1
|
Maurer SV, Hing BWQ, Lussier S, Radhakrishna S, Davis JLB, Abbott PW, Michaelson JJ, Stevens HE. Prenatal stress alters mouse offspring dorsal striatal development and placental function in sex-specific ways. J Psychiatr Res 2025; 182:149-160. [PMID: 39809011 PMCID: PMC11959308 DOI: 10.1016/j.jpsychires.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Prenatal stress is a risk factor for neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). However, how early stress modification of brain development contributes to this pathophysiology is poorly understood. Ventral forebrain regions such as dorsal striatum are of particular interest: dorsal striatum modulates movement and cognition, is altered in NDDs, and has a primarily GABAergic population. Here, we examine effects of prenatal stress on adult movement, cognition, and dorsal striatum neurobiology in mice using striatal-dependent behavioral assays, immunohistochemistry, embryonic ventral forebrain transcriptomics, and placental transcriptomics. We found prenatal stress affected adult procedural, habit, and reversal learning in sex-specific ways. Stress also increased adult dorsal striatal GABAergic neurons - an effect largely driven by males. We sought to examine the developmental origins of these adult brain changes. We found similar sex-specific dorsal striatal cellular changes in earlier points of development. The dorsal striatum primordium--embryonic ventral forebrain-showed that prenatal stress increased DNA replication and cell cycle pathways in male but not female transcriptomics and cellular biology. Unique signatures may have arisen from male-female placental differences. Stress-induced placental transcriptomics showed upregulated morphogenesis pathways in males while females downregulated morphogenic, hormonal, and cellular response pathways. Our findings suggest that prenatal stress could affect placenta function and also alter the GABAergic population of dorsal striatum differentially between the sexes.
Collapse
Affiliation(s)
- Sara V Maurer
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA
| | - Benjamin W Q Hing
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA
| | - Stephanie Lussier
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA; SL is now with Moderna, USA
| | - Sreya Radhakrishna
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA; SR is now at Albert Einstein College of Medicine, USA
| | - Jada L B Davis
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA
| | - Parker W Abbott
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA
| | - Jacob J Michaelson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
2
|
Baker EC, Riley DG, Cardoso RC, Hairgrove TB, Long CR, Randel RD, Welsh TH. Assessment of Prenatal Transportation Stress and Sex on Gene Expression Within the Amygdala of Brahman Calves. BIOLOGY 2024; 13:915. [PMID: 39596870 PMCID: PMC11592456 DOI: 10.3390/biology13110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
As the amygdala is associated with fear and anxiety, it is important to determine the potential effects of gestational stressors on behavior and stress responses in offspring. The objective of this study was to investigate the effects of prenatal transportation stress on amygdala gene expression in 25-day-old Brahman calves, focusing on sex-specific differences. Amygdala tissue samples from prenatally stressed (PNS) and control bull and heifer calves were analyzed using RNA sequencing. A thorough outlier detection process, utilizing visual inspection of multidimensional scaling plots, robust principal component analysis, and PCAGrid methods, led to the exclusion of 5 of 32 samples from subsequent analyses. Differential expression analysis revealed no significant treatment differences between the control and PNS groups within either sex. However, sex-specific differences in gene expression were identified in both the control and PNS groups. The control group showed seven differentially expressed genes between sexes, while ten were identified between PNS males and females, with seven located on the X chromosome. Among these was the ubiquitin-specific peptidase 9 X-linked gene, which plays a role in neurodevelopmental pathways. When comparing males to females, regardless of treatment, a total of 58 genes were differentially expressed, with 45 showing increased expression in females. Gene enrichment analysis indicated that many differentially expressed genes are associated with infectious disease-related pathways. Future research should explore amygdala size and functional responses to various postnatal stimuli.
Collapse
Affiliation(s)
- Emilie C. Baker
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA;
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Thomas B. Hairgrove
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Extension, College Station, TX 77843, USA
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, Overton, TX 75684, USA
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, Overton, TX 75684, USA
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
3
|
Barr GA, Opendak M, Perry RE, Sarro E, Sullivan RM. Infant pain vs. pain with parental suppression: Immediate and enduring impact on brain, pain and affect. PLoS One 2023; 18:e0290871. [PMID: 37972112 PMCID: PMC10653509 DOI: 10.1371/journal.pone.0290871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND In the short term, parental presence while a human infant is in pain buffers the immediate pain responses, although emerging evidence suggests repeated social buffering of pain may have untoward long-term effects. METHODS/FINDING To explore the short- and long-term impacts of social buffering of pain, we first measured the infant rat pup's [postnatal day (PN) 8, or 12] response to mild tail shock with the mother present compared to shock alone or no shock. Shock with the mother reduced pain-related behavioral activation and USVs of pups at both ages and reduced Fos expression in the periaqueductal gray, hypothalamic paraventricular nucleus, and the amygdala at PN12 only. At PN12, shock with the mother compared to shock alone differentially regulated expression of several hundred genes related to G-protein-coupled receptors (GPCRs) and neural development, whereas PN8 pups showed a less robust and less coherent expression pattern. In a second set of experiments, pups were exposed to daily repeated Shock-mother pairings (or controls) at PN5-9 or PN10-14 (during and after pain sensitive period, respectively) and long-term outcome assessed in adults. Shock+mother pairing at PN5-9 reduced adult carrageenan-induced thermal hyperalgesia and reduced Fos expression, but PN10-14 pairings had minimal impact. The effect of infant treatment on adult affective behavior showed a complex treatment by age dependent effect. Adult social behavior was decreased following Shock+mother pairings at both PN5-9 and PN10-14, whereas shock alone had no effect. Adult fear responses to a predator odor were decreased only by PN10-14 treatment and the infant Shock alone and Shock+mother did not differ. CONCLUSIONS/SIGNIFICANCE Overall, integrating these results into our understanding of long-term programming by repeated infant pain experiences, the data suggest that pain experienced within a social context impacts infant neurobehavioral responses and initiates an altered developmental trajectory of pain and affect processing that diverges from experiencing pain alone.
Collapse
Affiliation(s)
- Gordon A. Barr
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Perelman School of Medicine at the University of Pennsylvania, Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maya Opendak
- Child Study Center, Center for Early Childhood Health & Development, Child & Adolescent Psychiatry, New York University School of Medicine, New York, New York, United States of America
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, United States of America
| | - Rosemarie E. Perry
- Child Study Center, Center for Early Childhood Health & Development, Child & Adolescent Psychiatry, New York University School of Medicine, New York, New York, United States of America
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, United States of America
| | - Emma Sarro
- Child Study Center, Center for Early Childhood Health & Development, Child & Adolescent Psychiatry, New York University School of Medicine, New York, New York, United States of America
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, United States of America
| | - Regina M. Sullivan
- Child Study Center, Center for Early Childhood Health & Development, Child & Adolescent Psychiatry, New York University School of Medicine, New York, New York, United States of America
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, United States of America
| |
Collapse
|
4
|
Powell SB, Swerdlow NR. The Relevance of Animal Models of Social Isolation and Social Motivation for Understanding Schizophrenia: Review and Future Directions. Schizophr Bull 2023; 49:1112-1126. [PMID: 37527471 PMCID: PMC10483472 DOI: 10.1093/schbul/sbad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND HYPOTHESES Social dysfunction in schizophrenia includes symptoms of withdrawal and deficits in social skills, social cognition, and social motivation. Based on the course of illness, with social withdrawal occurring prior to psychosis onset, it is likely that the severity of social withdrawal/isolation contributes to schizophrenia neuropathology. STUDY DESIGN We review the current literature on social isolation in rodent models and provide a conceptual framework for its relationship to social withdrawal and neural circuit dysfunction in schizophrenia. We next review preclinical tasks of social behavior used in schizophrenia-relevant models and discuss strengths and limitations of existing approaches. Lastly, we consider new effort-based tasks of social motivation and their potential for translational studies in schizophrenia. STUDY RESULTS Social isolation rearing in rats produces profound differences in behavior, pharmacologic sensitivity, and neurochemistry compared to socially reared rats. Rodent models relevant to schizophrenia exhibit deficits in social behavior as measured by social interaction and social preference tests. Newer tasks of effort-based social motivation are being developed in rodents to better model social motivation deficits in neuropsychiatric disorders. CONCLUSIONS While experimenter-imposed social isolation provides a viable experimental model for understanding some biological mechanisms linking social dysfunction to clinical and neural pathology in schizophrenia, it bypasses critical antecedents to social isolation in schizophrenia, notably deficits in social reward and social motivation. Recent efforts at modeling social motivation using effort-based tasks in rodents have the potential to quantify these antecedents, identify models (eg, developmental, genetic) that produce deficits, and advance pharmacological treatments for social motivation.
