1
|
Zheng Y, Zhang TN, Hao PH, Yang N, Du Y. Histone deacetylases and their inhibitors in kidney diseases. Mol Ther 2025:S1525-0016(25)00300-4. [PMID: 40263937 DOI: 10.1016/j.ymthe.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Histone deacetylases (HDACs) have emerged as key regulators in the pathogenesis of various kidney diseases. This review explores recent advancements in HDAC research, focusing on their role in kidney development and their critical involvement in the progression of chronic kidney disease (CKD), acute kidney injury (AKI), autosomal dominant polycystic kidney disease (ADPKD), and diabetic kidney disease (DKD). It also discusses the therapeutic potential of HDAC inhibitors in treating these conditions. Various HDAC inhibitors have shown promise by targeting specific HDAC isoforms and modulating a range of biological pathways. Their protective effects include modulation of apoptosis, autophagy, inflammation, and fibrosis, underscoring their broad therapeutic potential for kidney diseases. However, further research is essential to improve the selectivity of HDAC inhibitors, minimize toxicity, overcome drug resistance, and enhance their pharmacokinetic properties. This review offers insights to guide future research and prevention strategies for kidney disease management.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yue Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Li Y, Izhar T, Kanekiyo T. HDAC3 as an Emerging Therapeutic Target for Alzheimer's Disease and other Neurological Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04866-w. [PMID: 40126601 DOI: 10.1007/s12035-025-04866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the aged population. Histone acetylation is a major epigenetic mechanism linked to memory formation and cognitive function. Histone deacetylases (HDACs) are responsible for the deacetylation of lysine residues in histone proteins. Although pan-HDAC inhibitors are effective in ameliorating AD phenotypes in preclinical models, they are associated with potential unfavorable adverse effects and barely translated into clinical trials. Therefore, the development of novel HDAC inhibitors with a well isoform-selectivity has been desired in AD drug discovery. Among various HDAC isoforms, HDAC3 is highly expressed in neurons and exhibits detrimental effects on synaptic plasticity and cognitive function. Moreover, HDAC3 provokes neuroinflammation and neurotoxicity and contributes to AD pathogenesis. In this review, we highlight HDAC3 as an attractive therapeutic target for disease-modifying therapy in AD. In addition, we discuss the therapeutic potential of HDAC3 inhibitors in other neurological disorders.
Collapse
Affiliation(s)
- Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Taha Izhar
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
3
|
Ndukwe K, Serrano PA, Rockwell P, Xie L, Figueiredo-Pereira ME. Brain-penetrant histone deacetylase inhibitor RG2833 improves spatial memory in females of an Alzheimer's disease rat model. J Alzheimers Dis 2025; 104:173-190. [PMID: 39924842 DOI: 10.1177/13872877251314777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
BackgroundNearly two-thirds of Alzheimer's disease (AD) patients are women. Therapeutics for women are critical to lowering their elevated risk of developing this major cause of adult dementia. Moreover, targeting epigenetic processes such as histone acetylation that regulate multiple cellular pathways is advantageous given the multifactorial nature of AD. Histone acetylation takes part in memory consolidation, and its disruption is linked to AD.ObjectiveDetermine whether the investigational drug RG2833 has repurposing potential for AD. RG2833 is a histone deacetylase HDAC1/3 inhibitor that is orally bioavailable and permeates the blood-brain-barrier.MethodsRG2833 effects were determined on cognition, transcriptome, and AD-like pathology in 11-month TgF344-AD female and male rats. Treatment started early in the course of pathology when therapeutic intervention is predicted to be most effective.ResultsRG2833-treatment of 11-month TgF344-AD rats: (1) Significantly improved hippocampal-dependent spatial memory in females but not males. (2) Upregulated expression of immediate early genes, such as Arc, Egr1 and c-Fos, and other genes involved in synaptic plasticity and memory consolidation in females. Remarkably, out of 17,168 genes analyzed for each sex, no significant changes in gene expression were detected in males at p < 0.05, false discovery rate <0.05, and fold-change equal or > 1.5. (3) Failed to improve amyloid beta accumulation and microgliosis in female and male TgF344-AD rats.ConclusionsOur study highlights the potential of histone-modifying therapeutics such as RG2833 to improve cognitive behavior and drive the expression of immediate early, synaptic plasticity and memory consolidation genes, especially in female AD patients.
Collapse
Affiliation(s)
- Kelechi Ndukwe
- CUNY Neuroscience Collaborative Program, The Graduate Center, CUNY, New York, NY, USA
- Department of Biological Sciences, Hunter College, CUNY and The Graduate Center, CUNY, New York, NY, USA
| | - Peter A Serrano
- Department of Psychology, Hunter College, CUNY and The Graduate Center, CUNY, New York, NY, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College, CUNY and The Graduate Center, CUNY, New York, NY, USA
| | - Lei Xie
- Department of Computer Science, Hunter College, CUNY and The Graduate Center, CUNY, New York, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, CUNY and The Graduate Center, CUNY, New York, NY, USA
| |
Collapse
|
4
|
Li JZ, Ramalingam N, Li S. Targeting epigenetic mechanisms in amyloid-β-mediated Alzheimer's pathophysiology: unveiling therapeutic potential. Neural Regen Res 2025; 20:54-66. [PMID: 38767476 PMCID: PMC11246147 DOI: 10.4103/nrr.nrr-d-23-01827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia. Growing evidence suggests that Alzheimer's disease is associated with accumulating various amyloid-β oligomers in the brain, influenced by complex genetic and environmental factors. The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer's disease are believed to primarily result from synaptic dysfunction. Throughout life, environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders. These changes, known as epigenetic modifications, also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity. In this context, we highlight recent advances in understanding the roles played by key components of the epigenetic machinery, specifically DNA methylation, histone modification, and microRNAs, in the development of Alzheimer's disease, synaptic function, and activity-dependent synaptic plasticity. Moreover, we explore various strategies, including enriched environments, exposure to non-invasive brain stimulation, and the use of pharmacological agents, aimed at improving synaptic function and enhancing long-term potentiation, a process integral to epigenetic mechanisms. Lastly, we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer's disease. We suggest that addressing Alzheimer's disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug.
Collapse
Affiliation(s)
- Jennie Z. Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Suganya S, Ashok BS, Ajith TA. A Recent Update on the Role of Estrogen and Progesterone in Alzheimer's Disease. Cell Biochem Funct 2024; 42:e70025. [PMID: 39663597 DOI: 10.1002/cbf.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD), one of the most prevalent neurodegenerative disease responsible for 60%-80% dementia cases globally. The disease is more prevalent among elder females. Female reproductive hormones are found to be essential for cellular activities in brain. The physiological role of neurotrophins and sex hormones in hippocampal region during neurogenesis and neuron differentiation was studied as well. In addition to triggering cellular pathways, estrogen and progesterone carry out a number of biological processes that lead to neuroprotection. They might have an impact on learning and memory. One of estrogen's modest antioxidant properties is its direct scavenging of free radicals. The neurotrophic effect of estrogen and progesterone can be explained by their ability to rise the expression of the brain-derived neurotrophic factor (BDNF) mRNA. Additionally, they have the ability to degrade beta-amyloid and stop inflammation, apoptotic neuronal cell death, and tau protein phosphorylation. To enhance their neuroprotective action, various cross-talking pathways in cells that are mediated by estrogen, progesterone, and BDNF receptors. This include signaling by mitogen-activated protein kinase/extracellular regulated kinase, phosphatidylinositol 3-kinase/protein kinase B, and phospholipase/protein kinase C. Clinical research to establish the significance of these substances are fragmented, despite publications claiming a lower prevalence of AD when medication is started before menopause. This review article emphasizes an update on the role of estrogen, and progesterone in AD.
Collapse
Affiliation(s)
- S Suganya
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Ben Sundra Ashok
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Thekkuttuparambil Ananthanarayanan Ajith
- Department of Biochemistry, Amala Institute of Medical Sciences, Thrissur, Kerala, India
- Amala Integrated Medical Research Department, Amala Institute of Medical Sciences, Thrissur, Kerala, India
| |
Collapse
|
6
|
Rosete C, Ciernia AV. The Two Faces of HDAC3: Neuroinflammation in Disease and Neuroprotection in Recovery. Epigenomics 2024; 16:1373-1388. [PMID: 39513228 PMCID: PMC11728336 DOI: 10.1080/17501911.2024.2419357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Histone deacetylase 3 (HDAC3) is a critical regulator of gene expression, influencing a variety of cellular processes in the central nervous system. As such, dysfunction of this enzyme may serve as a key driver in the pathophysiology of various neuropsychiatric disorders and neurodegenerative diseases. HDAC3 plays a crucial role in regulating neuroinflammation, and is now widely recognized as a major contributor to neurological conditions, as well as in promoting neuroprotective recovery following brain injury, hemorrhage and stroke. Emerging evidence suggests that pharmacological inhibition of HDAC3 can mitigate behavioral and neuroimmune deficits in various brain diseases and disorders, offering a promising therapeutic strategy. Understanding HDAC3 in the healthy brain lays the necessary foundation to define and resolve its dysfunction in a disease state. This review explores the mechanisms of HDAC3 in various cell types and its involvement in disease pathology, emphasizing the potential of HDAC3 inhibition to address neuroimmune, gene expression and behavioral deficits in a range of neurodegenerative and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Cal Rosete
- Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 2A1, Canada
| |
Collapse
|
7
|
Davis N, Taylor B, Abelleira-Hervas L, Karimian-Marnani N, Aleksynas R, Syed N, Di Giovanni S, Palmisano I, Sastre M. Histone deacetylase-3 regulates the expression of the amyloid precursor protein and its inhibition promotes neuroregenerative pathways in Alzheimer's disease models. FASEB J 2024; 38:e23659. [PMID: 38733301 DOI: 10.1096/fj.202301762rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
HDAC3 inhibition has been shown to improve memory and reduce amyloid-β (Aβ) in Alzheimer's disease (AD) models, but the underlying mechanisms are unclear. We investigated the molecular effects of HDAC3 inhibition on AD pathology, using in vitro and ex vivo models of AD, based on our finding that HDAC3 expression is increased in AD brains. For this purpose, N2a mouse neuroblastoma cells as well as organotypic brain cultures (OBCSs) of 5XFAD and wild-type mice were incubated with various concentrations of the HDAC3 selective inhibitor RGFP966 (0.1-10 μM) for 24 h. Treatment with RGFP966 or HDAC3 knockdown in N2a cells was associated with an increase on amyloid precursor protein (APP) and mRNA expressions, without alterations in Aβ42 secretion. In vitro chromatin immunoprecipitation analysis revealed enriched HDAC3 binding at APP promoter regions. The increase in APP expression was also detected in OBCSs from 5XFAD mice incubated with 1 μM RGFP966, without changes in Aβ. In addition, HDAC3 inhibition resulted in a reduction of activated Iba-1-positive microglia and astrocytes in 5XFAD slices, which was not observed in OBCSs from wild-type mice. mRNA sequencing analysis revealed that HDAC3 inhibition modulated neuronal regenerative pathways related to neurogenesis, differentiation, axonogenesis, and dendritic spine density in OBCSs. Our findings highlight the complexity and diversity of the effects of HDAC3 inhibition on AD models and suggest that HDAC3 may have multiple roles in the regulation of APP expression and processing, as well as in the modulation of neuroinflammatory and neuroprotective genes.
