence implicating altered proliferation in the rescue, we observe a significant increase in apoptotic cell density in Foxg1-/-;Wnt8b-/- double mutants compared with the Foxg1-/- single mutant. Upregulation of Wnt/β-catenin target molecules in the optic cup and stalk may underlie the molecular and morphological defects in the Foxg1-/- mutant. Our results show that proper optic fissure closure relies on Wnt8b suppression by Foxg1 in the nasal optic stalk to maintain balanced apoptosis and Pax2 expression in the nasal and temporal edges of the fissure.SIGNIFICANCE STATEMENT Coloboma is an ocular disorder that may result in a loss of visual acuity and accounts for ∼10% of childhood blindness. It results from errors in the sealing of the optic fissure (OF), a transient structure at the bottom of the eye. Here, we investigate the colobomatous phenotype of the Foxg1-/- mutant mouse. We identify upregulated expression of Wnt8b in the optic stalk of Foxg1-/- mutants before OF closure initiates. Foxg1-/-;Wnt8b-/- double mutants show a substantial rescue of the Foxg1-/- coloboma phenotype, which correlates with a rescue in molecular and cellular defects of Foxg1-/- mutants. Our results unravel a new role of Foxg1 in promoting OF closure providing additional knowledge about the molecules and cellular mechanisms underlying coloboma formation.
Collapse
Affiliation(s)
- Rowena Smith
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Yu-Ting Huang
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Tian Tian
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Dominika Vojtasova
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Oscar Mesalles-Naranjo
- Information Service Division, NHS National Services Scotland, Edinburgh, EH12 9EB, United Kingdom
| | - Steven M Pollard
- Medical Research Council Centre for Regenerative Medicine, Edinburgh, EH16 4UU, United Kingdom, and
- Edinburgh Cancer Research UK Cancer Centre, Edinburgh, EH16 4UU, United Kingdom
| | - Thomas Pratt
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - David J Price
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Vassiliki Fotaki
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom,
| |
Collapse
|
45
|
Wang F, Wang Q, Li C, Yu P, Qu Y, Zhou L. The role of Celsr3 in the development of central somatosensory projections from dorsal root ganglia. Neuroscience 2017; 359:267-276. [PMID: 28754314 DOI: 10.1016/j.neuroscience.2017.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/29/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023]
Abstract
Dorsal root ganglion (DRG) neurons receive peripheral somatosensory information and send orderly projections to second-order relay nuclei in the spinal cord and in the brainstem. Atypical cadherin Celsr3 is known to play a critical role in wiring of several central and peripheral axons. Although Celsr3 mRNA is heavily expressed in DRG neurons, its role in the development of somatosensory projections remains unexplored. Here we assessed the role of Celsr3 in DRG using conditional gene inactivation in crosses with Wnt1-Cre mice. Using Celsr3-GFP transgenic mice, we found that Celsr3 was highly expressed in different DRG cells, such as Pavalbumin-, TrkB-, and calcitonin gene-related peptide (CGRP)-positive neurons. Wnt1-Cre;Celsr3f/- animals survived for a few weeks and looked smaller than littermate controls. DiI tracing showed that early DRG axons entered the spinal cord and reached spinal cord targets similarly in mutant and control mice. CGRP-positive fiber density was significantly decreased in lamina I in the mutant versus control spinal cord at postnatal day (P) 7 and P14. Furthermore, more Pavalbumin-positive fibers invaded the gray matter and made more contacts with spinal motor neurons in mutant than in control samples. Behavioral analysis showed that mutant animals were less sensitive to pain and more sensitive to mechanical stimulation than controls. In conclusion, Celsr3 is dispensable for the patterning of central DRG projections, but it regulates for the fine mapping of sensory fibers in the gray matter, which is important for somatosensory processing.