Collapse
Affiliation(s)
- Susan B Powell
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs VISN22 Mental Illness Research, Education and Clinical Center, La Jolla, CA, USA
| | - Neal R Swerdlow
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs VISN22 Mental Illness Research, Education and Clinical Center, La Jolla, CA, USA
| |
Collapse
|
5
|
Barrett CE, Jiang M, O'Flaherty BG, Dias BG, Rainnie DG, Young LJ, Menigoz A. Early life exposure to high fructose diet induces metabolic dysregulation associated with sex-specific cognitive impairment in adolescent rats. J Nutr Biochem 2023; 114:109220. [PMID: 36435289 PMCID: PMC9992084 DOI: 10.1016/j.jnutbio.2022.109220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/25/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
The incidence of adolescent mental health disorders is on the rise. Epidemiological studies suggest that poor nutrition is a significant contributor to this public health crisis, specifically through exposure to high level of dietary sugar, including fructose, during critical periods of development. Previous studies have shown that elevated fructose exposure during adolescence disrupts mental health. Despite these data, it is currently unknown how fructose exposure, specifically during infancy, may impact adolescent mental health. We developed a rat experimental protocol to investigate the effects of fructose exposure during infancy on behavioral, cognitive and metabolic endpoints in adolescence. We found that exposing rats to high fructose from birth to weaning resulted in higher circulating glucose, insulin and leptin levels in adolescence. High fructose during infancy also increased bodyweight, disrupted metabolic homeostasis in the basolateral amygdala (BLA) as indicated by decreased activity of the cellular energy sensor AMPK, and impaired attention and impulsivity in a male-specific manner. This impaired attention observed in adolescent male rats following neonatal fructose exposure was partially rescued by viral-mediated, in vivo expression of a constitutively active form of AMPK in principal neurons of the BLA. Our results suggest that exposure to high level of fructose during infancy may impact adolescent mental health in a male-specific manner and that manipulation of AMPK activity may mitigate this impact.
Collapse
Affiliation(s)
- Catherine E Barrett
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Megan Jiang
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Brendan G O'Flaherty
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Brian G Dias
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA; Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, California, USA; Division of Research on Children, Youth & Families, Children's Hospital Los Angeles, Los Angeles, California, USA; Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, California, USA
| | - Donald G Rainnie
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Aurelie Menigoz
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
6
|
Svalina MN, Sullivan R, Restrepo D, Huntsman MM. From circuits to behavior: Amygdala dysfunction in fragile X syndrome. Front Integr Neurosci 2023; 17:1128529. [PMID: 36969493 PMCID: PMC10034113 DOI: 10.3389/fnint.2023.1128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a repeat expansion mutation in the promotor region of the FMR1 gene resulting in transcriptional silencing and loss of function of fragile X messenger ribonucleoprotein 1 protein (FMRP). FMRP has a well-defined role in the early development of the brain. Thus, loss of the FMRP has well-known consequences for normal cellular and synaptic development leading to a variety of neuropsychiatric disorders including an increased prevalence of amygdala-based disorders. Despite our detailed understanding of the pathophysiology of FXS, the precise cellular and circuit-level underpinnings of amygdala-based disorders is incompletely understood. In this review, we discuss the development of the amygdala, the role of neuromodulation in the critical period plasticity, and recent advances in our understanding of how synaptic and circuit-level changes in the basolateral amygdala contribute to the behavioral manifestations seen in FXS.
Collapse
Affiliation(s)
- Matthew N. Svalina
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Regina Sullivan
- Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, Child Study Center, New York University School of Medicine, New York, NY, United States
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Molly M. Huntsman
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Molly M. Huntsman,
| |
Collapse
|
7
|
Stressed rats fail to exhibit avoidance reactions to innately aversive social calls. Neuropsychopharmacology 2022; 47:1145-1155. [PMID: 34848856 PMCID: PMC9018727 DOI: 10.1038/s41386-021-01230-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/30/2021] [Indexed: 02/02/2023]
Abstract
Disruptions in amygdalar function, a brain area involved in encoding emotionally salient information, has been implicated in stress-related affective disorders. Earlier animal studies on the behavioral consequences of stress-induced abnormalities in the amygdala focused on learned behaviors using fear conditioning paradigms. If and how stress affects unconditioned, innate fear responses to ethologically natural aversive stimuli remains unexplored. Hence, we subjected rats to aversive ultrasonic vocalization calls emitted on one end of a linear track. Unstressed control rats exhibited a robust avoidance response by spending more time away from the source of the playback calls. Unexpectedly, prior exposure to chronic immobilization stress prevented this avoidance reaction, rather than enhancing it. Further, this stress-induced impairment extended to other innately aversive stimuli, such as white noise and electric shock in an inhibitory avoidance task. However, conditioned fear responses were enhanced by the same stress. Inactivation of the basolateral amygdala (BLA) in control rats prevented this avoidance reaction evoked by the playback. Consistent with this, analysis of the immediate early gene cFos revealed higher activity in the BLA of control, but not stressed rats, after exposure to the playback. Further, in vivo recordings in freely behaving control rats exposed to playback showed enhanced theta activity in the BLA, which also was absent in stressed rats. These findings offer a new framework for studying stress-induced alterations in amygdala-dependent maladaptive responses to more naturally threatening and emotionally relevant social stimuli. The divergent impact of stress on defensive responses--impaired avoidance responses together with increased conditioned fear--also has important implications for models of learned helplessness and depression.
Collapse
|
8
|
Impacts of a perinatal exposure to manganese coupled with maternal stress in rats: Tests of untrained behaviors. Neurotoxicol Teratol 2022; 91:107088. [PMID: 35278630 PMCID: PMC9133146 DOI: 10.1016/j.ntt.2022.107088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
Abstract
Manganese (Mn), an element that naturally occurs in the environment, has been shown to produce neurotoxic effects on the developing young when levels exceed physiological requirements. To evaluate the effects of this chemical in combination with non-chemical factors pregnant Long-Evans rats were treated with 0, 2, or 4 mg/mL Mn in their drinking water from gestational day (GD) 7 to postnatal day (PND) 22. Half of the dams received a variable stress protocol from GD13 to PND9, that included restraint, small cage with reduced bedding, exposure to predator odor, intermittent intervals of white noise, lights on for 24 h, intermittent intervals of lights on during dark cycle and cages with grid floors and reduced bedding. One male and one female offspring from each litter were tested to assess untrained behavior. Ultrasonic vocalizations (USV) were recorded from PND13 pups while they were isolated from the litter. Locomotor activity (MA) was measured in figure-eight mazes at PND 17, 29, and 79 (different set of rats at each time point). Social approach (SA) was tested at PND48. Acoustic startle response (ASR) and pre-pulse inhibition (PPI) were measured starting at PND58. At PND53 a sweetness preference for a chocolate flavored milk solution was assessed. There were sex related differences on several parameters for the USVs. There was also a Mn by stress by sex interaction with the females from the 4 mg/mL stressed dams having more frequency modulated (FM) call elements than the 4 mg/mL non-stressed group. There was an effect of Mn on motor activity but only at PND29 with the 2 mg/mL group having higher counts than the 0 mg/mL group. The social approach test showed sex differences for both the habituation and test phase. There was an effect of Mn, with the 4 mg/mL males having a greater preference for the stimulus rat than did the 0 mg/mL males. There was also a stress by sex interaction. The ASR and PPI had only a sex effect. Thus, with only the FM call elements having a Mn by stress effect, and the PND29 MA and SA preference index having a Mn effect but at different doses requires further investigation.