Collapse
Affiliation(s)
- Nicola Davis
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Ben Taylor
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | - Robertas Aleksynas
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Nelofer Syed
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Simone Di Giovanni
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Ilaria Palmisano
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
8
|
Martínez-Pacheco H, Zepeda RC, Picazo O, Quirarte GL, Roldán-Roldán G. Class I histone deacetylases inhibition reverses memory impairment induced by acute stress in mice. PLoS One 2024; 19:e0302374. [PMID: 38635564 PMCID: PMC11025869 DOI: 10.1371/journal.pone.0302374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
While chronic stress induces learning and memory impairments, acute stress may facilitate or prevent memory consolidation depending on whether it occurs during the learning event or before it, respectively. On the other hand, it has been shown that histone acetylation regulates long-term memory formation. This study aimed to evaluate the effect of two inhibitors of class I histone deacetylases (HDACs), 4-phenylbutyrate (PB) and IN14 (100 mg/kg/day, ip for 2 days), on memory performance in mice exposed to a single 15-min forced swimming stress session. Plasma corticosterone levels were determined 30 minutes after acute swim stress in one group of mice. In another experimental series, independent groups of mice were trained in one of three different memory tasks: Object recognition test, Elevated T maze, and Buried food location test. Subsequently, the hippocampi were removed to perform ELISA assays for histone deacetylase 2 (HDAC2) expression. Acute stress induced an increase in plasma corticosterone levels, as well as hippocampal HDAC2 content, along with an impaired performance in memory tests. Moreover, PB and IN14 treatment prevented memory loss in stressed mice. These findings suggest that HDAC2 is involved in acute stress-induced cognitive impairment. None of the drugs improved memory in non-stressed animals, indicating that HDACs inhibitors are not cognitive boosters, but rather potentially useful drugs for mitigating memory deficits.
Collapse
Affiliation(s)
- Heidy Martínez-Pacheco
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro, México
| | | | - Ofir Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gina L. Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro, México
| | - Gabriel Roldán-Roldán
- Laboratorio de Neurobiología Conductual, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
9
|
Zhang L, Zhu B, Zhou X, Ning H, Zhang F, Yan B, Chen J, Ma T. ZNF787 and HDAC1 Mediate Blood-Brain Barrier Permeability in an In Vitro Model of Alzheimer's Disease Microenvironment. Neurotox Res 2024; 42:12. [PMID: 38329647 DOI: 10.1007/s12640-024-00693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The permeability of the blood-brain barrier (BBB) is increased in Alzheimer's disease (AD). This plays a key role in the instigation and maintenance of chronic inflammation during AD. Experiments using AD models showed that the increased permeability of the BBB was mainly caused by the decreased expression of tight junction-related proteins occludin and claudin-5. In this study, we found that ZNF787 and HDAC1 were upregulated in β-amyloid (Aβ)1-42-incubated endothelial cells, resulting in increased BBB permeability. Conversely, the silencing of ZNF787 and HDAC1 by RNAi led to reduced BBB permeability. The silencing of ZNF787 and HDAC1 enhanced the expression of occludin and claudin-5. Mechanistically, ZNF787 binds to promoter regions for occludin and claudin-5 and functions as a transcriptional regulator. Furthermore, we demonstrate that ZNF787 interacts with HDAC1, and this resulted in the downregulation of the expression of genes encoding tight junction-related proteins to increase in BBB permeability. Taken together, our study identifies critical roles for the interaction between ZNF787 and HDAC1 in regulating BBB permeability and the pathogenesis of AD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Baicheng Zhu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China
| | - Hao Ning
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Fengying Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, China
| | - Bingju Yan
- Department of Cardiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
10
|
Ndukwe K, Serrano PA, Rockwell P, Xie L, Figueiredo-Pereira M. Histone deacetylase inhibitor RG2833 has therapeutic potential for Alzheimer's disease in females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573348. [PMID: 38234827 PMCID: PMC10793399 DOI: 10.1101/2023.12.26.573348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Nearly two-thirds of patients with Alzheimer's are women. Identifying therapeutics specific for women is critical to lowering their elevated risk for developing this major cause of adult dementia. Moreover, targeting epigenetic processes that regulate multiple cellular pathways is advantageous given Alzheimer's multifactorial nature. Histone acetylation is an epigenetic process heavily involved in memory consolidation. Its disruption is linked to Alzheimer's. Through our computational studies, we predicted that the investigational drug RG2833 (N-[6-(2-aminoanilino)-6-oxohexyl]-4-methylbenzamide) has repurposing potential for Alzheimer's. RG2833 is a histone deacetylase HDAC1/3 inhibitor that is orally bioavailable and permeates the blood-brain-barrier. We investigated the RG2833 therapeutic potential in TgF344-AD rats, which are a model of Alzheimer's that exhibits age-dependent progression, thus mimicking this aspect of Alzheimer's patients that is difficult to establish in animal models. We investigated the RG2833 effects on cognitive performance, gene expression, and AD-like pathology in 11-month TgF344-AD female and male rats. A total of 89 rats were used: wild type n = 45 (17 females, 28 males), and TgF344-AD n = 44 (24 females, 20 males)] across multiple cohorts. No obvious toxicity was detected in the TgF344-AD rats up to 6 months of RG2833-treatment starting at 5 months of age administering the drug in rodent chow at ∼30mg/kg of body weight. We started treatment early in the course of pathology when therapeutic intervention is predicted to be more effective than in later stages of the disease. The drug-treatment significantly mitigated hippocampal-dependent spatial memory deficits in 11-month TgF344-AD females but not in males, compared to wild type littermates. This female sex-specific drug effect has not been previously reported. RG2833-treatment failed to ameliorate amyloid beta accumulation and microgliosis in female and male TgF344-AD rats. However, RNAseq analysis of hippocampal tissue from TgF344-AD rats showed that drug-treatment in females upregulated the expression of immediate early genes, such as Arc, Egr1 and c-Fos, and other genes involved in synaptic plasticity and memory consolidation. Remarkably, out of 17,168 genes analyzed for each sex, no significant changes in gene expression were detected in males at P < 0.05, false discovery rate < 0.05, and fold-change ≥ 1.5. Our data suggest that histone modifying therapeutics such as RG2833 improve cognitive behavior by modulating the expression of immediate early, neuroprotective and synaptic plasticity genes. Our preclinical study supports that RG2833 has therapeutic potential specifically for female Alzheimer's patients. RG2833 evaluations using other AD-related models is necessary to confirm our findings.
Collapse
|
11
|
Hafenbreidel M, Pandey S, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral amygdala corticotropin releasing factor receptor 2 interacts with nonmuscle myosin II to destabilize memory in males. Neurobiol Learn Mem 2023; 206:107865. [PMID: 37995804 DOI: 10.1016/j.nlm.2023.107865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Preclinical studies show that inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory in male and female adult and adolescent rodents. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g., dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To understand the mechanisms responsible for drug specific selectivity we began by investigating, in male mice, the pharmacokinetic differences in METH and COC brain exposure . Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, we next assessed transcriptional differences. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotropin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility. Pretreatment with AS2B prevented the ability of Blebb to disrupt an established METH-associated memory. Alternatively, combining CRF2 overexpression and agonist treatment, urocortin 3 (UCN3), in the BLA during conditioning rendered COC-associated memory susceptible to disruption by NMII inhibition, mimicking the Blebb-induced, retrieval-independent memory disruption seen with METH. These results suggest that BLA CRF2 receptor activation during memory formation in male mice can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption by NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Surya Pandey
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Meghana Arza
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shalakha Bonthu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Cadence Fisher
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Annika Tiller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Alice B Hall
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shayna Reed
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Natasha Mayorga
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States.
| |
Collapse
|
12
|
Ricciardi NR, Modarresi F, Lohse I, Andrade NS, Newman IR, Brown JM, Borja C, Marples B, Wahlestedt CR, Volmar CH. Investigating the Synergistic Potential of Low-Dose HDAC3 Inhibition and Radiotherapy in Alzheimer's Disease Models. Mol Neurobiol 2023; 60:4811-4827. [PMID: 37171575 PMCID: PMC10293392 DOI: 10.1007/s12035-023-03373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
We have previously shown that histone deacetylase (HDAC) inhibition and cranial radiotherapy (RT) independently improve molecular and behavioral Alzheimer's disease (AD)-like phenotypes. In the present study, we investigate the synergistic potential of using both RT and HDACi as a low-dose combination therapy (LDCT) to maximize disease modification (reduce neuroinflammation and amyloidogenic APP processing, increase neurotrophic gene expression) while minimizing the potential for treatment-associated side effects.LDCT consisted of daily administration of the HDAC3 inhibitor RGFP966 and/or bi-weekly cranial x-irradiation. Amyloid-beta precursor protein (APP) processing and innate immune response to LDCT were assessed in vitro and in vivo using human and murine cell models and 3xTg-AD mice. After 2 months of LDCT in mice, behavioral analyses as well as expression and modification of key AD-related targets (Aβ, tau, Csf1r, Bdnf, etc.) were assessed in the hippocampus (HIP) and prefrontal cortex (PFC).LDCT induced a tolerant, anti-inflammatory innate immune response in microglia and increased non-amyloidogenic APP processing in vitro. Both RT and LDCT improved the rate of learning and spatial memory in the Barnes maze test. LDCT induced a unique anti-AD HIP gene expression profile that included upregulation of neurotrophic genes and downregulation of inflammation-related genes. RT lowered HIP Aβ42/40 ratio and Bace1 protein, while LDCT lowered PFC p-tau181 and HIP Bace1 levels.Our study supports the rationale for combining complementary therapeutic approaches at low doses to target multifactorial AD pathology synergistically. Namely, LDCT with RGFP966 and cranial RT shows disease-modifying potential against a wide range of AD-related hallmarks.