Collapse
Affiliation(s)
- Feifei Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Qianghua Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Chen Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China; Co-innovation Center of Neuroregeneration, Jiangsu, PR China; Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
46
|
Seven pass Cadherins CELSR1-3. Semin Cell Dev Biol 2017; 69:102-110. [PMID: 28716607 DOI: 10.1016/j.semcdb.2017.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 11/20/2022]
Abstract
Cadherin EGF LAG seven-pass G-type receptors 1, 2 and 3 (CELSR1-3) form a family of three atypical cadherins with multiple functions in epithelia and in the nervous system. During the past decade, evidence has accumulated for a key role of CELSR1 in epithelial planar cell polarity (PCP), and for CELSR2 and CELSR3 in ciliogenesis and neural development, especially neuron migration and axon guidance in the central, peripheral and enteric nervous systems. Phenotypes in mutant mice indicate that CELSR proteins work in concert with FZD3 and FZD6, but several questions remain. Apart from PCP signaling pathways implicating CELSR1 that begin to be unraveled, little is known about other signals generated by CELSR2 and CELSR3. A crucial question concerns the putative ligands that trigger signaling, in particular what is the role of WNT factors. Another critical issue is the identification of novel intracellular pathways and effectors that relay and transmit signals in receptive cells? Answers to those questions should further our understanding of the role of those important molecules not only in development but also in regeneration and disease.
Collapse
|
47
|
Willsey AJ, Fernandez TV, Yu D, King RA, Dietrich A, Xing J, Sanders SJ, Mandell JD, Huang AY, Richer P, Smith L, Dong S, Samocha KE, Neale BM, Coppola G, Mathews CA, Tischfield JA, Scharf JM, State MW, Heiman GA. De Novo Coding Variants Are Strongly Associated with Tourette Disorder. Neuron 2017; 94:486-499.e9. [PMID: 28472652 PMCID: PMC5769876 DOI: 10.1016/j.neuron.2017.04.024] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/30/2022]
Abstract
Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 trios from the Tourette Syndrome Association International Consortium on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of clinical cases. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- A Jeremy Willsey
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Thomas V Fernandez
- Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dongmei Yu
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert A King
- Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andrea Dietrich
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, 9713GZ Groningen, the Netherlands
| | - Jinchuan Xing
- Rutgers, the State University of New Jersey, Department of Genetics and the Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey D Mandell
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alden Y Huang
- Department of Neurology, University of California Los Angeles, Los Angeles, California, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Petra Richer
- Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Sewanee: The University of the South, Sewanee, TN 37383, USA
| | - Louw Smith
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kaitlin E Samocha
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin M Neale
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Giovanni Coppola
- Department of Neurology, University of California Los Angeles, Los Angeles, California, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Carol A Mathews
- Department of Psychiatry, University of Florida School of Medicine, Gainesville, FL 32611, USA
| | - Jay A Tischfield
- Rutgers, the State University of New Jersey, Department of Genetics and the Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Jeremiah M Scharf
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Matthew W State
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Gary A Heiman
- Rutgers, the State University of New Jersey, Department of Genetics and the Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
48
|
Lee M, Yoon J, Song H, Lee B, Lam DT, Yoon J, Baek K, Clevers H, Jeong Y. Tcf7l2 plays crucial roles in forebrain development through regulation of thalamic and habenular neuron identity and connectivity. Dev Biol 2017; 424:62-76. [DOI: 10.1016/j.ydbio.2017.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 11/28/2022]
|
49
|
Messéant J, Ezan J, Delers P, Glebov K, Marchiol C, Lager F, Renault G, Tissir F, Montcouquiol M, Sans N, Legay C, Strochlic L. Wnt proteins contribute to neuromuscular junction formation through distinct signaling pathways. Development 2017; 144:1712-1724. [PMID: 28348167 DOI: 10.1242/dev.146167] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/20/2017] [Indexed: 01/05/2023]
Abstract
Understanding the developmental steps that shape formation of the neuromuscular junction (NMJ) connecting motoneurons to skeletal muscle fibers is crucial. Wnt morphogens are key players in the formation of this specialized peripheral synapse, but their individual and collaborative functions and downstream pathways remain poorly understood at the NMJ. Here, we demonstrate through Wnt4 and Wnt11 gain-of-function studies in cell culture or in mice that Wnts enhance acetylcholine receptor (AChR) clustering and motor axon outgrowth. By contrast, loss of Wnt11 or Wnt-dependent signaling in vivo decreases AChR clustering and motor nerve terminal branching. Both Wnt4 and Wnt11 stimulate AChR mRNA levels and AChR clustering downstream of activation of the β-catenin pathway. Strikingly, Wnt4 and Wnt11 co-immunoprecipitate with Vangl2, a core component of the planar cell polarity (PCP) pathway, which accumulates at embryonic NMJs. Moreover, mice bearing a Vangl2 loss-of-function mutation (loop-tail) exhibit fewer AChR clusters and overgrowth of motor axons bypassing AChR clusters. Together, our results provide genetic and biochemical evidence that Wnt4 and Wnt11 cooperatively contribute to mammalian NMJ formation through activation of both the canonical and Vangl2-dependent core PCP pathways.