Collapse
|
9
|
Late-Onset Behavioral and Synaptic Consequences of L-Type Ca 2+ Channel Activation in the Basolateral Amygdala of Developing Rats. eNeuro 2022; 9:ENEURO.0282-21.2022. [PMID: 35064022 PMCID: PMC8868026 DOI: 10.1523/eneuro.0282-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Postnatal CNS development is fine-tuned to drive the functional needs of succeeding life stages; accordingly, the emergence of sensory and motor functions, behavioral patterns and cognitive abilities relies on a complex interplay of signaling pathways. Strictly regulated Ca2+ signaling mediated by L-type channels (LTCCs) is crucial in neural circuit development and aberrant increases in neuronal LTCC activity are linked to neurodevelopmental and psychiatric disorders. In the amygdala, a brain region that integrates signals associated with aversive and rewarding stimuli, LTCCs contribute to NMDA-independent long-term potentiation (LTP) and are required for the consolidation and extinction of fear memory. In vitro studies have elucidated distinct electrophysiological and synaptic properties characterizing the transition from immature to functionally mature basolateral subdivision of the amygdala (BLA) principal neurons. Further, acute increase of LTCC activity selectively regulates excitability and spontaneous synaptic activity in immature BLA neurons, suggesting an age-dependent regulation of BLA circuitry by LTCCs. This study aimed to elucidate whether early life alterations in LTCC activity subsequently affect synaptic strength and amygdala-dependent behaviors in early adulthood. In vivo intra-amygdala injection of an LTCC agonist at a critical period of postnatal neurodevelopment in male rat pups was used to examine synaptic plasticity of BLA excitatory inputs, expression of immediate early genes (IEGs) and glutamate receptors, as well as anxiety and social affiliation behaviors at a juvenile age. Results indicate that enhanced LTCC activity in immature BLA principal neurons trigger persistent changes in the developmental trajectory to modify membrane properties and synaptic LTP at later stages, concomitant with alterations in amygdala-related behavioral patterns.
Collapse
|
10
|
The Impact of Stress Within and Across Generations: Neuroscientific and Epigenetic Considerations. Harv Rev Psychiatry 2021; 29:303-317. [PMID: 34049337 DOI: 10.1097/hrp.0000000000000300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of stress and trauma on biological systems in humans can be substantial. They can result in epigenetic changes, accelerated brain development and sexual maturation, and predisposition to psychopathology. Such modifications may be accompanied by behavioral, emotional, and cognitive overtones during one's lifetime. Exposure during sensitive periods of neural development may lead to long-lasting effects that may not be affected by subsequent environmental interventions. The cumulative effects of life stressors in an individual may affect offspring's methylome makeup and epigenetic clocks, neurohormonal modulation and stress reactivity, and physiological and reproductive development. While offspring may suffer deleterious effects from parental stress and their own early-life adversity, these factors may also confer traits that prove beneficial and enhance fitness to their own environment. This article synthesizes the data on how stress shapes biological and behavioral dimensions, drawing from preclinical and human models. Advances in this field of knowledge should potentially allow for an improved understanding of how interventions may be increasingly tailored according to individual biomarkers and developmental history.
Collapse
|
11
|
Ceniceros LC, Capitanio JP, Kinnally EL. Prenatal Relocation Stress Enhances Resilience Under Challenge in Infant Rhesus Macaques. Front Behav Neurosci 2021; 15:641795. [PMID: 33854420 PMCID: PMC8039121 DOI: 10.3389/fnbeh.2021.641795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
The prenatal period is a developmental stage of peak sensitivity, during which environmental exposures can program post-natal developmental outcomes. Prenatal stress, in particular, has often been associated with detrimental neurobehavioral outcomes like mood and anxiety disorders. In the present study, we examined the effects of a stressful prenatal maternal experience (maternal relocation during pregnancy) on the post-partum development of offspring in rhesus macaques. To help isolate the effects of prenatal stress from genetic predispositions and post-natal experience, we compared biologically reared infants (infants raised with their biological mothers) with cross-fostered infants (those raised by non-related females in new social groups). We examined the effects of prenatal relocation stress on measures collected at 3-4 months of age during a standardized biobehavioral assessment. Unexpectedly, we found that prenatal stress resulted in a behavioral pattern consistent with resilience rather than anxiety: prenatal stress was linked with greater activity, lower anxiety, and more interaction with novel objects, as well as higher ratings of temperamental confidence during assessment. These effects were observed in infants reared by biological mothers as well as cross-fostered infants, suggesting that the effects of prenatal stress were not attributable to maternal genetics or post-natal factors. Our surprising results suggest that prenatal relocation stress may confer resilience in infant rhesus monkeys.
Collapse
Affiliation(s)
- Lesly C Ceniceros
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - John P Capitanio
- California National Primate Research Center, University of California, Davis, Davis, CA, United States.,Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Erin L Kinnally
- California National Primate Research Center, University of California, Davis, Davis, CA, United States.,Department of Psychology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Li Y, Rong J, Zhong H, Liang M, Zhu C, Chang F, Zhou R. Prenatal Stress Leads to the Altered Maturation of Corticostriatal Synaptic Plasticity and Related Behavioral Impairments Through Epigenetic Modifications of Dopamine D2 Receptor in Mice. Mol Neurobiol 2021; 58:317-328. [PMID: 32935231 DOI: 10.1007/s12035-020-02127-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022]
Abstract
Prenatal stress (PRS) had a long-term adverse effect on motor behaviors. Corticostriatal synaptic plasticity, a cellular basis for motor controlling, has been proven to participate in the pathogenesis of many behavior disorders. Based on the reports about the involvement of epigenetic DNA alterations in PRS-induced long-term effects, this research investigated the influence of PRS on the development and maturation of corticostriatal synaptic plasticity and related behaviors and explored the underlying epigenetic mechanism. Subjects were male offspring of dams that were exposed to stress three times per day from the 10th day of pregnancy until delivery. The development and maturation of plasticity at corticostriatal synapses, dopamine signaling, behavioral habituation, and DNA methylation were examined and analyzed. Control mice expressed long-term potentiation (LTP) at corticostriatal synapses during postnatal days (PD) 12-14 and produced long-term depression (LTD) during PD 20-60. However, PRS mice exhibited sustained LTP during PD 12-60. The treatment with dopamine 2 receptor (D2R) agonist quinpirole recovered striatal LTD and improved the impaired behavioral habituation in PD 45 adult PRS mice. Additionally, adult PRS mice showed reduced D2R, excess DNA methyltransferase 1 (DNMT1), increased binding of DNMT1 to D2R promoter, and hypermethylation at D2R promoter in the striatum. The DNMT1 inhibitor 5-aza-deoxycytidine restored striatal synaptic plasticity and improved behavioral habituation in adult PRS mice via D2R-mediated dopamine signaling. DNMT1-associated D2R hypermethylation is responsible for altering the maturation of plasticity at corticostriatal synapses and impairing the behavioral habituation in PRS mice.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Jing Rong
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Haiquan Zhong
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Min Liang
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Chunting Zhu
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Fei Chang
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Rong Zhou
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China.
| |
Collapse
|
13
|
Becoming Stressed: Does the Age Matter? Reviewing the Neurobiological and Socio-Affective Effects of Stress throughout the Lifespan. Int J Mol Sci 2020; 21:ijms21165819. [PMID: 32823723 PMCID: PMC7460954 DOI: 10.3390/ijms21165819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
Social and affective relations occur at every stage of our lives. Impairments in the quality of this “social world” can be exceptionally detrimental and lead to psychopathology or pathological behavior, including schizophrenia, autism spectrum disorder, affective disorders, social phobia or violence, among other things. Exposure to highly stressful or traumatic events, depending on the stage of life in which stress exposure occurs, could severely affect limbic structures, including the amygdala, and lead to alterations in social and affective behaviors. This review summarizes recent findings from stress research and provides an overview of its age-dependent effects on the structure and function of the amygdala, which includes molecular and cellular changes, and how they can trigger deviant social and affective behaviors. It is important to highlight that discoveries in this field may represent a breakthrough both for medical science and for society, as they may help in the development of new therapeutic approaches and prevention strategies in neuropsychiatric disorders and pathological behaviors.