Collapse
Affiliation(s)
- Natalie R. Ricciardi
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Farzaneh Modarresi
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
| | - Ines Lohse
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Nadja S. Andrade
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Ian R. Newman
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
| | - Jonathan M. Brown
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Caroline Borja
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Brian Marples
- Department of Radiation Oncology, University of Miami, Miami, FL 33136 USA
| | - Claes R. Wahlestedt
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Claude-Henry Volmar
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
13
|
McClarty BM, Chakraborty S, Rodriguez G, Dong H. Histone deacetylase 1 regulates haloperidol-induced motor side effects in aged mice. Behav Brain Res 2023; 447:114420. [PMID: 37028517 PMCID: PMC10586515 DOI: 10.1016/j.bbr.2023.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Antipsychotic drugs prescribed to elderly patients with neuropsychiatric disorders often experience severe extrapyramidal side effects. Previous studies from our group suggest that changes in histone modifications during aging increase the risk for antipsychotic drug side effects, because co-administration of antipsychotics with class 1 histone deacetylase (HDAC) inhibitors could mitigate the severity of motor side effects in aged mice. However, which HDAC subtype contributes to the age-related sensitivity to antipsychotic drug side effects is unknown. METHODS In this study, we overexpressed histone deacetylase type 1(HDAC1) in the striatum of 3-month-old mice and knocked down HDAC 1 in the striatum of 21-month-old mice by microinjection of AAV9-HDAC1-GFP or AAV9-CRISPR/Cas9-HDAC1-GFP vectors. Four weeks after the viral-vector delivery, the typical antipsychotic drug haloperidol was administered daily for 14 days, followed by motor function assessments through the open field, rotarod, and catalepsy behavioral tests. RESULTS Young mice with overexpressed HDAC1 showed increased cataleptic behavior induced by haloperidol administration, which is associated with the increased HDAC1 level in the striatum. In contrast, aged mice with HDAC1 knocked down rescued locomotor activity, motor coordination, and decreased cataleptic behavior induced by haloperidol administration, which is associated with decreased HDAC1 level in the striatum. CONCLUSIONS Our results suggest that HDAC1 is a critical regulator in haloperidol-induced severe motor side effects in aged mice. Repression of HDAC1 expression in the striatum of aged mice could mitigate typical antipsychotic drug-induced motor side effects.
Collapse
Affiliation(s)
- Bryan M McClarty
- Departments of Psychiatry and Behavioral Sciences, and Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Saikat Chakraborty
- Departments of Psychiatry and Behavioral Sciences, and Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Guadalupe Rodriguez
- Departments of Psychiatry and Behavioral Sciences, and Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Hongxin Dong
- Departments of Psychiatry and Behavioral Sciences, and Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Hafenbreidel M, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral Amygdala Corticotrophin Releasing Factor Receptor 2 Interacts with Nonmuscle Myosin II to Destabilize Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541732. [PMID: 37292925 PMCID: PMC10245849 DOI: 10.1101/2023.05.22.541732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g. dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To investigate a potential source of this specificity, pharmacokinetic differences in METH and COC brain exposure were examined. Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, transcriptional differences were next assessed. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotrophin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility after METH conditioning. Pretreatment with AS2B occluded the ability of Blebb to disrupt an established METH-associated memory. Alternatively, the Blebb-induced, retrieval-independent memory disruption seen with METH was mimicked for COC when combined with CRF2 overexpression in the BLA and its ligand, UCN3 during conditioning. These results indicate that BLA CRF2 receptor activation during learning can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption via NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Meghana Arza
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Shalakha Bonthu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Cadence Fisher
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Annika Tiller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
- Present address: Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC, 29464
| | - Alice B Hall
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Shayna Reed
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Natasha Mayorga
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| |
Collapse
|
15
|
Pal D, Sahu P, Mishra AK, Hagelgans A, Sukocheva O. Histone Deacetylase Inhibitors as Cognitive Enhancers and Modifiers of Mood and Behavior. Curr Drug Targets 2023; 24:728-750. [PMID: 36475351 DOI: 10.2174/1389450124666221207090108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epigenetic regulation of gene signalling is one of the fundamental molecular mechanisms for the generation and maintenance of cellular memory. Histone acetylation is a common epigenetic mechanism associated with increased gene transcription in the central nervous system (CNS). Stimulation of gene transcription by histone acetylation is important for the development of CNS-based long-term memory. Histone acetylation is a target for cognitive enhancement via the application of histone deacetylase (HDAC) inhibitors. The promising potential of HDAC inhibitors has been observed in the treatment of several neurodevelopmental and neurodegenerative diseases. OBJECTIVE This study assessed the current state of HDAC inhibition as an approach to cognitive enhancement and treatment of neurodegenerative diseases. Our analysis provides insights into the mechanism of action of HDAC inhibitors, associated epigenetic priming, and describes the therapeutic success and potential complications after unsupervised use of the inhibitors. RESULTS AND CONCLUSION Several chromatin-modifying enzymes play key roles in the regulation of cognitive processes. The importance of HDAC signaling in the brain is highlighted in this review. Recent advancements in the field of cognitive epigenetics are supported by the successful development of various HDAC inhibitors, demonstrating effective treatment of mood-associated disorders. The current review discusses the therapeutic potential of HDAC inhibition and observed complications after mood and cognitive enhancement therapies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | - Pooja Sahu
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | | | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Olga Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, 5042, SA, Australia
| |
Collapse
|
16
|
Han Y, Chen L, Liu J, Chen J, Wang C, Guo Y, Yu X, Zhang C, Chu H, Ma H. A Class I HDAC Inhibitor Rescues Synaptic Damage and Neuron Loss in APP-Transfected Cells and APP/PS1 Mice through the GRIP1/AMPA Pathway. Molecules 2022; 27:molecules27134160. [PMID: 35807406 PMCID: PMC9268711 DOI: 10.3390/molecules27134160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
As a neurodegenerative disease, Alzheimer’s disease (AD) seriously affects the health of older people. Changes in synapses occur first over the course of the disease, perhaps even before the formation of Aβ plaques. Histone deacetylase (HDAC) mediates the damage of Aβ oligomers to dendritic spines. Therefore, we examined the relationship between HDAC activity and synaptic defects using an HDAC inhibitor (HDACI), BG45, in the human neuroblastoma SH-SY5Y cell line with stable overexpression of Swedish mutant APP (APPsw) and in APP/PS1 transgenic mice during this study. The cells were treated with 15 μM BG45 and the APP/PS1 mice were treated with 30 mg/kg BG45. We detected the levels of synapse-related proteins, HDACs, tau phosphorylation, and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors using Western blotting and immunohistochemistry. We also measured the expression of cytoskeletal proteins in the cell model. The mRNA levels of the glutamate ion receptor alginate subunit 2 (GRIK2), sodium voltage-gated channel beta subunit (SCN3B), synaptophysin (SYP), Grm2 (the gene encoding glutamate receptor subunit 2 (GluR2)), Grid2IP, glutamate receptor interacting protein 1 (GRIP1), and GRIP2 were detected to explore the effects of the HDACI on regulating the expression of synaptic proteins and AMPA receptors. According to our studies, the expressions of HDAC1, HDAC2, and HDAC3 were increased, which were accompanied by the downregulation of the synapse-related proteins SYP, postsynaptic dendritic protein (PSD-95), and spinophilin as early as 24 h after transfection with the APPsw gene. BG45 upregulated the expression of synapse-related proteins and repaired cytoskeletal damage. In vivo, BG45 alleviated the apoptosis-mediated loss of hippocampal neurons, upregulated synapse-related proteins, reduced Aβ deposition and phosphorylation of tau, and increased the levels of the synapse-related genes GRIK2, SCN3B, SYP, Grm2, and Grid2IP. BG45 increased the expression of the AMPA receptor subunits GluA1, GluA2, and GluA3 on APPsw-transfected cells and increased GRIP1 and GRIP2 expression and AMPA receptor phosphorylation in vivo. Based on these results, HDACs are involved in the early process of synaptic defects in AD models, and BG45 may rescue synaptic damage and the loss of hippocampal neurons by specifically inhibiting HDAC1, HDAC2, and HDAC3, thereby modulating AMPA receptor transduction, increasing synapse-related gene expression, and finally enhancing the function of excitatory synapses. BG45 may be considered a potential drug for the treatment of early AD in further studies.
Collapse
|
17
|
Collins NJ, Zimmerman CW, Phillips NLH, Fern S, Doherty TS, Roth TL. Developmental administration of valproic acid alters DNA methylation and maternal behavior. Dev Psychobiol 2022; 64:e22231. [PMID: 35312054 DOI: 10.1002/dev.22231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
Exposure to adversity in early development has powerful and potentially lasting consequences on behavior. Previous work in our laboratory using female Long-Evans rats has demonstrated that exposure to early-life maltreatment manifests into alterations in dam behavior, including a perpetuation of the maltreatment phenotype. These observed behavioral changes coincide with changes in epigenetic activity in the prefrontal cortex (PFC). Further, treating dams with a chromatin modifying agent (Zebularine) normalizes methylation and maltreatment phenotypes, suggesting a link between epigenetic programming and phenotypic outcomes. Here, we sought to investigate if administration of a chromatin modifying agent concurrent with the experience of maltreatment normalizes epigenetic activity associated with maltreatment and alters behavioral trajectories. Administration of valproic acid (VPA) transiently lowered levels of global DNA methylation in the PFC, regardless of exposure to nurturing care or maltreatment. When VPA-exposed animals reached adulthood, they engaged in more adverse behaviors toward their offspring. These data provide further evidence linking epigenetic changes in the developing brain with effects on behavior.
Collapse
Affiliation(s)
- Nicholas J Collins
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Catherine W Zimmerman
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Natalia L H Phillips
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Samantha Fern
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Tiffany S Doherty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
18
|
Takasu K, Niidome K, Hasegawa M, Ogawa K. Histone Deacetylase Inhibitor Improves the Dysfunction of Hippocampal Gamma Oscillations and Fast Spiking Interneurons in Alzheimer's Disease Model Mice. Front Mol Neurosci 2021; 14:782206. [PMID: 35027883 PMCID: PMC8751405 DOI: 10.3389/fnmol.2021.782206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 12/05/2022] Open
Abstract
The hippocampal gamma oscillation is important for cognitive function, and its deficit is related to cognitive impairment in Alzheimer's disease (AD). Recently, it has been recognized that post-translational modification via histone acetylation is a fundamental molecular mechanism for regulating synaptic plasticity and cognitive function. However, little is known regarding the regulation of hippocampal gamma oscillation by histone acetylation. We investigated whether histone acetylation regulated kainate-induced gamma oscillations and their important regulator, fast-spiking interneurons, using acute hippocampal slices of AD model mice (PSAPP transgenic mice). We found a decrease in kainate-induced gamma oscillations in slices from PSAPP mice, accompanied with the increased activity of fast spiking interneurons in basal state and the decreased activity in activated state. The histone deacetylase (HDAC) inhibitor (SAHA, named vorinostat) restored deficits of gamma oscillation in PSAPP mice, accompanied with rescue of activity of fast spiking interneurons in basal and activated state. The effect of SAHA was different from that of the clinical AD drug donepezil, which rescued only function of fast spiking interneurons in basal state. Besides, activator of nuclear receptor family 4a (NR4a) receptor (cytosporone B), as one of the epigenetic modification related to HDAC inhibition, rescued the deficits in gamma oscillations in PSAPP mice. These results suggested a novel mechanism in which HDAC inhibition improved impairment of gamma oscillations in PSAPP mice by restoring the activity of fast spiking interneurons both in basal and activated state. The reversal of gamma oscillation deficits by HDAC inhibition and/or NR4a activation appears to be a potential therapeutic target for treating cognitive impairment in AD patients.