Collapse
Affiliation(s)
- Julien Messéant
- CNRS UMR 8119, CNRS UMR 8194, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75270 Cedex 06, France
| | - Jérôme Ezan
- INSERM, Neurocentre Magendie, U1215, Bordeaux 33077, France.,Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux 33077, France
| | - Perrine Delers
- CNRS UMR 8119, CNRS UMR 8194, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75270 Cedex 06, France
| | - Konstantin Glebov
- INSERM, Neurocentre Magendie, U1215, Bordeaux 33077, France.,Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux 33077, France
| | - Carmen Marchiol
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75014, France
| | - Franck Lager
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75014, France
| | - Gilles Renault
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75014, France
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Brussels B1200, Belgium
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, Bordeaux 33077, France.,Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux 33077, France
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, Bordeaux 33077, France.,Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux 33077, France
| | - Claire Legay
- CNRS UMR 8119, CNRS UMR 8194, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75270 Cedex 06, France
| | - Laure Strochlic
- CNRS UMR 8119, CNRS UMR 8194, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75270 Cedex 06, France
| |
Collapse
|
50
|
Thakar S, Wang L, Yu T, Ye M, Onishi K, Scott J, Qi J, Fernandes C, Han X, Yates JR, Berg DK, Zou Y. Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 2017; 114:E610-E618. [PMID: 28057866 PMCID: PMC5278468 DOI: 10.1073/pnas.1612062114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The signaling mechanisms that choreograph the assembly of the highly asymmetric pre- and postsynaptic structures are still poorly defined. Using synaptosome fractionation, immunostaining, and coimmunoprecipitation, we found that Celsr3 and Vangl2, core components of the planar cell polarity (PCP) pathway, are localized at developing glutamatergic synapses and interact with key synaptic proteins. Pyramidal neurons from the hippocampus of Celsr3 knockout mice exhibit loss of ∼50% of glutamatergic synapses, but not inhibitory synapses, in culture. Wnts are known regulators of synapse formation, and our data reveal that Wnt5a inhibits glutamatergic synapses formed via Celsr3. To avoid affecting earlier developmental processes, such as axon guidance, we conditionally knocked out Celsr3 in the hippocampus 1 week after birth. The CA1 neurons that lost Celsr3 also showed a loss of ∼50% of glutamatergic synapses in vivo without affecting the inhibitory synapses assessed by miniature excitatory postsynaptic current (mEPSC) and electron microscopy. These animals displayed deficits in hippocampus-dependent behaviors in adulthood, including spatial learning and memory and fear conditioning. In contrast to Celsr3 conditional knockouts, we found that the conditional knockout of Vangl2 in the hippocampus 1 week after birth led to a large increase in synaptic density, as evaluated by mEPSC frequency and spine density. PCP signaling is mediated by multiple core components with antagonizing functions. Our results document the opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation.
Collapse
Affiliation(s)
- Sonal Thakar
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Liqing Wang
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Ting Yu
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Mao Ye
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Keisuke Onishi
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - John Scott
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Jiaxuan Qi
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Catarina Fernandes
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Darwin K Berg
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|