Collapse
|
14
|
Theoharides TC. Effect of Stress on Neuroimmune Processes. Clin Ther 2020; 42:1007-1014. [PMID: 32451121 DOI: 10.1016/j.clinthera.2020.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/12/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Psychological stress worsens many diseases, especially those with inflammatory components, such as atopic dermatitis (AD) and autism spectrum disorder (ASD), conditions that are significantly correlated in large epidemiologic studies. However, how stress contributes to these conditions is still poorly understood. This narrative review of the relevant literature advances the premise that stress affects inflammatory processes in AD and ASD via stimulation of mast cells (MCs). METHODS MEDLINE was searched between 1980 and 2019 using the terms allergies, atopic dermatitis, autism spectrum disorder, brain, corticotropin-releasing hormone, inflammation, hypothalamic-pituitary-adrenal axis, mast cells, neuropeptides, stress, neurotensin, and substance P. FINDINGS Exposure to psychological stress is associated with onset and/or exacerbation of AD and ASD. This association could be attributable to activation of MCs, which are ubiquitous in the body, including the brain, and could contribute to inflammation. IMPLICATIONS Understanding and addressing the connection between stress and MCs is important in clarifying the pathogenesis and developing effective treatments for diseases that worsen with stress and involve inflammation, such as AD and ASD.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
15
|
Zhang Y, Garcia E, Sack AS, Snutch TP. L-type calcium channel contributions to intrinsic excitability and synaptic activity during basolateral amygdala postnatal development. J Neurophysiol 2020; 123:1216-1235. [PMID: 31967931 DOI: 10.1152/jn.00606.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala contributes toward emotional processes such as fear, anxiety, and social cognition. Furthermore, evidence suggests that increased excitability of basolateral amygdala (BLA) principal neurons underlie certain neuropsychiatric disorders. Gain-of-function mutations in neuronal L-type calcium channels (LTCCs) are linked to neurodevelopmental diseases, including autism spectrum disorders (ASDs). While LTCCs are expressed throughout the BLA, direct evidence for increased LTCC activity affecting BLA excitability and potentially contributing to disease pathophysiology is lacking. In this study, we utilized a pharmacological approach to examine the contributions of LTCCs to BLA principal cell excitability and synaptic activity at immature (postnatal day 7, P7) and juvenile (P21) developmental stages. Acute upregulation of LTCC activity in brain slices by application of the agonist (S)-Bay K 8644 resulted in increased intrinsic excitability properties including firing frequency response, plateau potential, and spike-frequency adaptation selectively in P7 neurons. Contrastingly, for P21 neurons, the main effect of (S)-Bay K 8644 was to enhance burst firing. (S)-Bay K 8644 increased spontaneous inhibitory synaptic currents at both P7 and P21 but did not affect evoked synaptic currents at either stage. (S)-Bay K 8644 did not alter P7 spontaneous excitatory synaptic currents, although it increased current amplitude in P21 neurons. Overall, the results provide support for the notion that alteration of LTCC activity at specific periods of early brain development may lead to functional alterations to neuronal network activity and subsequently contribute to underlying mechanisms of amygdala-related neurological disorders.NEW & NOTEWORTHY The role of L-type calcium channels (LTCCs) in regulating neuronal electrophysiological properties during development remains unclear. We show that in basolateral amygdala principal neurons, an increase of LTCC activity alters both neuronal excitability and synaptic activity. The results also provide evidence for the distinct contributions of LTCCs at different stages of neurodevelopment and shed insight into our understanding of LTCC dysfunction in amygdala-related neurological disorders.
Collapse
Affiliation(s)
- Yiming Zhang
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Esperanza Garcia
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anne-Sophie Sack
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Bögi E, Belovičová K, Moravčíková L, Csatlósová K, Dremencov E, Lacinova L, Dubovicky M. Pre-gestational stress impacts excitability of hippocampal cells in vitro and is associated with neurobehavioral alterations during adulthood. Behav Brain Res 2019; 375:112131. [DOI: 10.1016/j.bbr.2019.112131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
|
17
|
Blume SR, Padival M, Urban JH, Rosenkranz JA. Disruptive effects of repeated stress on basolateral amygdala neurons and fear behavior across the estrous cycle in rats. Sci Rep 2019; 9:12292. [PMID: 31444385 PMCID: PMC6707149 DOI: 10.1038/s41598-019-48683-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/08/2019] [Indexed: 02/02/2023] Open
Abstract
Stress is a precipitating factor in depression and anxiety disorders. Patients with these disorders often show amygdala abnormalities. The basolateral amygdala (BLA) is integral in mood and emotion, and is sensitive to stress. While much is known about effects of stress on BLA neuron activity and morphology in males, less is known in females. We tested whether repeated stress exerts distinct effects on BLA in vivo neuronal activity and morphology of Golgi-stained BLA neurons [lateral (LAT) and basal (BA) nuclei] in adult female rats. Repeated restraint stress increased BLA neuronal firing and caused hypertrophy of BLA neurons in males, while it decreased LAT and BA neuronal firing and caused hypotrophy of neurons in the LAT of females. BLA neuronal activity and function, such as fear conditioning, shifts across the estrous cycle. Repeated stress disrupted this pattern of BLA activity and fear expression over the estrous cycle. The disruptive effects of stress on the pattern of BLA function across estrous may produce behavior that is non-optimal for a specific phase of the estrous cycle. The contrasting effects of stress may contribute to sex differences in the effects of stress on mood and psychiatric disorders.
Collapse
Affiliation(s)
- Shannon R Blume
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Mallika Padival
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
| | - Janice H Urban
- Discipline of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA.
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA.
| |
Collapse
|
18
|
Theoharides TC, Kavalioti M, Tsilioni I. Mast Cells, Stress, Fear and Autism Spectrum Disorder. Int J Mol Sci 2019; 20:E3611. [PMID: 31344805 PMCID: PMC6696098 DOI: 10.3390/ijms20153611] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental condition characterized by impaired communication and obsessive behavior that affects 1 in 59 children. ASD is expected to affect 1 in about 40 children by 2020, but there is still no distinct pathogenesis or effective treatments. Prenatal stress has been associated with higher risk of developing ASD in the offspring. Moreover, children with ASD cannot handle anxiety and respond disproportionately even to otherwise benign triggers. Stress and environmental stimuli trigger the unique immune cells, mast cells, which could then trigger microglia leading to abnormal synaptic pruning and dysfunctional neuronal connectivity. This process could alter the "fear threshold" in the amygdala and lead to an exaggerated "fight-or-flight" reaction. The combination of corticotropin-releasing hormone (CRH), secreted under stress, together with environmental stimuli could be major contributors to the pathogenesis of ASD. Recognizing these associations and preventing stimulation of mast cells and/or microglia could greatly benefit ASD patients.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
| | - Maria Kavalioti
- Graduate Program in Education, Lesley University, Cambridge, MA 02138, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
19
|
Buthmann J, Finik J, Ventura G, Zhang W, Shereen AD, Nomura Y. The children of Superstorm Sandy: Maternal prenatal depression blunts offspring electrodermal activity. Biol Psychol 2019; 146:107716. [PMID: 31176750 DOI: 10.1016/j.biopsycho.2019.107716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
We set out to examine the relations between prenatal exposure to the natural disaster Superstorm Sandy, maternal depression, and offspring electrodermal activity (EDA). EDA was measured via skin conductance response (SCR) magnitude in 198 children (M = 42.54 months, SD = 12.76) during a startle paradigm. In keeping with prior research, we expected prenatal depression to be associated with hyporeactive EDA and prenatal stress to be associated with hyperreactive EDA. SCR magnitude was lower in children prenatally exposed to depression alone, when compared to Superstorm Sandy, and controls. SCR magnitude of children prenatally exposed to both maternal depression and the storm was lower than that of all other groups. Our results emphasize the influence of maternal prenatal mental health, support targeted risk assessment for children who experienced an adverse prenatal environment, and highlight the need for a deeper understanding of the interactions between maternal mood and stress on the developing child.