Collapse
Affiliation(s)
| | | | | | - Koichi Ogawa
- Pain and Neuroscience, Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
19
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
20
|
Kumar V, Kundu S, Singh A, Singh S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr Neuropharmacol 2021; 20:158-178. [PMID: 34151764 PMCID: PMC9199543 DOI: 10.2174/1570159x19666210609160017] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative diseases are a group of pathological conditions that cause motor inc-ordination (jerking movements), cognitive and memory impairments result from degeneration of neurons in a specific area of the brain. Oxidative stress, mitochondrial dysfunction, excitotoxicity, neuroinflammation, neurochemical imbalance and histone deacetylase enzymes (HDAC) are known to play a crucial role in neurodegeneration. HDAC is classified into four categories (class I, II, III and class IV) depending upon their location and functions. HDAC1 and 2 are involved in neurodegeneration, while HDAC3-11 and class III HDACs are beneficial as neuroprotective. HDACs are localized in different parts of the brain- HDAC1 (hippocampus and cortex), HDAC2 (nucleus), HDAC3, 4, 5, 7 and 9 (nucleus and cytoplasm), HDAC6 & HDAC7 (cytoplasm) and HDAC11 (Nucleus, cornus ammonis 1 and spinal cord). In pathological conditions, HDAC up-regulates glutamate, phosphorylation of tau, and glial fibrillary acidic proteins while down-regulating BDNF, Heat shock protein 70 and Gelsolin. Class III HDACs are divided into seven sub-classes (SIRT1-SIRT7). Sirtuins are localized in the different parts of the brain and neuron -Sirt1 (nucleus), Sirt2 (cortex, striatum, hippocampus and spinal cord), Sirt3 (mitochondria and cytoplasm), Sirt4, Sirt5 & Sirt6 (mitochondria), Sirt7 (nucleus) and Sirt8 (nucleolus). SIRTs (1, 3, 4, and 6) are involved in neuronal survival, proliferation and modulating stress response, and SIRT2 is associated with Parkinsonism, Huntington’s disease and Alzheimer’s disease, whereas SIRT6 is only associated with Alzheimer’s disease. In this critical review, we have discussed the mechanisms and therapeutic targets of HDACs that would be beneficial for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vishal Kumar
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Satyabrata Kundu
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Arti Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
21
|
Han Y, Chen L, Guo Y, Wang C, Zhang C, Kong L, Ma H. Class I HDAC Inhibitor Improves Synaptic Proteins and Repairs Cytoskeleton Through Regulating Synapse-Related Genes In vitro and In vivo. Front Aging Neurosci 2021; 12:619866. [PMID: 33542682 PMCID: PMC7852506 DOI: 10.3389/fnagi.2020.619866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
β-amyloid (Aβ) is an important protein molecule in the pathology of Alzheimer’s disease (AD). Accumulation of Aβ leads to the loss of dendritic spines and synapses. These impairments can be ameliorated by histone deacetylase inhibitors (HDACI). However, the mechanisms of HDACIs underlying the effect on synapse are not fully understood. In this study, we examined the relationship between HDAC activity and synapse-related genes and proteins by the administration of a class I HDAC inhibitor, BG45, in the exogenous Aβ-treated cells and mice. Our studies showed that the treatment of HF-488-Aβ1–42 to SH-SY5Y cells first increased the expression of the postsynaptic dendritic protein (PSD), then decreased it after 36 h. BG45 can alleviate the reduction of the expression of PSD-95 as well as spinophilin and cytoskeletal protein induced by HF-488-Aβ1–42 aggregation in SH-SY5Y cells. Similar to the results in vitro, PSD-95 in the hippocampus was temporarily increased in the early days of intravenous injection HF-488-Aβ1–40 to the mice, followed by the decreased expression of PSD-95 on the 9th day. In further studies, for the mice treated with Aβ for 9 days, we found that BG45 decreased the expression of HDAC1 and 2, increased the expression of PSD-95, spinophilin, and synaptophysin (SYP). Our data also showed that BG45 upregulated levels of three synapse-related genes and proteins GRIK2, SCN3B, and SYNPR. These findings suggest that the exogenous Aβ may stimulate transiently the expression of PSD-95 at an early stage, but subsequently contribute to synaptic defects. HDAC1 and 2 are involved in synaptic defects, and BG45 may improve the expression of synaptic and cytoskeletal proteins and repair cytoskeletal damage by specifically inhibiting HDAC1 and 2, thereby modulating synapse-related genes. BG45 might be a potential therapeutic agent for the treatment of an early stage of Aβ-related neurodegenerative disease.
Collapse
Affiliation(s)
- Ying Han
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Le Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu Guo
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chunyang Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chenghong Zhang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haiying Ma
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Su Q, Li T, He PF, Lu XC, Yu Q, Gao QC, Wang ZJ, Wu MN, Yang D, Qi JS. Trichostatin A ameliorates Alzheimer's disease-related pathology and cognitive deficits by increasing albumin expression and Aβ clearance in APP/PS1 mice. Alzheimers Res Ther 2021; 13:7. [PMID: 33397436 PMCID: PMC7784383 DOI: 10.1186/s13195-020-00746-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an intractable neurodegenerative disorder in the elderly population, currently lacking a cure. Trichostatin A (TSA), a histone deacetylase inhibitor, showed some neuroprotective roles, but its pathology-improvement effects in AD are still uncertain, and the underlying mechanisms remain to be elucidated. The present study aims to examine the anti-AD effects of TSA, particularly investigating its underlying cellular and molecular mechanisms. METHODS Novel object recognition and Morris water maze tests were used to evaluate the memory-ameliorating effects of TSA in APP/PS1 transgenic mice. Immunofluorescence, Western blotting, Simoa assay, and transmission electron microscopy were utilized to examine the pathology-improvement effects of TSA. Microglial activity was assessed by Western blotting and transwell migration assay. Protein-protein interactions were analyzed by co-immunoprecipitation and LC-MS/MS. RESULTS TSA treatment not only reduced amyloid β (Aβ) plaques and soluble Aβ oligomers in the brain, but also effectively improved learning and memory behaviors of APP/PS1 mice. In vitro study suggested that the improvement of Aβ pathology by TSA was attributed to the enhancement of Aβ clearance, mainly by the phagocytosis of microglia, and the endocytosis and transport of microvascular endothelial cells. Notably, a meaningful discovery in the study was that TSA dramatically upregulated the expression level of albumin in cell culture, by which TSA inhibited Aβ aggregation and promoted the phagocytosis of Aβ oligomers. CONCLUSIONS These findings provide a new insight into the pathogenesis of AD and suggest TSA as a novel promising candidate for the AD treatment.
Collapse
Affiliation(s)
- Qiang Su
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Tian Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Pei-Feng He
- Institute of Medical Data Sciences and School of Management, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Xue-Chun Lu
- Department of Hematology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qi Yu
- Institute of Medical Data Sciences and School of Management, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qi-Chao Gao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Dan Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
23
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
24
|
Chen JL, Zhang P, Abe M, Aikawa H, Zhang L, Frank AJ, Zembryski T, Hubbs C, Park H, Withka J, Steppan C, Rogers L, Cabral S, Pettersson M, Wager TT, Fountain MA, Rumbaugh G, Childs-Disney JL, Disney MD. Design, Optimization, and Study of Small Molecules That Target Tau Pre-mRNA and Affect Splicing. J Am Chem Soc 2020; 142:8706-8727. [PMID: 32364710 PMCID: PMC7357857 DOI: 10.1021/jacs.0c00768] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approximately 95% of human genes are alternatively spliced, and aberrant splicing events can cause disease. One pre-mRNA that is alternatively spliced and linked to neurodegenerative diseases is tau (microtubule-associated protein tau), which can cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and can contribute to Alzheimer's disease. Here, we describe the design of structure-specific lead small molecules that directly target tau pre-mRNA from sequence. This was followed by hit expansion and analogue synthesis to further improve upon these initial lead molecules. The emergent compounds were assessed for functional activity in a battery of assays, including binding assays and an assay that mimics molecular recognition of tau pre-mRNA by a U1 small nuclear ribonucleoprotein (snRNP) splicing factor. Compounds that emerged from these studies had enhanced potency and selectivity for the target RNA relative to the initial hits, while also having significantly improved drug-like properties. The compounds are shown to directly target tau pre-mRNA in cells, via chemical cross-linking and isolation by pull-down target profiling, and to rescue disease-relevant splicing of tau pre-mRNA in a variety of cellular systems, including primary neurons. More broadly, this study shows that lead, structure-specific compounds can be designed from sequence and then further optimized for their physicochemical properties while at the same time enhancing their activity.