Collapse
Affiliation(s)
- J Buthmann
- CUNY Graduate Center, Department of Psychology, 365 5th Avenue, New York, NY 10016, USA; CUNY Queens College, Department of Psychology, 65-30 Kissena Blvd, Flushing, NY 11367, USA.
| | - J Finik
- CUNY Graduate School of Public Health and Health Policy, Department of Epidemiology and Biostatistics, 55 W 125th St., New York, NY 10027, USA
| | - G Ventura
- CUNY Queens College, Department of Psychology, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - W Zhang
- CUNY Queens College, Department of Psychology, 65-30 Kissena Blvd, Flushing, NY 11367, USA; New Jersey City University, Department of Psychology, 2039 John Fitzgerald Kennedy Blvd, Jersey City, NJ 07305, USA
| | - A D Shereen
- CUNY Advanced Science Research Center, Graduate Center, 85 St Nicholas Terrace, New York, NY 10031, USA; University of California, Department of Neurology, 680 California Ave, Irvine, CA 92697, USA
| | - Y Nomura
- CUNY Graduate Center, Department of Psychology, 365 5th Avenue, New York, NY 10016, USA; CUNY Queens College, Department of Psychology, 65-30 Kissena Blvd, Flushing, NY 11367, USA; CUNY Graduate School of Public Health and Health Policy, Department of Epidemiology and Biostatistics, 55 W 125th St., New York, NY 10027, USA; CUNY Advanced Science Research Center, Graduate Center, 85 St Nicholas Terrace, New York, NY 10031, USA; Mount Sinai School of Medicine, Department of Psychiatry, 1 Gustave Levy Pl, New York, NY 10029, USA
| |
Collapse
|
20
|
Buthmann J, Ham J, Davey K, Finik J, Dana K, Pehme P, Zhang W, Glover V, Nomura Y. Infant Temperament: Repercussions of Superstorm Sandy-Related Maternal Stress. Child Psychiatry Hum Dev 2019; 50:150-162. [PMID: 30030653 PMCID: PMC6339835 DOI: 10.1007/s10578-018-0828-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study recruited a prospective cohort of 380 pregnant women before, during, or after Superstorm Sandy in 2012 to examine the association between disaster-related pre- and post-natal maternal stress and offspring temperament at 6 months-old. Mothers prospectively reported stressful experiences during the storm and rated their child's temperament 6 months postpartum. Results indicated that length of time without phone or electricity and financial loss was associated with offspring negative affect, whereas financial loss and threat of death or injury was associated with emotion dysregulation. Furthermore, offspring born before the storm had greater negative affect and lower emotion regulation than those born after the storm. Given the probable increase in the occurrence of natural disasters due to climate change in recent years (McCarthy, Intergovernmental Panel on Climate Change, Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2001), our results highlight the necessity of education and planning to help ameliorate any potential consequences on the developing infant.
Collapse
Affiliation(s)
- Jessica Buthmann
- Psychology, Queens College, CUNY, 65-30 Kissena Blvd, Flushing, 11367, NY, USA.
- Psychology, The Graduate Center, CUNY, New York, NY, USA.
| | - Jacob Ham
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Child Trauma and Resilience, Mount Sinai Beth Israel, New York, NY, USA
| | - Katherine Davey
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Classics, Bryn Mawr College, Bryn Mawr, PA, USA
| | - Jackie Finik
- Psychology, Queens College, CUNY, 65-30 Kissena Blvd, Flushing, 11367, NY, USA
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hunter College, CUNY, School of Public Health, New York, NY, USA
| | - Kathryn Dana
- Psychology, Queens College, CUNY, 65-30 Kissena Blvd, Flushing, 11367, NY, USA
- Psychology, The Graduate Center, CUNY, New York, NY, USA
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patricia Pehme
- Psychology, Queens College, CUNY, 65-30 Kissena Blvd, Flushing, 11367, NY, USA
- Psychology, The Graduate Center, CUNY, New York, NY, USA
| | - Wei Zhang
- Psychology, Queens College, CUNY, 65-30 Kissena Blvd, Flushing, 11367, NY, USA
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yoko Nomura
- Psychology, Queens College, CUNY, 65-30 Kissena Blvd, Flushing, 11367, NY, USA.
- Psychology, The Graduate Center, CUNY, New York, NY, USA.
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Hunter College, CUNY, School of Public Health, New York, NY, USA.
| |
Collapse
|
21
|
Iturra-Mena AM, Arriagada-Solimano M, Luttecke-Anders A, Dagnino-Subiabre A. Effects of prenatal stress on anxiety- and depressive-like behaviours are sex-specific in prepubertal rats. J Neuroendocrinol 2018; 30:e12609. [PMID: 29772083 DOI: 10.1111/jne.12609] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 01/04/2023]
Abstract
The foetal brain is highly susceptible to stress in late pregnancy, with lifelong effects of stress on physiology and behaviour. The present study aimed to determine the physiological and behavioural effects of prenatal stress during the prepubertal period of female and male rats. We subjected pregnant Sprague-Dawley rats to a restraint stress protocol from gestational day 14 to 21, a critical period for foetal brain susceptibility to stress effects. Male and female offspring were subsequently assessed at postnatal day 24 for anxiety- and depressive-like behaviours, as well as spontaneous social interaction. We also assessed maternal behaviours and 2 stress markers: basal vs acute-evoked stress levels of serum corticosterone and body weight gain. Prenatal stress did not affect the maternal behaviour, whereas both female and male offspring had higher body weight gain. On the other hand, lower levels of corticosterone after acute stress stimulation, as well as anxiety- and depressive-like behaviours, were only evident in stressed males compared to control males. These results suggest that prenatal stress induced sex-specific effects on hypothalamic-pituitary-adrenal (HPA) axis activity and on behaviour during prepuberty. The HPA axis of prenatally stressed male rats was less active compared to control males, and they were also more anxious and experienced depressive-like behaviours. These results are useful with respect to studying the neurobiological basis of childhood depression at a preclinical level.
Collapse
Affiliation(s)
- A M Iturra-Mena
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
- School of Psychology, Faculty of Social Sciences, Universidad de las Américas, Viña del Mar, Chile
| | - M Arriagada-Solimano
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - A Luttecke-Anders
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - A Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
- Auditory and Cognition Center, AUCO, Santiago, Chile
| |
Collapse
|
22
|
Gur TL, Palkar AV, Rajasekera T, Allen J, Niraula A, Godbout J, Bailey MT. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behav Brain Res 2018; 359:886-894. [PMID: 29949734 DOI: 10.1016/j.bbr.2018.06.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/25/2018] [Accepted: 06/22/2018] [Indexed: 01/31/2023]
Abstract
In utero and early neonatal exposure to maternal stress is linked with psychiatric disorders, and the underlying mechanisms are currently being elucidated. We used a prenatal stressor in pregnant mice to examine novel relationships between prenatal stress exposure, changes in the gut microbiome, and social behavior. Here, we show that males exposed to prenatal stress had a significant reduction in social behavior in adulthood, with increased corticosterone release following social interaction. Male offspring exposed to prenatal stress also had neuroinflammation, decreased oxytocin receptor, and decreased serotonin metabolism in their cortex in adulthood, which are linked to decreased social behavior. Finally, we found a significant difference in commensal microbes, including decreases in Bacteroides and Parabacteroides, in adult male offspring exposed to prenatal stress when compared to non-stressed controls. Our findings indicate that gestation is a critical window where maternal stress contributes to the development of aberrant social behaviors and alterations in cortical neurobiology, and that prenatal stress is sufficient to disrupt the male gut-brain axis into adulthood.
Collapse
Affiliation(s)
- Tamar L Gur
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Neuroscience, Wexner Medical Center at The Ohio State University, United States; Obstetrics & Gynecology, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States.
| | - Aditi Vadodkar Palkar
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Therese Rajasekera
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Jacob Allen
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, United States; Biosciences Division, College of Dentistry, The Ohio State University, United States
| | - Anzela Niraula
- Neuroscience, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Jonathan Godbout
- Neuroscience, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States; Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, United States; Biosciences Division, College of Dentistry, The Ohio State University, United States; Department of Pediatrics, Wexner Medical Center at The Ohio State University, United States
| |
Collapse
|
23
|
Guadagno A, Wong TP, Walker CD. Morphological and functional changes in the preweaning basolateral amygdala induced by early chronic stress associate with anxiety and fear behavior in adult male, but not female rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:25-37. [PMID: 28963066 DOI: 10.1016/j.pnpbp.2017.09.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/24/2017] [Indexed: 12/27/2022]
Abstract
Suboptimal maternal care is a form of chronic early-life stress (ELS) and a risk factor for mental illness and behavioral impairments throughout the life span. The amygdala, particularly the basolateral amygdala (BLA), exhibits exquisite sensitivity to ELS and could promote dysregulation of stress reactivity and anxiety-related disorders. While ELS has profound impacts on the adult or adolescent amygdala, less is known regarding the sensitivity of the preweaning BLA to ELS. We employed a naturalistic rodent model of chronic ELS that limits the amount of bedding/nesting material (LB) available to the mother between postnatal day (PND) 1-9 and examined the morphological and functional effects in the preweaning BLA on PND10 and 18-22. BLA neurons displayed dendritic hypertrophy and increased spine numbers in male, but not female, LB pups already by PND10 and BLA volume tended to increase after LB exposure in preweaning rats, suggesting an accelerated and long-lasting recruitment of the amygdala. Morphological changes seen in male LB pups were paralleled with increased evoked synaptic responses recorded from BLA neurons in vitro, suggesting enhanced excitatory inputs to these neurons. Interestingly, morphological and functional changes in the preweaning BLA were not associated with basal hypercorticosteronemia or enhanced stress responsiveness in LB pups, perhaps due to a differential sensitivity of the neuroendocrine stress axis to the effects of LB exposure. Early changes in the synaptic organization and excitability of the neonatal amygdala might contribute to the increased anxiety-like and fear behavior observed in adulthood, specifically in male offspring.
Collapse
Affiliation(s)
- Angela Guadagno
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Claire-Dominique Walker
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Pastor V, Pallarés ME, Antonelli MC. Prenatal stress increases adult vulnerability to cocaine reward without affecting pubertal anxiety or novelty response. Behav Brain Res 2018; 339:186-194. [DOI: 10.1016/j.bbr.2017.11.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/26/2017] [Accepted: 11/26/2017] [Indexed: 12/22/2022]
|
25
|
Colonnello V, Petrocchi N, Farinelli M, Ottaviani C. Positive Social Interactions in a Lifespan Perspective with a Focus on Opioidergic and Oxytocinergic Systems: Implications for Neuroprotection. Curr Neuropharmacol 2018; 15:543-561. [PMID: 27538784 PMCID: PMC5543675 DOI: 10.2174/1570159x14666160816120209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 03/05/2016] [Accepted: 08/14/2016] [Indexed: 12/19/2022] Open
Abstract
In recent years, a growing interest has emerged in the beneficial effects of positive social interactions on health. The present work aims to review animal and human studies linking social interactions and health throughout the lifespan, with a focus on current knowledge of the possible mediating role of opioids and oxytocin. During the prenatal period, a positive social environment contributes to regulating maternal stress response and protecting the fetus from exposure to maternal active glucocorticoids. Throughout development, positive social contact with the caregiver acts as a “hidden regulator” and promotes infant neuroaffective development. Postnatal social neuroprotection interventions involving caregiver–infant physical contact seem to be crucial for rescuing preterm infants at risk for neurodevelopmental disorders. Attachment figures and friendships in adulthood continue to have a protective role for health and brain functioning, counteracting brain aging. In humans, implementation of meditative practices that promote compassionate motivation and prosocial behavior appears beneficial for health in adolescents and adults. Human and animal studies suggest the oxytocinergic and opioidergic systems are important mediators of the effects of social interactions. However, most of the studies focus on a specific phase of life (i.e., adulthood). Future studies should focus on the role of opioids and oxytocin in positive social interactions adopting a lifespan perspective.
Collapse
Affiliation(s)
- Valentina Colonnello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna. Italy
| | | | | | | |
Collapse
|
26
|
Repeated shock stress facilitates basolateral amygdala synaptic plasticity through decreased cAMP-specific phosphodiesterase type IV (PDE4) expression. Brain Struct Funct 2017; 223:1731-1745. [PMID: 29204911 DOI: 10.1007/s00429-017-1575-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Previous studies have shown that exposure to stressful events can enhance fear memory and anxiety-like behavior as well as increase synaptic plasticity in the rat basolateral amygdala (BLA). We have evidence that repeated unpredictable shock stress (USS) elicits a long-lasting increase in anxiety-like behavior in rats, but the cellular mechanisms mediating this response remain unclear. Evidence from recent morphological studies suggests that alterations in the dendritic arbor or spine density of BLA principal neurons may underlie stress-induced anxiety behavior. Recently, we have shown that the induction of long-term potentiation (LTP) in BLA principal neurons is dependent on activation of postsynaptic D1 dopamine receptors and the subsequent activation of the cyclic adenosine 5'-monophosphate (cAMP)-protein kinase A (PKA) signaling cascade. Here, we have used in vitro whole-cell patch-clamp recording from BLA principal neurons to investigate the long-term consequences of USS on their morphological properties and synaptic plasticity. We provided evidence that the enhanced anxiety-like behavior in response to USS was not associated with any significant change in the morphological properties of BLA principal neurons, but was associated with a changed frequency dependence of synaptic plasticity, lowered LTP induction threshold, and reduced expression of phosphodiesterase type 4 enzymes (PDE4s). Furthermore, pharmacological inhibition of PDE4 activity with rolipram mimics the effects of chronic stress on LTP induction threshold and baseline startle. Our results provide the first evidence that stress both enhances anxiety-like behavior and facilitates synaptic plasticity in the amygdala through a common mechanism of PDE4-mediated disinhibition of cAMP-PKA signaling.
Collapse
|
27
|
Hernández-González M, Hernández-Arteaga E, Guevara MA, Almanza-Sepúlveda ML, Ramírez-Rentería ML, Arteaga-Silva M, Bonilla-Jaime H. Prenatal stress suppresses the prefrontal and amygdaline EEG changes associated with a sexually-motivated state in male rats. Physiol Behav 2017; 182:86-92. [DOI: 10.1016/j.physbeh.2017.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/23/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|
28
|
van Bodegom M, Homberg JR, Henckens MJAG. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Front Cell Neurosci 2017; 11:87. [PMID: 28469557 PMCID: PMC5395581 DOI: 10.3389/fncel.2017.00087] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Exposure to stress during critical periods in development can have severe long-term consequences, increasing overall risk on psychopathology. One of the key stress response systems mediating these long-term effects of stress is the hypothalamic-pituitary-adrenal (HPA) axis; a cascade of central and peripheral events resulting in the release of corticosteroids from the adrenal glands. Activation of the HPA-axis affects brain functioning to ensure a proper behavioral response to the stressor, but stress-induced (mal)adaptation of the HPA-axis' functional maturation may provide a mechanistic basis for the altered stress susceptibility later in life. Development of the HPA-axis and the brain regions involved in its regulation starts prenatally and continues after birth, and is protected by several mechanisms preventing corticosteroid over-exposure to the maturing brain. Nevertheless, early life stress (ELS) exposure has been reported to have numerous consequences on HPA-axis function in adulthood, affecting both its basal and stress-induced activity. According to the match/mismatch theory, encountering ELS prepares an organism for similar ("matching") adversities during adulthood, while a mismatching environment results in an increased susceptibility to psychopathology, indicating that ELS can exert either beneficial or disadvantageous effects depending on the environmental context. Here, we review studies investigating the mechanistic underpinnings of the ELS-induced alterations in the structural and functional development of the HPA-axis and its key external regulators (amygdala, hippocampus, and prefrontal cortex). The effects of ELS appear highly dependent on the developmental time window affected, the sex of the offspring, and the developmental stage at which effects are assessed. Albeit by distinct mechanisms, ELS induced by prenatal stressors, maternal separation, or the limited nesting model inducing fragmented maternal care, typically results in HPA-axis hyper-reactivity in adulthood, as also found in major depression. This hyper-activity is related to increased corticotrophin-releasing hormone signaling and impaired glucocorticoid receptor-mediated negative feedback. In contrast, initial evidence for HPA-axis hypo-reactivity is observed for early social deprivation, potentially reflecting the abnormal HPA-axis function as observed in post-traumatic stress disorder, and future studies should investigate its neural/neuroendocrine foundation in further detail. Interestingly, experiencing additional (chronic) stress in adulthood seems to normalize these alterations in HPA-axis function, supporting the match/mismatch theory.