Collapse
Affiliation(s)
- Jonathan L. Chen
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Masahito Abe
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Haruo Aikawa
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Liying Zhang
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Alexander J. Frank
- Department of Chemistry & Biochemistry, State University of New York at Fredonia, Fredonia, New York 14063, United States
| | - Timothy Zembryski
- Department of Chemistry & Biochemistry, State University of New York at Fredonia, Fredonia, New York 14063, United States
| | - Christopher Hubbs
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - HaJeung Park
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jane Withka
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Claire Steppan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Lucy Rogers
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Shawn Cabral
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Martin Pettersson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Travis T. Wager
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Matthew A. Fountain
- Department of Chemistry & Biochemistry, State University of New York at Fredonia, Fredonia, New York 14063, United States
| | - Gavin Rumbaugh
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jessica L. Childs-Disney
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter
| |
Collapse
|
25
|
Wong LW, Chong YS, Wong WLE, Sajikumar S. Inhibition of Histone Deacetylase Reinstates Hippocampus-Dependent Long-Term Synaptic Plasticity and Associative Memory in Sleep-Deprived Mice. Cereb Cortex 2020; 30:4169-4182. [PMID: 32188968 DOI: 10.1093/cercor/bhaa041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep plays an important role in the establishment of long-term memory; as such, lack of sleep severely impacts domains of our health including cognitive function. Epigenetic mechanisms regulate gene transcription and protein synthesis, playing a critical role in the modulation of long-term synaptic plasticity and memory. Recent evidences indicate that transcriptional dysregulation as a result of sleep deprivation (SD) may contribute to deficits in plasticity and memory function. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, a clinically approved drug for human use, has been shown to ameliorate cognitive deficits in several neurological disease models. To further explore the therapeutic effect of SAHA, we have examined its potential role in improving the SD-mediated impairments in long-term plasticity, associative plasticity, and associative memory. Here we show that SAHA preserves long-term plasticity, associative plasticity, and associative memory in SD hippocampus. Furthermore, we find that SAHA prevents SD-mediated epigenetic changes by upregulating histone acetylation, hence preserving the ERK-cAMP-responsive element-binding protein (CREB)/CREB-binding protein-brain-derived neurotrophic factor pathway in the hippocampus. These data demonstrate that modifying epigenetic mechanisms via SAHA can prevent or reverse impairments in long-term plasticity and memory that result from sleep loss. Thus, SAHA could be a potential therapeutic agent in improving SD-related memory deficits.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Yee Song Chong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Win Lee Edwin Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| |
Collapse
|
26
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
27
|
Jones ME, Sillivan SE, Jamieson S, Rumbaugh G, Miller CA. microRNA mir-598-3p mediates susceptibility to stress enhancement of remote fear memory. ACTA ACUST UNITED AC 2019; 26:363-372. [PMID: 31416909 PMCID: PMC6699414 DOI: 10.1101/lm.048827.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022]
Abstract
microRNAs (miRNAs) have emerged as potent regulators of learning, recent memory, and extinction. However, our understanding of miRNAs directly involved in regulating complex psychiatric conditions perpetuated by aberrant memory, such as in posttraumatic stress disorder (PTSD), remains limited. To begin to address the role of miRNAs in persistent memories, we performed small-RNA sequencing on basolateral amygdala (BLA) tissue and identified miRNAs altered by auditory fear conditioning (FC) one month after training. mir-598-3p, a highly conserved miRNA previously unstudied in the brain, was down-regulated in the BLA. Further decreasing BLA mir-598-3p levels did not increase strength of the remote fear memory. Given that stress is a critical component in PTSD, we next assessed the impact of stress and stress-enhanced fear learning (SEFL) on mir-598-3p levels, finding the miRNA is elevated in the BLA of male, but not female, mice susceptible to the effects of stress in SEFL. Accordingly, intra-BLA inhibition of mir-598-3p interfered with expression and extinction of the remote fear memory in male, but not female, mice. This effect could not be attributed to an anxiolytic effect of miRNA inhibition. Finally, bioinformatic analysis following quantitative proteomics on BLA tissue collected 30 d post-SEFL training identified putative mir-598-3p targets and related pathways mediating the differential susceptibility, with evidence for regulation of the actin cytoskeleton, the core mediator of structural plasticity. Taken together, the results suggest BLA mir-598-3p may be recruited by stress to mediate a critical switch from a salient remote fear memory to one that is enhanced and extinction-resistant.
Collapse
Affiliation(s)
- Meghan E Jones
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Stephanie E Sillivan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Sarah Jamieson
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
28
|
Cuadrado-Tejedor M, Pérez-González M, García-Muñoz C, Muruzabal D, García-Barroso C, Rabal O, Segura V, Sánchez-Arias JA, Oyarzabal J, Garcia-Osta A. Taking Advantage of the Selectivity of Histone Deacetylases and Phosphodiesterase Inhibitors to Design Better Therapeutic Strategies to Treat Alzheimer's Disease. Front Aging Neurosci 2019; 11:149. [PMID: 31281249 PMCID: PMC6597953 DOI: 10.3389/fnagi.2019.00149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
The discouraging results with therapies for Alzheimer’s disease (AD) in clinical trials, highlights the urgent need to adopt new approaches. Like other complex diseases, it is becoming clear that AD therapies should focus on the simultaneous modulation of several targets implicated in the disease. Recently, using reference compounds and the first-in class CM-414, we demonstrated that the simultaneous inhibition of histone deacetylases [class I histone deacetylases (HDACs) and HDAC6] and phosphodiesterase 5 (PDE5) has a synergistic therapeutic effect in AD models. To identify the best inhibitory balance of HDAC isoforms and PDEs that provides a safe and efficient therapy to combat AD, we tested the compound CM-695 in the Tg2576 mouse model of this disease. CM-695 selectively inhibits HDAC6 over class I HDAC isoforms, which largely overcomes the toxicity associated with HDAC class 1 inhibition. Furthermore, CM-695 inhibits PDE9, which is expressed strongly in the brain and has been proposed as a therapeutic target for AD. Chronic treatment of aged Tg2576 mice with CM-695 ameliorates memory impairment and diminishes brain Aβ, although its therapeutic effect was no longer apparent 4 weeks after the treatment was interrupted. An increase in the presence of 78-KDa glucose regulated protein (GRP78) and heat shock protein 70 (Hsp70) chaperones may underlie the therapeutic effect of CM-695. In summary, chronic treatment with CM-695 appears to reverse the AD phenotype in a safe and effective manner. Taking into account that AD is a multifactorial disorder, the multimodal action of these compounds and the different events they affect may open new avenues to combat AD.
Collapse
Affiliation(s)
- Mar Cuadrado-Tejedor
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Marta Pérez-González
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Cristina García-Muñoz
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Damián Muruzabal
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carolina García-Barroso
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Víctor Segura
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan A Sánchez-Arias
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ana Garcia-Osta
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| |
Collapse
|
29
|
Sridharan B, Hubbs C, Llamosas N, Kilinc M, Singhera FU, Willems E, Piper DR, Scampavia L, Rumbaugh G, Spicer TP. A Simple Procedure for Creating Scalable Phenotypic Screening Assays in Human Neurons. Sci Rep 2019; 9:9000. [PMID: 31227747 PMCID: PMC6588600 DOI: 10.1038/s41598-019-45265-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023] Open
Abstract
Neurons created from human induced pluripotent stem cells (hiPSCs) provide the capability of identifying biological mechanisms that underlie brain disorders. IPSC-derived human neurons, or iNs, hold promise for advancing precision medicine through drug screening, though it remains unclear to what extent iNs can support early-stage drug discovery efforts in industrial-scale screening centers. Despite several reported approaches to generate iNs from iPSCs, each suffer from technological limitations that challenge their scalability and reproducibility, both requirements for successful screening assays. We addressed these challenges by initially removing the roadblocks related to scaling of iNs for high throughput screening (HTS)-ready assays. We accomplished this by simplifying the production and plating of iNs and adapting them to a freezer-ready format. We then tested the performance of freezer-ready iNs in an HTS-amenable phenotypic assay that measured neurite outgrowth. This assay successfully identified small molecule inhibitors of neurite outgrowth. Importantly, we provide evidence that this scalable iN-based assay was both robust and highly reproducible across different laboratories. These streamlined approaches are compatible with any iPSC line that can produce iNs. Thus, our findings indicate that current methods for producing iPSCs are appropriate for large-scale drug-discovery campaigns (i.e. >10e5 compounds) that read out simple neuronal phenotypes. However, due to the inherent limitations of currently available iN differentiation protocols, technological advances are required to achieve similar scalability for screens that require more complex phenotypes related to neuronal function.
Collapse
Affiliation(s)
- BanuPriya Sridharan
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA
| | - Christopher Hubbs
- Department of Neuroscience, Scripps Research, Jupiter, Florida, 33458, USA
| | - Nerea Llamosas
- Department of Neuroscience, Scripps Research, Jupiter, Florida, 33458, USA
| | - Murat Kilinc
- Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida, 33458, USA
| | - Fakhar U Singhera
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA
| | - Erik Willems
- Cell Biology, Thermo Fisher Scientific, Carlsbad, California, 92008, USA
| | - David R Piper
- Cell Biology, Thermo Fisher Scientific, Carlsbad, California, 92008, USA
| | - Louis Scampavia
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA
| | - Gavin Rumbaugh
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA.
- Department of Neuroscience, Scripps Research, Jupiter, Florida, 33458, USA.
- Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida, 33458, USA.
| | - Timothy P Spicer
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA.
| |
Collapse
|
30
|
Iaconelli J, Xuan L, Karmacharya R. HDAC6 Modulates Signaling Pathways Relevant to Synaptic Biology and Neuronal Differentiation in Human Stem-Cell-Derived Neurons. Int J Mol Sci 2019; 20:ijms20071605. [PMID: 30935091 PMCID: PMC6480207 DOI: 10.3390/ijms20071605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Recent studies show that histone deacetylase 6 (HDAC6) has important roles in the human brain, especially in the context of a number of nervous system disorders. Animal models of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders show that HDAC6 modulates important biological processes relevant to disease biology. Pan-selective histone deacetylase (HDAC) inhibitors had been studied in animal behavioral assays and shown to induce synaptogenesis in rodent neuronal cultures. While most studies of HDACs in the nervous system have focused on class I HDACs located in the nucleus (e.g., HDACs 1,2,3), recent findings in rodent models suggest that the cytoplasmic class IIb HDAC, HDAC6, plays an important role in regulating mood-related behaviors. Human studies suggest a significant role for synaptic dysfunction in the prefrontal cortex (PFC) and hippocampus in depression. Studies of HDAC inhibitors (HDACi) in human neuronal cells show that HDAC6 inhibitors (HDAC6i) increase the acetylation of specific lysine residues in proteins involved in synaptogenesis. This has led to the hypothesis that HDAC6i may modulate synaptic biology not through effects on the acetylation of histones, but by regulating acetylation of non-histone proteins.
Collapse
Affiliation(s)
- Jonathan Iaconelli
- Center for Genomic Medicine, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Lucius Xuan
- Center for Genomic Medicine, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA 02478, USA.
- Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA.
- Chemical Biology PhD Program, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
31
|
Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides. Eur J Med Chem 2019; 166:369-380. [DOI: 10.1016/j.ejmech.2019.01.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
|
32
|
Abstract
In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
33
|
Yu L, Liu Y, Jin Y, Cao X, Chen J, Jin J, Gu Y, Bao X, Ren Z, Xu Y, Zhu X. Lentivirus-Mediated HDAC3 Inhibition Attenuates Oxidative Stress in APPswe/PS1dE9 Mice. J Alzheimers Dis 2019; 61:1411-1424. [PMID: 29376873 DOI: 10.3233/jad-170844] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Amyloid-β (Aβ) induces a burst of oxidative stress and plays a critical role in the pathogenesis of Alzheimer's disease (AD). Our previous results have shown that histone deacetylase 3 (HDAC3) inhibition ameliorates spatial memory deficits and decreases the Aβ burden in the brains of 9-month-old APPswe/PS1dE9 (APP/PS1) mice. In this study, we investigated the role of HDAC3 inhibition in oxidative stress in vivo and in vitro models of AD. HDAC3 was detected mainly in the neurons, and HDAC3 inhibition significantly decreased reactive oxygen species generation and improved primary cortical neuron viability. In addition, HDAC3 inhibition attenuated spatial memory dysfunction in 6-month-old APP/PS1 mice, and decreased the apoptotic rate in the hippocampi as demonstrated by TUNEL staining. HDAC3 inhibition also reduced markers of lipid peroxidation, protein oxidation, and DNA/RNA oxidation in the hippocampi of APP/PS1 mice. Moreover, HDAC3 inhibition inactivated the c-Abl/MST1/YAP signaling pathway in the hippocampi of APP/PS1 mice. In conclusion, our data show that HDAC3 inhibition can attenuate spatial memory deficits and inhibit oxidative stress in APP/PS1 mice; these results indicate a potential strategy for AD treatment.