Collapse
Affiliation(s)
| | | | - Marloes J. A. G. Henckens
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboudumc, Nijmegen, Netherlands
| |
Collapse
|
29
|
Lindsly C, Gonzalez-Islas C, Wenner P. Elevated intracellular Na + concentrations in developing spinal neurons. J Neurochem 2017; 140:755-765. [PMID: 28027400 DOI: 10.1111/jnc.13936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/09/2016] [Accepted: 12/05/2016] [Indexed: 11/30/2022]
Abstract
Over 25 years ago it was first reported that intracellular chloride levels (Cl-in ) were higher in developing neurons than in maturity. This finding has had significant implications for understanding the excitability of developing networks and recognizing the underlying causes of hyperexcitability associated with disease and neural injury. While there is some evidence that intracellular sodium levels (Na+in ) change during the development of non-neural cells, it has largely been assumed that Na+in is the same in developing and mature neurons. Here, using the sodium indicator SBFI, we test this idea and find that Na+in is significantly higher in embryonic spinal motoneurons and interneurons than in maturity. We find that Na+in reaches ~ 60 mM in mid-embryonic development and is then reduced to ~ 30 mM in late embryonic development. By retrogradely labeling motoneurons with SBFI we can reliably follow Na+in levels in vitro for hours. Bursts of spiking activity, and blocking voltage-gated sodium channels did not influence observed motoneuron sodium levels. On the other hand, Na+in was reduced by blocking the Na+ -K+ -2Cl- cotransporter NKCC1, and was highly sensitive to changes in external Na+ and a blocker of the Na+ /K+ ATPase. Our findings suggest that the Na+ gradient is weaker in embryonic neuronal development and strengthens in maturity in a manner similar to that of Cl- .
Collapse
Affiliation(s)
- Casie Lindsly
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Carlos Gonzalez-Islas
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, USA.,Doctorado en Ciencias Biológicas Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Peter Wenner
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
30
|
Scheinost D, Sinha R, Cross SN, Kwon SH, Sze G, Constable RT, Ment LR. Does prenatal stress alter the developing connectome? Pediatr Res 2017; 81:214-226. [PMID: 27673421 PMCID: PMC5313513 DOI: 10.1038/pr.2016.197] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
Human neurodevelopment requires the organization of neural elements into complex structural and functional networks called the connectome. Emerging data suggest that prenatal exposure to maternal stress plays a role in the wiring, or miswiring, of the developing connectome. Stress-related symptoms are common in women during pregnancy and are risk factors for neurobehavioral disorders ranging from autism spectrum disorder, attention deficit hyperactivity disorder, and addiction, to major depression and schizophrenia. This review focuses on structural and functional connectivity imaging to assess the impact of changes in women's stress-based physiology on the dynamic development of the human connectome in the fetal brain.
Collapse
Affiliation(s)
- Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut,Department of Child Study, Yale School of Medicine, New Haven, Connecticut,Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Sarah N. Cross
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Soo Hyun Kwon
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Gordon Sze
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut,Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Laura R. Ment
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut,Department of Neurology, Yale School of Medicine, New Haven, Connecticut,()
| |
Collapse
|
31
|
Rincón-Cortés M, Sullivan RM. Emergence of social behavior deficit, blunted corticolimbic activity and adult depression-like behavior in a rodent model of maternal maltreatment. Transl Psychiatry 2016; 6:e930. [PMID: 27779623 PMCID: PMC5290349 DOI: 10.1038/tp.2016.205] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Disrupted social behavior is a core symptom of multiple psychiatric and neurodevelopmental disorders. Many of these disorders are exacerbated by adverse infant experiences, including maltreatment and abuse, which negatively affect amygdala development. Although a link between impaired social behavior, abnormal amygdala function and depressive-like behavior following early adversity has been demonstrated in humans and animal models, the developmental emergence of maltreatment-related social deficits and associated amygdala neural activity are unknown. We used a naturalistic rodent model of maternal maltreatment during a sensitive period, postnatal days 8-12 (PN8-12), which produces social behavior deficits that precede adolescent depressive-like behavior and amygdala dysfunction, to examine social behavior in infancy, periweaning and adolescence. Neural activity in response to the social behavior test was assessed via c-Fos immunohistochemistry at these ages. A separate group of animals was tested for adult depressive-like behavior in the forced swim test. Maltreatment spared infant (PN16-18) social behavior but disrupted periweaning (PN20-22) and adolescent (PN42-48) social behavior. Maltreated rats exhibited blunted neural activation in the amygdala and other areas implicated in social functioning, including the medial prefrontal cortex and nucleus accumbens, at these ages and increased adult depressive-like behavior. These findings may suggest corticolimbic involvement in the emergence of maltreatment-induced social deficits that are linked to adult depressive-like behavior, thereby highlighting potential targets for therapeutic intervention. Understanding how infant experiences influence social behavior and age-specific expression across development may provide insights into basic neural mechanisms of social behaviors and disease-relevant social dysfunction exacerbated by early-life stress.
Collapse
Affiliation(s)
- M Rincón-Cortés
- Department of Child and Adolescent Psychiatry, Child Study Center, New York University Langone Medical Center, New York, NY, USA,Neuroscience and Physiology, Sackler Institute for Graduate Biomedical Studies, New York University School of Medicine, New York, NY, USA,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Child and Adolescent Psychiatry, Child Study Center, New York University Langone Medical Center, 1 Park Avenue, 8th Floor, Room 8-431, New York, NY 10016, USA. E-mail:
| | - R M Sullivan
- Department of Child and Adolescent Psychiatry, Child Study Center, New York University Langone Medical Center, New York, NY, USA,Neuroscience and Physiology, Sackler Institute for Graduate Biomedical Studies, New York University School of Medicine, New York, NY, USA,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
32
|
Prenatal stressors in rodents: Effects on behavior. Neurobiol Stress 2016; 6:3-13. [PMID: 28229104 PMCID: PMC5314420 DOI: 10.1016/j.ynstr.2016.08.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
The current review focuses on studies in rodents published since 2008 and explores possible reasons for any differences they report in the effects of gestational stress on various types of behavior in the offspring. An abundance of experimental data shows that different maternal stressors in rodents can replicate some of the abnormalities in offspring behavior observed in humans. These include, anxiety, in juvenile and adult rats and mice, assessed in the elevated plus maze and open field tests and depression, detected in the forced swim and sucrose-preference tests. Deficits were reported in social interaction that is suggestive of pathology associated with schizophrenia, and in spatial learning and memory in adult rats in the Morris water maze test, but in most studies only males were tested. There were too few studies on the novel object recognition test at different inter-trial intervals to enable a conclusion about the effect of prenatal stress and whether any deficits are more prevalent in males. Among hippocampal glutamate receptors, NR2B was the only subtype consistently reduced in association with learning deficits. However, like in humans with schizophrenia and depression, prenatal stress lowered hippocampal levels of BDNF, which were closely correlated with decreases in hippocampal long-term potentiation. In mice, down-regulation of BDNF appeared to occur through the action of gene-methylating enzymes that are already increased above controls in prenatally-stressed neonates. In conclusion, the data obtained so far from experiments in rodents lend support to a physiological basis for the neurodevelopmental hypothesis of schizophrenia and depression.