Collapse
Affiliation(s)
- Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Zhuoying Ren
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| |
Collapse
|
34
|
Sartor GC, Malvezzi AM, Kumar A, Andrade NS, Wiedner HJ, Vilca SJ, Janczura KJ, Bagheri A, Al-Ali H, Powell SK, Brown PT, Volmar CH, Foster TC, Zeier Z, Wahlestedt C. Enhancement of BDNF Expression and Memory by HDAC Inhibition Requires BET Bromodomain Reader Proteins. J Neurosci 2019; 39:612-626. [PMID: 30504275 PMCID: PMC6343644 DOI: 10.1523/jneurosci.1604-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/05/2018] [Accepted: 11/11/2018] [Indexed: 02/01/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors may have therapeutic utility in multiple neurological and psychiatric disorders, but the underlying mechanisms remain unclear. Here, we identify BRD4, a BET bromodomain reader of acetyl-lysine histones, as an essential component involved in potentiated expression of brain-derived neurotrophic factor (BDNF) and memory following HDAC inhibition. In in vitro studies, we reveal that pharmacological inhibition of BRD4 reversed the increase in BDNF mRNA induced by the class I/IIb HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Knock-down of HDAC2 and HDAC3, but not other HDACs, increased BDNF mRNA expression, whereas knock-down of BRD4 blocked these effects. Using dCas9-BRD4, locus-specific targeting of BRD4 to the BDNF promoter increased BDNF mRNA. In additional studies, RGFP966, a pharmacological inhibitor of HDAC3, elevated BDNF expression and BRD4 binding to the BDNF promoter, effects that were abrogated by JQ1 (an inhibitor of BRD4). Examining known epigenetic targets of BRD4 and HDAC3, we show that H4K5ac and H4K8ac modifications and H4K5ac enrichment at the BDNF promoter were elevated following RGFP966 treatment. In electrophysiological studies, JQ1 reversed RGFP966-induced enhancement of LTP in hippocampal slice preparations. Last, in behavioral studies, RGFP966 increased subthreshold novel object recognition memory and cocaine place preference in male C57BL/6 mice, effects that were reversed by cotreatment with JQ1. Together, these data reveal that BRD4 plays a key role in HDAC3 inhibitor-induced potentiation of BDNF expression, neuroplasticity, and memory.SIGNIFICANCE STATEMENT Some histone deacetylase (HDAC) inhibitors are known to have neuroprotective and cognition-enhancing properties, but the underlying mechanisms have yet to be fully elucidated. In the current study, we reveal that BRD4, an epigenetic reader of histone acetylation marks, is necessary for enhancing brain-derived neurotrophic factor (BDNF) expression and improved memory following HDAC inhibition. Therefore, by identifying novel epigenetic regulators of BDNF expression, these data may lead to new therapeutic targets for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gregory C Sartor
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136,
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Andrea M Malvezzi
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Ashok Kumar
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, and
| | - Nadja S Andrade
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Hannah J Wiedner
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Samantha J Vilca
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Karolina J Janczura
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Amir Bagheri
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Samuel K Powell
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Peyton T Brown
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Claude H Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Thomas C Foster
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, and
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136,
| |
Collapse
|
35
|
Sillivan SE, Jones ME, Jamieson S, Rumbaugh G, Miller CA. Bioinformatic analysis of long-lasting transcriptional and translational changes in the basolateral amygdala following acute stress. PLoS One 2019; 14:e0209846. [PMID: 30629705 PMCID: PMC6328204 DOI: 10.1371/journal.pone.0209846] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022] Open
Abstract
Stress profoundly impacts the brain and increases the risk of developing a psychiatric disorder. The brain’s response to stress is mediated by a number of pathways that affect gene expression and protein function throughout the cell. Understanding how stress achieves such dramatic effects on the brain requires an understanding of the brain’s stress response pathways. The majority of studies focused on molecular changes have employed repeated or chronic stress paradigms to assess the long-term consequences of stress and have not taken an integrative genomic and/or proteomic approach. Here, we determined the lasting impact of a single stressful event (restraint) on the broad molecular profile of the basolateral amygdala complex (BLC), a key brain region mediating emotion, memory and stress. Molecular profiling performed thirty days post-restraint consisted of small RNA sequencing, RNA sequencing and quantitative mass spectrometry and identified long-lasting changes in microRNA (miRNA), messenger RNA (mRNA) and proteins. Alignment of the three datasets further delineated the regulation of stress-specific pathways which were validated by qPCR and Western Blot analysis. From this analysis, mir-29a-5p was identified as a putative regulator of stress-induced adaptations in the BLC. Further, a number of predicted mir-29a-5p targets are regulated at the mRNA and protein level. The concerted and long-lasting disruption of multiple molecular pathways in the amygdala by a single stress event is expected to be sufficient to alter behavioral responses to a wide array of future experiences, including exposure to additional stressors.
Collapse
Affiliation(s)
- Stephanie E. Sillivan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Meghan E. Jones
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Sarah Jamieson
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Courtney A. Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
Neonatal Lipopolysaccharide Challenge Induces Long-lasting Spatial Cognitive Impairment and Dysregulation of Hippocampal Histone Acetylation in Mice. Neuroscience 2018; 398:76-87. [PMID: 30543856 DOI: 10.1016/j.neuroscience.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/09/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023]
Abstract
Neonatal inflammation induces long-term effects on brain function. We investigated the effects of systematic neonatal inflammation using lipopolysaccharide (LPS) injection at postnatal day 3 (P3) and P5 in a mouse model of spatial memory capacity measured using a Morris water maze (MWM) task in adulthood. Subsequently, we assessed histone acetylation and immediate-early response gene expression (c-Fos and brain-derived neurotrophic factor) in the hippocampus in response to MWM acquisition training. The LPS-treated mice exhibited a significant spatial cognitive impairment, which was accompanied by insufficient histone acetylation of the H4K12-specific lysine residue and repressed c-Fos gene expression immediately after acquisition training. Moreover, the enrichment of acetyl-H4K12 on the c-Fos promoter following acquisition training was decreased in LPS-treated mice. Administration of trichostatin A (TSA), a histone deacetylase inhibitor, 2 h before each MWM acquisition training session effectively enhanced hippocampal histone acetylation levels and enrichment of acetyl-H4K12 on the c-Fos promoter following acquisition training in LPS-treated mice. TSA also increased c-Fos gene expression underlying synaptic plasticity and memory formation, and consequently rescued impaired spatial cognitive function. These results indicate that the dysregulation of H4K12 acetylation during the ongoing process of memory formation plays a key role in the spatial cognitive impairment associated with a neonatal LPS challenge. The histone deacetylase inhibitor TSA exhibits therapeutic potential for treating cognitive impairment induced by neonatal inflammation, by means of improving hippocampal histone acetylation and downstream c-Fos gene expression in response to a learning task.
Collapse
|
37
|
Janczura KJ, Volmar CH, Sartor GC, Rao SJ, Ricciardi NR, Lambert G, Brothers SP, Wahlestedt C. Inhibition of HDAC3 reverses Alzheimer's disease-related pathologies in vitro and in the 3xTg-AD mouse model. Proc Natl Acad Sci U S A 2018; 115:E11148-E11157. [PMID: 30397132 PMCID: PMC6255210 DOI: 10.1073/pnas.1805436115] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of age-related dementia. Neuropathological hallmarks of AD include brain deposition of β-amyloid (Aβ) plaques and accumulation of both hyperphosphorylated and acetylated tau. RGFP-966, a brain-penetrant and selective HDAC3 inhibitor, or HDAC3 silencing, increases BDNF expression, increases histone H3 and H4 acetylation, decreases tau phosphorylation and tau acetylation at disease-associated sites, reduces β-secretase cleavage of the amyloid precursor protein (APP), and decreases Aβ1-42 accumulation in HEK-293 cells overexpressing APP with the double Swedish mutation (HEK/APPsw). In the triple transgenic AD mouse model (3xTg-AD), repeated administration of 3 and 10 mg/kg of RGFP-966 reverses pathological tau phosphorylation at Thr181, Ser202, and Ser396, increases levels of the Aβ degrading enzyme Neprilysin in plasma, decreases Aβ1-42 protein levels in the brain and periphery, and improves spatial learning and memory. Finally, we show that RGFP-966 decreases Aβ1-42 accumulation and both tau acetylation and phosphorylation at disease residues in neurons derived from induced pluripotent stem cells obtained from APOEε4-carrying AD patients. These data indicate that HDAC3 plays an important regulatory role in the expression and regulation of proteins associated with AD pathophysiology, supporting the notion that HDAC3 may be a disease-modifying therapeutic target.
Collapse
Affiliation(s)
- Karolina J Janczura
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Claude-Henry Volmar
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136;
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Gregory C Sartor
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Sunil J Rao
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Natalie R Ricciardi
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Guerline Lambert
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Shaun P Brothers
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136;
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
38
|
Hiranaka S, Tega Y, Higuchi K, Kurosawa T, Deguchi Y, Arata M, Ito A, Yoshida M, Nagaoka Y, Sumiyoshi T. Design, Synthesis, and Blood-Brain Barrier Transport Study of Pyrilamine Derivatives as Histone Deacetylase Inhibitors. ACS Med Chem Lett 2018; 9:884-888. [PMID: 30258535 DOI: 10.1021/acsmedchemlett.8b00099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/23/2018] [Indexed: 12/16/2022] Open
Abstract
We designed and synthesized a pyrilamine derivative 1 as a selective class I HDAC inhibitor that targets pyrilamine-sensitive proton-coupled organic cation antiporter (PYSOCA) at the blood-brain barrier (BBB). Introduction of pyrilamine moiety to benzamide type HDAC inhibitors kept selective class I HDAC inhibitory activity and increased BBB permeability. Our BBB transport study showed that compound 1 is a substrate of PYSOCA. Thus, our findings suggest that the hybrid method of HDAC inhibitor and substrate of PYSOCA such as pyrilamine is useful for development of HDAC inhibitors with increased BBB permeability.
Collapse
Affiliation(s)
- Seiya Hiranaka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Yamate-cho 3-3-35, Suita, Osaka 564-8680, Japan
| | - Yuma Tega
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kei Higuchi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshiki Kurosawa
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoshiharu Deguchi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Mayumi Arata
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa,
Wako, Saitama 351-0198, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi,
Hachioji, Tokyo 192-0392, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa,
Wako, Saitama 351-0198, Japan
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuo Nagaoka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Yamate-cho 3-3-35, Suita, Osaka 564-8680, Japan
| | - Takaaki Sumiyoshi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Yamate-cho 3-3-35, Suita, Osaka 564-8680, Japan
| |
Collapse
|
39
|
Malvaez M, Greenfield VY, Matheos DP, Angelillis NA, Murphy MD, Kennedy PJ, Wood MA, Wassum KM. Habits Are Negatively Regulated by Histone Deacetylase 3 in the Dorsal Striatum. Biol Psychiatry 2018; 84:383-392. [PMID: 29571524 PMCID: PMC6082729 DOI: 10.1016/j.biopsych.2018.01.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Optimal behavior and decision making result from a balance of control between two strategies, one cognitive/goal-directed and one habitual. These systems are known to rely on the anatomically distinct dorsomedial and dorsolateral striatum, respectively. However, the transcriptional regulatory mechanisms required to learn and transition between these strategies are unknown. Here we examined the role of one chromatin-based transcriptional regulator, histone modification via histone deacetylases (HDACs), in this process. METHODS We combined procedures that diagnose behavioral strategy in rats with pharmacological and viral-mediated HDAC manipulations, chromatin immunoprecipitation, and messenger RNA quantification. RESULTS The results indicate that dorsal striatal HDAC3 activity constrains habit formation. Systemic HDAC inhibition following instrumental (lever press → reward) conditioning increased histone acetylation throughout the dorsal striatum and accelerated habitual control of behavior. HDAC3 was removed from the promoters of key learning-related genes in the dorsal striatum as habits formed with overtraining and with posttraining HDAC inhibition. Decreasing HDAC3 function, either by selective pharmacological inhibition or by expression of dominant-negative mutated HDAC3, in either the dorsolateral striatum or the dorsomedial striatum accelerated habit formation, while HDAC3 overexpression in either region prevented habit. CONCLUSIONS These results challenge the strict dissociation between dorsomedial striatum and dorsolateral striatum function in goal-directed versus habitual behavioral control and identify dorsostriatal HDAC3 as a critical molecular directive of the transition to habit. Because this transition is disrupted in many neurodegenerative and psychiatric diseases, these data suggest a potential molecular mechanism for the negative behavioral symptoms of these conditions and a target for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa Malvaez
- Department of Psychology, University of California, Los Angeles, California
| | - Venuz Y Greenfield
- Department of Psychology, University of California, Los Angeles, California
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California
| | | | - Michael D Murphy
- Department of Psychology, University of California, Los Angeles, California
| | - Pamela J Kennedy
- Department of Psychology, University of California, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
40
|
Schiedel M, Conway SJ. Small molecules as tools to study the chemical epigenetics of lysine acetylation. Curr Opin Chem Biol 2018; 45:166-178. [DOI: 10.1016/j.cbpa.2018.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
|
41
|
Cao T, Zhou X, Zheng X, Cui Y, Tsien JZ, Li C, Wang H. Histone Deacetylase Inhibitor Alleviates the Neurodegenerative Phenotypes and Histone Dysregulation in Presenilins-Deficient Mice. Front Aging Neurosci 2018; 10:137. [PMID: 29867447 PMCID: PMC5962686 DOI: 10.3389/fnagi.2018.00137] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/24/2018] [Indexed: 11/28/2022] Open
Abstract
Histone acetylation has been shown to play a crucial role in memory formation, and histone deacetylase (HDAC) inhibitor sodium butyrate (NaB) has been demonstrated to improve memory performance and rescue the neurodegeneration of several Alzheimer’s Disease (AD) mouse models. The forebrain presenilin-1 and presenilin-2 conditional double knockout (cDKO) mice showed memory impairment, forebrain degeneration, tau hyperphosphorylation and inflammation that closely mimics AD-like phenotypes. In this article, we have investigated the effects of systemic administration of NaB on neurodegenerative phenotypes in cDKO mice. We found that chronic NaB treatment significantly restored contextual memory but did not alter cued memory in cDKO mice while such an effect was not permanent after treatment withdrawal. We further revealed that NaB treatment did not rescue reduced synaptic numbers and cortical shrinkage in cDKO mice, but significantly increased the neurogenesis in subgranular zone of dentate gyrus (DG). We also observed that tau hyperphosphorylation and inflammation related protein glial fibrillary acidic protein (GFAP) level were decreased in cDKO mice by NaB. Furthermore, GO and pathway analysis for the RNA-Seq data demonstrated that NaB treatment induced enrichment of transcripts associated with inflammation/immune processes and cytokine-cytokine receptor interactions. RT-PCR confirmed that NaB treatment inhibited the expression of inflammation related genes such as S100a9 and Ccl4 found upregulated in the brain of cDKO mice. Surprisingly, the level of brain histone acetylation in cDKO mice was dramatically increased and was decreased by the administration of NaB, which may reflect dysregulation of histone acetylation underlying memory impairment in cDKO mice. These results shed some lights on the possible molecular mechanisms of HDAC inhibitor in alleviating the neurodegenerative phenotypes of cDKO mice and provide a promising target for treating AD.
Collapse
Affiliation(s)
- Ting Cao
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Xiaojuan Zhou
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Xianjie Zheng
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Yue Cui
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Joe Z Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University Augusta, GA, United States
| | - Chunxia Li
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Huimin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China.,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai Shanghai, China.,Shanghai Changning-ECNU Mental Health Center Shanghai, China
| |
Collapse
|
42
|
Xu MY, Wong AHC. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia. Acta Pharmacol Sin 2018; 39:733-753. [PMID: 29565038 DOI: 10.1038/aps.2017.172] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/25/2017] [Indexed: 12/24/2022]
Abstract
Schizophrenia is considered primarily as a cognitive disorder. However, functional outcomes in schizophrenia are limited by the lack of effective pharmacological and psychosocial interventions for cognitive impairment. GABA (gamma-aminobutyric acid) interneurons are the main inhibitory neurons in the central nervous system (CNS), and they play a critical role in a variety of pathophysiological processes including modulation of cortical and hippocampal neural circuitry and activity, cognitive function-related neural oscillations (eg, gamma oscillations) and information integration and processing. Dysfunctional GABA interneuron activity can disrupt the excitatory/inhibitory (E/I) balance in the cortex, which could represent a core pathophysiological mechanism underlying cognitive dysfunction in schizophrenia. Recent research suggests that selective modulation of the GABAergic system is a promising intervention for the treatment of schizophrenia-associated cognitive defects. In this review, we summarized evidence from postmortem and animal studies for abnormal GABAergic neurotransmission in schizophrenia, and how altered GABA interneurons could disrupt neuronal oscillations. Next, we systemically reviewed a variety of up-to-date subtype-selective agonists, antagonists, positive and negative allosteric modulators (including dual allosteric modulators) for α5/α3/α2 GABAA and GABAB receptors, and summarized their pro-cognitive effects in animal behavioral tests and clinical trials. Finally, we also discuss various representative histone deacetylases (HDAC) inhibitors that target GABA system through epigenetic modulations, GABA prodrug and presynaptic GABA transporter inhibitors. This review provides important information on current potential GABA-associated therapies and future insights for development of more effective treatments.
Collapse
|
43
|
Winick-Ng W, Rylett RJ. Into the Fourth Dimension: Dysregulation of Genome Architecture in Aging and Alzheimer's Disease. Front Mol Neurosci 2018. [PMID: 29541020 PMCID: PMC5835833 DOI: 10.3389/fnmol.2018.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed.
Collapse
Affiliation(s)
- Warren Winick-Ng
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - R Jane Rylett
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
44
|
Shu G, Kramár EA, López AJ, Huynh G, Wood MA, Kwapis JL. Deleting HDAC3 rescues long-term memory impairments induced by disruption of the neuron-specific chromatin remodeling subunit BAF53b. ACTA ACUST UNITED AC 2018; 25:109-114. [PMID: 29449454 PMCID: PMC5817283 DOI: 10.1101/lm.046920.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
Abstract
Multiple epigenetic mechanisms, including histone acetylation and nucleosome remodeling, are known to be involved in long-term memory formation. Enhancing histone acetylation by deleting histone deacetylases, like HDAC3, typically enhances long-term memory formation. In contrast, disrupting nucleosome remodeling by blocking the neuron-specific chromatin remodeling subunit BAF53b impairs long-term memory. Here, we show that deleting HDAC3 can ameliorate the impairments in both long-term memory and synaptic plasticity caused by BAF53b mutation. This suggests a dynamic interplay exists between histone acetylation/deacetylation and nucleosome remodeling mechanisms in the regulation of memory formation.
Collapse
Affiliation(s)
- Guanhua Shu
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Alberto J López
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Grace Huynh
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Janine L Kwapis
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| |
Collapse
|
45
|
Daws SE, Joseph NF, Jamieson S, King ML, Chévere-Torres I, Fuentes I, Shumyatsky GP, Brantley AF, Rumbaugh G, Miller CA. Susceptibility and Resilience to Posttraumatic Stress Disorder-like Behaviors in Inbred Mice. Biol Psychiatry 2017; 82:924-933. [PMID: 28778658 PMCID: PMC5683920 DOI: 10.1016/j.biopsych.2017.06.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND The limited neurobiological understanding of posttraumatic stress disorder (PTSD) has been partially attributed to the need for improved animal models. Stress-enhanced fear learning (SEFL) in rodents recapitulates many PTSD-associated behaviors, including stress-susceptible and stress-resilient subgroups in outbred rats. Identification of subgroups requires additional behavioral phenotyping, a confound to mechanistic studies. METHODS We employed a SEFL paradigm in inbred male and female C57BL/6 mice that combines acute stress with fear conditioning to precipitate traumatic-like memories. Extinction and long-term retention of extinction were examined after SEFL. Further characterization of SEFL effects on male mice was performed with additional behavioral tests, determination of regional activation by Fos immunofluorescence, and RNA sequencing of the basolateral amygdala. RESULTS Stressed animals displayed persistently elevated freezing during extinction. While more uniform in females, SEFL produced male subgroups with differential susceptibility that were identified without posttraining phenotyping. Additional phenotyping of male mice revealed PTSD-associated behaviors, including extinction-resistant fear memory, hyperarousal, generalization, and dysregulated corticosterone in stress-susceptible male mice. Altered Fos activation was also seen in the infralimbic cortex and basolateral amygdala of stress-susceptible male mice after remote memory retrieval. Key behavioral outcomes, including susceptibility, were replicated by two independent laboratories. RNA sequencing of the basolateral amygdala revealed transcriptional divergence between the male subgroups, including genes with reported polymorphic association to patients with PTSD. CONCLUSIONS This SEFL model provides a tool for development of PTSD therapeutics that is compatible with the growing number of mouse-specific resources. Furthermore, use of an inbred strain allows for investigation into epigenetic mechanisms that are expected to critically regulate susceptibility and resilience.