Collapse
|
33
|
Maturana CJ, Aguirre A, Sáez JC. High glucocorticoid levels during gestation activate the inflammasome in hippocampal oligodendrocytes of the offspring. Dev Neurobiol 2016; 77:625-642. [PMID: 27314460 DOI: 10.1002/dneu.22409] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
Abstract
Exposure to high levels of glucocorticoids (GCs) during early life induces long-lasting neuroinflammation. GCs induce rapid degranulation of mast cells, which release proinflammatory molecules promoting activation of microglia and astrocytes. The possible involvement of oligodendrocytes, however, remains poorly understood. It was studied whether high GC levels during gestation activates the inflammasome in hippocampal oligodendrocytes of mouse offspring. Oligodendrocytes of control pups showed expression of inflammasome components (NLRP3, ACS, and caspase-1) and their levels were increased by prenatal administration of dexamethasone (DEX), a synthetic GC. These cells also showed high levels of IL-1β and TNF-α, revealing activation of the inflammasome. Moreover, they showed increased levels of the P2X7 receptor and pannexin1, which are associated to inflammasome activation. However, levels of connexins either were not affected (Cx29) or reduced (Cx32 and Cx47). Nonetheless, the functional states of pannexin1 and connexin hemichannels were elevated and directly associated to functional P2X7 receptors. As observed in DEX-treated brain slices, hemichannel activity first increased in hippocampal mast cells and later in microglia and macroglia. DEX-induced oligodendrocyte hemichannel activity was mimicked by urocortin-II, which is a corticotropin-releasing hormone receptor (CRHR) agonist. Response to DEX and urocortin-II was inhibited by antalarmin (a CRHR blocker) or by mast cells or microglia inhibitors. The increase in hemichannel activity persisted for several weeks after birth and cross-fostering with a control mother did not reverse this condition. It is proposed that activation of the oligodendrocyte inflammasome might be relevant in demyelinating diseases associated with early life exposure to high GC levels. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 625-642, 2017.
Collapse
Affiliation(s)
- Carola J Maturana
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Valparaíso, Chile
| | - Adam Aguirre
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Juan C Sáez
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Valparaíso, Chile
| |
Collapse
|
34
|
Thanos PK, Restif C, O'Rourke JR, Lam CY, Metaxas D. Mouse Social Interaction Test (MoST): a quantitative computer automated analysis of behavior. J Neural Transm (Vienna) 2015; 124:3-11. [PMID: 26704381 DOI: 10.1007/s00702-015-1487-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
Rodents are the most commonly used preclinical model of human disease assessing the mechanism(s) involved as well as the role of genetics, epigenetics, and pharmacotherapy on this disease as well as identifying vulnerability factors and risk assessment for disease critical in the development of improved treatment strategies. Unfortunately, the majority of rodent preclinical studies utilize single housed approaches where animals are either entirely housed and tested in solitary environments or group housed but tested in solitary environments. This approach, however, ignores the important contribution of social interaction and social behavior. Social interaction in rodents is found to be a major criterion for the ethological validity of rodent species-specific behavioral characteristics (Zurn et al. 2007; Analysis 2011). It is also well established that there is significant and growing number of reports, which illustrates the important role of social environment and social interaction in all diseases, with particularly significance in all neuropsychiatric diseases. Thus, it is imperative that research studies be able to add large-scale evaluations of social interaction and behavior in mice and benefit from automated tracking of behaviors and measurements by removing user bias and by quantifying aspects of behaviors that cannot be assessed by a human observer. Single mouse setups have been used routinely, but cannot be easily extended to multiple-animal studies where social behavior is key, e.g., autism, depression, anxiety, substance and non-substance addictive disorders, aggression, sexual behavior, or parenting. While recent efforts are focusing on multiple-animal tracking alone, a significant limitation remains the lack of insightful measures of social interactions. We present a novel, non-invasive single camera-based automated tracking method described as Mouse Social Test (MoST) and set of measures designed for estimating the interactions of multiple mice at the same time in the same environment interacting freely. Our results show measurement of social interactions and designed to be adaptable and applicable to most existing home cage systems used in research, and provide a greater level of detailed analysis of social behavior than previously possible. The present study describes social behaviors assessed in a home cage environment setup containing six mice that interact freely over long periods of time, and we illustrate how these measures can be interpreted and combined to classify rodent social behaviors. In addition, we illustrate how these measures can be interpreted and combined to classify and analyze comprehensively rodent behaviors involved in several neuropsychiatric diseases as well as provide opportunity for the basic research of rodent behavior previously not possible.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Lab, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA.
| | - Christophe Restif
- Center for Computational Biomedicine Imaging and Computation, Rutgers University, New Brunswick, NJ, 08904, USA
| | - Joseph R O'Rourke
- Behavioral Neuropharmacology and Neuroimaging Lab, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Chiu Yin Lam
- Behavioral Neuropharmacology and Neuroimaging Lab, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Dimitris Metaxas
- Center for Computational Biomedicine Imaging and Computation, Rutgers University, New Brunswick, NJ, 08904, USA
| |
Collapse
|
35
|
Ehrlich DE, Josselyn SA. Plasticity-related genes in brain development and amygdala-dependent learning. GENES BRAIN AND BEHAVIOR 2015; 15:125-43. [PMID: 26419764 DOI: 10.1111/gbb.12255] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life.
Collapse
Affiliation(s)
- D E Ehrlich
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.,Department of Otolaryngology, NYU Langone School of Medicine, New York, NY, USA
| | - S A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Ehrlich DE, Neigh GN, Bourke CH, Nemeth CL, Hazra R, Ryan SJ, Rowson S, Jairam N, Sholar CA, Rainnie DG, Stowe ZN, Owens MJ. Prenatal stress, regardless of concurrent escitalopram treatment, alters behavior and amygdala gene expression of adolescent female rats. Neuropharmacology 2015; 97:251-8. [PMID: 26032436 PMCID: PMC4537355 DOI: 10.1016/j.neuropharm.2015.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/07/2023]
Abstract
Depression during pregnancy has been linked to in utero stress and is associated with long-lasting symptoms in offspring, including anxiety, helplessness, attentional deficits, and social withdrawal. Depression is diagnosed in 10-20% of expectant mothers, but the impact of antidepressant treatment on offspring development is not well documented, particularly for females. Here, we used a prenatal stress model of maternal depression to test the hypothesis that in utero antidepressant treatment could mitigate the effects of prenatal stress. We also investigated the effects of prenatal stress and antidepressant treatment on gene expression related to GABAergic and serotonergic neurotransmission in the amygdala, which may underlie behavioral effects of prenatal stress. Nulliparous female rats were implanted with osmotic minipumps delivering clinically-relevant concentrations of escitalopram and mated. Pregnant dams were exposed to 12 days of mixed-modality stressors, and offspring were behaviorally assessed in adolescence (postnatal day 28) and adulthood (beyond day 90) to determine the extent of behavioral change. We found that in utero stress exposure, regardless of escitalopram treatment, increased anxiety-like behavior in adolescent females and profoundly influenced amygdala expression of the chloride transporters KCC2 and NKCC1, which regulate GABAergic function. In contrast, prenatal escitalopram exposure alone elevated amygdala expression of 5-HT1A receptors. In adulthood, anxiety-like behavior returned to baseline and gene expression effects in the amygdala abated, whereas deficits emerged in novel object recognition for rats exposed to stress during gestation. These findings suggest prenatal stress causes age-dependent deficits in anxiety-like behavior and amygdala function in female offspring, regardless of antidepressant exposure.
Collapse
Affiliation(s)
- David E Ehrlich
- Dept. of Psychiatry and Behavioral Sci., Atlanta, GA, USA; Division of Behavioral Neurosci. and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Gretchen N Neigh
- Dept. of Psychiatry and Behavioral Sci., Atlanta, GA, USA; Dept. of Physiology, Emory University, Atlanta, GA, USA.
| | - Chase H Bourke
- Dept. of Psychiatry and Behavioral Sci., Atlanta, GA, USA
| | | | - Rimi Hazra
- Dept. of Psychiatry and Behavioral Sci., Atlanta, GA, USA; Division of Behavioral Neurosci. and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Steven J Ryan
- Dept. of Psychiatry and Behavioral Sci., Atlanta, GA, USA; Division of Behavioral Neurosci. and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Sydney Rowson
- Dept. of Psychiatry and Behavioral Sci., Atlanta, GA, USA
| | - Nesha Jairam
- Dept. of Psychiatry and Behavioral Sci., Atlanta, GA, USA
| | | | - Donald G Rainnie
- Dept. of Psychiatry and Behavioral Sci., Atlanta, GA, USA; Division of Behavioral Neurosci. and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Zachary N Stowe
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|