Collapse
Affiliation(s)
- Stephanie E Daws
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida; Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Nadine F Joseph
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida; Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Sarah Jamieson
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida; Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Michelle L King
- Behavioral Core, The Scripps Research Institute, Jupiter, Florida
| | | | - Illeana Fuentes
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | | | | | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida; Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida.
| |
Collapse
|
46
|
Wey HY, Gilbert TM, Zürcher NR, She A, Bhanot A, Taillon BD, Schroeder FA, Wang C, Haggarty SJ, Hooker JM. Insights into neuroepigenetics through human histone deacetylase PET imaging. Sci Transl Med 2017; 8:351ra106. [PMID: 27510902 DOI: 10.1126/scitranslmed.aaf7551] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Epigenetic dysfunction is implicated in many neurological and psychiatric diseases, including Alzheimer's disease and schizophrenia. Consequently, histone deacetylases (HDACs) are being aggressively pursued as therapeutic targets. However, a fundamental knowledge gap exists regarding the expression and distribution of HDACs in healthy individuals for comparison to disease states. Here, we report the first-in-human evaluation of neuroepigenetic regulation in vivo. Using positron emission tomography with [(11)C]Martinostat, an imaging probe selective for class I HDACs (isoforms 1, 2, and 3), we found that HDAC expression is higher in cortical gray matter than in white matter, with conserved regional distribution patterns within and between healthy individuals. Among gray matter regions, HDAC expression was lowest in the hippocampus and amygdala. Through biochemical profiling of postmortem human brain tissue, we confirmed that [(11)C]Martinostat selectively binds HDAC isoforms 1, 2, and 3, the HDAC subtypes most implicated in regulating neuroplasticity and cognitive function. In human stem cell-derived neural progenitor cells, pharmacologic-level doses of Martinostat induced changes in genes closely associated with synaptic plasticity, including BDNF (brain-derived neurotrophic factor) and SYP (synaptophysin), as well as genes implicated in neurodegeneration, including GRN (progranulin), at the transcript level, in concert with increased acetylation at both histone H3 lysine 9 and histone H4 lysine 12. This study quantifies HDAC expression in the living human brain and provides the foundation for gaining unprecedented in vivo epigenetic information in health and disease.
Collapse
Affiliation(s)
- Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tonya M Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Angela She
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anisha Bhanot
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Brendan D Taillon
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Fredrick A Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Changing Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
47
|
Guo J, Cheng J, North BJ, Wei W. Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology. Biochim Biophys Acta Rev Cancer 2017; 1868:341-358. [PMID: 28694093 PMCID: PMC5675793 DOI: 10.1016/j.bbcan.2017.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease and accounts for majority of human dementia. The hyper-phosphorylated tau-mediated intracellular neurofibrillary tangle and amyloid β-mediated extracellular senile plaque are characterized as major pathological lesions of AD. Different from the dysregulated growth control and ample genetic mutations associated with human cancers, AD displays damage and death of brain neurons in the absence of genomic alterations. Although various biological processes predominately governing tumorigenesis such as inflammation, metabolic alteration, oxidative stress and insulin resistance have been associated with AD genesis, the mechanistic connection of these biological processes and signaling pathways including mTOR, MAPK, SIRT, HIF, and the FOXO pathway controlling aging and the pathological lesions of AD are not well recapitulated. Hence, we performed a thorough review by summarizing the physiological roles of these key cancer-related signaling pathways in AD pathogenesis, comprising of the crosstalk of these pathways with neurofibrillary tangle and senile plaque formation to impact AD phenotypes. Importantly, the pharmaceutical investigations of anti-aging and AD relevant medications have also been highlighted. In summary, in this review, we discuss the potential role that cancer-related signaling pathways may play in governing the pathogenesis of AD, as well as their potential as future targeted strategies to delay or prevent aging-related diseases and combating AD.
Collapse
Affiliation(s)
- Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ji Cheng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
48
|
Spicer TP, Hubbs C, Vaissiere T, Collia D, Rojas C, Kilinc M, Vick K, Madoux F, Baillargeon P, Shumate J, Martemyanov KA, Page DT, Puthanveettil S, Hodder P, Davis R, Miller CA, Scampavia L, Rumbaugh G. Improved Scalability of Neuron-Based Phenotypic Screening Assays for Therapeutic Discovery in Neuropsychiatric Disorders. MOLECULAR NEUROPSYCHIATRY 2017; 3:141-150. [PMID: 29594133 DOI: 10.1159/000481731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/08/2017] [Indexed: 02/05/2023]
Abstract
There is a pressing need to improve approaches for drug discovery related to neuropsychiatric disorders (NSDs). Therapeutic discovery in neuropsychiatric disorders would benefit from screening assays that can measure changes in complex phenotypes linked to disease mechanisms. However, traditional assays that track complex neuronal phenotypes, such as neuronal connectivity, exhibit poor scalability and are not compatible with high-throughput screening (HTS) procedures. Therefore, we created a neuronal phenotypic assay platform that focused on improving the scalability and affordability of neuron-based assays capable of tracking disease-relevant phenotypes. First, using inexpensive laboratory-level automation, we industrialized primary neuronal culture production, which enabled the creation of scalable assays within functioning neural networks. We then developed a panel of phenotypic assays based on culturing of primary neurons from genetically modified mice expressing HTS-compatible reporters that capture disease-relevant phenotypes. We demonstrated that a library of 1,280 compounds was quickly screened against both assays using only a few litters of mice in a typical academic laboratory setting. Finally, we implemented one assay in a fully automated high-throughput academic screening facility, illustrating the scalability of assays designed using this platform. These methodological improvements simplify the creation of highly scalable neuron-based phenotypic assays designed to improve drug discovery in CNS disorders.
Collapse
Affiliation(s)
| | - Christopher Hubbs
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Thomas Vaissiere
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Camilo Rojas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Murat Kilinc
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Kyle Vick
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA.,Department of Aerie Pharmaceuticals, Durham, NC, USA
| | - Franck Madoux
- Department of Molecular Medicine, Jupiter, FL, USA.,Department of Amgen, Thousand Oaks, CA, USA
| | | | | | | | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Peter Hodder
- Department of Molecular Medicine, Jupiter, FL, USA.,Department of Amgen, Thousand Oaks, CA, USA
| | - Ronald Davis
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Courtney A Miller
- Department of Molecular Medicine, Jupiter, FL, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Gavin Rumbaugh
- Department of Molecular Medicine, Jupiter, FL, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
49
|
M344 promotes nonamyloidogenic amyloid precursor protein processing while normalizing Alzheimer's disease genes and improving memory. Proc Natl Acad Sci U S A 2017; 114:E9135-E9144. [PMID: 29073110 PMCID: PMC5664514 DOI: 10.1073/pnas.1707544114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hundreds of failed clinical trials with Alzheimer’s disease (AD) patients over the last fifteen years demonstrate that the one-target–one-disease approach is not effective in AD. In silico, structure-based, multitarget drug design approaches to treat multifactorial diseases have not been successful in the context of AD either. Here, we show that M344, an inhibitor of class I and IIB histone deacetylases, affects multiple AD-related genes, including those related to both early- and late-onset AD. We also show that M344 improves memory in the 3xTg AD mouse model. This work endorses a shift to a multitargeted approach to the treatment of AD, supporting the therapeutic potential of a single small molecule with an epigenetic mechanism of action. Alzheimer’s disease (AD) comprises multifactorial ailments for which current therapeutic strategies remain insufficient to broadly address the underlying pathophysiology. Epigenetic gene regulation relies upon multifactorial processes that regulate multiple gene and protein pathways, including those involved in AD. We therefore took an epigenetic approach where a single drug would simultaneously affect the expression of a number of defined AD-related targets. We show that the small-molecule histone deacetylase inhibitor M344 reduces beta-amyloid (Aβ), reduces tau Ser396 phosphorylation, and decreases both β-secretase (BACE) and APOEε4 gene expression. M344 increases the expression of AD-relevant genes: BDNF, α-secretase (ADAM10), MINT2, FE65, REST, SIRT1, BIN1, and ABCA7, among others. M344 increases sAPPα and CTFα APP metabolite production, both cleavage products of ADAM10, concordant with increased ADAM10 gene expression. M344 also increases levels of immature APP, supporting an effect on APP trafficking, concurrent with the observed increase in MINT2 and FE65, both shown to increase immature APP in the early secretory pathway. Chronic i.p. treatment of the triple transgenic (APPsw/PS1M146V/TauP301L) mice with M344, at doses as low as 3 mg/kg, significantly prevented cognitive decline evaluated by Y-maze spontaneous alternation, novel object recognition, and Barnes maze spatial memory tests. M344 displays short brain exposure, indicating that brief pulses of daily drug treatment may be sufficient for long-term efficacy. Together, these data show that M344 normalizes several disparate pathogenic pathways related to AD. M344 therefore serves as an example of how a multitargeting compound could be used to address the polygenic nature of multifactorial diseases.
Collapse
|
50
|
Zhu X, Wang S, Yu L, Jin J, Ye X, Liu Y, Xu Y. HDAC3 negatively regulates spatial memory in a mouse model of Alzheimer's disease. Aging Cell 2017; 16:1073-1082. [PMID: 28771976 PMCID: PMC5595690 DOI: 10.1111/acel.12642] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2017] [Indexed: 02/06/2023] Open
Abstract
The accumulation and deposition of beta-amyloid (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Histone deacetylases (HDACs) are promising therapeutic targets for the treatment of AD, while the specific HDAC isoforms associated with cognitive improvement are poorly understood. In this study, we investigate the role of HDAC3 in the pathogenesis of AD. Nuclear HDAC3 is significantly increased in the hippocampus of 6- and 9-month-old APPswe/PS1dE9 (APP/PS1) mice compared with that in age-matched wild-type C57BL/6 (B6) mice. Lentivirus -mediated inhibition or overexpression of HDAC3 was used in the hippocampus of APP/PS1 mice to investigate the role of HDAC3 in spatial memory, amyloid burden, dendritic spine density, glial activation and tau phosphorylation. Inhibition of HDAC3 in the hippocampus attenuates spatial memory deficits, as indicated in the Morris water maze test, and decreases amyloid plaque load and Aβ levels in the brains of APP/PS1 mice. Dendritic spine density is increased, while microglial activation is alleviated after HDAC3 inhibition in the hippocampus of 9-month-old APP/PS1 mice. Furthermore, HDAC3 overexpression in the hippocampus increases Aβ levels, activates microglia, and decreases dendritic spine density in 6-month-old APP/PS1 mice. In conclusion, our results indicate that HDAC3 negatively regulates spatial memory in APP/PS1 mice and HDAC3 inhibition might represent a potential therapy for the treatment of AD.
Collapse
Affiliation(s)
- Xiaolei Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
- Jiangsu Key Laboratory for Molecular Medicine; Medical School of Nanjing University; Nanjing China
- Nanjing Neuropsychiatry Clinic Medical Center; Nanjing China
| | - Sulei Wang
- Department of Neurology; Nanjing Hospital of Traditional Chinese Medicine; Nanjing China
| | - Linjie Yu
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
| | - Jiali Jin
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
| | - Xing Ye
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
| | - Yi Liu
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
| | - Yun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
- Jiangsu Key Laboratory for Molecular Medicine; Medical School of Nanjing University; Nanjing China
- Nanjing Neuropsychiatry Clinic Medical Center; Nanjing China
| |
Collapse
|